What’s New in Electronics Mar/Apr 2017

Page 50

Geobacter (red) expressing electrically conductive nanowires.

TINY WIRES

Images courtesy of UMass Amherst

MICROBIAL NANOWIRES FOR GREEN ELECTRONICS

Westwick-Farrow Media A.B.N. 22 152 305 336

www.wfmedia.com.au

Head Office Cnr Fox Valley Road & Kiogle Street, (Locked Bag 1289) Wahroonga NSW 2076 Australia Ph: +61 2 9487 2700 Fax: +61 2 9489 1265 Editor Lauren Davis wnie@wfmedia.com.au

Microbiologists at the University of Massachusetts Amherst have discovered a type of natural wire produced by bacteria that could greatly accelerate their goal of developing sustainable conducting materials for the electronics industry.

T

heir research, led by Derek Lovley and published in the journal mBio, saw the scientists study microbial nanowires — protein filaments that bacteria use naturally to make electrical connections with other microbes or minerals. According to Lovley, these nanowires have “substantial advantages over man-made materials”. “Chemically synthesising nanowires in the lab requires toxic chemicals, high temperatures and/or expensive metals,” said Lovley. “The energy requirements are enormous. By contrast, natural microbial nanowires can be mass-produced at room temperature from inexpensive renewable feedstocks in bioreactors with much lower energy inputs. And the final product is free of toxic components. “Microbial nanowires therefore offer an unprecedented potential for developing novel materials, electronic devices and sensors for diverse applications with a new environmentally friendly technology,” he added. “This is an important advance in microbial nanowire technology.” Until now, Lovley’s lab has been working with the nanowires of just one bacterium — Geobacter sulfurreducens — as they were just trying to understand why a microbe would make tiny wires. “Now we are most interested in the nanowires as an electronic material and would like to better understand the full scope of what nature may have to offer for these practical applications,” he said. When his lab began looking at the protein filaments of other Geobacter species, they were surprised to find a wide range in conductivities. An artist’s rendition of Geobacter For example, one species recovered from uraniumexpressing electrically conductive nanowires. contaminated soil produced poorly conductive filaments. Another species, Geobacter metallireducens, produced nanowires 5000 times more conductive than the G. sulfurreducens wires, suggesting they may be an attractive material for the construction of conductive materials, electronic devices and sensors for medical or environmental applications. The researchers noted that they did not study the G. metallireducens strain directly; instead, they took the gene for the protein that assembles into microbial nanowires from it and inserted this into G. sulfurreducens. The result is a genetically modified G. sulfurreducens that expresses the G. metallireducens protein. “We have found that G. sulfurreducens will express filament genes from many different types of bacteria,” noted Lovley. “This makes it simple to produce a diversity of filaments in the same microorganism and to study their properties under similar conditions. “With this approach, we are prospecting through the microbial world to see what is out there in terms of useful conductive materials. There is a vast reservoir of filament genes in the microbial world and now we can study the filaments produced from those genes even if the gene comes from a microbe that has never been cultured.”

50 MARCH/APRIL 2017

Editorial Assistant Amy Steed Publishing Director/MD Geoff Hird Art Director/Production Manager Julie Wright Art/Production Tanya Barac, Colleen Sam, Linda Klobusiak Circulation Manager Sue Lavery circulation@wfmedia.com.au Copy Control Mitchie Mullins copy@wfmedia.com.au Advertising Sales Industrial Group Sales Manager Nicola Fender-Fox – 0414 703 780 nfender-fox@wfmedia.com.au Account Manager Nic Stear – 0432 637 817 nstear@wfmedia.com.au Account Manager Sandra Romanin – 0414 558 464 sromanin@wfmedia.com.au Asia Tim Thompson - 0421 623 958 tthompson@wfmedia.com.au

Contact the editor

If you have any queries regarding our privacy policy please email privacy@westwick-farrow.com.au

Subscriptions: For unregistered readers price on application

Printed and bound by Dynamite Printing Print Post Approved PP100007394 ISSN No. 0728-3873 All material published in this magazine is published in good faith and every care is taken to accurately relay information provided to us. Readers are advised by the publishers to ensure that all necessary safety devices and precautions are installed and safe working procedures adopted before the use of any equipment found or purchased through the information we provide. Further, all performance criteria was provided by the representative company concerned and any dispute should be referred to them. Information indicating that products are made in Australia or New Zealand is supplied by the source company. Westwick-Farrow Pty Ltd does not quantify the amount of local content or the accuracy of the statement made by the source.

WWW.ELECTRONICSONLINE.NET.AU


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
What’s New in Electronics Mar/Apr 2017 by Westwick-Farrow Media - Issuu