Methods and techniques for fire detection signal image and video processing perspectives 1st edition

Page 1

Methods and techniques for fire detection : signal, image and video processing perspectives 1st Edition Çetin

Visit to download the full and correct content document: https://textbookfull.com/product/methods-and-techniques-for-fire-detection-signal-ima ge-and-video-processing-perspectives-1st-edition-cetin/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems E. Priya

https://textbookfull.com/product/signal-and-image-processingtechniques-for-the-development-of-intelligent-healthcare-systemse-priya/

Academic Press Library in Signal Processing Volume 5 Image and Video Compression and Multimedia Sergios Theodoridis

https://textbookfull.com/product/academic-press-library-insignal-processing-volume-5-image-and-video-compression-andmultimedia-sergios-theodoridis/

Digital Image Processing A Signal Processing and Algorithmic Approach 1st Edition D. Sundararajan (Auth.)

https://textbookfull.com/product/digital-image-processing-asignal-processing-and-algorithmic-approach-1st-edition-dsundararajan-auth/

From Algebraic Structures to Tensors Digital Signal and Image Processing Matrices and Tensors in Signal Processing Set 1st Edition Gérard Favier (Editor)

https://textbookfull.com/product/from-algebraic-structures-totensors-digital-signal-and-image-processing-matrices-and-tensorsin-signal-processing-set-1st-edition-gerard-favier-editor/

Intelligent Techniques in Signal Processing for Multimedia Security 1st Edition Nilanjan Dey

https://textbookfull.com/product/intelligent-techniques-insignal-processing-for-multimedia-security-1st-edition-nilanjandey/

Image processing and GIS for remote sensing : techniques and applications Second Edition Liu

https://textbookfull.com/product/image-processing-and-gis-forremote-sensing-techniques-and-applications-second-edition-liu/

Signal Processing Techniques for Computational Health Informatics Md Atiqur Rahman Ahad

https://textbookfull.com/product/signal-processing-techniquesfor-computational-health-informatics-md-atiqur-rahman-ahad/

Image Processing and Communications Techniques Algorithms and Applications Micha■ Chora■

https://textbookfull.com/product/image-processing-andcommunications-techniques-algorithms-and-applications-michalchoras/

Nature Inspired Optimization Techniques for Image Processing Applications Jude Hemanth

https://textbookfull.com/product/nature-inspired-optimizationtechniques-for-image-processing-applications-jude-hemanth/

METHODSAND TECHNIQUESFOR FIREDETECTION

METHODSAND TECHNIQUESFOR

A.ENISÇETIN

FIREDETECTION Signal,ImageandVideo ProcessingPerspectives
ĞURTÖREY İN STEVENVERSTOCKT AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier
BARTMERCI OSMANGÜNAY BEHÇETU

AcademicPressisanimprintofElsevier

125LondonWall,London,EC2Y5AS,UK

525BStreet,Suite1800,SanDiego,CA92101-4495,USA 50HampshireStreet,5thFloor,Cambridge,MA02139,USA TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK

Copyright © 2016ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Details onhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterand theCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/ permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-802399-0

ForinformationonallAcademicPresspublications visitourwebsiteat http://store.elsevier.com/

Publisher: JoeHayton

AcquisitionEditor: TimPitts

EditorialProjectManager: CharlotteKent

ProductionProjectManager: JasonMitchell

Designer: MariaIne ˆ sCruz

BIOGRAPHY

A.EnisC¸etin gothisPhDdegreefromtheUniversityofPennsylvaniain 1987.Between1987and1989,hewasanassistantprofessorofelectricalengineeringattheUniversityofToronto.HehasbeenwithBilkent University,Ankara,Turkey,since1989.C¸etinwasanassociateeditorof IEEETransactionsonImageProcessingbetween1999and2003.Currently, heisontheeditorialboardsofIEEESignalProcessingMagazine,IEEE TransactionsonCircuitsandSystemsforVideoTechnology,andMachine VisionandApplications(IAPR),Springer.Heistheeditor-in-chiefofSignal,Image,andVideoProcessing,Springer.HeisafellowofIEEE.His researchinterestsincludesignalandimageprocessing,human–computer interactionusingvisionandspeech,andaudiovisualmultimediadatabases.

BartMerci isfullprofessoratGhentUniversity(Belgium).Heisheadofthe researchunit“Combustion,FireandFireSafety.”HavingcompletedaPhD (GhentUniversity,2000)onturbulencemodelinginCFDsimulationsof non-premixedcombustion,heisanexpertinfluidmechanicsaspectsin reactingflows,moreparticularlyrelatedtofireandsmokedynamics.He hasalreadycoauthoredover100peerreviewpublicationsandover200conferencepublicationsandisaneditorialboardmemberofmultipleleading journalsinthefield.HeinitiatedandcoordinatestheInternationalMaster ofScienceinFireSafetyEngineering,acollaborationofGhentUniversity, LundUniversity,andtheUniversityofEdinburgh,withtheUniversityof Queensland,ETHZu ¨ richandUniversityofMarylandasAssociated Partners.

OsmanGu ¨ nay receivedhisBScandMSdegreesinElectricalandElectronicsEngineeringfromBilkentUniversity,Ankara,Turkey.In2015,he receivedhisPhDdegreefromthesamedepartment.Since2011,hehasbeen workinginthedefenseindustryasasystemengineer.Hisresearchinterests includecomputervision,videosegmentation,anddynamictexture recognition.

Behc¸etUg ˘ urT¨oreyin receivedhisBSdegreefromtheMiddleEastTechnicalUniversity,Ankara,Turkey,in2001andMSandPhDdegreesfrom BilkentUniversity,Ankara,in2003and2009,respectively,allinelectrical andelectronicsengineering.HeisnowanAssistantProfessorwiththeInformaticsInstituteatIstanbulTechnicalUniversity.Hisresearchinterestslie

vii

broadlyinsignalprocessingandpatternrecognitionwithapplicationsto image/videoanalysis,andcommunicationsystems.Hisresearchisfocused ondevelopingnovelalgorithmstoanalyzeandcompresssignalsfromamultitudeofsensorssuchasvisible/infra-red/hyperspectralcameras,microphones,passiveinfra-redsensors,vibrationsensors,andspectrumsensors forwirelesscommunications.

StevenVerstockt receivedhismaster’sdegreeininformaticsfromGhent Universityin2003.Followinghisstudiesinappliedinformatics,hebegan teachingMultimediacoursesatHogeschoolGentandattheendof2007, hejoinedtheELITLaboftheUniversityCollegeWest-Flandersasa researcher.In2008,hestartedaPhDonvideofireanalysisattheMultimedia LaboftheDepartmentofElectronicsandInformationSystemsofGhent University—iMinds(Belgium).Since2012,hehasworkedasapostdoctoral researcherinthislabfocusingonmulti-sensorfireanalysis.InOctober2015, hewasappointedatenuretrackpositionasassistantprofessorinMultimedia atthesamelab.

viii Biography

ACKNOWLEDGMENTS

ResearchactivitiesinthisbookwerefundedbytheTurkishScientificand TechnicalResearchCouncil(TU ¨ BI ˙ TAK),theEuropeanCommission7th FrameworkProgramunderGrantFP7-ENV-2009-1244088FIRESENSE (FireDetectionandManagementthroughaMulti-SensorNetworkforthe ProtectionofCulturalHeritageAreasfromtheRiskofFireandExtreme WeatherConditions),GhentUniversity,iMinds,theInstituteforthePromotionofInnovationbyScienceandTechnologyinFlanders(IWT),the FundforScientificResearch-Flanders,andtheBelgianFederalSciencePolicyOffice.A.EnisC¸etin,Behc¸etUg ˘ urT€ oreyinandOsmanGünaywould liketoexpresstheirgratitudetoMr.NurettinDog ˘ anandMr. İlhamiAydin oftheTurkishGeneralDirectorateofForestry(OrmanGenelMüdürlüg ˘ ü OGM),andtoDr.M.BilgayAkhansuggestingthemtostudycomputer visionbasedfiredetection.

ix

CHAPTER1

Introduction

Signal,image,andvideoprocessingarewidelyusedinmanysecurityapplications.Itispossibletousevisible-rangeandspecialpurposeinfraredsurveillancecamerasaswellaspyro-infrareddetectorsforfiredetection.This requiresintelligentsignalprocessingtechniquesfordetectionandanalysis ofuncontrolledfirebehavior.Asthenumberofrecentlyproposedsignal, image,andvideoprocessing-basedfiredetectionmethodsincreasedover thelast10years,aneedforabookpresentingbasicprinciplesofthese methodsemerged.

Thisbookdescribessignal,image,andvideoprocessingmethodsand techniquesforfiredetection.Theintendedaudienceofthebookisgraduate students,researchers,andpractitionersworkingonsignalprocessingand computervision-basedtechniquesforfiredetection.Thebookprovides themwithathoroughandpracticaloverviewofthestate-of-the-art methodsandtechniquesinthisdomain.

Sensorsenhancedwithintelligentsignalandimageprocessingcapabilitiesmayhelpreducethedetectiontimecomparedtothecurrentlyavailable sensorsforbothindoorsandoutdoors.Thisisduetothefactthatcameras andothernonconventionalfiresensorscanmonitor“volumes”anddonot havethetransportdelaythatthetraditional“point”sensorssufferfrom.For example,itispossibletocoveranareaof100km2 usingasinglepan-tiltzoomcameraplacedonahilltopforwildfiredetection.Anotherbenefit ofvolumetricsensorsystemsisthattheycanprovidecrucialinformation aboutthesizeandgrowthofthefireandthedirectionofsmokepropagation.

Duringthelastdecades,improvementsinthecomputationalpowerof computersandthedecreasingcostofimagingsensorsmadeitpossibleto employvideo-basedfiredetectiontechniquesforreal-timeapplications. Intheliterature,videofiredetectionalgorithmsdevelopedforvisiblerange camerasarehigherinnumberasvisiblerangecamerascostlesscomparedto infrared(thermal)andtime-of-flightcameras.In Chapter2,state-of-the-art camera-basedtechniquesforfiredetectionarepresented.

Chapter3 presentsasetofmethodsforflamedetectionusinganonconventionalsensor,apyro-electricinfrared(PIR)sensor,whichisalow-cost sensorwidelyusedformotiondetection.Themethodsarebasedonthe

MethodsandTechniquesforFireDetection

© 2016ElsevierLtd. http://dx.doi.org/10.1016/B978-0-12-802399-0.00001-6 Allrightsreserved.

1

analysisoftheflameflickerexistinginherentlyinuncontrolledfires.The PIRsensorsarecommonlyusedforoccupancydetectionpurposesinbuildings.Utilizingtechniquesandmethodspresentedin Chapter3,theymay turnintouncontrolledfiredetectorsaswell.

Currentmethodsandtechniquesusedformulti-sensorfireanalysisare describedin Chapter4.Methodsin Chapter4 areaimedatestimating theoriginandgrowthoffires,ratherthandetectingthem.Modelingfire behaviorhasimportantbenefitsinfirefightingandmitigation,andisessential inassessingtheriskofescalation.Techniquesin Chapter4 focusonmultimodal/multi-sensoranalysisoffirecharacteristics,suchasflameand smokespread.

SurveillancecamerasandPIR-basedmotionsensorsarewidelyusedin modernbuildings.Itisnowpossibletousethemforfireandsmokedetectionbyanalyzingthevideoandsignalsthattheygenerate.Itisourhopethat themethodsandtechniquesdiscussedinthisbookwillleadtosaferbuildings andlivingenvironmentsinthenearfuture.

2 MethodsandTechniquesforFireDetection

CHAPTER2

Camera-BasedTechniques

2.8

Part1

Thefirststepinvideofiredetection(VFD)istoapplyabackgroundsubtractionalgorithmtoextractmovingregionsinthevideo.Thenthedetected regionsareanalyzedtemporallytobeclassifiedintermsofflickeringcharacteristics.Markovmodelsandfrequencydomaintechniquescanbeusedto identifyiftheflickeringcharacteristicsbelongtoflames.Inthenextstep, spatialanalysisisperformedtocheckfortheirregularitiesthatareusedto identifyflames.

Contents Part1 3 2.1 VFDinVisible/VisualSpectralRange 6 2.1.1 ColorDetection 10 2.1.2 MovingObjectDetection 11 2.1.3 MotionandFlickerAnalysisUsingFourierandWaveletTransforms 12 2.1.4 SpatialWaveletColorVariationandAnalysis 14 2.1.5 DynamicTextureandPatternAnalysis 15
SpatiotemporalNormalizedCovarianceDescriptors 16 2.3 ClassificationTechniques 19 2.4 EvaluationofVisibleRangeVFDMethods 19 2.5 VFDinIRSpectralRange 22 2.6 WildfireSmokeDetectionUsingVisibleRangeCameras 23 2.7 WildfireDetectionfromMovingAerialPlatforms 25 References 26 Part2 31
2.2
WildfireDetectionwithPTZCamerasUsingPanoramicBackgrounds 31 2.8.1 PanoramaGeneration 32 2.8.2 WildfireDetectionAlgorithm 36 2.8.3 ExperimentalResults 40 2.8.4 Conclusion 42 References 45
3 MethodsandTechniquesforFireDetection © 2016ElsevierLtd. http://dx.doi.org/10.1016/B978-0-12-802399-0.00002-8 Allrightsreserved.

Anothermethodistoextractfeaturesfromthemovingregionsand useclassifierswhoaretrainedofflinewithvideosoffireandfalsealarm sources.Itisalsopossibletouseac tivelearningalgorithmswhichare updatedonlinetoclassifyflameregions.Themostimportantproblem withvisiblerangefiredetectionsisthefalsealarms.Fire-coloredmoving regionscanbedifficulttodistinguishfromtheactualflames.Firedetectionalgorithmsaregenerallydevelopedforstationarycameras.When movingcamerasareused,itbecomesdifficulttodetecttheflickering characteristicsofflames.Detectionoffireusingamovingcameraisa futureresearchproblem.Anotherapp licationofvideo-basedfiredetectionissmokedetectionforearlywildfirewarningsystems.Forestsare usuallymonitoredusingPTZcamerasth atscanrecordedpresetpositions inaspecificorder.Thesecamerascan monitorlargerdistancesthanusual visiblerangecameras.Inwildfiredetectionapplications,smokebecomes visiblebeforetheflames;thereforeitmakessensetofocusonsmoke detectionforthesesystems.

Withthedecreasedcostofinfraredsensors,itbecamepossibletouselongandshort-waveinfraredcamerasforflamedetection.Sinceinfrared(thermal) camerasformimageswhoseintensitydependonthetemperatureofthe objects,theycouldbeusedtoreducemostofthefalsealarms.Inmostcases, thetemperatureofflamesishigherthanthesurroundingenvironmentandIR camerascansuccessfullydetecttheflickeringflames.Initially,infraredflame detectionalgorithmsprocessednearinfraredimages(NIR)toverifytheexistenceofflames.Morerecentmethodsstartedtouseshort-andlong-wave infrared(SWIR,LWIR)thermalcamerasforfireandflamedetection.

ThischapterisbasedontheVFDsurveypaperin[1].RecentlyproposedVFDtechniquesareviablealternativesorcomplementstoexisting firedetectiontechniquesandhaveshowntobeusefulinsolvingseveral problemsrelatedtothetraditionalsensors.Conventionalsensorsaregenerallylimitedtoindoorsandarenotapplicableinlargeopenspacessuchas shoppingcenters,airports,carparks,andforests.Theyrequireacloseproximitytothefireandmostofthemcannotprovideadditionalinformation aboutfirelocation,dimension,etc.Oneofthemainlimitationsofcommerciallyavailablefirealarmsystemsisthatitmaytakealongtimeforcarbonparticlesandsmoketoreachthe“point”detector.Thisiscalledthe “transportdelay.”Itisourbeliefthatvideoanalysiscanbeappliedinconditionsinwhichconventionalmethodsfail.VFDhasthepotentialtodetect thefirefromadistanceinlargeopenspacesbecausecamerascanmonitor

4 MethodsandTechniquesforFireDetection

“volumes.”Asaresult,VFDdoesnothavethetransportandthreshold delayfromwhichthetraditional“point”sensorssuffer.Assoonassmoke orflamesoccurinoneofthecameraviews,itispossibletodetectfire immediately.Weallknowthathumanbeingscandetectanuncontrolled fireusingtheireyesandvisionsystems,butaspointedoutabove,itisnot easytoreplicatehumanintelligence.

Theresearchinthisdomainwasstartedinthelatenineties.Mostofthe VFDarticlesavailableintheliteratureareinfluencedbythenotionof “weak”ArtificialIntelligence(AI)frameworkwhichwasfirstintroduced byHubertL.Dreyfusinhiscritiqueofthe“generalized”AI[3,4].Dreyfus presentssolidphilosophicalandscientificargumentsonwhythesearchfor “generalized”AIisfutile[5].Therefore,eachspecificproblemincluding VFDfireshouldbeaddressedasanindividualengineeringproblemwhich hasitsowncharacteristics[6].Itispossibletoapproximatelymodelthefire behaviorinvideousingvarioussignalandimageprocessingmethodsand automaticallydetectfirebasedontheinformationextractedfromvideo. However,thecurrentsystemssufferfromfalsealarmsbecauseofmodeling andtraininginaccuracies.

CurrentlyavailableVFDalgorithmsmainlyfocusonthedetectionand analysisofsmokeandflamesinconsecutivevideoimages.Inearlyarticles, mainlyflamedetectionwasinvestigated.Recently,thesmokedetection problemisalsoconsidered.Thereasonforthiscanbefoundinthefact thatsmokespreadsfasterandinmostcaseswilloccurmuchfasterinthe fieldofviewofthecameras.Inwildfireapplications,itmaynotevenbe possibletoobserveflamesforalongtime.Themajorityofthestate-ofthe-artdetectiontechniquesfocusesonthecolorandshapecharacteristics, togetherwiththetemporalbehaviorofsmokeandflames.However,due tothevariabilityofshape,motion,transparency,colors,andpatternsof smokeandflames,manyoftheexistingVFDapproachesarestillvulnerable tofalsealarms.Duetonoise,shadows,illuminationchanges,andother visualartifactsinrecordedvideosequences,developingareliabledetection systemisachallengetotheimageprocessingandcomputervision community.

Withtoday’stechnology,itisnotpossibletohaveafullyreliableVFD systemwithoutahumanoperator.However,currentsystemsareinvaluable toolsforsurveillanceoperators.Itisalsoourstrongbeliefthatcombining multi-modalvideoinformationusingbothvisibleandinfrared(IR)technologywillleadtohigherdetectionaccuracy.Eachsensortypehasitsown

5 Camera-basedtechniques

specificlimitations,whichcanbecompensatedbyothertypesofsensors. Although,itwouldbedesirabletodevelopafiredetectionsystemwhich couldoperateontheexistingclosedcircuittelevision(CCTV)equipment withoutintroducinganyadditionalcost.However,thecostofusingmultiplevideosensorsdoesnotoutweighthebenefitofmulti-modalfireanalysis.ThefactthatIRmanufacturersalsoensureadecreaseinthesensorcost inthenearfuturefullyopensthedoortomulti-modalvideoanalysis.VFD camerascanalsobeusedtoextractusefulrelatedinformation,suchasthe presenceofpeoplecaughtinthefire,firesize,firegrowth,smoke direction,etc.

VFDsystemscanbeclassifiedintovarioussubcategoriesaccordingto (i)thespectralrangeofthecameraused, (ii)thepurpose(flameorsmokedetection), (iii)therangeofthesystem. Thereareoverlapsbetweenthecategoriesabove.

2.1VFDINVISIBLE/VISUALSPECTRALRANGE

Overthelastyears,thenumberofpapersaboutvisualfiredetectioninthe computervisionliteraturehasgrownexponentially[2].Asis,thisrelatively newsubjectinvisionresearchisinfullprogressandhasalreadyproduced promisingresults.However,thisisnotacompletelysolvedproblem,aswith mostcomputervisionproblems.Behaviorofsmokeandflamesofanuncontrolledfiredifferswithdistanceandillumination.Furthermore,camerasare notcolorand/orspectralmeasurementdevices.Theyhavedifferentsensors andcolorandilluminationbalancingalgorithms.Theymayproducedifferentimagesandvideoforthesamescenebecauseoftheirinternalsettingsand algorithms.

Inthissection,achronologicaloverviewofthestate-of-the-art(ie,acollectionoffrequentlyreferencedpapersonshortrange[<100m])firedetectionmethodsispresentedinthetablesbelow.Foreachofthesepapers,we investigatedtheunderlyingalgorithmsandcheckedtheappropriatetechniques.Inthefollowing,wediscusseachofthesedetectiontechniques andanalyzetheiruseinthelistedpapers.

6 MethodsandTechniquesforFireDetection

State-of-the-art:underlyingtechniques(PART1:2002-2007).

Paper Color detection Moving object detection Flicker/ energy (wavelet) analysis Spatial difference analysis Dynamic texture/ Pattern analysis Disorder analysisSubblocking Training (models, NN,SVM, …) Cleanup postprocessing Localization/ analysis Flame detection Smoke detection Phillips[7]RGB XX XX X GomezRodriguez [8] XX X X GomezRodriguez [9] XX X X Chen[10]RGB/ HSI XX X X Liu[11]HSV X X X Marbach[12]YUV X X X Toreyin[13]RGBXXX X Toreyin[14]YUVXX X X Celik[15]YCbCr/ RGB XX Xu[16]XX X XX

Xiong [18]

State-of-the-art:underlyingtechniques(PART2:2007-2009).

[20]

[21]

[23]

[25]

[26]

Paper Color detection Moving object detection Flicker/ energy (wavelet) analysis Spatial difference analysis Dynamic texture/ pattern analysis Disorder analysisSubblocking Training (models, NN,SVM, …) Cleanup postprocessing Localization/ analysis Flame detection Smoke detection Celik[17]RGBXXXXX
XXXX
XX XX Calderara
RGBXX XX X Piccinini
RGBXX X X Yuan[22]RGBX XX X Borges
RGB X X Qi[24]RGB/ HSV XX X X Yasmin
RGB/ HSI XX XX X
XX XX
Lee[19]RGBX
Gubbi

State-of-the-art:underlyingtechniques(PART3:2010-2011).

Paper Color detection Moving object detection Flicker/ energy (wavelet) analysis Spatial difference analysis Dynamic texture/ Pattern analysis Disorder analysisSubblocking Training (models, NN,SVM, …) Cleanup postprocessing Localization/ analysis Flame detection Smoke detection
HSI XXXX
XXXXXX
X X XX Ko[30]RGBXX X X GonzalezGonzalez
XX X Borges[32]RGB X X X X Van Hamme [33] HSV X XX X Celik[34]CIE L*a*b* XX X X X Yuan[35]X XX Rossi[36]YUV/ RGB XXXX
Chen[27]RGB/
Gunay[28]RGB/ HSI
Kolesov[29]X
[31]

2.1.1ColorDetection

ColordetectionwasoneofthefirstdetectiontechniquesusedinVFDandis stillusedinalmostalldetectionmethods.Themajorityofthecolor-based approachesinVFDmakeuseofRGBcolorspace,sometimesincombinationwithHSI/HSVsaturation[10,24,27,28].Themainreasonforusing RGBisthatalmostallvisiblerangecamerashavesensorsdetectingvideo inRGBformatandthereistheobviousspectralcontentassociatedwiththis colorspace.ItisreportedthatRGBvaluesofflamepixelsareintheredyellowcolorrangeindicatedbytherule(R > G > B)asshownin Fig.2.1. Similarly,insmokepixels,R,G,andBvaluesareveryclosetoeachother. Morecomplexsystemsuserule-basedtechniquessuchasGaussiansmoothed colorhistograms[7],statisticallygeneratedcolormodels[15],andblending functions[20].Itisobviousthatcolorcannotbeusedbyitselftodetectfire becauseofthevariabilityincolor,density,lighting,andbackground. However,thecolorinformationcanbeusedasapartofamoresophisticated system.Forexample,chrominancedecreaseisusedinsmokedetection

Figure2.1 Colordetection:smokeregionpixelshavecolorvaluesthatareclosetoeach other.Pixelsofflameregionslieinthered-yellowrangeofRGBcolorspacewith R > G > B.

10 MethodsandTechniquesforFireDetection

schemesofRefs.[14,2].Luminancevalueofsmokeregionsshouldbehigh formostsmokesources.Ontheotherhand,thechrominancevaluesshould beverylow.

TheconditionsinYUVcolorspaceareasfollows:

Condition1: Y > TY

Condition2: U 128 jj < TU & jV 128j < TV . where Y, U,and V aretheluminanceandchrominancevaluesofaparticular pixel,respectively.Theluminancecomponent Y takesvaluesintherange [0,255]inan8-bitquantizedimageandthemeanvaluesofchrominance channels U and V areincreasedto128sothattheyalsotakevaluesbetween 0and255.Thethresholds TY, TU,and TV areexperimentallydetermined[37].

2.1.2MovingObjectDetection

MovingobjectdetectionisalsowidelyusedinVFDbecauseflamesand smokearemovingobjects.Todetermineifthemotionisduetosmoke oranordinarymovingobject,furtheranalysisofmovingregionsinvideo isnecessary.

Well-knownmovingobjectdetectionalgorithmsarebackground(BG) subtractionmethods[16,21,18,14,13,17,20,22,27,28,30,34],temporal differencing[19],andopticalflowanalysis[9,8,29].Theycanallbeused aspartofaVFDsystem.

Inbackgroundsubtractionmethods,itisassumedthatthecameraisstationary.In Fig.2.2,abackgroundsubtraction-basedmotiondetection

Dynamic BG model BG subtraction Fire Fire+moving object Figure2.2 Movingobjectdetection:backgroundsubtractionusingdynamicbackground model. 11 Camera-basedtechniques

exampleisshownusingthedynamicbackgroundmodelproposedbyCollinsetal.[38].ThisGaussianMixtureModel-basedapproachmodelwas usedinmanyofthearticleslistedintablesabove.

SomeoftheearlyVFDarticlessimplyclassifiedfire-coloredmoving objectsasfirebutthisapproachleadstomanyfalsealarms,becausefalling leavesinautumnorfire-coloredordinaryobjects,etc.,mayallbeincorrectly classifiedasfire.Furtheranalysisofmotioninvideoisneededtoachieve moreaccuratesystems.

2.1.3MotionandFlickerAnalysisUsingFourierandWavelet Transforms

Asitiswellknown,flamesflickerinuncontrolledfires,thereforeflicker detection[24,18,12,13,27,28,30]invideoandwavelet-domainsignal energyanalysis[21,14,20,26,31,39]canbeusedtodistinguishordinary objectsfromfire.Thesemethodsfocusonthetemporalbehaviorofflames andsmoke.Asaresult,flamecoloredpixelsappearanddisappearattheedges ofturbulentflames.Theresearchin[16,18]showsexperimentallythatthe flickerfrequencyofturbulentflamesisaround10Hzandthatitisnotgreatly affectedbytheburningmaterialandtheburner.Asaresult,usingfrequency analysistodifferentiateflamesfromothermovingobjectsisproposed.However,anuncontrolledfireinitsearlystageexhibitsatransitiontochaosdue tothefactthatthecombustionprocessconsistsofnonlinearinstabilities whichresultintransitiontochaoticbehaviorviaintermittency[40–43]. Consequently,turbulentflamescanbecharacterizedasachaoticwide-band frequencyactivity.Therefore,itisnotpossibletoobserveasingleflickering frequencyinthelightspectrumduetoanuncontrolledfire.ThisphenomenonwasobservedbyindependentresearchersworkingonVFDand methodswereproposedaccordingly[14,44,27].Similarly,itisnotpossible totalkaboutaspecificflickerfrequencyforsmoke,butweclearlyobservea time-varyingmeanderingbehaviorinuncontrolledfires.Therefore,smoke flickerdetectiondoesnotseemtobeaveryreliabletechnique,butitcanbe usedaspartofamulti-featurealgorithmfusingvariousvisioncluesforsmoke detection.TemporalFourieranalysiscanstillbeusedtodetectflickering flames,butwebelievethatthereisnoneedtodetectspecifically10Hz. AnincreaseinFourierdomainenergyin510Hzisanindicatorofflames. Thetemporalbehaviorofsmokecanbeexploitedbywaveletdomain energyanalysis.Assmokegraduallysoftenstheedgesinanimage,Toreyin etal.[14]foundtheenergyvariationbetweenbackgroundandcurrent imageasacluetodetectthepresenceofsmoke.Inordertodetecttheenergy

12 MethodsandTechniquesforFireDetection

decreaseinedgesoftheimage,theyusetheDiscreteWaveletTransform (DWT).TheDWTisamulti-resolutionsignaldecompositionmethod obtainedbyconvolvingtheintensityimagewithfilterbanks.Astandard halfbandfilterbankproducesfourwaveletsubimages:theso-calledlowlowversionoftheoriginalimage Ct,andthehorizontal,vertical,anddiagonalhighfrequencybandimages Ht, Vt,and Dt.Thehigh-bandenergyfrom subimages Ht, Vt,and Dt isevaluatedbydividingtheimage It inblocks bk of arbitrarysizeasfollows:

Sincecontributionofedgesaremoresignificantinhighbandwavelet imagescomparedtoflatareasoftheimage,itispossibletodetectsmoke usingthedecreasein E(I t, b k).Astheenergyvalueofaspecificblock variessignificantlyovertimeinthe presenceofsmoke,temporalanalysis oftheratiobetweenthecurrentinputframewaveletenergyandthe backgroundimagewaveletenergyisusedtodetectthesmokeasshown in Fig.2.3

Figure2.3 DWT-basedvideosmokedetection:Whenthereissmoke,theratiobetween theinputframewaveletenergyandtheBGwaveletenergydecreasesandshowsahigh degreeofdisorder.

EIt , bk ðÞ¼ Xi, j 2bk H 2 t i, j ðÞ + V 2 t i, j ðÞ + D2 t i, j ðÞ (2.1)
13 Camera-basedtechniques

2.1.4SpatialWaveletColorVariationandAnalysis

Flamesofanuncontrolledfirehavevaryingcolorsevenwithinasmallarea. Spatialcolordifferenceanalysis[24,13,28,32]focusesonthischaracteristic. Usingrangefilters[24],variance/histogramanalysis[32],orspatialwavelet analysis[13,28],thespatialcolorvariationsinpixelvaluesareanalyzedto distinguishordinaryfire-coloredobjectsfromuncontrolledfires.In Fig.2.4, theconceptofspatialdifferenceanalysisisfurtherexplainedbymeansofa histogram-basedapproach,whichfocusesonthestandarddeviationofthe greencolorband.ItwasobservedbyQiandEbert[24]thatthiscolorband isthemostdiscriminativebandforrecognizingthespatialcolorvariationof flames.Thiscanalsobeseenbyanalyzingthehistograms.Greenpixelvalues varymorethanredandbluevalues.Ifthestandarddeviationofthegreen colorbandexceeds tσ ¼ 50(:Borges[32])inatypicalcolorvideotheregion islabeledasacandidateregionforaflame.Forsmokedetection,ontheother hand,experimentsrevealedthatthesetechniquesarenotalwaysapplicable becausesmokeregionsoftendonotshowashighspatialcolorvariationas flameregions.Furthermore,texturedsmoke-coloredmovingobjectsare difficulttodistinguishfromsmokeandcancausefalsedetections.Ingeneral, smokeinanuncontrolledfireisgrayanditreducesthecolorvariationinthe background.Therefore,inYUVcolorspaceweexpecttohavereductionin thedynamicrangeofchrominancecolorcomponentsUandVafterthe appearanceofsmokeintheviewingrangeofcamera.

Figure2.4 Spatialdifferenceanalysis:incaseofflames,thestandarddeviation σ G ofthe greencolorbandoftheflameregionexceeds tσ ¼ 50(:Borges[32]).

14 MethodsandTechniquesforFireDetection

2.1.5DynamicTextureandPatternAnalysis

Adynamictextureorpatterninvideo,suchassmoke,flames,water,and leavesinthewind,canbesimplydefinedasatexturewithmotion [45,46](ie,aspatiallyandtime-varyingvisualpatternthatformsanimage sequenceorpartofanimagesequencewithacertaintemporalstationarity) [47].Althoughdynamictexturesareeasilyobservedbyhumaneyes,theyare difficulttodiscernusingcomputervisionmethodsasthespatiallocationand extentofdynamictexturescanvarywithtimeandtheycanbepartiallytransparent.Somedynamictextureandpatternanalysismethodsinvideo [29,33,35]arecloselyrelatedtospatialdifferenceanalysis.Recently,these techniqueshavealsobeenappliedtotheflameandsmokedetectionproblem [46].Currently,awidevarietyofmethodsincludinggeometric,modelbased,statistical,andmotion-basedtechniquesareusedfordynamictexture detection[48–50].

In Fig2.5,dynamictexturedetectionandsegmentationexamplesare shown,usingvideoclipsfromtheDynTexdynamictextureandBilkentdatabases[51,52,50,47].Contoursofdynamictextureregions(eg,fire,water,and steam)areshowninthisfigure.Dynamicregionsinvideoseemtobesegmentedverywell.However,duetothehighcomputationalcost,thesegeneraltechniquesarenotusedinpracticalfiredetectionalgorithmswhichshould runonlow-costcomputers,FPGAs,ordigitalsignalprocessors.Iffuture developmentsincomputersandgraphicsacceleratorscouldlowerthecomputationalcost,dynamictexturedetectionmethodsmaybeincorporatedinto thecurrentlyavailableVFDsystemstoachievemorereliablesystems.

Ordinarymovingobjectsinvideo,suchaswalkingpeople,haveapretty stableoralmostperiodicboundaryovertime.Ontheotherhand,uncontrolledflameandsmokeregionsexhibitchaoticboundarycontours.Therefore,disorderanalysisofboundarycontoursofamovingobjectisusefulfor firedetection.Someexamplesoffrequentlyusedmetricsarerandomnessof areasize[23,32],boundaryroughness[14,11,28,32],andboundaryarea

Figure2.5 Dynamictexturedetection:contoursofdetecteddynamictextureregions areshowninthefigure(ResultsfromDYNTEXandBilkentdatabases [51,53]).

15 Camera-basedtechniques

disorder[18].Althoughthosemetricsdifferindefinition,theoutcomeof eachofthemisalmostidentical.Inthesmokedetectordevelopedby Verstocketal.[2],disorderanalysisoftheBoundaryAreaRoughness (BAR)isused,whichisdeterminedbyrelatingtheperimeteroftheregion tothesquarerootofthearea(Fig.2.6).AnothertechniqueisthehistogrambasedorientationaccumulationbyYuan[22].Thistechniquealsoproduces gooddisorderdetectionresults,butitiscomputationallymorecomplex thantheformermethods.Relatedtothedisorderanalysisisthegrowing ofsmokeandflameregionsintheearlystageofafire.In[31,34],thegrowth rateoftheregion-of-interestisusedasafeatureparameterforfiredetection. Comparedtodisordermetrics,however,growthanalysisislesseffectivein detectingthesmoke,especiallyinwildfiredetection.Thisisbecausethe smokeregionappearstogrowveryslowlyinwildfireswhentheyareviewed fromlongdistances.Furthermore,anordinaryobjectmaybeapproaching thecamera.

2.2SPATIOTEMPORALNORMALIZEDCOVARIANCE DESCRIPTORS

Arecentapproachwhichcombinescolorandspatiotemporalinformationby regioncovariancedescriptorsisusedinEuropeanCommissionfundedFP-7 FIRESENSEproject[54–56].Themethodisbasedonanalyzingthespatiotemporalblocks.Theblocksareobtainedbydividingthefire-andsmokecoloredregionsinto3Dregionsthatoverlapintime.Classificationofthe featuresisperformedonlyatthetemporalboundariesofblocksinsteadof

16 MethodsandTechniquesforFireDetection
Figure2.6 Boundaryarearoughnessofconsecutiveflameregions.

performingitateachframe.Thisreducesthecomputationalcomplexityof themethod.

CovariancedescriptorsareproposedbyTuzel,Porikli,andMeertobe usedinobjectdetectionandtextureclassificationproblems[54,55].In [57,75,76]temporallyextendednormalizedcovariancedescriptorstoextract featuresfromvideosequencesareproposed.

Temporallyextendednormalizedcovariancedescriptorsaredesignedto describespatiotemporalvideoblocks.Let I(i, j, n)betheintensityof(i, j)th pixelofthe nthimageframeofaspatiotemporalblockinvideo.Thepropertyparametersdefinedinequationsbelowareusedtoformacovariance matrixrepresentingspatialinformation.Inadditiontospatialparameters, temporalderivatives, It and Itt areintroducedwhicharethefirstandsecond derivativesofintensitywithrespecttotime,respectively.Byaddingthese twofeaturestothepreviouspropertyset,normalizedcovariancedescriptors canbeusedtodefinespatiotemporalblocksinvideo.

Forflamedetection:

Ri, j , n ¼ Redi, j , n ðÞ; (2.2) Gi, j , n ¼ Greeni, j , n ðÞ; (2.3) Bi, j , n ¼ Bluei, j , n ðÞ; (2.4) Ii, j , n ¼ Intensityi, j , n ðÞ; (2.5) Ixi, j , n ¼ @ Intensityi, j , n ðÞ @ i ; (2.6) Iyi, j , n ¼ @ Intensityi, j , n ðÞ @ j ; (2.7) Ixxi, j , n ¼ @ 2 Intensityi, j , n ðÞ @ i2 ; (2.8) Iyyi, j , n ¼ @ 2 Intensityi, j , n ðÞ @ j 2 ; (2.9) Iti, j , n ¼ @ Intensityi, j , n ðÞ @ n ; (2.10) and Itti, j , n ¼ @ 2 Intensityi, j , n ðÞ @ n2 (2.11) 17 Camera-basedtechniques

Inordertoimprovethedetectionperformance,themajorityofthearticlesintheliteratureuseacombinationofthefirefeatureextractionmethods describedabove.Dependingonthefire/environmentalcharacteristics,one combinationoffeatureswilloutperformtheother,andviceversa.In Section2.4,wedescribeanadaptivefusionmethodcombiningtheresultsof variousfiredetectionmethodsinanonlinemanner.

Itshouldbepointedoutthatarticlesintheliteratureandthosewhichare referencedinthisstate-of-the-artreviewindicatethatordinaryvisiblerange camera-baseddetectionsystemspromisegoodfiredetectionresults.However, theystillsufferfromasignificantamountofmisseddetectionsandfalsealarms inpracticalsituations,asinothercomputervisionproblems[5,6].Themain causeoftheseproblemsisthefactthatvisualdetectionisoftensubjecttoconstraintsregardingthesceneunderinvestigation(eg,changingenvironmental conditions,differentcameraparameters,andcolorsettingsandillumination). Itisalsoimpossibletocomparethearticleswitheachotheranddeterminethe bestone.Thisisbecausetheyusedifferenttraininganddatasets.

Yi, j , n ¼ Luminancei, j , n ðÞ; (2.12) Ui
j
n
ChrominanceUi
j , n
Vi, j , n ¼ ChrominanceVi, j , n ðÞ; (2.14) Ii, j , n ¼ Intensityi, j , n ðÞ; (2.15) Ixi, j , n ¼ @ Intensityi, j , n ðÞ @ i ; (2.16) Iyi, j , n ¼ @ Intensityi, j , n ðÞ @ j ; (2.17) Ixxi, j , n ¼ @ 2 Intensityi, j , n ðÞ @ i2 ; (2.18) Iyyi, j , n ¼ @ 2 Intensityi, j , n ðÞ @ j 2 ; (2.19) Iti, j , n ¼ @ Intensityi, j , n ðÞ @ n ; (2.20) Itti, j , n ¼ @ 2 Intensityi, j , n ðÞ @ n2 (2.21)
Forsmokedetection:
,
,
¼
,
ðÞ; (2.13)
18 MethodsandTechniquesforFireDetection

Adatasetoffireandnon-firevideosisavailabletotheresearchcommunity inEuropeanCommissionfundedFIRESENSEprojectwebpage[56].These testvideoswereusedfortrainingandtestingpurposesofthesmokeandflame detectionalgorithmsdevelopedwithintheFIRESENSEproject.Thus,afair comparisonofthealgorithmsdevelopedbyindividualpartnerscouldbeconducted.Thetestdatabaseincludes27testand29trainingsequencesofvisible spectrumrecordingsofflamescenes,15testand27trainingsequencesofvisiblespectrumrecordingsofsmokescenes,and22testand27training sequencesofvisiblespectrumrecordingsofforestsmokescenes.Thisdatabase iscurrentlyavailabletoregisteredusersoftheFIRESENSEwebsite[Reference:FIRESENSEprojectFileRepository, http://www.firesense.eu,2012].

2.3CLASSIFICATIONTECHNIQUES

Apopularapproachfortheclassificationofthemulti-dimensionalfeature vectorsobtainedfromeachcandidateflameorsmokeblobisSVMclassification,typicallywithRadialBasisFunction(RBF)kernels.Alargenumber offramesoffireandnon-firevideosequencesneedtobeusedfortraining theseSVMclassifiers;otherwisethenumberoffalsealarms(falsepositivesor truenegatives)maybesignificantlyincreased.

OtherclassificationmethodsincludetheAdaBoostmethod[22],neural networks[29,35],Bayesianclassifiers[30,32],Markovmodels[28,33],and rule-basedclassification[58].

Asinanyvideoprocessingmethod,morphologicaloperations,subblocking,andclean-uppost-processing,suchasmedian-filtering,areused asanintegralpartofanyVFDsystem[21,22,25,20,26,33,36,59].

2.4EVALUATIONOFVISIBLERANGEVFDMETHODS

AnevaluationofdifferentvisiblerangeVFDmethodsispresentedin Table2.1. Table2.1 summarizescomparativedetectionresultsforthesmoke andflamedetectionalgorithmbyVerstockt[2](Method1),acombination oftheflamedetectionmethodbyCeliketal.[60]andthesmokedetection byToreyinetal.[14](Method2)andacombinationofthefeature-based flamedetectionmethodbyBorgesetal.[23]andthesmokedetection methodbyXiongetal.[18](Method3).Amongvariousalgorithms, Verstockt’smethodisarelativelyrecentone,whereasflamedetection methodsbyCelikandBorgesandthesmokedetectionmethodsbyToreyin andXiongarecommonlyreferencedmethodsintheliterature.

19 Camera-basedtechniques

Table2.1 AnevaluationofdifferentvisiblerangeVFDmethods

(#frames) #Fireframes groundtruth

#Detectedfireframes#FalsepositiveframesDetectionrate* Method Method Method 123123123 Paperfire(1550)956 897922874917220.930.950.89 Carfire(2043)1415 12931224103738130.910.860.73 Movingpeople(886)0 50285028 Woodfire(592)522 510489504179160.940.920.93 Bunsenburner(115)98 5953320000.600.540.34 Movingcar(332) 0 0131101311 Strawfire(938)721 6796986731621120.920.930.92 Smoke/fogmachine (1733) 923 834654789934520.890.670.80 Poolfire(2260)1844 1665163416180000.900.890.88
20 MethodsandTechniquesforFireDetection
Videosequence
*Detectionrate ¼ (#detectedfireframes #falsealarms)/#fireframes.

Testsequencesusedforperformanceevaluationarecapturedindifferent environmentsundervariousconditions.Snapshotsfromtestvideosarepresentedin Fig.2.7.Inordertoobjectivelyevaluatethedetectionresultsof differentmethods,the“detectionrate”metric[2,61]isused,whichiscomparabletotheevaluationmethodsusedbyCeliketal.[60]andToreyinetal. [13].Thedetectionrateequalstheratioofthenumberofcorrectlydetected framesasfire(ie,thedetectedframesasfireminusthenumberoffalsely detectedframes)tothenumberofframeswithfireinthemanuallycreated groundtruthframes.Asresultsindicate,thedetectionperformancesofdifferentmethodsarecomparablewitheachother.

ComparisonofthesmokeandflamedetectionmethodbyVerstockt[2] (Method1),thecombinedmethodbasedontheflamedetectorbyCelik etal.[60]andthesmokedetectordescribedinToreyinetal.[14](Method 2),andcombinationofthefeature-basedflamedetectionmethodbyBorges etal.[23]andthesmokedetectionmethodbyXiongetal.[18](Method3).

21 Camera-basedtechniques
Figure2.7 Snapshotsfromtestsequenceswithandwithoutfire.

2.5VFDINIRSPECTRALRANGE

Whenthereisverylittleornovisiblelight,orthecoloroftheobjecttobe detectedissimilartothebackground,IRimagingsystemsprovidesolutions [62–68].AlthoughthereisanincreasingtrendinIRcamera-basedintelligentvideoanalysis,thereareveryfewpapersintheareaofIR-basedfire detection[64–68].ThisismainlyduetothehighcostofIRimagingsystems comparedtoordinarycameras.ManufacturerspredictthatIRcameraprices willgodowninthenearfuture.Therefore,weexpectthatthenumberof IRimagingapplicationswillincreasesignificantly[63].Long-waveInfrared (8-12micronrange)camerasarethemostwidelyavailablecamerasonthe market.Long-waveInfrared(LWIR)lightgoesthroughsmoke,thereforeit iseasytodetectsmokeusingLWIRimagingsystems.Nevertheless,results fromexistingworkalreadyensurethefeasibilityofIRcamerasforflame detection.

Owrutskyetal.[64]workedintheNIRspectralrangeandcomparedthe globalluminosity L,whichisthesumofthepixelintensitiesofthecurrent frame,toareferenceluminosity Lb andathreshold Lth.Ifthereareanumber ofconsecutiveframeswhere L exceedsthepersistencecriterion Lb + Lth,the systemgoesintoanalarmstage.Althoughthisfairlysimplealgorithmseems toproducegoodresultsinthereportedexperiments,itslimitedconstraints doraisequestionsaboutitsapplicabilityinlargeandopenuncontrolledpublicplacesanditwillprobablyproducemanyfalsealarmstohotmoving objects,suchascarsandhumanbeings.AlthoughthecostofNIRcameras isnothigh,theirimagingrangesareshortercomparedtovisiblerangecamerasandotherIRcameras.

Toreyinetal.[65]detectflamesinLWIRbysearchingforbrightlookingmovingobjectswithrapidtime-varyingcontours.Awavelet domainanalysisofthe1D-curverepresentationofthecontoursisusedto detectthehighfrequencynatureoftheboundaryofafireregion.Inaddition,thetemporalbehavioroftheregionisanalyzedusingaHiddenMarkov Model(HMM).Thecombinationofbothspatialandtemporalcluesseems moreappropriatethantheluminosityapproachand,accordingtothe authorstheirapproachgreatlyreducesfalsealarmscausedbyordinarybright movingobjects.Asimilarcombinationoftemporalandspatialfeaturesisalso usedbyBoschetal.[66].Hotspots(ie,candidateflameregions)aredetected byautomatichistogram-basedimagethresholding.Byanalyzingtheintensity,signature,andorientationoftheseresultinghotobjects’regions,discriminationbetweenflamesandotherobjectsismade.Verstocketal.[2]

22 MethodsandTechniquesforFireDetection

alsoproposedanIR-basedfiredetectorwhichmainlyfollowsthelatter feature-basedstrategy,butcontrarytoBoschetal.’swork[66]adynamic backgroundsubtractionmethodisused,whichaimsatcopingwiththe time-varyingcharacteristicsofdynamicscenes.

Tosumup,itshouldbepointedoutthatitisnotstraightforwardto detectfiresusingIRcameras.NoteverybrightobjectinIRvideoisasource ofwildfire.ItisimportanttomentionthatIRimaginghasitsownspecific limitations,suchasthermalreflections,IRblocking,andthermal-distance problems.Insomesituations,IR-baseddetectionwillperformbetterthan visibleVFD,butunderothercircumstances,visibleVFDcanimproveIR flamedetection.Thisisduetothefactthatsmokeappearsearlierand becomesvisiblefromlongdistancesinatypicaluncontrolledfire.Flames andburningobjectsmaynotbeintheviewingrangeoftheIRcamera. Assuch,higherdetectionaccuracieswithlowerfalsealarmratescanbe achievedbycombiningmulti-spectrumvideoinformation.Variousimage fusionmethodsmaybeemployedforthispurpose[69,70].Clearly,eachsensortypehasitsownspecificlimitations,whichcanonlybecompensatedby othertypesofsensors.

2.6WILDFIRESMOKEDETECTIONUSINGVISIBLERANGE CAMERAS

Aspointedoutintheprevioussection,smokeisclearlyvisiblefromlong distancesinwildfiresandforestfires.Inmostcases,flamesarehindered bytrees.Therefore,IRimagingsystemsmaynotprovidesolutionsforearly firedetectioninwildfiresbutordinaryvisiblerangecamerascandetect smokefromlongdistances.

Therearemanymethodsintheliteratureforwildfiresmokedetection [37,71,77].ThemethoddevelopedforFIRESENSE[56]projectcombines rule-basedandlearning-basedmethods.Therearefivemainalgorithmsused inthemethod.

ThefirstalgorithmusesdoubleIIR-basedbackgroundsubtractionand doublebackgroundstofindslow-movingregions.Duringtheinitialphases ofwildfire,smokeappearstomoveslowlywhenviewedfromadistance. Thisobservationisusedtoseparateslowmovingsmokeregionsfromother fastmovingobjects.

ThesecondalgorithmusesthresholdsinYUVcolorspacetoextract smokecoloredregions.Smokeisassumedtohavegray-to-whitecolorduringtheinitialstagesofwildfirecausedbytheburningofvegetation.

23 Camera-basedtechniques

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.