Accident tolerant materials for light water reactor fuels raul b rebak editor

Page 1

Accident-Tolerant Materials for Light Water Reactor Fuels Raul B. Rebak (Editor)

Visit to download the full and correct content document:

https://ebookmass.com/product/accident-tolerant-materials-for-light-water-reactor-fuel s-raul-b-rebak-editor/

Accident-TolerantMaterialsforLight WaterReactorFuels

Accident-Tolerant MaterialsforLight WaterReactorFuels

RaulB.Rebak

GeneralElectricResearch,Schenectady,NY,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-817503-3

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: ChristinaGifford

EditorialProjectManager: JoshuaMearns

ProductionProjectManager: R.VijayBharath

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

Contents Prefaceix Listofabbreviationsandacronymsxi 1.Nuclearpoweriscleanandsafe 1 Overview 1 Introduction 1 Benefitsofnuclearenergy 5 Thefirststepsofcommercialnuclearpower 8 2.Currentmaterialsinlightwaterreactors. Whydoweneedamaterialsrenewal? 15 Overview 15 Thelightwaternuclearpowerreactor 16 Materialsforlightwaterreactors 17 Boilingwaterreactors19 Pressurizedwaterreactors19 Reactorvesselforboilingwaterandpressurizedwaterreactors 20 Fuelassembliesforboilingwaterandpressurizedwaterreactors 22 Lightwaterreactorfuelsandtheexcellentperformanceofurania 23 Howzirconiumalloysbecamethematerialofchoice forfuelcladding 24 Inpraiseofzirconiumalloys 27 Watersidecorrosionofzirconiumalloys 30 Nodularcorrosion 34 Hydrogenpickupbyzirconiumalloys 35 Iodinestresscorrosioncrackingofzirconiumalloys 36 Shadowcorrosionofzirconiumalloys 37 Cruddepositiononzirconiumalloys 40 Irradiationdamageofzirconiumalloys 41 3.Worldwidedevelopmentofaccidenttolerantfuels, areasofstudy,claddings,andfuels 43 Overview 43 Accidenttolerantfuels—fromcrisistoopportunity 44 TheeventsattheFukushimanuclearpowerstationsofMarch2011 45 v
Internationalefforttodevelopsafermaterialsfornuclearpower plants 47 Timelinefortheaccidenttolerantfuelsdevelopment 49 Assessmentoncurrentaccidenttolerantfuelsmaturityconcepts 51 TheaccidenttolerantfuelsprogramintheUnitedStates 53 Industrialciviliannuclearpowerparticipationintheaccident tolerantfuelseffortsintheUnitedStates 56 NuclearEnergyInstitute 57 ElectricPowerResearchInstitute 60 4.Accident-tolerantfuelscladdingconcept:coatings forzirconiumalloys 63 Overview 63 Introductiontotheuseofzirconiumalloysascladdingfornuclear fuelsinlightwaterreactors 64 Whydoweconsidercoatingsforaccidenttolerantfuelzirconium alloys? 65 Oxidationprotectionofcoatingsforzirconiumalloys 67 Familyofcandidatecoatingsforzirconiumalloys 68 Ceramiccoatings 69 ChromiumcoatingsforzirconiumalloysintheFrenchATFprogram 71 Aluminum-basedandiron chromium aluminumcoatingsfor zirconiumalloys 72 Silicon-basedcoatingsforzirconiumalloys 74 Fabricationandimplementationofzirconium-coatedrods 75 Performanceofcoatedzirconiumunderreactornormaloperation conditions 76 Performanceofcoatedzirconiumunderaccidentconditions 77 Coatedzirconiumirradiationbehavior 79 Coatedzirconiumlicensingforreactoruse 80 5.FeCrAl—iron chromium aluminummonolithicalloys 83 Overview 84 WhatareFeCrAlalloys? 84 MetallurgyandmicrostructureofFeCrAl 85 EarlierconsiderationsofFeCrAlalloysfornuclearapplications 87 WhyareFeCrAlconsideredforaccident-tolerantfuelcladding? Benefitsandchallenges 88 ThermalpropertiesofFeCrAl 92 MechanicalpropertiesofFeCrAl 93 OxidationresistanceofFeCrAlunderLWR’snormaloperation conditions 96 CompositionoftheoxidefilmsonFeCrAlcoupons 102 ElectrochemicalbehaviorofFeCrAlalloysinhigh-temperature water 106 vi Contents
Shadowcorrosion 108 Galvaniccorrosion 111 Resistancetocruddepositionundernormaloperationconditions 112 ResistancetoEACofferriticalloysunderLWRnormaloperation conditions 113 Resistancetofrettingundernormaloperationconditions 115 ResistanceofmonolithicFeCrAlcladdingtothermalshock 116 InteractionbetweentheuraniafuelandtheFeCrAlcladding 118 OxidationresistanceofFeCrAlinhigh-temperaturegas environments 119 Mechanismofprotectionataccidentconditiontemperatures 121 TheRolesofmetaloxidesonthesurfaceofFeCrAl 124 Normaloperationoxidationtoaccidentoxidationscenarioand viceversa124 Scenario1:Water-oxidizedAPMTtubesexposedtosuperheated steam 125 Scenario2:Steam-oxidizedAPMTtubesexposedto high-temperaturewater 126 TheversatileoxidationbehaviorofFeCrAlAlloys 127 Fabricationandimplementationofcladdingtubes 129 WeldingofFeCrAlalloys 131 MitigationmeasurestoparasiticneutronabsorptionofFeCrAl 134 Mitigationmeasurestoincreasedtritiumreleaseintothecoolant 134 IrradiationbehaviorofFeCrAl 137 CorrosionbehaviorofusedFeCrAlcladdingincoolingpools 139 Licensingforreactoruse 140 6.Siliconcarbideandceramicsmetalcomposite 143 Overview 143 Whydoweconsidersiliconcarbidecompositesforaccident tolerantfuel?Benefitsandchallenges 144 ThermalpropertiesandpermeabilityofSiC/SiCfuelcladding 148 SiC/SiCfuelcladding,fabrication,andimplementation 148 EnvironmentalbehaviorofSiC/SiCundernormaloperation conditions 149 EnvironmentalbehaviorofSiC/SiCunderaccidentconditions 153 Irradiationbehavior 155 Licensingforreactoruse 155 7.Alternativefuelstourania 157 Overview 157 Introduction 158 Theuranianuclearfuel 159 Theuraniaexcellentperformance 159 Accidenttolerantfuelsunderconsideration 160 Improveduraniafuelsbydoping 160 Contents vii
Modifieduraniaperformanceundernormaloperationconditions 163 Modifieduraniaperformanceunderaccidentconditions 164 Higherdensityfuels:uraniumsilicide 164 Reactivityofuraniumdisilicide 165 ReactivityofU3Si2 withthecladding 167 FabricationandimplementationofU3Si2 fuels 167 Higherdensityfuels:uraniumnitride 168 Reactivityofuraniummononitridefuel 169 Fabricationpathsforuraniummononitride 169 Behaviorofuraniummononitrideunderirradiation 170 8.Maturityoftheaccident-tolerantfuelconcepts: thefuelcycleandusedfueldisposition 171 Overview 171 Assessmentonaccident-tolerantfuelmaturityconcepts 172 NEAassessmentonmaturityofATFcladdingconcepts 174 AssessmentonmaturityofATFfuelconcepts 180 Thenuclearfuelcycle 185 9.Licensingandtheincreasedsafetyofpowerreactors’ operation 187 Overview 187 LicensingprocessintheUnitedStates 188 Increasedsafetyofnuclearpowerplantoperation 188 Evolutionarytrendofthenuclearfuel 188 Safetyanalysisandsourceterm 190 10.Lookingtothefuture 197 Overview 197 References199 Index213 viii Contents

Preface

Theaimofthisbookistoprovideasnapshotonthestate-of-the-artdevelopmentofafamilyofmaterialscalledaccidenttolerantfuels(ATF)forcommerciallightwaterreactors.Thesematerialsincludeadvancedcladding componentsandfuelforms.Thisbookisnotmeanttobeacomprehensive orexhaustivecollectionofdataorinformationonmaterialsforcivilian nuclearpowergenerationsinceitsstatusiscontinuouslychanging,practicallyonaweeklybasis.Adescriptionisprovidedonhowtheenthusiasmof thecurrentdevelopmentofnewerinnovativematerialsstartedaftersixdecadesofstagnationorcomplacencyinthenuclearindustry.Thebookis intendedforgraduatestudentsornewprofessionalswhoaregettingstarted inthefield;sotheycanputthingsinperspectiveandunderstandhowwe reached2019,theyearofATF.

TheconceptofATFwasbornafterthe2011unfortunateeventsatthe FukushimaDaiichinuclearpowerstations.Initially,therewasastateofgreat concernthatthedestructivetsunamiwavenotonlywashedawaythediesel generatorsattheaffectedplants,butitalsosweptawaytheresolveofusing nuclearfissiontogeneratecivilianelectricity,especiallyinthewestern world.However,onlyafewmonthsafterthedisaster,thenuclearmaterials’ internationalcommunitywasabletorecoverfromthenegativereporting regardingtheexplosionsshownliveontelevisionworldwideandoffermaterialssolutionstoensurethattheeventsofFukushimawouldnotrepeatthemselves.Itwasabeautifulthingtowitnesshowgovernmentalfunding agencies,nuclearfuelvendors,regulatoryagencies,tradeorganizations,universityprofessors,reactorownerutilities,researchinstitutesscientists,and plantoperatorscameseamlesslytogethertooffersolutionsforthecontinuing useoflightwaterreactors.Theefforttolookforsolutionscametolifeat bothnationalandinternationallevels,andtherewas(is)agreatcontinuous cooperationbetweenalltheinvolvedparts.Thedevelopmentalprogramsare evolvingsoquicklythatalltheinitialschedulesarebeingbeaten.Thereis alsosuchanagilityintheexecutionoftheprogramsthatmanyinitialideas notdeemedviableoffastimplementationarebeingshedquicklyand researchersarejoiningforcesonthegrowthoftheremainingmorerobust concepts.Therefore,thefocusofthisbookistodescribeandassessthetechnologyreadinesslevelofonlythefewstrongestideasratherthantomeander tryingtocoverallearlyproposedideasthatmaybefarawayfromfruition.

ix

Initialchapterssuccinctlydescribethehistoryandevolutionofnuclear energyasasourceofcivilianelectricity,praisingthematerialsthatwere abletomakepossibletheexistenceofnuclearpowerforalmostsevendecades.Themaingoalofthemoretechnicalchapterswastoreviewtheliteraturedatausingthesamesetofguidelines,metrics,orparameterstoevaluate thematurityofeachconceptandtoassesstheprogressorimportantgaps thatexistineachoftheengineeringanswerstothenewermaterialschallenge.Thisbookdoesnotcovereffortsandresultsfromthefieldofmodelingandsimulation.Ineachoneoftheproposedsolutionsthereisasolid foundationofsciencejustifyingtheviabilityofeachconcept,butforautility tobeabletoimplementtheproposedaccidenttolerantfuel,italsoneedsto besimple,practical,economical,andsafe.

Itisanexcitingtimetobeworkinginthefieldofadvancedtechnology materialsformakinglightwaterreactorssafertooperate.Theuseofelectricityoriginatingfromnuclearsourcesrepresentsacrucialcontributiontoa cleanenvironmentandtothereductionintheatmosphericreleaseof climate-changinggreenhousegases.

Finally,Iwouldliketoacknowledgethepatienceandunderstandingof myhusbandWilliamW.Wickline,whomakesmelaughandwhoprefersto ignorethetravailsoftherealworldbywatchingvintageHollywoodmovies.

RaulB.Rebak Schenectady,NewYork,May15,2019 x Preface

Listofabbreviations

andacronyms

ANL ArgonneNationalLaboratory(UnitedStates)

AOOs Anticipatedoperationaloccurrences

ATF Accident-tolerantfueloradvancedtechnologyfuel

ATR Advancedtestreactor

BDBAs Beyond-design-basisaccidents

BNL BrookhavenNationalLaboratory(UnitedStates)

BWR Boilingwaterreactor

CANDU CanadaDeuteriumUranium

CA-PVD Cathodearcphysicalvapordeposition

CEA FrenchAlternativeEnergiesandAtomicEnergyCommission

CHF Criticalheatflux

CILC Crud-inducedlocalizedcorrosion

CMC Ceramicmatrixcomposite(SiC/SiC)

CNL CanadianNuclearLaboratories

CRIEPI CentralResearchInstituteofElectricPowerIndustry(Japan)

CTE Coefficientofthermalexpansion

CVD Chemicalvapordeposition

CVI Chemicalvaporinfiltration

DBA Design-basisaccident

DNB Departurefromnucleateboiling

DOE DepartmentofEnergy(UnitedStates)

EATF Enhancedaccident-tolerantfuel

EBSD Electronbackscatterdiffraction

ECCS Emergencycorecoolingsystem

ECR Equivalent-claddingreacted

EDF Electricite ´ deFrance

EDS Energydispersivespectroscopy

EGATFL ExpertGrouponAccident-TolerantFuelsforLightWaterReactors(NEA)

EPR Europeanpressurizedreactor

EPRI ElectricPowerResearchInstitute

ETF Elongationtofailure

HFIR High-fluxisotopereactor

HWC Hydrogenwaterchemistry

IAEA InternationalAtomicEnergyAgency

IMAGO IrradiationofMaterialsforAccident-tolerantfuelsintheGosgenreactor

INL IdahoNationalLaboratory(UnitedStates)

xi

xii Listofabbreviationsandacronyms

IRSN Institutderadioprotectionetdesu ˆ rete ´ nucle ´ aire(France)

JAEA JapanAtomicEnergyAgency

KAERI KoreaAtomicEnergyResearchInstitute

KIT KarlsruheInstituteofTechnology(Germany)

KTH RoyalInstituteofTechnology(Sweden)

LBM Laserbeamwelding

LFA Leadfuelassembly

LFR Leadfuelrods

LHGR Linearheatgenerationrate

LOCA Loss-of-coolantaccident

LTA Leadtestassemblies

LTR Leadtestrod

LWR Lightwaterreactor

METI MinistryofEconomy,TradeandIndustry(Japan)

NDE Nondestructiveevaluation

NEA NuclearEnergyAgency

NEAMS Nuclearenergyadvancedmodelingandsimulation

NFD NipponNuclearFuelDevelopment

NPP Nuclearpowerplant

NPS Nuclearpowerstation

NRC NuclearRegulatoryCommission(UnitedStates)

NWC Normalwaterchemistry

OD Outerdiameter

ODS Oxidedispersionstrengthened

ORNL OakRidgeNationalLaboratory(UnitedStates)

PCI Pellet cladinteraction

PCMI Pellet cladmechanicalinteraction

PIE Postirradiationexamination

PNNL PacificNorthwestNationalLaboratory(UnitedStates)

PRW Pressureresistancewelding

PSI PaulScherrerInstitute(Switzerland)

PVD Physicalvapordeposition

PWR Pressurizedwaterreactor

RBMK HighPowerChannel-TypeReactor(Russia)

RCS Reactorcoolantsystem

RE Rare-earthelements

RIA Reactivity-initiatedaccident

RPV Reactorpressurevessel

RT Roomtemperature

SBO Stationblackout

SCC Stresscorrosioncracking

SEM Scanningelectronmicroscopy

TD Theoreticaldensity

TIG Tungsteninertgas

TREAT Transientreactortestfacility

TRISO Tri-structuralIsotropic

TRL Technologyreadinesslevel

UTS Ultimatetensilestrength

VHT Veryhightemperature

VVER Water waterenergeticreactor(Russia)

XRD X-raydiffraction

YS Yieldstress

xiii
Listofabbreviationsandacronyms

Chapter1

Nuclearpoweriscleanandsafe

ChapterOutline

Overview1

Introduction1

Benefitsofnuclearenergy5

Thefirststepsofcommercialnuclear power8

Overview

Theelectricityintheinterconnectedcommercialgridcomesfrommany sourcesincludingfossilfuels,renewableenergies(e.g.,solarandwind),and nuclearenergy.Theenergyharvestedfromnuclearfissionsourcesisclean, itdoesnotreleasegreenhousegasestotheenvironment,anditdoesnotcontributetoclimatechange.Moreover,nuclearsourcedelectricityisthesafest typeforcivilianuse.IntheUnitedStatesandaroundtheglobe,thenumber ofhumandeathsperkilowatthourofgeneratedelectricityfromnuclear sourcesisfiveordersofmagnitudelowerthanforcoalandotherhydrocarbonsources.Nuclearelectricityisevensaferthansolarorwindelectricity. Nuclearpowerwasfirstusedformilitarypurposes,especiallyforthepropulsionofsubmarines.However,intheearly1950s,theUnitedNationsprogramofAtomsforPeace,boththeUnitedStatesandtheSovietUnion developedtheirfirstciviliannuclearpowerplantswhichwereconnectedto theirrespectivegridsinthelate1950s.Ataroundthistime,thetrustedfuel rodpairofzirconiumalloycladdingcontainingpelletsofuraniafuelwas bornandusedformanydecadessince.Currently,thereareapproximately30 nationswhichuse451civilianreactorstogenerateelectricity.Thelargest expansionofnuclearreactorswasinthedecadesof1970sand1980s.In 2019therewere54newreactorsunderconstruction,mainlyinAsia.

Introduction

Cleanenergyisanenergythatdoesnotpollutetheenvironmentnor increasestheamountofgreenhousegasesthatmaycontributetoclimate change.Nuclearenergyiscleanenergysinceitdoesnotchangethecarbon footprintintheplanet.Nuclearenergyisalsothesafestformofallenergies

1
Accident-TolerantMaterialsforLightWaterReactorFuels.
DOI: https://doi.org/10.1016/B978-0-12-817503-3.00001-8 © 2020ElsevierInc.Allrightsreserved.

usedtogenerateelectricity.Nuclearenergyisevensaferthantherenewable solarorwindenergies.Electricitygeneratedusingfossilfuelsmayincrease thecarbonfootprintbyreleasingmethanegastotheatmosphereinthe upstream(duringexplorationandproduction)andthenreleasingcarbon dioxidetotheatmosphereinthedownstreamwhenthefossilfuelsorhydrocarbonsareburnttoextracttheheat.

SteamturbinesgeneratemostoftheelectricityusedintheUnitedStates andintheplanet.Powerplantsthatarefedbyuraniumorcoalaresimilarin thesensethatbothusesteamturbinestomovethegeneratorstoproduce electricity.Nuclearandcoalplantsdifferinthewayhowtheymaketheir steamneededfortheturbines.Onetypeofplantsplitstheatomthrougha fissionreactionwhichgeneratesvastamountsofenergy,andtheothertype ofpowerplantburnshydrocarbonsthroughacombustionreaction.Overall, theoperationofbothtypesofplantsgreatlydiffersinthefactthatoneplant producessteaminthesafestandcleanestwaypossiblewhiletheotherdoes not.

Worldwide,thegenerationofelectricpowerhasseveralsourcesof energythatcanbegroupedas:(1)fossilfuels(coal,petroleum,andnatural gas),(2)nuclear,and(3)renewable(wind,solar,hydroelectric,geothermal, biomass,etc.)sources. Fig.1.1 showsthattheworldenergyconsumptionin thenexttwodecadeswillbestilldominated(B80%)bytheburningoffossil fuels(liquid,gas,andcoal).Nuclearenergyrepresentsonly6%oftheenergy consumedworldwide.IntheUnitedStates,30%oftheconsumednaturalgas isusedtogenerateabout20%oftheelectricalpowerproducedinthecountry.Theother70%oftheconsumednaturalgasisusedforpurposesother thantogenerateelectricity,forexample,forheating.Onthecontrary,100% ofthenuclearenergygeneratedisusedtoproduceelectricity.

Nuclearoratomicenergyisreleasedwhenatomsaresplitinareactor. Thereleaseofnuclearfissionenergyistransferredtowater,whichmakes

2 Accident-TolerantMaterialsforLightWaterReactorFuels
FIGURE1.1 Worldenergyconsumption.

steamthatisusedtospintheturbineswhichrotatestheshaftoranelectrical generator.Electricitygeneratedusingnuclearsourcesrepresentsabout20% ofalltheelectricalpowerconsumedintheUnitedStates.Inothercountries, suchasFrance,theelectricitygeneratedfromnuclearfissionrepresentsover 70%ofthetotalelectricityconsumedinthenation.Therearecurrently around30countriesintheglobethatusenuclearsourcestogeneratecivilian electricity(IAEA,2019).

Fig.1.2 showsthattheworldwidenumberofoperationalreactorsslightly increasedbetween2013and2019from430to446(IAEA,2019).ThelargestincreaseinnewerpowerreactorswasinAsiaandEasternEurope(China, Korea,India,Pakistan,andRussia).ThenotableincreasewasinChinawhere thenumberofreactorsmorethandoubledfrom18in2013to46in2019.In thewesternworld,thenumberofoperationalreactorsmostlydecreased, exceptforArgentinawhereitincreasedfromtwotothree.

Fig.1.3 showsthenuclearpowerpercentageofthetotalelectricityconsumedinthe30currentcountrieswithnuclearpowerfor2013and2019 (IAEA,2019).Thecountrieswiththelargestshareofnuclearpowerare France,Slovakia,Ukraine,Belgium,andHungary.Franceisalsoexporting electricitytoneighboringcountriessincetheircostofpowergenerationis lowcomparedtoothernonnuclearsourcesinthoseneighboringcountries. Therewaslittlechangebetweentheshareofnuclearpowerbetween2013 and2019forthe30countrieslisted.IntheUnitedStates,forexample,the shareofnuclearpowerstayedthesameat20%betweenthese2years,consideringthatthecountryhadfourfewerreactorsin2019thanin2013.One

Nuclearpoweriscleanandsafe Chapter|1 3
FIGURE1.2 Operationalpowerreactors(IAEA,2019).

ofthereasonsisthatthepowerreactorsbecamemoreefficientandanother reasonisbecausethetotalconsumptionofelectricitydecreasedduetheenvironmentalgreenmeasures.

Fig.1.2 showsthatJapanhadapproximately40operationalreactors between2013and2019buttheshareofnuclearpowerwasonlyintheorder of3%.ThereasonforthisisthatmostoftheJapanesereactorswerenotproducingelectricityinthisperiodbecauseoftheirtemporaryshutdownfollowingtheFukushimaaccidentofMarch2011.Beforetheaccidentatthe Fukushimasite,thenuclearpowershareinJapanwasapproximately30% (IAEA,2019).

Fig.1.4 showstheagedistributionofthe451powerreactorsoperating worldwideinMay2019(IAEA,2019).Sixty-eightpercentofthereactors are30ormoreyearsoldandonly13%ofthereactorshaveanageof10 yearsorless.Theworldwidefleetofpowerreactorsisaging,butitalso appearsthatthereisaslightincreaseinthenumberofreactorswith5years orlessinage.Itisimportanttopreventtheshutdownofolderreactorsby licenserenewal.Oneofthemeasurestopreventtheshutdownofolderreactorsistoretrofitthemusingaccidenttolerantfuels,whichwillmakethe reactorssafertooperate.

IntheUnitedStates,therearecurrently98operatingcommerciallight waterpowerreactors,34boilingwaterreactors(BWRs),and64pressurized waterreactors(PWRs).Approximately90%oftheUSpowerreactorsareat least30yearsoldand45%ofthereactorsareatleast40yearsold.Onlyone

FIGURE1.3 Nuclearpowershare(IAEA,2019).
4 Accident-TolerantMaterialsforLightWaterReactorFuels

newreactorwasconnectedtothegridintheUnitedStates,inthelast25 yearsandonlytwonewreactorsarecurrentlyunderconstruction(2019).

Fig.1.5 showsthat19countrieshavecurrentlypowerreactorsunderconstructionascomparedto15countriesin2013.Fourcountries(Bangladesh, Belarus,Turkey,andUnitedArabEmirates)thatdidnothavenuclearpower beforearecurrentlyplanningtoentertheinternationalcommunityofgeneratingelectricityfromnuclearenergy(IAEA,2019).China,India,andRussia havecurrentlythelargestamountofnuclearpowerplantsunderconstruction, eventhoughtheconstructionrateinChinaseemedtohavesloweddownin thelastquinquennium.TheUnitedArabEmirateshasfourreactorsunder constructionwhichismorethandoublethanitwasin2013.Itislikelythat EgyptwillfollowsoonwithapowerreactoroftheirownintheArabcommunity.Egypthashadanuclearprogramsince1954.Therearealsocurrent advocacygroupstobringnuclearpowertoAustralia,consideringthat Australiahasmorethan30%oftheworlddepositsinuranium,similartothe depositsofCanadaandKazakhstan.

Benefitsofnuclearenergy

Nuclearpowerplantsworkallthetime,andtheydonotneedspecificclimaticconditionstooperate.Nuclearenergyprotectstheenvironmentsinceit doesnotreleasenitrogenoxide,sulfuroxide,orcarbondioxide.The

Nuclearpoweriscleanandsafe Chapter|1 5
FIGURE1.4
Agepowerreactors.

productionofnuclearelectricitydoesnotgenerateparticulatesorspread mercuryanditdoesnotcontributetothereleaseofmethanetotheatmosphere.Nuclearenergyisalsothesafesttypeofenergysinceithistorically

FIGURE1.5 Reactorsunderconstruction.
6 Accident-TolerantMaterialsforLightWaterReactorFuels
FIGURE1.6 Casualtiesperkilowatthour(kWh).

producedthelowestnumberofcasualtiesorfatalitiesperkilowatthourof energygenerated(Fig.1.6).Thelargestnumberofhumancasualtiesaround theworldbecauseofgeneratingelectricityiscausedbyairpollution,more specificallybythepresenceoffineparticulatematter( , 2.5 µmdiameter)in theatmosphere.Thefinesuspendedparticulatematter,whichoriginates mainlythroughtheburningofcoal,maycausemorethan2milliondeathsa yearmainlyintheformofcardiopulmonarydiseasesandlungcancer(Silva etal.,2013).MostoftheseannualprematuredeathsareinAsia(India, SoutheastandEastAsia)(Silvaetal.,2013).

Fig.1.6 showsthemortalityrateintheUnitedStatesperkilowatthourof electricitygeneratedaccordingtofivesourcesofenergy.Thehumanfatalities causedbytheburningofcoalarefiveordersofmagnitudehigherthanthe fatalitiescausedbynuclearpower.Majoraccidentscausingimmediatedeaths andrelatedtotheproductionofelectricityincludethecollapseofdams (hydroelectricity),coalminingaccidents,andtheruptureofpipelinesfollowedbyexplosions.Forexample, theruptureoftheShimantanDamin 1975producedmorethe170,000humanf atalities.Coalminingaccidents producedalmost5000immediatedeath sin2006inChinaalone.Moreover, inChina,morethan70,000minersayearsufferfromtheblacklungdisease (pneumoconiosis).IntheUnitedStates,thefatalitiesincoalmineswerein theorderof1500peryearuntilthe1970s,whicheventuallydeclinedtoless than100peryearbetween1990and2012.Incontrast,intheUnitedStates, therewerezerofatalitiesrelatedtotheproductionofelectricityfromnuclear sources.

Whydoesnuclearpowerstillhaveamixedsupportinthepublic?Itis mainlybecausenuclearenergyiscomplexandnontransparent.Thegenerationofcivilianpowerusingnuclearenergyhasanunprecedentedandunparalleledsafetyrecord.Itsimplementationfollowsstrictlicensingprocedures andregulationsandthenuclearpowerplantsareoperatedandmaintainedby highlytrainedprofessionals.Onlythreemajoraccidentsarerelatedtothe productionofcommercialelectricityfromnuclearfissionsourcesandare describedin Table1.1.TheaccidentthatcausedthelargestnumberofcasualtieswasinUkrainebytheChernobylReactorNumber4.Approximately 30firstresponders’firefightersdiedduringorimmediatelyafterthe Chernobylaccidentanditisestimatedthatthehumancasualtiesmayhave reachedseveralthousandsinthethreedecadessincetheaccident,mainly becauseofcancer.Bycontrast,theaccidentofThreeMileIslandhadzero immediateandlong-termcasualties.TheFukushimaaccidentsitssomewhere inthemiddle.TheonlycasualtiesattheFukushimasiteduringthetsunami andtheimmediateeventswereduetothedrowningoftwotechnicianswho wereinthebasementwhenthesecondwavehittheturbinebuildings. RelatedprematurecasualtiesbecauseoftheFukushimaaccidentemanated fromtheevacuationofelderlyandailingresidentsfromnearthepower

Nuclearpoweriscleanandsafe Chapter|1 7

TABLE1.1 Commercialnuclearaccidents.

Commercial nuclear accident

ThreeMile Island,1979

Chernobyl, 1986

Whathappened?Directhumancasualties (delayed,estimated)

PartialmeltdownofthePWRUnit2 reactorduetoalossofcoolantinthe primarycircuitcausedbyavalve stuckopen.Cause,humanerror,& lackoftraining.

Steamexplosionfollowedbyopen airgraphitefireofthelightwater graphitemoderatedRBMKUnit4 reactorduringatesttosimulatea stationblackout.Thefireburnedfor 9daysreleasingfissionproductsto theatmosphere.Cause,operator error,negligence,&lackoftraining orknowledge.

0(0)

30(134upto1996, maybeatotalof4000, leukemiaandcancer)

Fukushima Daiichi,2011

Hydrogengasexplosionsbecauseof lossofcoolantduetostationblack outcausedbyatsunamiwave. Releaseofradioactiveproductsto theatmospherefromBWRUnits1, 2,and3.Cause,failureofoperator tomeetbasicsafetyrequirements.

2drowned(1600elderly relatedtoevacuation,not toradiation)

station.CasualtiesduetoirradiationexposureintheFukushimaPrefecture maynotbeprovenyet.

Thefirststepsofcommercialnuclearpower

CiviliannuclearpowerwasdevelopedalmostsimultaneouslyintheUSSR andintheUnitedStatesinthemidtolate1950s. Fig.1.7 showsafewmilestonesofnuclearpowerfrom1950,mostlycenteredaroundeventsinthe UnitedStates.Theutilizationofnuclearenergytogenerateelectricityoriginatedfromthediscoveryofthenuclearfission(andthereleaseofheat)in December1938inGermany.Thecontrolledreleaseofnuclearenergybya self-sustainingchainreactionwasrealizedbyEnricoFermiattheUniversity ofChicagoinDecember1942.CriticalitywasreachedintheFermibuiltpile reactorwithnaturaluranium.Areactorachievescriticalityandbecomescritical,wheneachfissioneventreleasesenoughneutronstosustainanongoing

BWR,Boilingwaterreactor; PWR,pressurizedwaterreactor; RBMK comesfrom“ReaktorBolshoy MoshchnostiKanalnyy”whichmeans“HighPowerChannel-typeReactor”.
8 Accident-TolerantMaterialsforLightWaterReactorFuels
FIGURE1.7 Nuclearpowertimeline.

seriesofreactions,producingacontinuousreleaseofheat.Approximately 99%ofthenaturaluraniumistheuranium-238(U-238)isotopewhichis nonfissile.Thenaturaluraniumalsocontainsapproximately0.7%ofthefissileU-235isotope.AftertheFermisustainedchainreactiondemonstration, effortswereundertakenattheClintonEngineerWorksatOakRidgeto enrichtheuraniumfuelintheU-235isotopefromapproximately0.7%to levelsintheorderof3% 5%.Theearly1940seffortsandactionstoharvest energyfromnuclearfissionwereacceleratedasaresponsetotheWorldWar IIeventsinEurope.

TheuseofnuclearfissionenergytoproduceelectricityintheUnited Stateswasmainlytheresultofthelaborsofoneperson,HymanGeorge Rickover.RickoverwasanofficerintheUSNavyandafterspendingtime duringWorldWarIIinthePhilippinesandJapan,hereturnedtotheUnited Statesanddecidedtoreinventhisowncareerbydedicatinghimselftolearn howtousenuclearenergytopropelasubmarine.Between1946and1947, RickoverspentayearatOakRidgetolearnasmuchashecouldabout nuclearenergyandthenhereturnedtoWashington,DC,tobethedirectorof reactordevelopmentinthenewlycreated(1946)AtomicEnergy Commission.Rickover’smainobjectivewastobuildareactorforasubmarinebutbecauseofpoliticalbacklash,theUSpoliticalsystemdecidedto demonstrateintheearly1950sthatnuclearenergycouldbeusedforpeacefulpurposes,suchasgeneratingelectricityfortheciviliandistributiongrid.

Thefirstpressurizedlightwatercooledpowerreactortobeconnectedto theelectricalgridandtooperatecommerciallywastheatomicpowerstation 1(APS-1)atObninsk,USSR,onJune27,1954(Simnad,1981).The Obninskreactoralsoservedasaresearchstationforseveraldecadesuntilit wasdecommissionedin2002.Researchanddevelopmentconductedatthe ObninskpowerstationhelpedinthedesignandimprovementoftheRBMK sovietpowerreactor,atypeofpowerreactorwhichisstillinusetoday. AfteranRBMKtypereactorsufferedtheaccidentinChernobylinUkraine inApril1986,theexistingoperatingRBMKreactorsweremodifiedandretrofittedtomakethemmoreresilienttoaccidents.TheRBMKdesignissimple,ituseslightwaterforcoolant,graphitewithboroncarbideforcontrol rods,andzirconium niobiumcladdingfor2%enricheduranium235inuraniafuel.

Asmentionedearlier,thefirstwesternproductionofelectricitybyways ofharvestingnuclearfissionenergywasapoliticalmovebytheUnited Statestofulfillthegoalofpeacefulusesofatomicenergy,asafollow-upof theDecember8,1953,“AtomsforPeace”speechbytheUSPresident DwightD.EisenhowerdeliveredattheUnitedNationsGeneralAssembly.A PWRthatwasunderconstructionintheearly1950sattheWestinghouseoperatedBettisLaboratories(nearPittsburgh)foranaircraftcarrierwas repurposedtobeusedfortheciviliangenerationofelectricity.TheUS AtomicEnergyCommissionpartneredwiththeWestinghouseCoandthe

Accident-TolerantMaterialsforLightWaterReactorFuels
10

DuquesneLightCompanytotakethisfirstcivilianpowerreactortocompletion(Lustman,1981;VanDuysenandMericdeBellefon,2017).ThelocationforthisfirstcivilianreactorwasShippingportinBeaverCountyonthe OhioRiverapproximately40kmsouthofPittsburgh.Theresponsibilityof theconstructionofthereactorwasgiventoRearAdmiralH.G.Rickover, DirectoroftheAtomicEnergyCommissionDivisionofNavalReactors.The constructioncompanyfortheShippingportreactorwasWestinghouseand theutilitythatwasgoingtoparticipateintheconstructionandlaterdistribute theelectricitywastheDuquesneLightCompany.ThegroundbreakingceremonyfortheciviliannuclearpowerstationonShippingportwason September6,1954(Karoutasetal.,2018).Thenuclearpowerstationreached criticality3yearslater,onDecember2,1957(Fig.1.7).Thefirstelectricity fromthisplantarrivedattheelectricgridonDecember18,1957,andthe plantgeneratedelectricityuntilitwaspermanentlyshutdownin1982.The objectivebytheUSAtomicEnergyCommissionintheearly1950swasto haveapublicutilityrunanuclearpowerreactorbeforetheSecondUnited NationsInternationalConferenceonthePeacefulUsesofAtomicEnergyin GenevaSeptember1 13,1958(UnitedNations,1958;Lustman,1981).As inthecaseoftheObninskpowerplantintheUSSR,Shippingportwasbuilt toserveadualpurpose,notonlyasapowergeneratorforthegrid,butalso asatestfacilityfortheadvancementofnuclearpowertechnology.

ThereactoratShippingportwasaPWRbasedonpreviousdesignsmade fortheUSNavynuclearsubmarinessuchastheMark1prototypebuiltin IdahoandthesecondcomparablereactorbuiltfortheNautilussubmarine (Lustman,1981;VanDuysenandMericdeBellefon,2017).ThefirstsubmarinetypePWRcalledS1Wwasbuiltonlandanditachievedcriticalityon March30,1953.ThesecondPWRwasinstalledintheNautilussubmarine andcommissionedonSeptember30,1954.Twoengineeringandmaterial issueshadtoberesolvedatthattime:(1)whattouseforthefueland(2) whattouseforthecladdingofthefuelinthereactors.ThecorrosionbehaviorofnuclearcandidatematerialsintheUnitedStatesintheearlier1950s wascharacterizedbyurgencyandsecrecy(WanklynandJones,1962). Remarkably,inthemidtolate1950s,thebasicphenomenaoftheoxidation ofZircaloy-2inair,waterandsteamwerealreadyratherwelltestedandrecognized.Then,thedecisionwasmadethatShippingportwasgoingtouse Zircaloy-2ascladdingforthefuelbasedonthepositiveresultsfromtheprevioustwobuiltreactors,thelandbasedinIdahoandtheNautilusone,even thoughZircaloywasveryexpensiveatthattimesincetheKrollproduction processwasnotoptimizedyet.Also,atthetimeofthefabricationofthe ShippingportreactoratBettis,theonlyknownfuelwasmetallicuranium, sometimesminimallyalloyedtocontrolgrainsize(Lustman,1981). Compatibilitystudiesofmetallicuraniumwithhotwaterthatmaycomein contactviacladdingdefectswerenotoptimistic.When9% 12%ofmolybdenumwasaddedtotheuraniummetal,theresearchersachievedthegamma

Nuclearpoweriscleanandsafe Chapter|1 11

orface-centeredcubic-phasestabilizationoftheuraniummetalanda decreaseofseveralordersofmagnitudeinthecorrosionrateofmetallic uraniuminhotwater.ItwasalsobelievedthatMoadditionswouldlimit swellingduringirradiation(Lustman,1981).Ataroundthesametimeinthe mid-1950s,Glatter,aBettisceramist,waspushingfortheconsiderationof urania(UO2)forthefuelinthethreereactorsbuiltorunderconstructionin theUnitedStates(Lustman,1981).Oneofthemainissuesthatmanyresisted ontheimplementationofuraniaasfuelwasitspoorthermalconductivity. Highthermalconductivityisneededtoremovetheheatquicklyfromthe fuel,viathecladdingandintothecoolantwater.Nevertheless,uraniawas consideredattractivebecauseofitsresistancetointeractionwithwaterinthe caseofacladdingbreachandbecauseofitsresistancetoirradiationdamage (AngandBurkhammer,1960).Eventuallyinthe1950s,aftermanyfabricationandperformancetrials,themanufacturingofuraniawasdeemedareproducible,controllable,andpredictableprocess(Lustman,1981).Thereforein thelate1950s,thecoupleorpairofuraniafuelandZircaloy-2claddingwas bornandadoptedeversinceformanydecadestocomeallovertheworld (Fig.1.7)(Lustman,1981).Atthesametime,theUSNavyusedZircaloy claddingfortheuraniumdioxide(UO2)oruraniafuel,butintheearly 1960s,thecostofzirconiumwashighenoughthatmostofthecommercial nuclearpowerstationsbuiltintheUnitedStatesusedstainlesssteelsforthe claddingoftheuraniapellets(Simnad,1981).EventuallyasthecostofzirconiumstartedtodecreaseaftertheKrollproductionprocesswasoptimized, thecommercialplantsshiftedfromausteniticstainlesssteelssuchastype 304toZircaloy-2orZircaloy-4.

Thedesign,construction,andtestingofBWRs,withoutasecondloopto producesteam,wereexploredbothintheUnitedStatesandtheUSSRonthe mid-1950stoearly1960s(Simnad,1981).IntheUnitedStates,Argonne builtanexperimentalBWRwhichoperatedbetween1956and1967demonstratingthefeasibilityofanintegratedBWRplant.GeneralElectricbuiltthe VallecitosprototypeBWRwhichoperatedbetweenOctober1957and December1963.TheGEVallecitosreactorstartedoperation4monthsbefore theWestinghouseShippingportinPennsylvania(Fig.1.7).Eventhough VallecitosgeneratedelectricityforthePacificGas&Electriccompanygrid, itspowercontributionwassmallenoughthatVallecitosisnotgenerally acceptedasthefirstUScivilianpowerreactor,therecordthatbelongsto Shippingport(VanDuysenandMericdeBellefon,2017).TheactualfirstUS civilianBWRwastheDresdenpowerstationdesignedbyGE,whichstarted operationsin1960inIllinois(VanDuysenandMericdeBellefon,2017).

Dresdenwasthefirstreactordesignedandbuiltbyprivateinitiativeand withoutgovernmentassistance.MeanwhileintheUSSR,acoreofaBWR startedtestinginsidetheObninskAPS-1reactorin1954(Simnad,1981).

ThefirstfullycommercialPWRintheUnitedStateswasYankee-Rowe powerstationinwesternMassachusetts,whichstartedoperationinJanuary

12 Accident-TolerantMaterialsforLightWaterReactorFuels

1961andendedinFebruary1992.InitiallythefuelintheYankee-Rowe PWRplantwasuraniapelletsandthecladdingwastype348austeniticstainlesssteel,withsomeelementshavingZircaloy-2cladding(Simnad,1981).

Figs.1.7and1.8 showthatthehighestnumberofpowerreactorsconnectedtotheUSgridwas12in1974(IAEA,2019). Fig.1.8 showsfora spanof60yearsthenumberofreactorsconnectedannuallytotheUSelectricalgrid.Mostofthereactorswereconnectedinthefirst30years (1960 90).Forthelast30years(1990 2019),onlyfournewreactorswere connectedtothegrid.Thelargestnumberofreactorswasconnectedinthe mid-1970sandlateragaininthemid-1980s.

TheVallecitosreactorinSunol(California)hadtheUSAtomicEnergy CommissionPowerReactorLicenseN 1.Vallecitoswasthefirstprivately ownedcommercialprototypeBWRownedbyGeneralElectric.Thisreactor initiallyusedaustenitictype304SScladdingforslightlyenrichedurania fuel.LatersomeofthecladdingwasreplacedusingZircaloy-2andZircaloy4(Simnad,1981).Eventually,someofthetype304SScladdingwasfound tosufferintergranularstresscorrosioncrackingfromthecoolantside,mainly becauseoftheradiolyticoxygen-containingenvironment(Terrani,2018). Thetype304SSusedinthe1960scontainedaconsiderableamountofcarbonandduringtheweldingoftheendcaps,theausteniticsteelwouldsensitize,makingtheweldseamareavulnerabletostresscorrosioncrackingfrom thecoolantside,mainlybecauseofthehighcorrosionpotentialinthewater

Nuclearpoweriscleanandsafe Chapter|1 13
FIGURE1.8 USreactorsfirstconnectedtogrid.

bythepresenceofradiolyticoxygenandhydrogenperoxide.Sinceatthe timewhenenvironmentalcrackingwasobservedintheweldsoffuelrods theprocessoffabricationofZircaloywasoptimizedandoflowercost,the useofausteniticstainlesssteelwasdiscontinuedforfuelcladdinguse. Becauseofthecurrenteffortstodevelopadvancedaccidenttolerantfuel materials,andmanydecadesafterausteniticstainlesswerediscontinued,the useofferriticstainlesstypealloyshasbeenproposedforfuelcladding.In contrasttoausteniticstainlesssteels,ferriticstainlesssteelsareresistantto stresscorrosioncrackinginhightemperaturewater.Moreover,duetotheir lowcarboncontent,modernferriticstainlessalloyscanbeweldedwithout undergoingsensitizationbyusingpressureresistancewelding,asolid-state weldingprocess.

14 Accident-TolerantMaterialsforLightWaterReactorFuels

Currentmaterialsinlightwater reactors.Whydoweneeda materialsrenewal?

Overview

Lightwaterreactors(LWRs)havebeengeneratingelectricityforoverfive decadesfortheelectricalgridofmorethan20countries.Mostofthesereactorsarebuiltusingaseriesofalloysandmaterialsthathavechangedvery littleoverthemanydecades.Themostcommonstructuralmaterialsare basedonthethreeelements,iron(Fe),chromium(Cr)andnickel(Ni)such asstainlesssteelsandnickel-basedalloys.MostoftheFe-Cr-NialloyscontainenoughCrtorenderthempassivewithlowgeneralcorrosionintypical LWRenvironments.Sincethechemistryofthewaterinthereactorishighly controlled,withoutaggressiveimpuritiessuchaschlorideorsulfateions, localizedcorrosionisnotaproblemforthecommonstructuralalloys.The mostcommonfailuremodeoftheFe-Cr-Nialloysisenvironmentally assistedcrackingorstresscorrosioncracking(SCC),whichiscurrentlywell understoodandsuccessfullymitigated,mainlybydissolvinghydrogengas intothecoolant.

Accident-TolerantMaterialsforLightWaterReactorFuels.

DOI: https://doi.org/10.1016/B978-0-12-817503-3.00002-X

© 2020ElsevierInc.Allrightsreserved.

Chapter2
Overview15 Thelightwaternuclearpowerreactor16 Materialsforlightwaterreactors17 Boilingwaterreactors19 Pressurizedwaterreactors19 Reactorvesselforboilingwaterand pressurizedwaterreactors20 Fuelassembliesforboilingwaterand pressurizedwaterreactors22 Lightwaterreactorfuelsandtheexcellent performanceofurania23 Howzirconiumalloysbecamethematerial ofchoiceforfuelcladding24
alloys30
zirconiumalloys36
alloys41
ChapterOutline
Inpraiseofzirconiumalloys27 Watersidecorrosionofzirconium
Nodularcorrosion34 Hydrogenpickupbyzirconiumalloys35 Iodinestresscorrosioncrackingof
Shadowcorrosionofzirconiumalloys37 Cruddepositiononzirconiumalloys40 Irradiationdamageofzirconium
15

Theotherfundamentalmaterialinthereactorcoreisthezirconium-based alloyusedforcladdingofthefuelrods.Thetraditionalfuelrodalloyswere Zircaloy-2andZircaloy-4,whichwereusedregularlyinboilingwaterreactorandpressurizedwaterreactorsystems,respectively.Veryearlyinthe developmentofthealloys(early1950s),itwasunderstoodthatasmall amount( , 2%)ofalloyingelementsgreatlyreducedthegeneralcorrosion rateofthezirconiumalloys.Thetraditionalcorrosionproblemsofzirconium alloys,suchasnodularcorrosion,shadowcorrosionfromthewaterside,and SCCfromthefuelside,arenowwellunderstoodandundercontrol.Debris frettingfromthecoolantsideremainsthemainfailuremodeofzirconium alloysfuelcladding.Overtimethedegradationprocessesofzirconiumalloys weresuccessfullyidentifiedandmanagedtoallowfortheiruseinnuclear powergenerationformorethansixdecades.

Thelightwaternuclearpowerreactor

Inanuclearpowerreactor,theheatreleasedduringthefissionofuraniumin thefueliscapturedbythewatersurroundingthefuelrodstoproducesteam, whichisusedtospintheturbinestogenerateelectricity.Thewaterthat extractstheheatgeneratedbythenuclearfissionreactioniscalledthecoolant.Thefuelinsidetherodsisurania(oruraniumdioxideUO2),whichis usedintheformofapproximately10-mmtalland10-mmdiameterpellets thatarepiledabout4-mhighinsideverticalmetallictubescalledthecladding.Ametallictubefilledwiththeceramicfuelpelletsiscalledafuelrod. Currentlythealloyforthecladdingisgenerallyazirconiumalloysuchas Zircaloy-2,Zircaloy-4,M5,orZirlo(Rebaketal.,2009;Bragg-Sittonetal., 2014;Mottaetal.,2015;Tangetal.,2017).IntheUnitedStatesandaround theglobe,therearetwomaintypesoflightwaterpowerreactors:(1)boiling waterreactors(BWRs)and(2)pressurizedwaterreactors(PWR)(IAEA, 2019).Currently,thereare451operablecivilianpowerreactorsintheglobe, ofwhich299arePWRand73areBWR.Theothertypesofpowerreactors are49pressurizedheavywatermoderatedandcooledreactors,14gascooled graphitemoderatedreactors,13lightwatercooledgraphitemoderatedreactors,andthreefastbreederreactors(IAEA,2019).Themaindifference betweenthetwocommonlightwaterreactors(LWRs)isthatintheBWR, thecoolantthatmakesthesteamisindirectcontactwiththefuelrods.In thePWR,thewatercoolantthatisindirectcontactwiththerods(primary side)transfersitsheatthoughasteamgeneratortowaterinthesecondary side,whichmakestheneededsteamfortheturbines.InboththeBWRand PWRsystems,thewaterincontactwiththeexternalwallofthefuelrodsis keptliquidatabout275 C 288 Cwith7.5-MPapressureinBWRsandat 290 C 330 Cwith15.5-MPapressureinPWRs(ZinkleandWas,2013). Thechemistry(composition)ofthecoolingwaterishighlycontrolled.The watermaycontaindissolvedhydrogengastolowerthecorrosionpotentialof

16 Accident-TolerantMaterialsforLightWaterReactorFuels

themetalliccomponentsincontactwiththewater.Thepresenceofhydrogen inthewatergasdepressesthecorrosionpotentialofmostofthemetallic materialstoelectrochemicalpotentialregionswherethegeneralcorrosion andstresscorrosioncracking(SCC)ofthealloysisminimized(Fordetal., 2006;ScottandCombrade,2006).Thatis,thepurposeofthereducing hydrogengasdissolvedinthewateristobringtheopencircuitpotentialor corrosionpotentialoftheengineeringcomponentsalloystothevicinityof the“a”lineinaPourbaixdiagramwhereSCCisessentiallycontrolled (JonesandNelson,1990).InPWRsthewatermayalsocontaindissolved boricacid(asaneutronmoderator)andlithiumhydroxide(tocontrolthe valueofthepHtominimizecorrosion)(ScottandCombrade,2006).Other additionstothewatermayincludelowconcentrationsofzincinjectionsto increasetheprotectivenessoftheoxidefilmsformedonmetallicsurfacesin contactwiththecoolant(Betovaetal.,2011).

Zirconiumalloyshavebeenusedforoversixdecadestocladtheurania fuelinlightwaterpowerreactors.Zirconiumalloyshaveadequateresistance tocorrosioninhigh-temperaturewaterunderthestandardoperationconditionsofPWRsandBWRsatnear300 C(Lemaignan,2006;Mottaetal., 2015).However,thecorrosionresistanceinwaterandsteamofzirconium alloysdecreasesrapidlyasthetemperatureincreasesabove400 C.Theoxidationofzirconiumwithwaterishighlyexothermic.DuringtheplantblackouteventsofMarch2011attheFukushimaDaiichinuclearpowerstations, thewatertemperatureinsidethereactorincreasedtoabovethenormaloperationconditionvaluesforthereactorsandthezirconiumalloysreactedrapidlywithwaterandsteamforminghydrogengasandreleasinglargeamounts ofoxidationreactionheattotheenvironment.Afteralmostsevendecadesof successfullyusingzirconiumalloysinthereactors,theinternationalnuclear materialscommunityisnowsearchingforsaferandmoreresistantalternativematerialsforthefuelcomponents.

Materialsforlightwaterreactors

Therearetwowell-establishedtypesofLWRs:(1)boilingwaterreactorsof BWRand(2)pressurizedwaterreactorsofPWR(Figs.2.1and2.2).ThecircuitintheBWRissimplerthaninthePWRconfiguration,whichrequires twowatercircuits.Exceptforthetwosmallerredboxesin Figs.2.1and2.2 showingthefuelcomponentsinbothreactors,almostallothercomponents aremadewithalloyscontainingthethreecommonelements:iron(Fe),chromium(Cr),andnickel(Ni)(Fig.2.3).Ironisusedforstructurallow-cost components,andchromiumandnickelareusedtoprovideresistancetoenvironmentaleffects.Aroundtheworld,BWRsrepresentapproximately20%of theinstallednuclearpowercapacityandPWRsrepresent67%ofthenuclear power(NNL,2018).Theconceptofalightwaterpowerreactorwasinitially conceivedatOakRidgeNationalLaboratoryin1946(VanDuysenand

Currentmaterialsinlightwaterreactors Chapter|2 17

MericdeBellefon,2017).Alsoin1946,whileworkingatOakRidge,H.G. RickovermadethehistoricaldecisiontouseLWRsovergascoolingreactors topowerthesubmarinesfortheUSNavyhewassponsoringanddesigning atthattime.

FIGURE2.2 Pressurizedwaterreactormaterials. CourtesyfromR.W.Staehle. FIGURE2.1 Boilingwaterreactormaterials. CourtesyfromR.W.Staehle.
18 Accident-TolerantMaterialsforLightWaterReactorFuels

Boilingwaterreactors

AfteritsoriginalconceptionatOakRidge,thetechnicaldevelopmentof BWRswasconductedatArgonneNationalLaboratory,andprototypeswere builtinthemid-1950sinIdahoandIllinois(Simnad,1981;NNL,2018). GeneralElectric(GE)establishedanatomicpowerbusinessunitin1955and pickeduptheBWRdesigntobuildthefirsteverUS-licensedreactoratthe VallecitossitenearSunol,California.TheVallecitosBWRwasthebasisfor thefutureconstructionofcommercialpowerBWRsallaroundtheglobe. ThisGEseriesofworldwideBWRconstructionsbeganin1959withthe DresdenUnit1reactorinMorris,Illinois,whichstartedtogeneratecivilian electricityin1961.ThedesignoftheBWRsevolvedthroughthedecades andcurrentlyseveraltypesandformsofBWRnuclearpowerstationsare foundintheUnitedStates,Japan,Sweden,Finland,Spain,Switzerland, Germany,Mexico,andIndia(NNL,2018).

Pressurizedwaterreactors

AstheBWRswerefirstengineeredatArgonneNationalLaboratory,thefirst PWRsweredesignedandtechnicallydevelopedatWestinghouseBettis AtomicPowerLaboratorynearPittsburgh,withtheinitialpurposeofusing thePWRsystemforthepropulsionofnuclearsubmarines(Cumminsand Matzie,2018).CurrentlyintheUnitedStates,PWRpowerisusedfor

Currentmaterialsinlightwaterreactors Chapter|2 19
FIGURE2.3 Ternarydiagram.MostmaterialsinlightwaterreactorsarebasedonFe,Cr,and Ni. CourtesyfromR.W.Staehle.

propulsionofsubmarines,aircraftcarriers,andicebreakers.Besides Westinghouse,twoothercompaniesintheUnitedStates(Combustion EngineeringandBabcock&Wilcox)alsosupplieddesignsandcomponents forPWRs,bothfortheNavyandcivilianpower(CumminsandMatzie, 2018).Eventually,CombustionEngineeringbecameapartofWestinghouse andBabcock&WilcoxbecameapartofFramatome.ThefirstcivilianUSproducedelectricityusingPWRatomicpowerwastheShippingportreactor fortheDuquesneLightCompany,southofPittsburgh,autilitythatwas foundedbyGeorgeWestinghousein1912(CumminsandMatzie,2018).

ThematerialsofconstructionforLWRshavechangedverylittleinthesix decadesofciviliannuclearpower(Allenetal.,2010;Rippon,1984). Figs.2.1 and2.2 showthemostrelevantmaterialsofconstructionforLWRs.Mostof thealloysarebasedonthethreeelementsiron,chromium,andnickel (Fig.2.3). Table2.1 showsacondensedlistofalloysandtheirchemicalcompositionusedfortheconstructionofLWRs.Iron-basedalloyscontaining enoughchromiumforpassivationarestainlesssteels. Fig.2.3 showsthatmost stainlesssteelscontainapproximately20%ofchromium.Ifthestainlesssteels containsomenickel,theywouldbeausteniticbecausetheyadopttheFCCor gammaphasestructure.Whenthesteeldoesnotcontainnickel,itsphase wouldbeferritic,BCC,oralpha. Fig.2.3 (right)showsthenickel-based alloys,whichalsocontainapproximately20%chromiumforpassivation.The lowestchromiumcontentinthenickelalloysareinX-750andalloy600and thehighestchromiumcontentis29%foralloy690(Table2.1).

ThemainfailuremodeofausteniticstainlesssteelsandchromiumcontainingnickelalloysduringnormaloperationinthereactorcoreisSCCor environmentallyassistedcracking(EAC).Thecrackingsusceptibilityof structuralstainlesssteelsandnickelalloysisgenerallyminimizedbyloweringtheredoxpotentialinthecoolantviatheinjectionofhydrogengas (JonesandNelson,1990).Allthealloyscontainingatleast12%chromium wouldhavealowgeneralcorrosionratebecauseoftheformationofaprotectivechromiumoxidefilmontheenvironmentexposedsurface,which kineticallypassivatesthemetallicstructuresandthedissolution(orcorrosion)ofthecomponentbecomesnegligible.Mostofthematerialsin Table2.1 havebeenusedformanydecades.Thenewestmateriallistedin thistableisAlloy690(N06900),whichwasintroducedforsteamgenerators tubinginPWRsin1989.Thatis,thenewestmaterialusedinLWRsiscurrently30yearsold.Materialsnotlistedin Table2.1 arethezirconiumalloys forfuelrodcladding,whicharediscussedseparately.

Reactorvesselforboilingwaterandpressurizedwater reactors

In Figs.2.1and2.2 thereisaverticalgrayline.Totherightofthevertical grayline,bothreactorsystemsaresimilarsincethecommonfeatureisthe

20 Accident-TolerantMaterialsforLightWaterReactorFuels

ductcarryingthesteamacrossthisverticalgraylinetopropeltheturbines. Evenfossilfuelplantshaveasimilarconfigurationasthecomponentsshown ontherightofthegrayline.Thecomponentstotheleftofthegrayline [includingthereactorpressurevessel(RPV)andtheheatexchangers]are enclosedinthereinforcedconcretecontainmentbuildingofthenuclear powerstation.Theconcretecontainmentbuildingisthelastbarrierforradionuclidesandothercontaminantsbeforetheycanreachtheexternal

Carbonsteel A508 B97 # 0.250.4 1.0 # 0.25C,1.2 1.5Mn, 0.45 0.60Mo, # 0.40Si 308SS—welds B7019.5 22.09.0 11.01 2.5Mn,0.08Cmax, 0.75Momax 309SS—clad B6423.0 25.012.0 14.01 2.5Mn,0.3 0.65Si, 0.12Cmax Alloy600 N06600 6 1014 1772min0.15Cmax,1Mnmax, 0.5Simax Alloy182—welds10 max 13 1759min0.1Cmax,5 9.5Mn, 1Simax,1 2.5 (Nb 1 Ta) Alloy690 N06900 7 1127 3158min0.05Cmax,0.5Mnmax, 0.5Simax Alloy800 N08800 39.5 min 19 2330 350.1Cmax,0.15 0.6Al, 0.15 0.6Ti 304SSS30403 B7418 208 120.08Cmax,2Mnmax, 0.75Simax 316SSS31603 B7416 1810 140.08Cmax,2 3Mo, 2Mnmax,0.75Simax X-750N077505 914 1770min0.08Cmax, 2.25 2.75Ti,0.4 1Al, 0.7 1.2(Nb 1 Ta),1Mn max A286S66286 B6213.5 1624 270.08Cmax,2Mnmax, 1Simax,1 1.5Mo, 1.9 2.35Ti,0.1 0.5V 405ferriticsteel S40500 B8811.5 14.50.5max0.08Cmax,0.1 0.3Al, 1Mnmax,1Simax Currentmaterialsinlightwaterreactors Chapter|2 21
TABLE2.1 Nominalcompositionoflightwaterreactormaterialsinmass percent.
Alloy—UNSFeCrNiOthers

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.