ECD (Electrical+Comms+Data) Jan/Feb 2018

Page 5

Energy security

© stock.adobe.com/au/Yuttana Studio

sector was identified as the sector with the highest number of reported incidents or near-incidents relating to critical infrastructure. The report stated that between July 2015 and June 2016, CERT Australia responded to 14,804 cybersecurity incidents affecting Australian businesses, 418 of which involved systems of national interest and critical infrastructure.1 The famous Finkel review ‘Blueprint for the Future’3, discussed the need for strong cybersecurity measures and recommended that an “annual report into the cyber security preparedness of the National Electricity Market should be developed by the Energy Security Board, in consultation with the Australian Cyber Security Centre and the Secretary of the Commonwealth Department of the Environment and Energy”. Cybersecurity has become a key strategic priority for energy networks in the past two years, with energy network businesses using advanced cybersecurity strategies to deter, detect and respond to threats. With the increase in cybersecurity risks, networks have strengthened collaborative approaches in the past 12 months to heighten the capacity of the sector to identify hazards and respond quickly.4 For obvious reasons, efforts and initiatives to manage cybersecurity risk to protect the safety and security of Australians are not discussed openly. However, the recent publication by Energy Networks Australia, ‘Cyber Security and Energy Networks’5, provides an overview of the areas where Australian energy network providers believe that cybersecurity must be managed.

But we live in a highly connected and digital world. Achieving maximum control of the grid in today’s world necessarily implies greater digitalisation and networking: the best results and the greatest efficiency will be achieved by leveraging modern digital technologies such as the Industrial Internet of Things (IIoT). Enhanced grid intelligence through digitalisation and data sharing will make the grid more responsive to changes in electricity demand and better at integrating new sources of generation. Leveraging digitalisation introduces a greater need to focus on cybersecurity. In the past, energy grids were based on centralised generation, and energy distribution was managed by a proprietary SCADA network disconnected from the internet and business networks. Modern connectivity, which enables greater data sharing, has the side effect of introducing new cyber hazards.

Reports and recommendations In the Australian Government’s 2016 Threat Report, released by the government’s Australian Cyber Security Centre (ACSC), the energy

In some ways we have been here before Adapting to the management of cybersecurity is not dissimilar to other procedural and technological changes that industry has adapted to in the past: occupational health and safety (OHS) and plant safety systems. The standardised management of OHS is now an integral part of every business, although it was some years in the development of comprehensive procedures and policies. Businesses have learned from the OHS journey and are increasing the priority placed on cybersecurity in terms of engagement with employees, contractors and suppliers. Similarly, the methodologies of cybersecurity threat and risk assessment, and subsequent risk mitigation strategies, should be generally familiar to organisations that have done the same in the development of plant safety systems. The main difference for energy networks, however, is the distributed nature of the potential ‘attack surface’.

New technologies, new attack vectors A major problem for energy networks in recent years has been the adoption of renewable energy sources, which create network management challenges due to their variable supply characteristics. Better utilisation of modern digitalisation technologies and the IoT will help to manage these variable energy sources, while ever these systems are under the control of the energy networks. However, energy systems around the world are also experiencing the rapid adoption of other types of distributed energy resources, such as smart meters, smart inverters, electric vehicles, rooftop solar photovoltaics, battery storage and home energy management systems.

INSIGHTS 2018 5


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
ECD (Electrical+Comms+Data) Jan/Feb 2018 by Westwick-Farrow Media - Issuu