Instant download Solution manual for the physics of energy 1st edition robert l. jaffe pdf all chapt

Page 1


https://ebookgate.com/product/solution-manual-forthe-physics-of-energy-1st-edition-robert-l-jaffe/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Solution Manual for Classical Mechanics Second Edition

Tai L. Chow

https://ebookgate.com/product/solution-manual-for-classicalmechanics-second-edition-tai-l-chow/

Mathematica for Physics 2nd Edition Robert L. Zimmerman

https://ebookgate.com/product/mathematica-for-physics-2ndedition-robert-l-zimmerman/

Instructor Solution Manual Fundamentals of Digital Signal Processing Using MATLAB 2nd Edition Robert J. Schilling

https://ebookgate.com/product/instructor-solution-manualfundamentals-of-digital-signal-processing-using-matlab-2ndedition-robert-j-schilling/

Solid State Physics Volume 65 1st Edition Robert L. Stamps

https://ebookgate.com/product/solid-state-physics-volume-65-1stedition-robert-l-stamps/

Clinical Manual of Child and Adolescent Psychopharmacology 1st Edition Robert L. Findling

https://ebookgate.com/product/clinical-manual-of-child-andadolescent-psychopharmacology-1st-edition-robert-l-findling/

Manual for Intelligent Energy Services 1st Edition

Shirley J. Hansen

https://ebookgate.com/product/manual-for-intelligent-energyservices-1st-edition-shirley-j-hansen/

Solutions

manual for Guide to energy management seventh edition Pawlik

https://ebookgate.com/product/solutions-manual-for-guide-toenergy-management-seventh-edition-pawlik/

Instructor s Solution Manual Linear Algebra 4th Edition

https://ebookgate.com/product/instructor-s-solution-manuallinear-algebra-4th-edition/

Digital Fundamentals Tenth Edition Instructor Solution Manual Floyd

https://ebookgate.com/product/digital-fundamentals-tenth-editioninstructor-solution-manual-floyd/

ThePhysicsofEnergy

SolutionsManual

Version0.9

(Note:workstillinprogress;thisversionisstillmissing afewsolutions, andmaycontainsomeerrors.Userbeware.)

c R.L.JaffeW.Taylor

ThePhysicsofEnergy:Solutionsmanual

Thissolutionsmanualcontainsworkedsolutionsforthe problemsinthetextbook“ThePhysicsofEnergy”byJaffe andTaylor.Thisisintendedonlyforusebyinstructors teachingclassesusingthebookasatext.Donotdistribute thisdocumentorpostitonline.

Thesesolutionshavenotallbeenthoroughlychecked andsomeerrorsmaybepresent;theusersofthismanualareadvisedtosolvetheproblemsindependently themselvesandcomparewiththesesolutions.Please sendcorrectionsorimprovementsto jaffe@mit.edu and wati@mit.edu

Mostrecentrevision:June17,2018

PartI BasicEnergyPhysicsandUses

Problems

1.1 Confirmeq.(1.14)andtheestimatefortherhinoceros’s kineticenergybeloweq.(1.11)byexplicitcalculation.

Themassofaprotonis Mp = 1 673 × 10 27 kg.Whenaproton andanti-proton,whichhasthesamemassastheproton,annihilate, theenergyreleasedisequaltotheenergyequivalenttothetotal massofthesystem.So,thisenergyis

E = (Mp + Mp )c 2 = 2Mpc 2 = 2(1 673 × 10 27 kg)(2 998 × 108 m/s)2 = 3 007 × 10 10 J

InunitsofMeV,theenergyis

E = 3 007 × 10 10 J × 1MeV 1 602 × 10 13 J = 1877MeV

A3000kgrhinoceroschargingat50km/hourhasatotalkinetic energyof

E = 1 2 mv 2 = 0 5(3000kg) (50km/h) 1000m km 1h 3600s 2 × 1kJ 1000kgm2 /s2 = 289kJ

1.2 Howmuchenergywoulda100Wlightbulbconsume ifleftonfor10hours?

Thelightbulbconsumes

(100W)(10h) = (100J/s)(10h) 3600s 1h = 3 6 × 106 J = 3 6MJ

1.3 Inatypicalmid-latitudelocation,incidentsolarenergy averagesaround200W/m2 overa24-hourcycle.Computethelandareaneededtosupplytheaverageperson’senergyuseof200MJ/dayifsolarpanelsconvert anet5%oftheenergyincidentoveralargeareaof landtousefulelectricalenergy.Multiplybyworldpopulationtogetanestimateoftotallandareaneededto supplytheworldenergyneedsfromsolarpowerunder theseassumptions.Comparethislandareatosomerelevantreferenceareas–theSaharaDesert,yournative country,etc.

Thetotallandareaneededtosupplyanaverageperson’senergy useis

A1person = 200MJ/day (0 05)(200W/m2) 106 W MJ/s 1day 86400s = 231m2

Earthhasatotalpopulationofabout7 × 109 ,sothetotalland areaneededtosupplyworldenergyneedsis

Atotal = (231m2 /person)(7 × 109 persons) ≈ 1 6 × 106 km2 ThisisapproximatelythesizeofAlaskaorIran,roughly17% of theareaoftheSaharaDesert.

1.4 TheUStotalenergyconsumptionin2014was98.0 quads.Whatisthisquantityinjoules?About83%of USenergycomesfromfossilfuels.Ifthewhole83% camefromoil,howmanytonsofoilequivalent(toe) wouldthishavebeen?Howmanybarrelsofoil(bbl)is thisequivalentto?

TheUStotalenergyconsumptioninjoulesis

98 0quads 1 055 × 1018 J 1quad = 1 03 × 1020 J

If83%ofthiswerefromoil,thisisequivalentto

0 83(1 03 × 1020 J) 1toe 41 868 × 109 J = 2 04 × 109 toe

Thisisequivalentto

0 83(1 03 × 1020 J) 1bbl 6 118 × 109 J = 1 40 × 1010 bbl

1.5 Thegravitationalpotentialenergyofanobjectofmass m atadistance h abovegroundisgivenby E = mgh Usedimensionalanalysistocomputetheunitsof g Whatdoesthisresultsuggestaboutthebehaviorof objectsnearEarth’ssurface?

Usingdimensionalanalysis,

[g] = [energy] [mass][distance] = [mass][distance]2 /[time]2 [mass][distance] = [distance] [time]2

Thisisanacceleration,suggestingthatnearthesurfaceallobjects undergothesameaccelerationduetogravity.

1.6 Theenergyemittedorabsorbedinchemicalprocessesisoftenquotedinkilojoulesper mole (abbreviatedmol)ofreactants,whereamolecontains NA 6 022 × 1023 (Avogadro’snumber)molecules(§5). DerivetheconversionfactorfromeV/moleculeto kJ/mol.

1 eV molecule = 1 eV molecule 1 602 × 10 19 J eV 1kJ 1000J × 6 022 × 1023 molecules 1mol = 96 47 kJ mol

1.7 Theenergyavailablefromonekilogramof 235Uis 82TJ.Energyisreleasedwheneachuraniumnucleus splits,or fissions.(Thefissionprocessisdescribedin §16,butyoudonotneedtoknowanythingaboutthe processforthisproblem.)235gramsof 235Ucontain approximatelyAvagadro’snumber(seeProblem1.6) atomsof 235U.Howmanymillionsofelectronvolts (MeV)ofenergyarereleased,onaverage,whena 235Unucleusfissions?Howmanykilogramsofgasolinehavethesameenergycontentasonekilogramof 235U?

TheenergyreleasedpernucleusinMeVis

E 82 TJ kg 1012 J TJ 0 235kg 1mol 1mol 6 022 × 1023 atoms × 1eV 1 602 × 10 19 J 1MeV 106 eV 200 MeV atom

Weneedtheenergycontentofgasoline,120MJ/gallon(US), andthedensityofgasoline,0.755kg/L.Onekgof 235Uis equivalentto

M(gasoline) = 82 × 1012 J 1gallon(US) 120 × 106 J 3 785L gallon(US) 0 755kg L = 1 834 × 106 kg

1.8 TheUStotalelectricalpowerconsumptionin2010was 3.9TkWh.Utilitiestrytomaintainacapacitythatis twicetheaveragepowerconsumptiontoallowforhigh demandonhotsummerdays.Whatinstalledgenerating capacitydoesthisimply?

Theinstalledgeneratingcapacityis

2(3 9 × 1015 Wh/y)/(8766h/y) 890GW

Problems

2.1 Estimatethekineticenergyoftheoceanliner Queen Mary2,withmass(displacement)76000tons,movingatacruisingspeedof26knots.Comparewiththe changeinpotentialenergyofthe QueenMary2 when liftedbyathreefoottide.

Theknotisanauticalunitofspeed,1knot = 0.5144m/s,so 26knots = 13.4m/s.TheQueenMary2’skineticenergyisthen

Ekin = 1 2 mv 2 = 0 5(76 × 106 kg) (13 4m/s)2 = 6 82GJ

Thechangeinpotentialenergywhenliftedbyathreefoottideis

V = mgh = (76 × 106 kg)(9 81m/s 2)(3ft) 0 3048m 1ft = 663MJ , orabout10%ofthekineticenergy.

2.2 [T]Amass m movesundertheinfluenceofaforce derivedfromthepotential V(x) = V0 cosh ax,where thepropertiesofcosh x andother hyperbolicfunctions aregiveninAppendixB.4.2.Whatistheforceon themass?Whatisthefrequencyofsmalloscillations abouttheorigin?Asthemagnitudeoftheoscillations grows,doestheirfrequencyincrease,decrease,orstay thesame?

Theforceonthemassis F(x) = dV/dx = V0a sinh ax, withsinh x = 1 2 (ex e x ).Forsmall x,theexponentialfunction isapproximatedusingaTaylorexpansionby

ey = 1 + y + y2 2 + y3 6 + ...,

socosh y = 1+y2 /2+ andsinh y = y+y3 /6+ .Forsmalloscillations, i.e. when ax ≪ 1,soweonlyneedkeepthefirstterminthe expansionofsinh ax,theforceis F(x) = V0 a2 x.Theequationof motionforsmalloscillationsis

mx = V0a 2 x ,

whichistheequationfora harmonicoscillator (seeeq.(2.10))with frequency ω = a √V0/m

Thisfrequencyisindependentofmagnitudeofoscillations.If, however,theamplitudeoftheoscillationbecomeslargecompared to1/a,thenthenon-lineartermsintheexpansionofsinh x cannot beignoredandtheequationofmotionbecomes

mx = V0a ax + 1 6 a 3 x 3 + ,.

Allofthetermsintheexpansionhavethesamesign,soasthe amplitudeofoscillationsincreases,themagnitudeoftheforce increasescomparedtojustasimpleharmonicoscillatorand the frequencyoftheoscillationsincreases.

2.3 [T]Anobjectofmass m isheldneartheoriginbyaspring, F = kx.Whatisitspotentialenergy?Showthat x(t) = (x0, y0, z0)cos ωt is apossibleclassicalmotionforthemass.Whatis theenergyofthissolution?Isthisthemostgeneralmotion?Ifnot,giveanexampleofanother solution.

Accordingtoeq.(2.18),theforceisthenegativegradientofthe potentialenergy.Setting F = kx = ∇V,thesolutionis V(x) = 1 2 kx2 + C ,

whichcanbecheckedbydifferentiatingwithrespecttoeachcoordinate.Wesettheintegrationconstant C = 0sothatthepotential energyiszeroat x = 0.

Theequationofmotionis mx = F = kx,andsuggested solutioncanbewritten x(t) = x0 cos ωt,where x0 = (x0 , y0 , z0 ). Differentiatingtwicewithrespectto t wesee¨x = ω2 x,which satisfiestheequationofmotionif ω = √k/m

Thetotalenergyisthesumofkinetic, Ekin = 1 2 mx2 ,and potential, V(x).

wherewehaveused mω2 = k andsin2 + cos2 = 1. Thissolutionisnotthemostgeneralsinceitrequirestheoscillatortobemaximallystretchedat t = 0.Itiseasytoshowthat x(t) = x0 cos ω(t t0 )isasolutionforany t0 .Usingtheidentity cos(θ φ) = cos θ cos φ + sin θ sin φ,itisclearthatthissolutionis asumofsineandcosinefunctions.

2.4 Estimatethepotentialenergyoftheinternationalspace station(mass370000kg)relativetoEarth’ssurface wheninorbitataheightof350km.Computethevelocityofthespacestationinacircularorbitandcompare thekineticandpotentialenergy.

Fromeq.(2.20),thepotentialenergyrelativetothesurfaceis

V(h) = GmM⊕ R⊕ + h + GmM⊕ R⊕ = (6 67 × 10 11 Nm2 /kg2 )(3 7 × 105 kg)(6

Inacircularorbit,thegravitationalforceisequaltothemass timesthecentripetalacceleration, mv2 r = GM⊕ m r2

Solvingforvelocity,

v = GM⊕ r = (6 67 × 10 11 )(6 × 1024 ) (6 37 × 106 + 3 5 × 105 ) m/s = 7 7km/s

Thekineticenergyisequalto

Ekin = 1 2 mv 2 = 1 2 (3 7 × 105 kg)(7 7 × 103 m/s)2 = 11TJ

Thus,thekineticenergyis9 1timesthepotentialenergyrelativeto Earth’ssurface.

2.5 [T]Relateeq.(2.20)toeq.(2.9)andcompute g interms of G, M⊕, R⊕ asdescribedinthetext.

Thepotentialyieldingthe r 2 forcelawis V(r) = GMm/r Intheapproximationthatthegravitationalforceisconstant,the potentialis V(z) = mgz,where z = r R⊕ istheheightfromEarth’s surface, R⊕ isEarth’sradiusand z ≪ R⊕.Bydefinition,

V(z) V(0) = GM⊕ m R⊕ + z + GM⊕ m R⊕

Useaseriesexpansionfor1/(R⊕ + z),(seeeq.(B.63)), 1 R⊕ + z = 1 R⊕ z R2 ⊕ + ..., giving

V(z) V(0) = GM⊕ m R2 ⊕ (z + O(z 2 /R3 ⊕))

Comparingthisto V(z) = mgz,andsetting V(0) = 0,wegetto leadingorderin z/R⊕, g = GM⊕ R2 ⊕ = (6 67 × 10 11 Nm2 /kg2)(5 97 × 1024 kg) (6 37 × 106 m)2 = 9 81m/s 2

2.6 Makearoughestimateofthemaximumhydropower availablefromrainfallintheUSstateofColorado.LookuptheaverageyearlyrainfallandaverageelevationofColoradoandestimatethepotentialenergy(withrespecttosealevel)ofallthe waterthatfallsonColoradooverayear.How doesthiscomparewiththeUSyearlytotalenergy consumption?

Coloradohasanaverageyearlyprecipitationof 0.4m.SupposethisistypicalofthewholestateofColorado.Colorado hasa meanelevationofapproximately2070mandatotalsurfacearea of270000km2 .Alltheprecipitationfallingonthestateinoneyear thenhasatotalpotentialenergyof mgh ≈ ρVgh (1000kg/m3)(0 4m)(2 7 × 1011 m2 )

Thisisabout2%ofthetotalenergyconsumedintheUSeachyear.

2.7 Chooseyourfavoritelocalmountain.Estimatehow muchenergyittakestohiketothetopofthemountain (ignoringallthelocalupsanddownsofatypicaltrail). Howdoesyourresultcomparetoatypicalday’sfood energyintakeof10MJ,takingintoaccountthefactthat humanmusclesarenot100%efficientatconverting energyintowork?

MountWashingtonisthetallestmountainintheStateofNew Hampshire?ThepeakofMountWashingtonisat1917meters (6288feet)abovesealevel.Atypicalroute,however,beginsat about600metersabovesealevel,sotheelevationgainisroughly 1300m.Forahikerof80kg(includingfood,water,extraclothing, etc.),thepotentialenergygainonthehikeis

V = mgh (80kg)(9 8m/s 2 )(1300m) 1MJ (2.45)

At20-30%muscleefficiency,thisrepresentsaboutonethirdtoone halfoftheusefulenergyoutputfromthetypicalhiker’s10MJ/day foodenergyintake.Thisiscomputedjustfromtheelevation gain, withoutincludinglocalupsanddownsofthetrail,horizontaldistancecovered,orthehikedown.Sodon’tfeelbadaboutconsuming alotofhigh-calorietrailfoodnexttimeyouareonastrenuous hike!

2.8 Useanymeansatyourdisposal(includingtheinternet)tojustifyestimatesofthefollowing(anorderof-magnitudeestimateissufficient):(a)Thekinetic energyoftheMooninitsmotionaroundEarth.(b) Thekineticenergyofaraindropbeforeithitsthe ground.(c)ThepotentialenergyofthewaterinLake Powell(relativetotheleveloftheColoradoriver directlybeneaththedam).(d)Energyneededforyou topowerabicycle15kmat15km/honflatterrain. (e)TheenergylosttoairresistancebyanOlympic athleterunninga100mrace.(f)Thegravitational potentialenergyofaclimberatthetopofMount Everest.

(a)Themoonorbitstheearthaboutonceamonthandhasanorbital radiusofabout380000km,soitsspeedis v = 2πR/T 0 91km/s.Themoonhasamassof7 3 × 1022 kg,sothis correspondstoakineticenergyof

(b)Largeraindropsareabout5mmindiameterandfallat ∼9m/s, sotheyhaveakineticenergyof

2.9

(c)LakePowellhasavolumeofapproximately33km3 andthe GlenCanyonDamhasaheightof Z = 220m.Treatingthelake asaboxofarea A andvolume V = ZA,itspotentialenergyis V = ρgA Z 0 dzz = ρgAZ2 /2 = (1/2)ρgVZ (0 5)(1000kg/m3 )(9 8m/s 2)(33 × 109 m3 )(220m)

(d)Thecrosssectionalareaofapersononabikeisaround0.5 m2 withadragcoefficientaround1.Theenergyoutputismostlyto counteractairresistance.Theenergylostis

1 2 ρaircd Av2 d = 0 5(1 2kg/m3 )(0 5m2 ) × (4 2m/s)2 (1 5 × 104 m) 79kJ

Assuminganefficiencyof ∼25%forthehumanbody,around 340kJwillwillhavetobeexpended

(e)Assumetherunnerhasacross-sectionalareaofapproximately 0.5m3 andadragcoefficientaround1.Goodrunnersfinishin around10s,sotheyhaveaspeedof10m/s.Thetotalenergy losttoairresistancewillbe(1/2)cd ρair Av2 d ∼ 3kJ. (f)Estimatethataclimberandgearhaveamassofapproximately 90kg.ThetopofMt.Everestis8848mabovesealevel,sothe climberwillhave mgh (90kg)(9 8m/s 2)(8 9 × 103 m) 7 8MJ ofgravitationalpotentialenergywithrespecttosealevel

Verifytheclaimthatconversionofthepotentialenergy atthetopofa15mhilltokineticenergywould increasethespeedoftheToyotaCamryfrom62to 74mph.

ACamryhasamassof1800kg,soitgains265kJofkinetic energywhenitselevationfallsby15m.Conservationofenergy requiresthat

1 2 mv 2 + mgh = constant

Usingthis,thefinalvelocityifitstartsat62mi/hris

v f = v2 i + 2gh = 32 6m/s = 73mi/hr

2.10 Consideracollisionbetweentwoobjectsofdifferentmasses M, m movinginonedimensionwithinitialspeeds V, v.Inthe center-of-massframe,the totalmomentumiszerobeforeandafterthecollision.Inan elastic collisionbothenergyandmomentumareconserved.Computethevelocitiesofthetwo objectsafteranelasticcollisioninthecenter-of-mass frame.Showthatinthelimitwhere m/M → 0,the

moremassiveobjectremainsatrestinthecenter-ofmassframe(V = 0beforeandafterthecollision), andthelessmassiveobjectsimplybouncesoff the moremassiveobject(likeatennisballoff aconcrete wall).

Inthecenter-of-massframetheobjectshavevelocities V ′ = V + u and v′ = v + u,where u isthevelocityofthecenter-of-mass viewedfromtheoriginalframe.Thetotalmomentumofthetwo objectsinthecenter-of-massvanishes: ptot = M(V +u)+m( v+u) = 0,whichdeterminesthecenter-of-massvelocity

u = mv MV m + M and

V ′ = V + u = m m + M (v + V)

v ′ = v + u = M m + M (v + V)

aretheobjects’velocitiesbeforethecollisioninthecenter-ofmass.Ifenergyandmomentumarebothconservedinthecollision, theobjects’mustreversetheircenter-of-massvelocities afterthe collision,

V ′ f = V ′ = m m + M (v + V)

v ′ f = v ′ = M m + M (v + V)

Inthelimit m/M → 0, V ′ → 0and V ′ f → 0,theheavierobject beginsandremainsatrest,while v ′ f = v ′ = (v + V),thelighter objectbouncesoff

2.11 Asweexplainin§34.2.1,thedensityofairdecreases withaltituderoughlyas ρ ρ0e z/H ,where z isthe heightabovetheEarth’ssurfaceand H 8 5kmnear thesurface.Computetheratioofairresistancelosses foranairplanetravelingat750km/hatanaltitudeof 12000mcomparedtoanaltitudeof2000m.Whathappenstothisratioasthespeedoftheairplanechanges? Howdoautomobileairresistancelossesat2000m comparetolossesatsealevel?

Airresistancelossesarelinearlyproportionaltothedensity ofair,sotheratiooflosesat12000mcomparedto2000mis r = e ∆z/H e 10/8 5 31%.Althoughthelosses(dEair /dt)are proportionaltospeedcubed,thespeedcancelsoutintheratioof lossesattwodifferentairdensities,sotheratioisindependentof theairplane’sspeed.Similarlyforacarat2000mcomparedtosea level r e 2/8 5 79%.

2.12 Consideranairplanewithmass70000kg,crosssectionalarea12m2,anddragcoefficient0.03.Estimatetheenergyneededtogettheplanemovingat 800km/handlifttheplaneto10000m,andestimate air-resistancelossesforaflightof2000kmusingthe formulainthepreviousproblem.Doaroughcomparisonoftheenergyusedperpersontodoasimilar tripinanautomobile,assumingthattheplanecarries50passengersandtheautomobilecarriestwo people.

Forsimplicity,assumethataccelerationoccursquicklyso thatair resistanceduringaccelerationcanbeneglected.Theplane requires atotalkineticenergyof

Ekin = 1 2 mv 2 = 0 5(70000kg)(800 × 103 m/3600s)2 = 1 73GJ ,

andat10000mhasapotentialenergyof V = mgh = (70000kg)(9 8m/s 2)(10000m) = 6 86GJ

Thedensityofairat10000misapproximately e 10/8 5 = 31%of thedensityatsealevel ρair = 0 31(1 17kg/m3 ) 0 36kg/m3

Travelingat v = 800km/hfor d = 2000kmat10000m,theplane loses

Eair = 1 2 ρaircd Av2 d 0 5(0 36kg/m3 )(0 03) × (12m2 )(222m/s)2 (2000 × 103 m) 6 4GJ

duetoairresistance.Thetotalenergyusedbytheplaneover theflightisapproximately15 3GJ.Thisis306MJ/passengeror 153kJ/passenger-km.Atypicalcarusesaround210MJofmechanicalenergyoverthe340kmtripbetweenNewYorkandBoston. With2passengers,thisis310kJ/passenger-km,ornearlytwicethe energyusageoftheairplane.So,beforeengineefficienciesareconsidered,automobilesuseroughlytwiceasmuchenergyovera long trip.

2.13 IntheAmericangameofbaseball,a pitcher throws a baseball,whichisaroundsphereofdiameter b = 0 075m,adistanceof18.4m(60.5feet),toa batter, whotriestohittheballasfarashecan.Abaseball hasamasscloseto0.15kg.Aradargunmeasuresthe speedofabaseballatthetimeitreachesthebatterat 44.7m/s(100mph).Thedragcoefficient cd ofabaseballisabout0.3.Giveasemi-quantitativeestimateof thespeedoftheballwhenitleftthepitcher’shand by(a)assumingthattheball’sspeedisnevertoodifferentfrom100mphtocomputeroughlyhowlongit takestogofromthepitchertothebatter,(b)using(a) toestimatetheenergylosttoairresistance,and(c) using(b)toestimatetheoriginalkineticenergyand velocity.

Theballhasaneffectiveareaof A = πR2 = 0 00442m2 .Forair atsealeveland25◦ C, ρair = 1 17kg/m3 .Theenergylossrateis

dE

dt = 1 2 cd Aρairv 3 0 5(0 3)(0 00442m2 )

× (1 17kg/m3 )(44 7m/s)3 69J/s

Iftheball’sspeeddoesnotdiffersignificantlyfrom100mph,it takes(a) t = (18 4m)/(44 7m/s) 0 41secfortheballtoreach thebatter.Thetotalamountofenergylostis(b) ∆E = dE dt × t 28J.

At100mph,theballhasakineticenergyof

Ekin f = 1 2 mv 2 150J

(c)Theinitialkineticenergyoftheballisjustthedifferenceofthis andtheenergyloss,

Ekin i = 150J + 28J = 178J

Thiscorrespondstoavelocityof

v = Ekin im 2(178J) (0 15kg) m/s 49m/s 110mph

2.14

Estimatethepoweroutputofanelitecyclistpedaling abicycleonaflatroadat14m/s.Assumeallenergy islosttoairresistance,thecross-sectionalareaofthe cyclistandthebicycleis0.4m2,andthedragcoefficientis0.75.Nowestimatethepoweroutputofthe sameelitecyclistpedalingabicycleupahillwithslope 8%at5m/s.Computetheairresistanceassumingthe

dragcoefficienttimescross-sectionalareais cd A = 0.45m2 (riderisinalessaerodynamicposition).Computetheratioofthepoweroutputtopotentialenergy gain.Assumethatthemassoftheriderplusbicycleis 90kg.

Ontheflatroad,thepoweroutputofthecyclistisequaltothe powerlostduetoairresistance,

P = 1 2 ρcd Av3 (0 5)(1 2kg/m3)(0 75)(0 4m2 )(14m/s)3 490W

Thepoweroutputofthecyclistontheslopeisequaltothe powerlostduetoairresistanceandduetotherateofchangeof potentialenergy,

P = Pair + Pg

Thecontributionfromairresistanceis

Pair = 1 2 ρcd Av3 = (0 5)(1 2kg/m3 )(0 45m2 )(5m/s)3 = 34W

Thecontributionfromgravitationalpotentialenergy

Pg = mg dz dt (90kg)(9 8m/s)(5m/s)sin(arctan(8/100) 350W

sothetotalpoweroutputofthecyclistontheslopeis

P = 380W

2.15 Comparetherateofpowerlosttoairresistanceforthe followingtwovehiclesat60km/hand120km/h:(a)

GeneralMotorsEV1with cd A 0 37m2,(b)Hummer H2with cd A 2 45m2

(a).At60km/h(16.67m/s)

dEloss dt = 1 2 ρcd Av3 (0 5)(1 2kg/m3)(0 37m2 )(16 7m/s)3 = 1 03kW

At120km/h,thepoweris8timesashigh,or8.2kW.

(b).ThepowerfortheHummerH2scaleswiththe cd A,sotheH2 losesenergyatarateof(2 45/.37)(1 03kW) = 6 8kWat 60km/hand(2 45/.37)(8 2kW) = 54kWat120km/h.Inboth cases,theH2losesenergyatarate6.6timesthatoftheEV1.

2.16 [T]Consideranidealizedcylinderofcross-sectional area Amovingalongitsaxis throughanidealized diffusegasofairmoleculeswithvanishinginitial velocity.Assumethattheairmoleculesarepointlike anddonotinteractwithoneanother.Computethe velocitythateachairmoleculeacquiresafteracollisionwiththecylinder,assumingthatthecylinder ismuchmoremassivethantheairmolecules.[Hint: assumethatenergyisconservedinthereferenceframe ofthemovingcylinderandusetheresultofProblem2.10.]Usethisresulttoshowthatthedragcoefficientofthecylinderinthisidealizedapproximationis cd = 4.

Supposethecylinderistravelingatavelocity v.Inthecylinder’s restframe,theairmoleculesaretravelingatavelocity v perpendiculartothesurfaceofthecylinder.Takingthelimitthatthe cylinderisinfinitelymoremassivethantheairmolecules,thisis thecenterofmassframe.Inthislimit,acollisionmaychangethe directionoftheairmoleculebutnotthespeed.Sincethevelocity oftheairmoleculesisperpendiculartotheendofthecylinder,the finalvelocitymustbe +v inthecylinderrestframe.Goingbackto

thelabframe,weaddavelocity +v toeverything,sothatthecylinderonceagainistravelingatavelocityof +v andtheairmolecule hasavelocityof +2v Tofind cd ,wemustnowcomputetherateofenergylossofthe cylinder.Intime dt,thefrontendofthecylinderpassesthrougha volume Avdt ofair,correspondingtoamassof dm = Aρvdt.This massisacceleratedfromresttoavelocityof2v.So,thecolumnof airgainsanenergyof

Fromconservationofenergy,thecylinderlosesanequalamountof energy,sothepoweroutputduetoairresistanceis

where cd = 4.

2.17

Onewaytoestimatetheeffectivearea(seeeq.(2.31)) ofanobjectistomeasureitslimitingvelocity v∞ fallinginair.Explainhowthisworksandfindthe expressionfor Aeff asafunctionof m (themassofthe object), v∞, g,andthedensityofair.Thedragcoefficientofasoccerball(radius11cm,mass0.43kg)is cd ≈ 0.25.Whatisitslimitingvelocity?

Becausetheforceduetoairresistanceincreaseswithvelocity, ifanobjectisallowedtofallinair,thereissomevelocityatwhich theupwardforceduetoairresistanceisequalinmagnitudetothe downwardgravitationalforce.Whenthishappens,thereisnonet forceontheobject,sotheobjectcontinuesfallingatthisvelocity, whichis v∞ .Thus, mg = 1 2

Theeffectiveareaofthesoccerballis Aeff = cd A = cd

r2 = 0 0095m2 .Thelimitingvelocityis

v∞ = 2mg ρair Aeff 2(0 43kg)(9 8m/s2 ) (1 2kg/m3 )(0 0095m2 ) 27m/s

2.18 Ifthevehicleusedasanexampleinthischapteracceleratesto50km/hbetweeneachstoplight,findthemaximumdistancebetweenstoplightsforwhichtheenergy usedtoacceleratethevehicleexceedstheenergylostto airresistance.(Youmayassumethatthetimeforaccelerationisnegligibleinthiscalculation.)Howdoesthe resultchangeifthevehicletravelsat100km/hbetween lights?Why?

Thevehicleinthischapterhas A = 2 7m2 , cd = 1/3,and m = 1800kg.Thetotalenergylosttofrictionafteradistance d at avelocity v is

Elost = 1 2 ρcd Av2 d

Settingthisequaltothekineticenergyandsolvingfor d togetthe maximumdistanceforwhichthekineticenergyexceedstheenergy lostduetoairresistance,

1 2 mv 2 = 1 2 ρcd Av2d d = m ρcd A 1800kg (1 2kg/m3 )(1/3)(2 7m2 ) 1 67km

Theresultisthesameifthevehicletravelsat100km/h.Both thekineticenergyandtheenergylossareproportionalto v2 sothe distanceatwhichtheyareequalisindependentofthevelocity.

2.19 Estimatetherotationalkineticenergyinaspinningyoyo(aplastictoythatyoucanassumeisacylinder ofdiameter5.7cmandmass52g,whichrotatesat 100Hz).Comparetothegravitationalpotentialenergy oftheyo-yoatheightof0.75m.

Themomentofinertiaforacylinderofmass m,length z and radius R rotatingarounditsaxisis(seeExample2.4),

Theenergyoftherotatingyo-yois

Hz)(100Hz)

Itsgravitationalpotentialenergyataheightof0.75mis mgh 0 38J,almostafactoroftensmallerthanitsrotationalkinetic energyat10Hz.(Mostoftheenergyisimpartedintheinitial “throw,”andnotfromgravitationalpotentialenergy.)

2.20 Verifytheassertion(seeExample2.3)that Ekin = 1 2 V fortheMooninacircularorbitaround Earth.[Hint:themagnitudeofthecentripetal accelerationforcircularmotion(2.35)canberewritten a = v2/r.]

Assumethroughoutthat M⊕ ≫ mmoon,sowemaytakeEarth tobeatrest.Foracircularorbit,thecentripetalaccelerationis a = v2/r.Theaccelerationduetogravityis GM⊕ /r2 where M⊕ isEarth’smass,whichismuchgreaterthanthatofthemoon.The gravitationalpotentialenergyofthemoonis V = GM⊕ m/r

Thecentripetalaccelerationandgravitationalaccelerationare identical,so

v2 r = GM⊕ r2 or v 2 = GM⊕ r , so

Ekin = 1 2 mv 2 = 1 2 GM⊕ m r = 1 2 V

2.21 EstimateEarth’skineticenergyofrotation(themoment ofinertiaofauniformsphereis 2 5 MR2).

Earthhasamassof5 972 × 1024 kgandameanradiusof 6371km.Itrotatesaboutitsaxisoncepersiderealday(23.9345h), givingitanangularvelocityof ω = 2π/(1siderealday) = 7 292 × 10 5 s 1 .Itskineticenergyofrotationis

E = MR2 5 ω 2 = (0 2)(5 972 × 1024 kg)(6371 × 103 m)2

× (7 292 × 10 5 rad/s)2 = 2 578 × 1029 J

Problems

3.1 Theelectricfieldoutsideachargedconductingsphere isthesameasifthechargewerecenteredatitsorigin.Usethisfacttocalculatethecapacitanceofa sphereofradius R,takingthesecondconductortobe locatedatinfinity.Whatisthemostchargeyoucan storeonanotherwiseisolatedsphericalconductorof radius R withoutabreakdownofthesurroundingair asdiscussedinExample3.2?Whatisthemaximum energyyoucanstoreonaconductingsphereofradius 1mm?

Thecapacitanceisdefinedby

= Q V

Foraconductingsphereofradius R andcharge Q, V isjustthe potentialofapointcharge Q ataradius R,so

= 4πε

Breakdowninairoccursat E

= 3 3 × 106 V/m.Thefield aroundthesphereishighestattheradius R,whereitis

4 C/m2) R2

Forasphereofradius1mm,themaximumchargethatcanbe storedis Qmax 3 7 × 10 10 C anditscapacitanceis0 111pF.Thetotal(maximum)energystored bythecapacitor

EEM = Q2

3.2

[T]ProveGauss’slawfromCoulomb’slawforstatic chargedistributionsbyshowingthattheelectricfield ofasinglechargesatisfiestheintegralformofGauss’s lawandtheninvokinglinearity.

TheintegralformofGauss’slawisgivenineq.(3.10).Takea sphericalsurfacesurroundingapointcharge Q.Theelectricfield is E = Qˆ r/(4πǫ0 r2 ),sointegratingthefieldoverthesurface,

dΩr 2 Q 4πǫ0 r2 = Q ǫ0

Theresultisthesameforasphereofanyradiusincludingasphere ofinfinitesimallysmallradius.Now,consideraspherenotenclosingthecharge.Inthelimitthattheradiusisverysmall,the electric fieldisconstantacrosstheentiresphere.Inthiscase,thereisno netfluxintooroutoftheinfinitesimallysmallsphere,sothe same integralgivesavalueofzero.

Anyclosedsurfacecanbecreatedbycombiningthesurfacesof infinitesimallysmallspheres,assurfacessharedbetweenthedifferentsphereshavenonetcontribution.Sinceonlytheinfinitesimally smallspherecenteredonthechargehasanonzerocontribution,for anyclosedsurface S surroundingapointcharge Q,

S dS E = Q ǫ0 (3.75)

Duetolinearity,thefieldofmanychargesorevenacontinuouschargedistributionisidenticaltothesumofthefieldsofthe

individualpointchargesorinfinitesimalchargeelements. Since Gauss’slawholdsforapointcharge,itmustthenholdforany chargedistribution.

3.3 Howmuchenergycanyoustoreonaparallelplate capacitorwith d = 1 µm, A = 10cm2,and ǫ = 100ǫ0, assumingthatthebreakdownfieldofthedielectricis thesameasforair?

Theenergystoredinthecapacitoris EEM = CV 2 /2.Thecapacitanceis C = ǫA/d andthemaximumvoltageis Vmax = |E|max d, so

3.4 [T]StartingfromGauss’slawandignoringedgeeffects (i.e.assumethattheplatesareverylargeandtheelectricfieldisuniformandperpendiculartotheplates), derivetheformulaforthecapacitanceofaparallelplate capacitor, C = ǫ0 A/d.RefertoFigure3.8.Youcan assumethattheelectricfieldvanishesoutsidetheplates definingthecapacitor.Showthattheenergystoredin thecapacitor, 1 2 CV2,canbewrittenastheintegral of ǫ0|E|2/2overtheregionwithinthecapacitor(as assertedineq.(3.20)).

Ignoringedgeeffects,thecharge Q isuniformlydistributedover theplatescorrespondingtoasurfacechargedensity Q/A E points inthenegativeˆz direction.ApplyGauss’slaw(3.10)toasurface withsidesparallelto E.Thetopofthesurface,ofarea a isinside theupperconductingplate,thebottom,alsoofarea a isinsidethe capacitor.Aslicethroughthesurfaceisdenotedbythedottedline inFigure3.8.Gauss’slawgivesnocontributiononthetopor sides,

aE = a Q

A or E = Q

A z

Thevoltagedifferencebetweentheupperandlowerplateisgiven byeq.(3.7),

V = d 0 dx E = Ed = Qd ǫ0 A ,

(Note,thedifferentiallineelement dx =+d z,so E dx = Edz). Fromthedefinition Q = CV,wefind

C = ǫ0 A/d

Integratingoverthevolumeofthecapacitor

3.5 Supposethatacapacitorwithcapacitance C ischarged tosomevoltage V andthenallowedtodischarge througharesistance R.Writeanequationgoverning therateatwhichenergyinthecapacitordecreaseswith timeduetoresistiveheating.Showthatthesolution ofthisequationis EEM(t) = EEM(0)e 2t/RC .Youcan ignoretheinternalresistanceofthecapacitor.Show thattheheatproducedintheresistorequalstheenergy originallystoredinthecapacitor.

Energyconservationrequiresthattherateofchangeofthe energyinthecapacitor d(Q2 /2C)/dt mustequalthepower dissipatedintheresistor, I2 R.Since I = Q,

QQ C = RQ2 or Q = Q/RC , since Q 0.Thisdifferentialequationis Q(t) = Q0 e

,sothe energystoredinthecapacitoris E

Thepowerdissipatedintheresistoris

, andthetotalpowerdissipatedintheresistoris

whichistheenergyoriginallystoredinthecapacitor.

3.6 Thedielectricsincapacitorsallowsome leakagecurrent topassfromoneplatetotheother.Theleakage canbeparameterizedintermsofa leakageresistance RL.Thislimitstheamountoftimeacapacitorcanbe usedtostoreelectromagneticenergy.Thecircuitdiagramdescribinganisolatedcapacitor,slowlyleaking charge,isthereforesimilartotheoneanalyzedinProblem3.5.TheMaxwellBCAP0310ultracapacitor(see §37.4.2)islistedashavingacapacitanceof310Fwith avoltageupto2.85V,andamaximumleakagecurrentof0.45mAwhenfullycharged.Takethistobe thecurrentat t = 0.Whatistheleakageresistanceof theBCAP0310?Estimatethetimescaleoverwhich thechargeonthecapacitorfallsto1/e ofitsinitial value.

Usingtheresultsofthepreviousproblem,thecurrentasa functionoftimeis

I(t) = Q(0) RC e t/RC = V(0) R e t/RC , sotheinitialcurrentis I(0) = V(0)/R.Solvingforresistance, R = V(0) I(0) = 2 85V 0 45 × 10 3 A = 6 33kΩ

Thetimescaleoverwhichthechargefallsto1/e ofitsinitialvalue is

τ = RC = (6 33kΩ)(310F) = 1 96 × 106 s = 22 7days

3.7 Acloud-to-groundlightningboltcanbemodeledas aparallelplatecapacitordischarge,withEarth’ssurfaceandthebottomofthecloudformingthetwo plates(seeExample3.2).Aparticularboltoflightningpassestothegroundfromacloudbottomat aheightof300m.Thebolttransfersatotalcharge of5Candatotalenergyof500MJtotheground, withanaveragecurrentof50kA.Howlongdid thelightningboltlast?Whatwastheelectricfield strengthinthe cloud–earthcapacitor justbeforeitdischarged?Howdoesthiselectricfieldcomparewith

thebreakdownfieldofair(3MV/m)?(Itisnow knownthatvariouseffectscauselightningtobeginat fieldsthatareconsiderablysmallerthanthebreakdown field.)

TheboltlastedatimeT = 5C/(50 × 103 A) = 10 4 s.Wedo notknowthecapacitance, C.Howeverweknowboththecharge onthecapacitorandtheenergystored.Using EEM = 1 2 Q2 /C and Q = CV,wecaneliminate C, EEM = 1 2 QV , or V = 2EEM /Q = 2 × (5 × 108 J)/(5C) = 200MV

Inanidealizedparallelplatecapacitor,theelectricfield isconstant andequalto |E| = V/d = 200MV/(300m) = 0 67MV/m.So thelightningoccurredwhentheelectricfieldwasaboutafactorof 3 3/(0 67) ≈ 5belowthebreakdownvalueforair.

3.8 [T]Consideranelectricdipolecomposedoftwo charges ±Q atpositions ± ξ/2.Writetheexactelectric fieldfromthetwochargesandshowthattheleading terminanexpansionin1/r matchesthe E-fieldquoted inBox3.2.[Hint:considerthebinomialexpansion, eq.(B.66).]

Writethefieldfromthetwochargeslocatedat r = ±

/2, E =

Wewantthefirsttermsinanexpansionin ξ as ξ → 0and Q →∞ withtheproduce d = Qξ fixed.Weneedtoexpandthe denominatorstofirstorderin ξ,

whereinthelaststepwehaveusedthebinomialexpansion(B.66). Nextsubstituteintotheexpressionfor E,

Setting d = ξQ givesthedesiredresult.

3.9 IfeachofthebatteriesusedintheflashlightinExample3.3hasaninternalresistanceof0.5 Ω (inseries withthecircuit),whatfractionofpowerislosttoJoule heatingwithinthebatteries?

Theflashlightusestwo1.5Vbatteries,eachwithaninternal resistanceof0.5Ω.Thebulbhasaresistanceof5Ω,sothetotal resistanceis6Ω.Thepowerdissipatedis P = I2 R.Thesamecurrentgoesthrougheachresistor.Thetotalinternalresistanceofthe batteriesis1Ω,so1/6ofthepowerislosttoJouleheatingwithin thebatteries.

3.10 [T]Considertworesistorsplacedinseries,oneafterthe other,inanelectriccircuitconnectedtoabatterywith voltage V.Showthattheeffectiveresistanceofthepair is R1 +R2 byusingthefactthatthecurrentthroughboth resistorsisthesamewhilevoltagesadd.Nowconnect theresistorsinparallel,sothatthevoltageacrossboth resistorsis V.Computethetotalcurrentandshowthat theeffectiveresistancesatisfies1/Reff = 1/R1 + 1/R2

Inseries,thecurrentthrougheachresistoristhesame,whilethe sumofthevoltagesacrosseachresistorisequaltothetotal voltage V.So,

V = R1 I + R2 I = I(R1 + R2) = IReff ,

where Reff = R1 + R2 .Thustheeffectofthetworesistorsequals thatofasingleresistorwithresistance R1 + R2

Inparallel,thevoltagedropacrosseachresistormustbethe totalvoltage,so V = R1 I1 = R2 I2

Thetotalcurrent I is I = I1 + I2 = V 1 R1 + 1 R2 = V Reff , where 1 Reff = 1 R1 + 1 R2

3.11 Anappliancethatuses1000Wofpowerisconnected by12gauge(diameter2.053mm)copperwiretoa 120V(RMS)ACoutlet.Estimatethepowerlostper meter, dPlost/dL,(inW/m)asresistiveheatinginthe wire.(Rememberthatthewiretotheappliancehastwo separatecurrent-carryingwiresinasinglesheath.)

Thereare2wireswitha2.053mmdiameterineachcableto carrythecurrentandtheresistivityofcopperis ρ = 1 68 × 10 8 Ωm.Theresistanceperunitlengthofthecableis

dR dℓ = 2 ρ

Theaveragecurrentthroughtheapplianceis

IRMS = P VRMS = 1000W 120V = 8 33A

Theheatinglossesinthecableshouldbeinsignificantcomparedto the1000W.Thepowerlossinthecableisgivenby

dP

dℓ = I2 RMS dR dℓ = (8

Forareasonablecablelength,thisisverysmallcomparedto the powerusageoftheappliance.

3.12 Electricalpowerisoftenusedtoboilwaterforcooking. Herearetheresultsofanexperiment:aliterofwater initiallyat30 ◦Cwasboiledonanelectricstovetop burner.Theburnerisratedat6.67A(maximuminstantaneouscurrent)and240VRMS.Ittook7minutes40 secondstoreachtheboilingpoint.Theexperimentwas repeatedusingan“electrickettle.”Thekettleisratedat 15A(maximuminstantaneouscurrentagain)anduses ordinary(US)linevoltageof120VRMS.Thistimeit took4minutesand40secondstoreachboiling.What arethepoweroutputsandresistancesoftheburnerand thekettle?Comparetheefficiencyforboilingwaterof thestovetopburnerandthekettle.Towhatdoyou attributethedifference?

Thepoweroutputofthestovetopburneris PS = IRMS VRMS = IVRMS/ √2 = 1132Wwhilethepoweroutputoftheelectrickettle is PK = 1273W.Theresistanceoftheburneris RS = VRMS/IRMS = 50 9Ω,whiletheresistanceofthekettleis RK = 11 3Ω.Sincethe sameamountofwaterwasboiled,thesameamountofenergy E

wasaddedtothewaterforeachofthese.Let ηS betheefficiency forthestovetopand ηK betheefficiencyforthekettle.Then

E = ηS PS tS = ηK PK tK ηK ηS = PS tS PK tK = (1132W)(460s) (1273W)(280s) = 1 46

Thekettleisnearly50%moreefficientatdeliveringenergytothe waterasthestovetop.Thisdifferenceislikelybecausetheheating elementsofthestovearelocatedinairratherthancontainedwithin thestove,somuchofthepowerislosttoheatingtheenvironment. Thekettle’sheatingelementsarefullycontainedwithinitsvolume, somuchlessheatislost.

3.13 [T]Usethemagneticforcelaw(3.42)andthedefinition ofwork W = b a dx F toshowthatmagneticforces donowork.[Hint:Considerthevectoridentity(B.6).]

Themagneticforceis F = qv × B,sotheworkdoneis

W = q b a dx v × B

Parameterize x as x(t),where t istime,andlet x(0) = a and x(T ) = b.Then dx = xdt (and v = x)andthelineintegralbecomes

W = q T 0 dt x (x × B) = q T 0 dt B (x × x) = 0,

wherewehaveusedeq.(B.6)andthefactthatthecrossproductof anyvectorwithitselfvanishes.

3.14 [T]Showthatachargedparticlemovinginthe xy-plane inthepresenceofamagneticfield B = Bˆ z willmovein acircle.Computetheradiusofthecircleandfrequency ofrotationintermsofthespeed v oftheparticle.Show thataddingaconstantvelocity u ˆ z inthe z-directionstill givesasolutionwithnofurtheracceleration.

FromtheresultofProblem3.13orfromthefactthattheforce is atrightanglestothevelocity,thespeedoftheparticleisconstant. Anobjectmovingatconstantspeedwithconstantperpendicular(centripetal)accelerationisundergoingcircularmotion.The centripetalforceontheparticle mv2/R mustbesuppliedbythe magneticforce F = qvB,thus

R = mv/qB

Tocomputethefrequencyofrotation,notethattheparticle completesanorbitintime T = 2πR/v = 2πm/qB sothefrequencyis

ν = 1/T = qB/2πm Iftheparticlegainsavelocitycomponentinthe z directionparallelto B,thereisnochangeintheforcebecausethecrossproduct ofparallelvectorsvanishes.Theparticlecontinuestomoveinacircleinthe x y plane,butwithaconstantvelocityinthe z direction. Thistypeofmotionisintheshapeofahelix.

3.15 [T]Reviewhowmagneticfieldsarecalculatedfrom Ampere’slawbycomputing(a)themagneticfielddue toastraightwireand(b)themagneticfieldintheinteriorofaverylongsolenoid.Thecontours C1, C2 shown inredinFigure3.18willhelp.Youmayusethefact thatthemagneticfieldvanishesjustoutsidetheouter boundaryofthesolenoidin(b).

(a).ConsiderthegeometryinFigure3.18(a).Ona C1 ,acircleof constantradius ρ,symmetryaroundthe z-axisandmirrorsymmetryintheplaneperpendiculartothe z-axis,themagnetic

fieldhasaconstantmagnitudeandisorientedinthe ˆ φ direction, B = B ˆ φ foracurrent I intheˆz direction.Ampere’slaw thengives:

µ0 I = dx B = 2πρB

Thus,solvingfor B,

(b).Inthiscase,thecurve C2 inFigure3.18(b)applies.Therecan benomagneticfieldintheradialdirectionorintheazimuthal directionduetomirrorsymmetryandrotationalsymmetry aboutthesolenoid’saxis.Onlyfieldsalongtheaxiscanbe non-zeroandthefieldisafunctionofradius ρ only, B = B(ρ)ˆz UsingAmpere’slawbyintegrating B around C2 ,andusingthe factthat B vanishesoutsidethesolenoid,

2 dx B = B(ρ)l = µ0 N(l)I

where l isthelengthofthepathinsidethesolenoidand N(l) isthenumberofturnsofwireenclosedby C2 .Note B isindependentofradiusinsidethesolenoid.Let n = N/L equalthe numberofturnsperunitlengthinthesolenoid’swindings. Then N(l) = ln and B = µ0 nI ˆ z

3.16 [T]Showthattheforceperunitareaonthewindings ofanair-coresolenoidfromthemagneticfieldofthe solenoiditselfisoforder F/A B2/µ0.Checkthatthe dimensionsofthisexpressionarecorrectandestimate F/A inpascalsif |B| = 1T.

Fromeq.(3.71),theenergyperunitvolumeinaaircore solenoidis dEmagnetic /dV = |B|2 /(2µ0 ).Thepressureistherateof changeofenergywithvolume.Sinceforasolenoid |B| isindependentofthevolume, p ∼|B|2 /2µ0.Tochecktheunits,useeq.(3.45) andeq.(3.52),

[p] = [E]/[V] = ml 1 t 2

[B] = [F]/[Qv] = mt 1 Q 1

[µ0 ] = [F]/[I2 ] = ml/Q 2 [B2 /µ

For |B| = 1T,

3.17 [T]Deriveeq.(3.52)fromeq.(3.43)andeq.(3.50). Makesureyougettheboththedirectionandmagnitude.

Themagneticfieldofawirewithacurrent I1 along +ˆz is

where ρ isthedistance(radius)fromthewire.Theforceonan infinitesimalsegment dx = dl z ofasecondwireparalleltoanother atadistance d andhavingcurrent I2 alongthe +z directionis d

So,theforceperunitlengthisalongtheradialdirectionand,letting F =

3.18 Anelectricmotoroperatesat1000rpmwithanaverage torqueof τ = 0 1Nm.Whatisitspoweroutput?Ifit isrunningon1.2Aofcurrent,estimatetheback-EMF fromtherotor.

Themotor’spoweroutputis

P = τω = (0 1Nm)(1000rpm) 1Hz 60rpm 2π s 1 1Hz = 10 5W

Thetime-averagedback-EMFfromtherotorisjust V = P/I = 8 7V.

3.19 ConsiderthemotordescribedinBox3.4.Iftheresistanceinthewirewrappingtherotoris1 Ω,computethe energylostundertheconditionsdescribed.WhatfractionofenergyislosttoJouleheatinginthissituation? Ifthecurrentisdoubledbuttherotationrateiskept fixed,howdotheoutputpower,Jouleheatinglosses, andfractionoflostenergychange?

Themotordraws300mAofcurrent,sothepowerlosttoJoule heatingis P = I2 R = 90mW.Themotorhasanaveragepower outputof1.8W,sotheenergylostisequalto5%oftheoutput energy.

Ifthecurrentisdoubledbuteverythingelsestaysthesame, the outputpowerdoublesto3.6W.ThepowerlosttoJouleheating increasesto360mW.Inthiscase,thepowerlostisequalto10% oftheoutputpower.

3.20 [T]In§3.4.2wederivedtheEMFonawirelooprotatinginamagneticfieldusingtheLorentzforcelawto computetheforcesonthemobilecharges.Although Faraday’slawofinduction(3.64)doesnotapplyina rotatingreferenceframe,showthatthesamerelation (3.62)followsfromFaraday’slaw.

AccordingtoFaraday’slaw E = dΦ/dt.Thefluxthroughthe currentloopis Φ= AB cos θ so E = ( AB sin θθ) = wlBθ sin θ inagreementwitheq.(3.62).

3.21 [T]Explainwhytheintegral S dS B thatappearsin eq.(3.65)isindependentofthechoiceofsurface S [Hint:makeuseofeq.(3.46).]

S dS B = 0overanyclosedsurface.Formaclosedsurfaceby takingtheunionoftwosurfaces S 1 and S 2 , S = S 1 ∪ S 2 sharing thesameedge,whichisaclosedcurve C.Ifthenormalson S 1 and S 2 wereinitiallydefinedbytheorientationofthecurve C (e.g. by theright-handrule),thenthenormalononeofthesurfacesmustbe reversedtoconsistentlydefineanormaloverthewholeof S.Then usingeq.(3.46),

S S 1 ∪S 2 dS B = 0 = S 1 dS B S 2 dS B Thusforanytwosurfaces,

S 1 dS B = S 2 dS B , sothechoiceofsurfacedoesnotmatter.

3.22 [T]Consideralong,hollowsolenoidofvolume V Showthat,ignoringendeffects,itsinductanceis L = n2Vµ0,andthatthemagneticenergyitstores EEM = LI2/2canbewrittenintheformofeq.(3.71).

Supposethesolenoidhascross-sectionalarea A andcurrent I Ithasalength l = V/A.Themagnitudeofthemagneticfieldis

Theelectromotiveforcefromoneloopisequaltochangein magneticfluxthroughasingleloopofthesolenoidis

Thereare ln totalloops,sothetotalchangeinfluxintegratedover theentiresolenoidis

Fromthis,theinductanceis

Thetotalenergyheldinthesolenoidis

3.23 [T]Provethatthemutualinductanceisasymmetric relation, M12 = M21,bycomputingtheenergystored whencurrent I1 isestablishedinloop1andthencurrent I2 isestablishedinloop2.Thensetupthesame currentsintheoppositeorder.

Beginwith I1 = I2 = 0.Withcircuit2open,raisethecurrentin loop1to I1 .Thepowerrequiredis P1 = V1 I1

Thetotalenergyrequiredisgivenby

(seeeq.(3.70)). Nextraisethecurrentinloop2to I2 ,holdingthecurrentinloop1 constant.Thepowerrequiredis

Integratingtofindthetotalenergy(rememberthat I1 isbeingheld fixed) E

+ M

.Sothetotalenergystoredinthetwo circuitsis

Nextperformthesamestepsstartingintheoppositeorder,first raisingthecurrentinloop2,andthen,holding I2 fixed,raisingthe currentinloop1.Thetotalenergystoredis

Thefinalconfiguration(thestateofthesystem)isthesamein both cases,sotheenergystoredmustbethesame,hence M12 = M21 3.24 Designatransmissionsystemtocarrypowerfrom windfarmsinNorthDakotatothestateofIllinois (about1200km).ThesystemshouldhandleIllinois’s summertimeelectricitydemandof42GW.Landfor transmissiontowersisatapremium,sothesystemusesveryhighvoltage(VRMS = 765kV). Assumethattheelectricityistransmittedasordinary alternatingcurrent,althoughinpractice three-phase power (see§38.3.1)wouldbeused.Assumethat eachtowercancarry36aluminumcables(ninelines, eachconsistingoffourconductorsseparatedbynonconductingspacers).Theconductorsare750mm2 in

crosssection.Howmanyseparatestringsoftransmissiontowersareneededifthetransmissionlosses aretobekeptbelow5%?Assumeapurelyresistive load.

Accordingtoeq.(3.41)thepowerlostisgivenby

Thetotalcableareais NA = 36N(750mm2 ) = 0 027m2 N,where N isthenumberofstringsoftransmissiontowers.Theresistivity ofaluminumis2 82 × 10 8 Ω m.Solvingfor N andcombiningall thefactors

N > PL ̺l AV 2 RMS(Plost /PL) (42 × 109 W)(2 82 × 10 8 Ω m)(1 2 × 106 m) (0 027m2 )(7 65 × 105 V)2 (0 05) 1 8

Sotwostringsoftransmissiontowerswouldsuffice.

3.25 [T]ConsiderthetransformerinFigure3.25.Suppose theloadisaresistor R andthatthetransformerisideal, with M2 = LS LP andallmagneticfluxlinespassingthroughbothinductors.Showthatthevoltagedrop acrosstheresistoris VS = √LS /LPVP = NS VP/NP and thatthetime-averagedpowerconsumedintheresistor is P = (LS /LP)(V2 P /2R) = N2 S V2 P/2N2 P R

Sincebothcircuitsareloopedbythesameflux

EP = VP = NP (dΦ/dt)

ES = VS = NS (dΦ/dt)

Thus VS /VP = NS /NP.Nextconsiderthecasewherethesecondary circuitisopenso IS = 0.Then VP = LP IP and VS = MIP , so VS /VP = M/LP = √LS /LP .Now,closethesecondarycircuit throughtheresistorsothat

ES = NS dΦ dt = IS R

Substitutingfor dΦ/dt = VP/NP,wefind

IS = NS NP VP R

Finally,using P = (1/2)I2 S R foranACcircuit,weobtainthedesired result.

3.26 [T]Takethedivergenceofbothsidesofeq.(3.74),use Coulomb’slawontheleftandcurrentconservationon righttoshowthattheequationisconsistent.

UseGauss’slaw(3.12)andtheidentityofeq.(B.21),

Problems

4.1 Soundwavestravelinairatroughly340m/s.The humanearcanhearfrequenciesrangingfrom20Hz to20000Hz.Determinethewavelengthsofthecorrespondingsinewavemodesandcomparetohumanscalephysicalsystems.

Thewavelengthisrelatedtothefrequencyby λ = v/ν,sofor 20Hz, λ = 17mandfor20000Hz, λ = 17mm.Notethatboth ofthesearescalesthatareeasytovisualize.17mmiscomparabletothewidthofafingeror,morerelevant,thesizeoftheear. 17mismuchlargerbutstillcomparableinsizetothingslike trees andbuildings.Thisisincontrasttolight,wherethewavelengthof visiblelightismuchsmallerthancanbeseenbytheeyes.

4.2 AviolinA-stringoflength L = 0 33mwithtotal mass0 23ghasafundamentalfrequency(forthelowestmode)of440Hz.Computethetensiononthestring. Ifthestringvibratesatthefundamentalfrequencywith maximumamplitude2mm,whatistheenergyofthe vibrationalmotion?

Thefundamentalfrequencyisgivenby(eq.(4.12)andbelow)

Solvingforthetension, τ = 4MLν 2 = 4(0 23 × 10 3 kg)(0 33m)(440Hz)2 = 59N

Tocomputethetotalenergyeitherintegratetheenergydensity (4.10)over x,

oruseeq.(4.16)beingcarefultoidentify

Substitutingfor M, ν,and A, E = 1 76mJ.

4.3 [T]Derivetheequationofmotionforthestring(4.9) fromamicroscopicmodel.Assumeasimplemodelof astringasasetofmasses ∆m spacedevenlyonthe x axisatregularintervalsof ∆x,connectedbyspringsof springconstant k = τ/∆x.Computetheleadingtermin theforceoneachmassandtakethelimit ∆x → 0to getthestringwaveequation,where ρ =∆m/∆x.Inthe samelimitshowthattheenergydensityofthestringis givenbyeq.(4.10).

Labeltheverticaldisplacementofeachmassasy y j .Somerelationsbetweenderivativesandthelimitsoffinitedifferencesare useful.As ∆x → 0, y j+1 y j → y′ j ∆

and

j y

j 1 → y′′ j ∆x ApplyHooke’slawtothe jth mass.Theforceonthe jth massinthe y-directionexertedbythe( j + 1)st massisgivenby (F

wheretan θ j = (y j+1 y j )/∆x,sosin θ j = (y j+1 y j )/∆l

Substitutingintotheequationfor(Fy ) j+1 j , (Fy ) j+1 j = k(y j+1 y j )

Combiningtheforcesonthe jth massfromthemassesonitsleft andright, my j = (Fy ) j = k((y j+1 y j ) (y j y j 1 ))

Set m = ρ∆x, k = τ/∆x andtakethelimit ∆x → 0,toobtain ∆xρy j = (τ/∆x)(y ′′ j (∆x))2

Labelingthemassesby x ≡ j∆x,weobtaineq.(4.9). Theenergystoredinthearrayofmassesandspringsconsists of kineticandpotentialenergy

E = ∆m 2 j y 2 j + k 2 j (∆x 2 + (y j+1 y j )2 )

Substituting ∆m = ρ∆x, k = τ/∆x, y j+1 y j → y′ j ∆x,and j ∆x( ) → dx ( ),weobtain

E = dx ρ 2 y 2 + τ 2 y ′2 + dxτ/2

Sincethelasttermisaconstantindependentofthedisplacement y(x, t),wedropit.

4.4 [T]Showthattheenergydensityonastring u(x, t), definedineq.(4.10),obeystheconservationlaw ∂u/∂t + ∂S /∂x = 0,where S (x, t) = τyy′ isthe energy flux,theenergyperunittimepassingapoint x.Forthe travelingwave y(x, t) = f (x vt),find u(x, t)and S (x, t) andshowthatenergyflowstotheright(for v > 0)as thewavepassesapoint x.Showthatthetotalenergy passingeachpointisequaltothetotalenergyinthe wave.

Startingfromeq.(4.10)

∂u ∂t = ρyy + τy ′ y ′ , substitutefor¨ y fromthewaveequation,eq.(4.9), ρy = τy′′

∂u ∂t = τyy ′′ + τy ′ y ′ = ∂ ∂x (τyy ′) = ∂S ∂x with S = τyy′.For y = f (x vt), y′ = f ′ and˙ y = vf ′ ,where f ′ = df (η)/dη,where η = x vt.Substitutinginto S , S = τ( vf ′ )( f ′ ) = τvf ′2 > 0 , whichispositive,indicatingafluxofenergytotheright.

Theintegralof S overalltimeatfixed x is

I = dt( τyy ′) = dtτvf ′2 = τ dη( f ′(η))2

Theintegralof u overall x atfixedtimeis

I′ = dx ρ 2 y 2 + τ 2 y ′2 = dx 1 2 ρv 2 f ′2 + 1 2 τ f ′2 = I

wherewehaveused v = τ/ρ.Thusthetotalenergyfluxpassing apointequalsthetotalenergyinthewave.

4.5 Computethemaximumenergyfluxpossibleforelectromagneticwavesinairgiventheconstraintthat theelectricfieldcannotexceedthebreakdownfield describedinExample3.2.

Thebreakdownfieldofairis Emax = 3 3 × 106 V/m.Inan electromagneticwave, |B| = |E|/c.Themagnitudeoftheenergy

fluxofanelectromagneticwaveis

|E|2 = ǫ0c|E|2 .Themaximumpossibleenergyfluxinair,then,is

|

|

4.6 ThestrongestradiostationsintheUSbroadcastata powerof50kW.Assumingthatthepowerisbroadcast uniformlyoverthehemisphereaboveEarth’ssurface, computethestrengthoftheelectricfieldintheseradio wavesatadistanceof100km.

Themagnitudeoftheenergyfluxofanelectromagneticwave is |S| =

.Theenergyfluxina hemisphericalwaveatdistance R

),so

4.7 [T]Derivethewaveequationfor B analogousto eq.(4.20).

FromMaxwell’sequations(§3.6),takethetimederivativeof Faraday’sLawwith

0,

(4.32) andthensubstitutefromtheAmpere-MaxwellLaw,

4.9 Ithasbeenproposedthatsolarcollectorscouldbe deployedinspace,andthatthecollectedpowercould bebeamedtoEarthusingmicrowaves.Apotentiallimitingfactorforthistechnologywouldbethepossible hazardofhumanexposuretothemicrowavebeam.One proposalinvolvesacircularreceivingarrayofdiameter 10kmforatransmittedpowerof750MW.Compute theenergyfluxinthisscenarioandcomparetothe energyfluxofsolarradiation.

Thisproposalwouldhavethearrayreceiveapowerdensityof |S| = 750 × 106 W π × 108 m

Thepowerdensityofsolarradiationis1366W/m2 ,about500 timesgreater,whilethatofamicrowaveisapproximately1 5 × 104 W/m2 ,about5000timesgreater.Thispowerdensityisactually quitemodestcomparedtoothercommonsourcesofelectromagneticradiation.

4.10 [T,H]Considertwoelectromagneticplanewaves(see eq.(4.21))onewithamplitude Ea 0 andwavevector ka andtheotherwithamplitude Eb 0 andwavevector kb Thesewavesaresaidtoaddcoherentlyiftheaverage energydensity u intheresultingwaveisproportional to |Ea 0 + Eb 0 |2 orincoherentlyiftheaverageenergy densityisproportionalto |Ea 0 |2 + |Eb 0 |2.Showthattwo electromagneticplanewavesarecoherentonlyifthey arepropagatinginthesamedirectionwiththesame frequencyandthesamepolarization.

Aplanewaveoftheformofeq.(4.21)has E = E0 sin(k x ωt), where ˆ k definesthedirectionofpropagationand E0 definesthe directionofpolarization.Notethat k E0 = 0.

Theenergydensityisgivenbyeq.(4.22).Weconsideronly theterm(u1 )proportionalto |E|2 ;thesecondtermcanbehandled analogously.Forasingleplanewave,

wherewehaveusedthevectoridentity(B.22)and ∇ B = 0.

4.8 Supposeanelectromagneticplanewaveisabsorbed onasurfaceorientedperpendiculartothedirectionof propagationofthewave.Showthatthepressureexerted bytheradiationonthesurfaceis prad = W/c,where W isthepowerabsorbedperunitarea.SolarradiationatthetopofEarth’satmospherehasanenergyflux |S| = 1366W/m2.WhatisthepressureofsolarradiationwhentheSunisoverhead?Whatisthetotalforce onEarthexertedbysolarradiation?

Thepressure p istheforceperunitareaperpendicularto thesurface,whileforcecanbedefinedasthetimederivative of momentum d| p|/dt.Ifasurfaceisabsorbingelectromagneticradiation,thepressurethenistherateperunitareaofmomentum reachingthesurface.So, p = d2| p| dtdA = 1 c d2 E dtdA = W c Whenthesunisoverhead,Earthfeelsapressureof

p = 1366W/m2 3 × 108 m/s = 4 56 µPa

ThetotalforceonEarthexertedbysolarradiationis

F = πR2 ⊕ P = π(6

u1 = ǫ0 4 |E0 |2

wherewehaveused sin2 ( ) = 1/2.

Firstconsiderthecasewherethetwowavespropagateinthe samedirectionwiththesamefrequency,butpossiblydifferent polarizations.Then

E = (Ea 0 + Eb 0 )sin(k x ωt)

Then

u1 = ǫ0 4 |Ea 0 + Eb 0 |2 ,

whichisproportionalto |Ea 0 + Eb 0 |2 ifandonlyif Eb 0 isproportional to Ea 0 , i.e. theymusthavethesamepolarization.Thisprovesthat twowaveswiththesamefrequency,directionofpropagation and polarization are coherent.

Ifthefrequenciesaredifferentand/ordirectionofpropagation aredifferentoneobtainscrosstermsinthecomputationof |E|2 proportionalto

sin(ka x ωat)sin(kb x ω bt)

Thetimeaveragevanishesunless ωa = ωb because

lim T →∞ 1 T T 0 sin ωa t sin ω bt → 0

unless ωa = ωb ,andsimilarlyfor sincos and coscos .Ifthefrequenciesarethesamebut ka and kb arenotproportional,thetime averageyieldsaresultproportionaltocos(ka kb) x,whichvanisheswhenaveragedoverspace.Soallcrosstermsvanishunless

thefrequency,directionandpolarizationofthetwowavesarethe same.Whenthecrosstermsvanish u1 = ua 1 + ub 1 ,whichis proportionalto |Ea 0 |2 + |Eb 0 |2

4.11 [T]Deriveeq.(4.23)bytakingthetimederivativeof eq.(4.22)andusingMaxwell’sequations.[Hint:see eq.(B.23).]

Substitutefor E and B fromMaxwell’sequations,

whereinthelaststepwehaveusedeq.(B.23).

4.12 [T]Astringoflength L beginsintheconfiguration y(x) = A[ 1 3 sin k1 x + 2 3 sin k2 x]withnoinitialvelocity. Writetheexacttime-dependentsolutionofthestring y(x, t).Computethecontributiontotheenergyfrom eachmodeinvolved.

Noinitialvelocitymeansthat˙ y(x, 0) = 0forall x,sothetime dependencerequirescosineterms.Addinginthetimedependence foreachmode,andreplacing kn = nπ/L,

Notethat˙ y(x, 0) = 0.Theenergydensityis

Theenergyineachmodedoesnotchangewithtime,sotakethe energydensityat t = 0,where˙ y = 0.Thenthetotalenergyis

Theinitialshapeisantisymmetricabout L/2,soonlyeven n modes havenon-zerocoefficients.Calculatingthecoefficients,

with U1 = π2 τA2/36L fromthefirstmodeand

fromthesecond.

4.13 [TH]Astringoflength L isinitiallystretchedinto a“zigzag”profile,withlinearsegmentsofstring connectingthe(x, f (x))points(0, 0), (L/4, a), (3L/4, a), (L, 0).ComputetheFourierseriescoefficients cn andthetime-evolutionofthestring y(x, t).Compute thetotalenergyinthetensionoftheinitiallystretched string.Computetheenergyineachmodeandshowthat thetotalenergyagreeswiththeenergyofthestretched string.y

At T = 0,theFouriercoefficientsare:

Forallothers, cn = 0.Writingthisinsummationnotation, y(x, 0) = f (x) = ∞ n=0 ( 1)n 4a √2L [(1 + 2n)π]2 y2+4n(x) , where

yn(x) = 2 L sin nπx L

Toaddthetimedependence,eachtermgetsafactorofcos(ωnt φn).Sincethestringisstationaryat t = 0, φn = 0.Thefrequencyis

ωn = nvπ/L (where v = τ/ρ),sothetimeevolutionofthestring is

y(x, t) = ∞ n=0 ( 1)n 8a [(1 + 2n)π]2 cos 2π(1 + 2n)vt L sin 2

Thetotalenergyintensioninitiallyis

L

Theenergyinmode n is

Thetotalenergyis

+

Thesumisequalto π2 /6,sothetotalenergyis E = 8τa2/L,justas wefoundbyintegratingovertheinitialtensionofthestring.

4.14 [T]Whatisthepressureexertedbyabeamoflightona perfectmirrorfromwhichitreflectsatnormal(perpendicular)incidence?Generalizethistolightincidentat anangle θ tothenormalonanimperfectmirror(which reflectsafraction r(θ)ofthelightincidentatangle θ).

Aperfectmirrorreflectsthelightwithoutalteringitsfrequency (energy),sothepressureatnormalincidenceisjusttwicethatof aperfectabsorber.Thisdoublesthechangeinmomentum,sothe pressureis2W/c

Atanangle θ,thepressureisdecreasedbyafactorofcos θ becauseonlythenormalforcecontributestopressure.Aperfect absorberwouldfeelapressureof(W/c)cos θ whileaperfectmirror wouldfeelapressureof(2W/c)cos θ.Animperfectmirrorreflectingafraction r(θ)ofthelightandabsorbingtherestwouldfeela totalpressureof

(θ) = (2r(θ) + (1 r(θ)) W cos θ c = (r(θ) + 1) cos θ W c

4.15 [T]Consideracylindricalresistorofcross-sectional area A andlength L.Assumethattheelectricfield E andcurrentdensity j areuniformwithintheresistor. Provethattheintegratedpowertransferredfromelectromagneticfieldsintotheresistor d3 xj E isequal to IV.Computetheelectricandmagneticfieldson thesurfaceoftheresistor,andshowthatthepower transferisalsogivenbythesurfaceintegralofthe Poyntingvector,sothatallenergydissipatedinthe resistoristransferredinthroughelectricandmagnetic fields.

Usecylindricalcoordinateswithˆz pointingalongthewire,ˆρ pointingradiallyoutwardfromthecenterofthewire,and ˆ φ,the angularunitvectorwithˆ

Forthefirstpart: E = (V/L)ˆz and j = (I/A)ˆz,so d3 xj E = d3 x(IV/AL) = IV , because AL isthevolumeoftheresistor.

Forthesecondpartweneedthemagneticfieldatthesurfaceof thewire.Fromeq.(3.50),

NotethatthePoyntingvectorpointsinwardeverywhereonthesurfaceofthecylindricalresistor,soenergyintheEMfieldsis flowing intotheresistor.Theintegrated(overthesurfaceoftheresistor) fluxofenergygivesthetotalpowerdeliveredtotheresistor bythe EMfields,

P = | d A S| = IV ,

equaltotheresistivepowerdissipatedintheresistor.

4.16 Asstatedinthetext,the dispersionrelation relatingthe wavenumberandangularfrequencyofoceansurface wavesis ω = gk,where g 9 8m/s2 .Computethe wavelengthandspeedofpropagation(phasevelocity) foroceansurfacewaveswithperiods6sand12s.

Theperiodisrelatedtothefrequencyby T = 2π/ω,whilethe wavenumberisrelatedtothewavelengthby k = 2π/λ.Rewriting thedispersionrelationintermsof T and λ,

Thephasevelocityis v

So,when T = 6s, λ = 56mand v = 9 4m/s.When T = 12s, λ = 225mand v = 18 7m/s.

4.17 [T]Awavesatisfyingeq.(4.2)passesfromone mediuminwhichthephasevelocityforallwavelengths is v1 toanothermediuminwhichthephasevelocity is v2 .Theincidentwavegivesrisetoareflectedwave thatreturnstotheoriginalmediumandarefractedwave thatchangesdirectionasitpassesthroughtheinterface. Supposethattheinterfaceistheplane z = 0andthe incomingwaveispropagatinginadirectionatanangle θ1 tothenormalˆz.Provethelawofspecularreflection, whichstatesthatthereflectedwavepropagatesatan angle π θ1 withrespecttothenormalˆz.Alsoprove Snell’slaw,whichstatesthatthewaveinthesecond mediumpropagatesatanangle θ2 fromthenormalˆz, wheresin θ2/ sin θ1 = v2/v1 .Usethefactthatthewave mustbecontinuousacrosstheinterfaceat z = 0.

Let ki, ωi ,and Ai (i = 1, 2, 3)bethewavenumber,frequency, andamplitudeoftheincident,refracted,andreflectedwaves.The waveequationrelates ki = |ki | to ωi andthephasevelocity vi, ki = ωi /vi , where v1 = v3 v2 .Theformoftheincidentwaveis

ψ1 (x, z, t) = A1 cos(k1 x sin θ1 + k1 z cos θ1 ω1 t) withanalogousexpressionsfortherefractedandreflectedwaves. At z = 0,continuityofthewaveformrequiresthatthesumofthe incidentandreflectedwavesequalstherefractedwave, A1 cos(k1 x sin θ1 ω1 t)+A3 cos(k3 x sin θ3 ω3 t) = A2 cos(k2 x

2

2 t) Forthisfunctionalequalitytoholdatall t,allthe ωsmustbeequal, leadingto k1 = k3 = v2 k2 /v1.Forthefunctionalequalitytoholdat allpoints x alongtheinterface,werequire k1 sin θ1 = k3 sin θ3 = k2 sin θ2.Since k1 = k3 ,wehavesin θ1 = sin θ3.Theonlypossibilitydistinctfromtheincidentwaveis θ1 = π θ3,whichprovesthe lawofspecularreflection.Since k1 = (v2 /v1)k2 ,wehave sin θ2 sin θ1 = k1 k2 = v2 v1 , whichisSnell’slaw.

4.18 Awavetravelstotherightonastringwithconstant tension τ andamassdensitythatslowlyincreasesfrom ρ onthefarleftto ρ′ onthefarright.Themassdensity changesslowlyenoughthatitsonlyeffectistochange thespeedwithwhichthewavepropagates.Thewaveformonthefarleftis A cos(kx ωt)andonthefarright is A′ cos(k′ x ωt).Findtherelationbetween k′ and k andthenuseconservationofenergytofindtheamplitude A′ onthefarright.Youmayfindithelpfultouse theresultofProblem4.4(S (x, t) = τyy′ ).

Thesesolutionsobeythewaveequationwithdifferentdensities ontheleftandright.Ontheleft, ρy = τy′′ with y = A cos(kx ωt),so ρω2 = τk2,and k = ω ρ/τ.Ontheright,ananalogous calculationgives k′ = ω ρ′/τ.Thus

k′ = ρ′ ρ k

Thetimeaveragedrateofflowofenergypastapointinthefarleft mustbethesameastherateonthefarright.

S L = τyy ′ = τωkA2 sin2 (kx ωt)

S R = τyy ′ = τωk′ A′2 sin2 (k′ x ωt)

Averagingthesin2 gives1/2,andequatingtheenergyfluxonleft andright,wefind A2 k = A′2 k′ or A′ = 4 ρ/ρ′A

Problems

5.1 Acylinderinitiallycontains V0 = 1Lofargonat temperature T0 = 0 ◦Candpressure p0 = 1atm.Supposethattheargonissomehowmadetoexpandtoa finalvolume V = 2Linsuchawaythatthepressurerisesproportionallytothevolume,finallyreaching p = 2atm.Howmuchworkhastheargondone?What isitsfinaltemperature T andhowmuchthermalenergy hasbeenaddedtothegas?

Theworkdonebythegascanbecomputedfrom W = dVp(V). Since(p0 , V0)and(p, V)arebothknownandthequantityofgas n doesnotchange,wecancompute n from n = p0 V0 /RT0 andthen find T using T = pV/nR.Knowing T T0 andtheheatcapacityof argon(amonatomicidealgas)wecanfindtheincreaseinthermal energycontentofthegas.Thisplustheworkdonebythegasmust sumtothetotalenergyaddedtothegas.

Firstcomputetheworkdone:wearegiven p = p0 V/V0,so

1 01 × 105 Pa 2 × 10 3 m3 (3 × 10 6 m 6 ) = 150 J

Thetemperature T isobtainedfromtheidealgaslaw: T = (pV/p0 V0 )T0 = 4(273K) = 1092K

Theinternal(thermal)energyofargon(amonatomic,idealgas)at temperature T is U = (3/2)nRT .Weget n from n = p0 V0 /RT0 = 0 0446mol.So

∆U = 3 2 nR∆T = 3 2 (0 0446mol)(8 31J/Kmol)(1092 273)K = 455J

musthavebeenaddedtoincreasethetemperatureofthegas.Since thegasalsodid W = 150Jofwork,thetotalthermalenergyadded tothegasmusthavebeen Qtot = 455 + 150 = 605J.

5.2 Non-rigidairshipsknownas blimps haveoccasionally beenusedfortransportation.Ablimpisessentiallya balloonofvolume V filledwithhelium.Theblimp experiencesabuoyancyforce F = (ρatm ρHe)Vg, where ρatm isthedensityofthesurroundingairand g 9 8m/s2 .Theblimpmaintainsitsshapebecause thepressureofthehelium pHe iskepthigherthanthe pressureofthesurroundingatmosphere patm .Amodernblimpwithavolume V = 5740m3 canliftatotal mass m = 5825kgattemperature0 ◦Cand patm = 1atm.Assumingbothairandheliumbehaveasideal gases,estimatethepressureoftheheliumgasinsidethe blimp.Assumingtheblimp’svolumeiskeptconstant, howmuchmasscanitliftat20 ◦ C?

At0 ◦ Cand1atm(STP), ρair = 1 275kg/m3 .Inordertolift m = 5825kg, mg = (ρair ρHe)Vg

Sothedensityofheliumis

ρHe = ρair m/V = 1 275kg/m3 5825kg/5740m3 = 0 260kg/m3

Atanygiven T and p, ρHe/ρair = (4/29),theratiooftheirmolecular masses,soat p = 1atm, ρHe = (4/29)1 275kg/m3 = 0 176kg/m3

5.3

Usingtheidealgaslaw,wecanthensolveforthepressureatwhich thedensityofheliumis0 260kg/m3 ,

pHe = 0 260kg/m3 0 176kg/m3 1atm = 1 48atm

Ifthetemperatureincreasesto20 ◦ Cwhilevolumeremainsconstant,thenthedensityofheliumdoesnotchange,butthedensity oftheoutsideairdropsto ρair = (273/293)1 275 = 1 188kg/m3 , sothemassthatcanbeliftedis

m = (ρair ρHe)V = (1 188kg/m3 0 260kg/m3 )5740m3 = 5330kg

Whenairisinhaled,itsvolumeremainsconstantand itspressureincreasesasitiswarmedtobodytemperature Tbody = 37 ◦C.Assumingthatairbehavesasan idealgasandthatitisinitiallyatapressureof1atm, whatisthepressureofairinthelungsafterinhalation iftheairisinitially(a)atroomtemperature, T = 20 ◦C; (b)atthetemperatureofacoldwinterdayinBoston, T = 15 ◦C;(c)comingfromoneperson’smouthto another’sduringcardiopulmonaryresuscitation(CPR). ForCPR,assumetheairisinitiallyatbodytemperature andat p = 1atm.

Asvolumeisassumedconstant,theidealgaslawimplies

plung = Tlung Tair pair ,

Inallcases Tlung = 310K.Forcasea) pair = 1atmand Tair = 293K,hence plung = 310 294 atm = 1 05atm.Forcaseb) Tair = 268K, plung = 1 20atm.Forcasec) Tair = Tlung,so plung = 1atm.

5.4 [H] Everydayexperienceindicatesthatitismuch easiertocompressgasesthanliquids.Thisproperty ismeasuredbytheisothermalcompressibility, β = 1 V ∂V ∂ p T ,thefractionalchangeinasubstance’svolumewithpressureatconstanttemperature.Whatis theisothermalcompressibilityofanidealgas?The smaller β is,thelessworkmustbedonetopressurizeasubstance.Comparetheworknecessaryat20 ◦ C toraisethepressureofakilogramofairandakilogramofwater(βwater 4 59 × 10 10 Pa 1)from1atm to104 atm.

Firstcomputetheworkdonetocompressair,anidealgas. βair = 1 V ∂V ∂p T = nRT 1 V ∂ ∂p 1 p = pV 1 Vp2 = 1 p Then

Themolecularweightofairis0.029kg/mol,so1kg = 1/0 029 34 5mol,soat T = 298K, Wair = 9 21(34 5mol/kg)(8 31J/molK)(298K) = 787KJ/kg

Nextcomputetheworkdonetocompress1kgwaterwith βwater = 4 6 × 10 10 Pa 1 .Theworkis Wwater = V f V0 dVp = p f p0 (dp βwater V(p)) p

Thefractionalchangeinthevolumeofthewaterwhencompressed from1atmto104 atmis

∆V/V ≈−βwater ∆p (4 6 × 10 10 )(104 × 1 01 × 105 ) = 0 46 ,

sothevariationof V intheintegrationover p cannotbeignored. Fromthedefinitionof β, dV/V = β dp,soln V = βp + const, and V(p) = V0 exp( β(p p0 )).Substitutingintotheintegraland ignoring p0 since p0 ≪ p f ,

Theworknecessarytopressurizewateris170/790 ≈ 22%ofthe workneededtopressurizeair.Notethatthisratiogetsmuch smaller if p f isreduced.

5.5 [HT]AcylindricaltubeorientedverticallyonEarth’s surface,closedatthebottomandopenatthetop(height 100m,cross-sectionalarea1m2)initiallycontainsair atapressureofoneatmosphereandtemperature300K. Adiscofmass m plugsthecylinder,butisfreetoslide upanddownwithoutfriction.Inequilibrium,theairin thecylinderiscompressedto p = 2atmwhiletheair outsideremainsat1atm.Whatisthemassofthedisc?

Next,thediscisdisplacedslightlyinthevertical(z) directionandreleased.Assumingthatthetemperature remainsfixedandthatdissipationcanbeignored,what isthefrequencywithwhichthediscoscillates?

Inmechanicalequilibrium,thenetforcefromthepressureofthe gasinsideandoutsideofthecylindermustbalancethedownwards forceofgravityfromthemass.Thatis, ∆pA = mg, or

m (1 0 × 105 Pa)(1m2 ) 10m/s2 = 104 kg

Sincethegasiscompressedtoapressuretwoatmospheresand since pV isaconstantatfixed T ,equilibriumisreachedwhenthe heightofthecylinderis50m.

Ifthediscisdisplacedbyasmallamount z,thenagainusing pV = constant,

(p +∆p)(V ∆V) = pV ,

where ∆V = Az.Sincethedisplacementandtheresultingpressure changearesmall,weignore ∆V∆p,so V∆p = p∆V,where,in termsofthe z-coordinateoftheoscillator, ∆V/V = z/50m.Hence,

∆p = z[m] 50 (2 × 105 Pa) = 4 × 103 z[m]Pa

Theforceonthediscthenbecomes mz = F = A∆p = kz, where k = 4 × 103 N/m.Thisisthedifferentialequationofaharmonicoscillator,withangularfrequency ω = √k/m 0 6s 1 ,and frequency ν = ω/2π 0 1Hz.

5.6 Howmuchenergydoesittaketoheat1literofsoup fromroomtemperature(20 ◦C)to65 ◦C?(Youmay assumethattheheatcapacityofthesoupisthesame asforwater.)

Waterhasaheatcapacityof4.18kJ/kgK.Oneliterof soup,assumedtohaveapproximatelythesamepropertiesas water,hasamassof1kg.So,ittakes4.18kJtoheatthe soupby1K.Raisingthetemperatureby45Kwouldrequire Q = (4 18kJ/kgK)(45K)(1kg/L) 188kJ/L.

5.7 A“low-flow”showerheadaverages4.8L/min.Taking otherdatafromExample5.3,estimatetheenergysavings(inJ/y)ifallthepeopleinyourcountryswitched fromUScodetolow-flowshowerheads.(Youwill

needtoestimatetheaveragenumberofshowersper personperyearforthepeopleofyourcountry.)

Fromtheexample,aregularshowerheadaverages9.5L/min. Thewaterisheatedupbyapproximately ∆T = 30K,andthe averageshowertakes8min.Waterhasaheatcapacityof cV = 4 18kJ/kgK,sothetotalenergysavingsfortheUS(population 3 × 108 )peryearis

∆E = cV ∆M∆T ,

where ∆M isthedifferenceinthetotalmassofwaterusedin showersbetweenthenormalandlow-flowshowerheads.

∆M = (4 8L/min 9 5L/min) (8min/shower) × (365shower/y)(3 × 108 people)(1kg/L) = 4 12 × 1012 kg/y

Thetotalenergysavingsisthen

∆E = (4 18kJ/kgK)( 4 12 × 1012 kg/y)(30K) = 5 2 × 1017 J/y = 0 52EJ/y, whichisabout0.5%ofthetotalUSyearlyenergyusage.

5.8 Asolarthermalpowerplantcurrentlyunderconstructionwillfocussolarraystoheatamoltensaltworking fluidcomposedofsodiumnitrateandpotassiumnitrate. Themoltensaltisstoredatatemperatureof300 ◦ C, andheatedinapowertowerto550 ◦C.Thesalthas aspecificheatcapacityofroughly1500J/kgKinthe temperaturerangeofinterest.Thesystemcanstore 6000metrictonnesofmoltensaltforpowergeneration whennosolarenergyisavailable.Howmuchenergyis storedinthissystem?

Thetotalamountofenergystoredis

E = (1500J/kgK)(6 × 106 kg)(550 ◦ C 300 ◦ C) = 2 25TJ

5.9 AnewsolarthermalplantbeingconstructedinAustraliawillcollectsolarenergyandstoreitasthermalenergy,whichwillthenbeconvertedtoelectricalenergy.Theplantwillstoresomeofthethermalenergyingraphiteblocksfornighttimepower distribution.Accordingtothecompanyconstructingtheplant,theplantwillhaveacapacityof 30MkWh/year.Graphitehasaspecificheatcapacityofabout700J/kgKatroomtemperature(see[26] fordataonthetemperaturedependenceofthespecificheatofgraphite).Thecompanyclaimsastorage capacityof1000kWh/tonneat1800 ◦C.Isthisplausible?Explain.Iftheyareplanningenoughstorage sothattheycankeepupthesamepoweroutputat nightasintheday,roughlyhowmuchgraphitedo theyneed?Estimatethenumberofpeoplewhoseelectricalenergyneedswillbesuppliedbythispower plant.

Thecompanyclaimsthatthestoragecapacityofgraphiteis 1000kWh/t = (103 kWh/t)(3 6MJ/kWh)(10 3 t/kg) = 3 6 × 106 J/kg , at1800◦ C.Roomtemperatureisapproximately20◦ C,sothis correspondstoaspecificheatcapacityof

C = 3 6 × 106 J/kg

1780 K = 2000J/kgK ,

whichisapproximatelythreetimesashighastheheatcapacityofgraphiteatroomtemperature.Thisdoesnotincludeany lossofenergytotheenvironmentduringstorageortransfer.The heatcapacityofgraphiteshowsastrongtemperaturedependence, increasingbyafactorofthreebetweenroomtemperatureand around1500◦ C[26],sothisdoesseemfairlyreasonable.

Thepowerplantwillreceivenearlyallofitsenergyduringthe day.Weassumethatnightcoversabouthalfthetimethattheplant isoperating.Thusofthe30MkWh/ygenerated,halfcanbedistributedduringthedayandhalf, ≈ 15 MkWh/y,isdistributed atnightfromstoredenergy.Thismeansthattheplantwillneed tostorearound41000kWh/dayofenergyforuseatnight.The graphiteisheatedduringthedayandcoolsoff atnightastheplant suppliesenergy,sothismeansthattheplantwillneedtohaveat least

M = 41000kWh 1000kWh/t = 41tonnes ofgraphitetoprovidethismuchpower.Inreality,iftheplant istoprovideafairlyconstantamountofenergythroughoutthe year,muchmoregraphitewouldlikelyberequiredsincetherewill belargevariationsintheamountofincidentsolarenergydueto seasonalvariationsandlocalweatherconditions.

ThedailyenergyneedsofanaverageAustralianislikelytobe muchclosertothepercapitaenergyusageofwesternEuropeor theUS( 0.5–1GJ/day)thantotheworldaverage(200MJ/day), ofwhichabout14%isintheformofsuppliedelectricalpower (seeFigure1.2).So,thepercapitaelectricalenergyusage is70–140MJ/dayTheplantsuppliesatotalof8 2 × 104 kWh/day,or 3 × 105 MJ/day.At70to140MJperdayperperson,thisplantwill supplytheenergyneedsofroughly2000–4000people.

5.10 Astart-upcompanyismarketing steel“icecubes” to beusedinplaceofordinaryicecubes.Howmuch wouldaliterofwater,initiallyat20 ◦C,becooled bytheadditionof10cubesofsteel,each2.5cmon aside,initiallyat 10 ◦C?Compareyourresultwith theeffectof10ordinaryicecubesofthesamevolume thesameinitialtemperature.Wouldyouinvestinthis start-up?Takethedensityofsteeltobe8.0gm/cm3 and assumetheheatcapacitiestobeconstants,independent oftemperature.

Theheatcapacityof10steelcubesofvolume V = (2 5cm)3 thenis

CS = 10(2 5cm)3 (0 008kg/cm3)(0 52kJ/kgK) 0 65kJ/K

Oneliterofwaterweighs1kg,andhasaheatcapacityof CW = 4 2kJ/K Asenergyisconservedandthesystemwillcomeinto equilibriumatasometemperature T ,wehave

CS (T + 10) + CW (T 20) = 0, andasthesystemwillcomeintothermalequilibrium.Solvingfor T ,wefind T = 16 0 ◦ C,sothesteelicecubescoolthewaterby 4.0 ◦ C.

Thedensityoficeatfreezingpointisapproximately 0.92gm/cm3 .Theheatcapacityof10icecubesofvolume V then is

CI = 10(2 5cm)3 (0 00092kg/cm3)(2 05kJ/kgK) 0 29kJ/K

Whentheicemeltsat0 ◦C,thereisalatentheatabsorptionof

∆Q = 10(2 5cm)3 (0 00092kg/cm3 )(330kJ/kg) 47kJ

Itiseasiesttodotheproblemintwosteps.Firstconsiderthe coolingofthewaterbyheatingtheiceto0 ◦Candmeltingit:

CW (20 T ) = 47kJ + (10K)(0 29kJ/K) 50kJ

Solvingfor T ,wefind T 8 1 ◦ C.Atthispointwehave1kg ofwaterat8 ◦ Cand0.14kgofwaterat0 ◦C.Thesecomeinto equilibriumwhen(8 T ) = 0 14T ,or T = 8/1 14 7 ◦ C.Sothe watercoolsby13 ◦ C.

5.11

Weseethattheiceismuchmoreeffectiveatreducingthetemperature.Theheatcapacityperunitvolumeofthesteelcubesis greaterthanthatofice,butlessthanthatofwater.Thelatentenergy absorbedbythemeltingicealsosignificantlylowersthetemperatureofthewater.Thesteelcubes,however,don’tundergoany phasetransitionsintherelevanttemperaturerange,andso they arereusable,andwillnotdiluteotherdrinks.Theyaremuch more massivethanice,however,andcouldbreakdelicateglassif treated casually.Thesteelcubeswouldlikelyappealtocertainpeopleasa luxurygood.

Roughly70%ofthe5 × 1014 m2 ofEarth’ssurfaceis coveredbyoceans.Howmuchenergywouldittake tomeltenoughoftheiceinGreenlandandAntarcticatoraisesealevels1meter?Supposethat1% ofenergyusedbyhumansbecamewasteheatthat meltsice.Howlongwouldittaketomeltthisquantityofice?IfanincreaseinatmosphericCO2 led toanetenergyfluxof2000TWofsolarenergy absorbedintotheEarthsystemofwhich1%melts ice,howlongwouldittakeforsealevelstoriseone meter?

Theenthalpyoffusionoficeis334kJ/kg.Liquidwaterhasa densityofapproximately1000kg/m3 ,sotheenthalpyoffusionis 334MJ/m3 .Toraisesealevelsby1m,atotalof

V (0 7)(1m)(5 × 1014 m2 ) = 3 5 × 1014 m3 ofwatericemustbemelted.Thisrequires

E (3 5 × 1014 m3 )(334MJ/m3 ) = 1 2 × 1023 J ofenergy.Humansuseapproximately580EJofenergyperyear.If 1%(5.8EJ)contributestoheatmeltingtheice,thenitwould take (1 2 × 1023J)/(5 8 × 1018 J/y) = 21000yearstomeltthismuchice. However,ifanincreaseinCO2 increasestheamountofsolar energyabsorbedbytheearthby2000TWand1%ofthis contributestowarmingitwouldonlytake

T 1 2 × 1023 (0 01)(2 × 1015 J/s) × 1y (3 15 × 107 s) = 190years tomeltthatmuchice.

5.12 Carbondioxidesublimesatpressuresbelowroughly 5atm(seeFigure5.12).Atapressureof2atmthis phasetransitionoccursatabout 69 ◦Cwithan enthalpyofsublimationofroughly26kJ/mol.Suppose akilogramofsolidCO2 atatemperatureof 69 ◦Cis confinedinacylinderbyapistonthatexertsaconstantpressureof2atm.Howmuchheatmustbeadded tocompletelyconvertittogas?AssumingCO2 tobe anidealgas,howmuchworkwasdonebytheCO2 in thecourseofvaporizing?Iftheambientpressureoutsidethecylinderis1atm,howmuchusefulworkwas done?Finally,byhowmuchdidtheinternalenergyof theCO2 changewhenitvaporized?

ThemolecularweightofCO2 is0.044kg/mol,so1kg = 1/0 044 = 22 7mol.TheCO2 sublimationphasetransitiontakes placeatfixed T and p.Theenthalpyofsublimationfor1kgis ∆H = (22 7mol)(26kJ/mol) = 590kJ/kg.Thisisthethermal energy(heat)thatmustbeaddedtovaporizetheCO2 .Thework donebythegasis p∆V ∆V mustbecomputedfromtheidealgas

law,

∆V = ∆NRT

p = (22 7mol)(8 31J/molK)(273K 69K) 2(101325Pa) = 0 190m3

Then W = p∆V = 2(101325Pa)(0 19m3 ) = 38 5kJ.Iftheoutside pressureis1atm,thenhalfofthisisusefulwork, Wuseful 19kJ, and ∆U =∆H p∆V = (590 38 5)kJ/kg = 551kJ/kg.

Problems

6.1 Supposeasmallstonewarekilnwithsurfacearea5m2 sitsinaroomthatiskeptat25 ◦Cbyventilation. The15cmthickwallsofthekilnaremadeofspecial ceramicinsulation,whichhas k = 0 03W/mK.The kilniskeptat1300 ◦ Cformanyhourstofirestoneware. Theroomventilatingsystemcansupply1.5kWof cooling.Isthisadequate?(Youcanassumethatthe wallsofthekilnarethincomparedtotheirareaand ignorecurvature,corners,etc.)

Wecomputetheheatemitted(thermalpower)bythekilnat temperature T = 1300 ◦ C,assumingtheroommaintainsitstemperatureof Tr = 25 ◦ C,andseehowthiscompareswiththe1.5kW ofcoolingavailable.Thewallsofthekilnarethincompared toits area,sowecantreatisasaplanarslabofsurfacearea A = 5m2 and thickness ℓ = 15cm,with k = 0 03W/mK.AccordingtoFourier’s law,thethermalpoweremittedbythekilnis P = kA(T Tr )/ℓ,

P = (0 03W/mK)(5 0m2 )(1300 ◦ C 298 ◦C)/(0 15m) 1 0kW

So,thecoolingventilationsystemissufficienttopreventtheroom fromheatingup.

6.2 Tworigidboardsofinsulatingmaterial,eachwitharea

A,havethermalconductances U1 and U2.Supposethey arecombinedinseriestomakeasingleinsulatorof area A.Whatistheheatfluxacrossthisinsulatorasa functionof ∆T ?Nowsupposetheyareplacedside-byside.Whatistheheatfluxnow?

Thermalconductancesarethereciprocalsofthermalresistances, U j = 1/R j,for j = 1, 2.Resistancesinseriesadd, so Reff = 1/Ueff = 1/U1 + 1/U2 , or Ueff = U1 U2 U1 + U2 , and Q = A

Thermalresistancesinparalleladdasreciprocalsmultipliedby theirareas,

Theexpressionfortheheatfluxis

, whichstatesthatthetotalheatfluxisthesumofthefluxesthrough thetwoinsulators.Notethatthefactorofonehalfintheeffectivethermalconductancecompensatesforthefactoroftwointhe effectivearea.

6.3 Theheattransfercoefficient h forairflowingat30m/s overa1mlongflatplateismeasuredtobe80W/m2 K. Estimatetherelativeimportanceofheattransferby convectionandconductionforthissituation.

TheratioofconvectionheattransfertoconductionheattransferisgivenbytheNusseltnumber,NuL = hL/k.Taking k = 0 026W/mKfromTable6.1,

/m2 K)(1m)

026W/Km 3100

Convectionisover3000timesasimportantasconductionfor heat transferthroughairinthisexample.

6.4 GiventheSun’spoweroutputof384YWandradius 695500km,computeitssurfacetemperatureassuming ittobeablackbodywithemissivityone.

Thesurfacetemperatureofthesunwiththeseassumptionsis

6.5 Humansradiateenergyatanetrateofroughly100W; thisisessentiallywasteheatfromvariouschemical processesneededforbodilyfunctioning.Considerfour humansinaroughlysquarehutmeasuring5m × 5m, withaflatroofat3mheight.Theexteriorwallsofthe hutaremaintainedat0 ◦Cbytheexternalenvironment. Foreachofthefollowingconstructionmaterialsfor thewallsandceiling,(i)computethe R-value (∆T /q) forthematerial,(ii)computetheequilibriumtemperatureinthehutwhenthefourpeopleareinit:(a) 0.3m(1foot)concretewalls/ceiling;(b)10cm(4") softwoodwalls/ceiling;and(c)2.5cm(1")softwood, with0.09m(3.5")fiberglassinsulationoninteriorof wallsandceiling.Takethermalconductivitiesand/or R-valuesfromTables6.1and6.3.

The R valueisjust R = j R j = j L j /k j forinsulatorsconnectedinseries.Heatisconductedawayfromthehouseatarateof Q = A(Teq T0 )/R.Theoutsidetemperatureis T0 = 0 ◦ C,while thesurfaceareaofthehutis A = 75m2 ,ignoringthefloor.Atequilibrium, Q isjusttheheatradiatedfromthefouroccupantsofthe hut, Q = 400W.Solvingfortheequilibriumtemperature, Teq = RQ A + T0

a.Concretehas k ≈ 0 9W/mK.So R ≈ (0 3/0 9) = 0 33Km2 /W. Thus, Teq ≈ (0 33)(400)/75 ≈ 1 8 ◦ C.

b.Softwoodhas k ≈ 0 11W/mK. R ≈ (0 10/0 11) = 0 91 Km2 /W.Thus, Teq ≈ (0 91)(400)/75 ≈ 4 9 ◦ C

c.Thefiberglasshas R = 2 0W/mK. R = (0 025/0 11 + 2 0) ≈ 2 2Km2 /W.Thus Teq ≈ (2 2)(400)/75 ≈ 12 5 ◦C.

6.6 Considerabuildingwith3200ft2 ofwalls.Assumethe ceilingiswell-insulatedandcomputetheenergyloss throughthewallsbasedonthefollowingmaterials, assuminganindoortemperatureof70 ◦Fandanoutdoortemperatureof30 ◦F:(a)wallsarecomposedof 4" thickhardwood;(b)wallscomposedof3/4" ofplywoodontheinsideandoutside,with8" offiberglass insulationbetween;and(c)sameas(b)butwith18 single-paneR-1windows(USunits),eachwitharea 0.7m2 (remainingareaissurroundedbywallsasin (b)).Takethermalconductivitiesand/orR-valuesfrom Tables6.1and6.3.

Theenergylossis Q = A∆T /R where A 300m2 and ∆T = 40◦ F 22◦ C,so Q 6600/R[kmm2 /W].

(a).Inthiscase, R = L/k ≈ 0 10/0 18 ≈ 0 56Km2 /W,so Q ≈ 6600/0 56 11 8kW.

(b).Inthiscase, R = 2(0 19) + 4 6 5 0Km2 /W,so Q 1 32kW.

(c).Inthiscase,mostofthewallismadeof R = 5 0Km2 /Wmaterial,whilethewindowsaremadeof R = 1 0ft ◦Fhr/BTU = 1/5 68Km2 /W = 0 176Km2 /Wmaterial.Thewindowstake up12.6m2 ,whiletheresttakesup287.4m2 ofarea.Therate ofenergylossis

6.7 EstimatetheR-valueofthewallshowninthefigurein Example6.2.

Sincethethermalresistanceofthefoamandfiberglassare giveninUSR-values,weuseUS-unitsthroughout.Combining thetwolayersoffiberglassandfoamwith2.5cmofsheathing (plywood)with R ≈ 1ft ◦Fhr/BTUand1cmofdrywallwith R ≈ 0 5ft ◦ Fhr/BTU,allinseries,

eff = 0 5 + 13 + 10 + 13 + 1 ≈ 37 5ft ◦ Fhr/BTU

6.8 Assumethata60m2 wallofahouseisinsulatedtoan R-valueof5.4(SIunits),butsupposetheinsulationwas omittedfroma1m2 gapwhereonly6cmofwoodwith anR-valueof0.37remains.ShowthattheeffectiveRvalueofthewalldropsto R = 4 4leadingtoa23% increaseinheatlossthroughthewall.

Theinsulatedportionofthewallhas R = 5 4andthegaphas R = 0 375.Theseareinparallel,soinverse R valuesadd.The insulatedportionofthewallis59m2 andtheuninsulatedportion isjust1m2 .Theresistanceofthewallisgivenby

60 R 59 5 4 + 1 0 37 13 6W/K

So R 60m2 ÷ 13 6W/K 4 4m2 K/W,whichrepresentsa23% increase(5 4/4 4)intheheatlossratethroughthewall.

6.9 InExample6.1,afilmofstillairwasidentifiedas thesourceofalmostallofthethermalresistanceofa single-paneglasswindow.Determinethethicknessof thestillairlayersonbothsidesofthewindowifradiativeheattransferisignored.Itisestimatedthatabout halfthethermalconductanceofthewindowisdueto radiativeheattransfer;estimatethethicknessofthestill airlayersifthisisthecase.

Fromtheexample,theR-valueoftheglassaloneis Rglass 0 0031(SIunits).TheeffectiveR-valueofthewindowis Reff = Rglass + Rair 0 17W/m2 K,sotothisaccuracywecanignore Rglass entirely.Using k = 0 026W/mKforairand R = L/k = 0 17W/m2 Kgives L = (0 17)(0 026) 4 4mm.Accordingto thediscussionintheexample,80%ofthestillairisontheinside surfaceand20%isontheoutside.Thus Lairin 3 5mmand Lairout 0 9mm.IfhalfthethermalconductanceisduetoradiativeheattransferthentheR-valueofthestillairmustbetwicewhat wejustcomputed.Thusamoreaccurateestimateofthethickness ofthestillairlayersis7.0mmontheinsideand1.8mmonthe outside.

6.10 Accordingto[28],adoublepanewindowwithanemissivity ε = 0 05coatinganda1/4" airgaphasa measured(centerofglass)U-factorof2 33W/m2 K. Assumethatthiscoatingissufficienttostopallradiativeheattransfer,sothatthethermalresistanceofthis windowcomesfromconductionintheglass,theair gap,andthestillairlayersonbothsidesofthewindow.Taking Rstillair ≈ 0 17m2 K/WfromExample6.1, computetheU-factorofthiswindowignoringconvectionintheairgap.Howdoesyouranswercompare

Figure6.17 (a)Asectionthroughawallinawood-frame building.(b)Ausefulequivalentcircuitdiagram.

withthevaluequotedin[28]?Usethesamemethodto computetheU-factorofasimilarwindowwitha1/4" argon-filled gap(measuredvalue U = 1 87W/m2 K). Repeatyourcalculationfora1/2" airgap(measuredUfactorl.70W/m2 K).Canyouexplainwhyyouranswer agreeslesswellwiththemeasuredvalueinthiscase?

WecomputetheR-valueassumingconductionaloneandthen use U = 1/R.Ingeneral

Reff = Rglass + Rstillair + Rairgap

Forthe1/4inchairgap

Reff (1/4) = 2(0 0031) + 0 17 + 0253 4( 026) 0 42m2 K/W

and Ueff (1/4) = 1/R 2 4,within4%oftheobservedvalue.

Forthe1/4inargongap

Reff (1/4argon) = 2(0 0031) + 0 17 + 0253 4( 018) 0 53m2 K/W

and Ueff (1/4argon) = 1/R 1 9,equaltotheobservedvalue withintheaccuracyofthecalculation.

Forthe1/2inchairgap

Reff (1/2) = 2(0 0031) + 0 17 + 0253 2( 026) 0 66m2 K/W

and Ueff (1/2) = 1/R 1 5.Inthiscasethecalculatedthermal conductivityis12%lowerthanthemeasuredvalue.Possibly the largermeasuredvalueisduetoconvectionwithinthewiderair gap,asdiscussedinthetext.

6.11 zAbuildingwallisconstructedasfollows:startingfromtheinsidethematerialsusedare(a)1/2" gypsumwallboard;(b)wall-cavity,80%ofwhichis occupiedbya3.5" fiberglassbattand20%ofwhich isoccupiedbywoodstuds,headers,etc.;(c)rigid foaminsulation/sheathing(R = 0 7m2 K/W);and(d) hollow-backedvinylsiding.Thewallisillustratedin Figure6.17alongwithanequivalentcircuitdiagram. CalculatetheequivalentR-valueofthewall.Donot forgetthelayersofstillaironbothinsideandoutside.

Allthethermalresistancesaddinseriesexceptforthewood andfiberglass,whichaddinparalleltogiveaneffectiveresistance

Reff .TakingR-valuesandthermalconductivitiesfromTables6.1 and6.3,

Reff = 0 8 2 0 + 0 2 0 81 1 1 54m2 K/W ,

Figure6.18 Crosssectionthroughaninsulatedcopperpipe. Thepipecarriesfluidat100 ◦ C.Theradiusoftheinsulation mustbe3.6timestheradiusofthepipeinordertokeepthe powerlosstolessthan10W/m.

where(3 5)( 0253)/0 11 = 0 81m2 K/WistheR-valueofthe3.5 inchthicksoftwood.Combiningallthecontributions

Rtotal = Rstillair + Rdrywall + Reff + Rfoam + Rsiding = 0 17 + 0 079 + 1 54 + 0 7 + 0 11 2 6m2 K/W

or,inUSunits, R 15ft2 ◦ Fhr/BTU.Notethatifthewoodwere ignored,thecalculationwouldgive R = 3 1m2 K/W,18%higher thantheactualvalue.

6.12 [H]Aninsulatedpipecarriesahotfluid.Thesetup isshowninFigure6.18.Thecopperpipehasradius R0 = 1cmandcarriesaliquidat T0 = 100 ◦C.The pipeisencasedinacylindricallayerofinsulationof outerradius R1;theinsulationhasbeenchosentobe closed-cellpolyurethanesprayfoam withanR-value of1.00m2 K/Wperinchofthickness.Howlargemust R1 besothattheheatlosstothesurroundingroom(at 20 ◦C)islessthan10W/m?[Hint:Firstexplainwhy theheatfluxmustbe q = c ˆ r/r.Youmayfindituseful tomaketheanalogybetweenheatpropagationthrough theinsulatorandcurrentflowingoutwardthrougha cylindricalconductor.Notealsothat ∇ f (r) = ˆ r f ′(r).]

Theconductivityofcopperisveryhighcomparedtothatofthe insulation,sothecopperitselfcanbeneglected.Duetocylindrical symmetry,theheatfluxmustbeintheradialdirectionfromthe copper.Atthermalequilibrium,thefluxofthermalenergyperunit lengthalongthepipemustbethesameatallradii.Foracylinder, theareaisproportionaltotheradius,soif Q isthetotalenergy fluxperunitlength, Q = 2πq(r)r.Since Q isindependentof r, q = Qr/2πr.Thefluxisinverselyproportionaltotheradiusand alignedalongtheradialdirection.Solvingfor T (r),

80Kwith Q = 10W/m.So, R1 = R0 exp 2πk(T0 T (R1 ))/Q = (1cm)exp 2π(80K)(0 0254W/mK) 10W/m = 3 6cm

6.13 Ignoringconvectiveheattransfer,estimatethechange in U-factorbyreplacingargonbykryptoninthe quadrupleglazedwindowsdescribedinTable6.3. Youcanignoreradiativeheattransfersincetheseare low-emissivitywindows.

ThecontributionstotheR-valuefromthestillair,fourpanesof glass,andthe3/4inchofargonorkryptonaddupto

Argon: Reff = 0 17 + 4(0 0031) + 3 4 0 0254 0 018 1 24m2 K/W ,

Krypton: Reff = 0 17 + 4(0 0031) + 3 4 0 0254 0 0094 2 21m2 K/W

Thedifferencein U-factorsistherefore ∆U = 1/1 24 1/2 21 0 35W/m2 K.Theactualchangeis ∆Umeasured 0 29W/m2 K.

6.14 Inareaswherethesoilroutinelyfreezesitisessentialthatbuildingfoundations,conduits,andthelike beburiedbelowthefrostlevel.CentralMinnesota isacoldpartoftheUSwithyearlyaveragetemperatureof T0 5 ◦Candvariation ∆T 20 ◦C. Typicalpeatysoilsinthisregionhavethermaldiffusivity a 1 0 × 10 7 m2/s.Buildingregulationsrequire foundationfootingstoexceedadepthof1.5m.Doyou thinkthisisadequate?

Wemakeuseofeqs.(6.26)and(6.27).Theminimumtemperatureoccurswhenthesine-functionis 1,so Tmin (z) = T0 ∆Te αz , where T0 = 5 ◦ C, ∆T = 20 ◦ Candwewant Tmin (1 5m) > 0 ◦C. Firstwecompute

1

1 , andthenevaluate, Tmin(1 5m) = 5 20e (1 0)(1 5) 5 4 5 0 5 ◦ C Sothedepthof1.5mseemsmarginallysufficient.

6.15 Consideraregionwithaveragesurfacetemperature T0 = 10 ◦ C,annualfluctuationsof ∆T = 30 ◦C,and surfacesoilwith a 2 4 × 10 7 m2/s, k 0 3W/mK. Ifthelocalupwardheatfluxfromgeothermalsources is80mW/m2,computethedepthatwhichtheheatflux fromsurfacefluctuationsiscomparable.Whatisthe answeriftheareaisgeothermallyactiveandhasa geothermalheatfluxof160mW/m2?

Theconstantofintegrationisseparatedintointo T0 and R0 terms sothatthelogarithmtermis0attheinnerradiusofthepipe(where T0 = 100 ◦ C).The R valueis1.00m2 K/Wperinch,giving k = 0 0254W/mK.Wewanttofindtheradius R1 atwhich T (R1) T0 =

Thedownwardheatfluxfromsurfacefluctuationsisproportionaltothegradientofthetemperature, q = k|dT /dz|,wherewe havesuppressedthesigns.Thetemperaturegradientis dT dz = α∆Te αz (sin(ωt αz) + cos(ωt αz)) , andthishasmaximummagnitudewhenthesineandcosinefunctionsareequalandtheirsumis √2.Substitutingfor dT /dz and solvingfor z,

z = 1 α ln q √2αk∆T

Another random document with no related content on Scribd:

The Project Gutenberg eBook of Playmate

Polly

This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

Title: Playmate Polly

Author: Amy Ella Blanchard

Illustrator: Elizabeth Otis

Release date: May 27, 2024 [eBook #73707]

Language: English

Original publication: New York: Hurst & Company, 1909

Credits: David Edwards, David E. Brown, and the Online Distributed Proofreading Team at https://www.pgdp.net (This file was produced from images generously made available by The Internet Archive)

PLAYMATEPOLLY

Elizabeth Otis

PLAYMATE POLLY

Authorof“LittleMissOddity,”“LittleMissMouse,”“Little SisterAnne,”“MistressMay,”etc.

NEW YORK

HURST & COMPANY PUBLISHERS

Copyright, 1909, by G

PublishedJune,1909

Allrightsreserved Printed in U. S. A.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.