Methods and Applications for Modeling and Simulation of Complex Systems
19th Asia Simulation Conference
AsiaSim 2019 Singapore October 30
November 1 2019 Proceedings Gary Tan
Visit to download the full and correct content document: https://textbookfull.com/product/methods-and-applications-for-modeling-and-simulatio n-of-complex-systems-19th-asia-simulation-conference-asiasim-2019-singapore-octo ber-30-november-1-2019-proceedings-gary-tan/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Methods and Applications for Modeling and Simulation of Complex Systems 18th Asia Simulation Conference AsiaSim 2018 Kyoto Japan October 27 29 2018 Proceedings Liang Li
https://textbookfull.com/product/methods-and-applications-formodeling-and-simulation-of-complex-systems-18th-asia-simulationconference-asiasim-2018-kyoto-japanoctober-27-29-2018-proceedings-liang-li/
Web Information Systems Engineering WISE 2019 20th International Conference Hong Kong China November 26 30 2019 Proceedings Reynold Cheng
https://textbookfull.com/product/web-information-systemsengineering-wise-2019-20th-international-conference-hong-kongchina-november-26-30-2019-proceedings-reynold-cheng/
Advances in Human Factors and Simulation: Proceedings of the AHFE 2019 International Conference on Human Factors and Simulation, July 24-28, 2019, Washington D.C., USA Daniel N. Cassenti
https://textbookfull.com/product/advances-in-human-factors-andsimulation-proceedings-of-the-ahfe-2019-international-conferenceon-human-factors-and-simulation-july-24-28-2019-washington-d-cusa-daniel-n-cassenti/
Simulation and Modeling Methodologies, Technologies and Applications: 9th International Conference, SIMULTECH 2019 Prague, Czech Republic, July 29-31, 2019, Revised Selected Papers Mohammad S. Obaidat
https://textbookfull.com/product/simulation-and-modelingmethodologies-technologies-and-applications-9th-internationalconference-simultech-2019-prague-czech-republicjuly-29-31-2019-revised-selected-papers-mohammad-s-obaidat/
Data Mining and Big Data 4th International Conference
DMBD 2019 Chiang Mai Thailand July 26 30 2019 Proceedings Ying Tan
https://textbookfull.com/product/data-mining-and-big-data-4thinternational-conference-dmbd-2019-chiang-mai-thailandjuly-26-30-2019-proceedings-ying-tan/
Modeling and Simulation of Social Behavioral Phenomena in Creative Societies First International EURO Mini Conference MSBC 2019 Vilnius Lithuania September 18 20 2019 Proceedings Nitin Agarwal
https://textbookfull.com/product/modeling-and-simulation-ofsocial-behavioral-phenomena-in-creative-societies-firstinternational-euro-mini-conference-msbc-2019-vilnius-lithuaniaseptember-18-20-2019-proceedings-nitin-agarwal/
Advanced Methods for Geometric Modeling and Numerical Simulation Carlotta Giannelli
https://textbookfull.com/product/advanced-methods-for-geometricmodeling-and-numerical-simulation-carlotta-giannelli/
Intelligent Systems Design and Applications 19th International Conference on Intelligent Systems Design and Applications ISDA 2019 held December 3 5 2019 Ajith Abraham
https://textbookfull.com/product/intelligent-systems-design-andapplications-19th-international-conference-on-intelligentsystems-design-and-applications-isda-2019-helddecember-3-5-2019-ajith-abraham/
Advances in Design, Simulation and Manufacturing II: Proceedings of the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2019, June 11-14, 2019, Lutsk, Ukraine
Vitalii Ivanov https://textbookfull.com/product/advances-in-design-simulationand-manufacturing-ii-proceedings-of-the-2nd-internationalconference-on-design-simulation-manufacturing-the-innovationexchange-dsmie-2019-june-11-14-2019-lutsk/
Gary Tan Axel Lehmann
Yong Meng Teo Wentong Cai (Eds.)
Methods and Applications for Modeling and Simulation of Complex Systems
19th Asia Simulation Conference, AsiaSim 2019
Singapore, October 30 – November 1, 2019
Proceedings
Communications in Computer and Information Science 1094
Communications inComputerandInformationScience1094
CommencedPublicationin2007
FoundingandFormerSeriesEditors: PhoebeChen,AlfredoCuzzocrea,XiaoyongDu,OrhunKara,TingLiu, KrishnaM.Sivalingam,Dominik Ślęzak,TakashiWashio,XiaokangYang, andJunsongYuan
EditorialBoardMembers
SimoneDinizJunqueiraBarbosa
Ponti ficalCatholicUniversityofRiodeJaneiro(PUC-Rio), RiodeJaneiro,Brazil
JoaquimFilipe
PolytechnicInstituteofSetúbal,Setúbal,Portugal
AshishGhosh
IndianStatisticalInstitute,Kolkata,India
IgorKotenko
St.PetersburgInstituteforInformaticsandAutomationoftheRussian AcademyofSciences,St.Petersburg,Russia
LizhuZhou
TsinghuaUniversity,Beijing,China
Moreinformationaboutthisseriesat http://www.springer.com/series/7899
GaryTan • AxelLehmann • YongMengTeo • WentongCai(Eds.)
MethodsandApplications forModelingandSimulation ofComplexSystems
19thAsiaSimulationConference,AsiaSim2019
Singapore,October30 – November1,2019
Proceedings
123
Editors GaryTan NationalUniversityofSingapore
Singapore,Singapore
YongMengTeo NationalUniversityofSingapore Singapore,Singapore
AxelLehmann UniversitätderBundeswehrMünchen Neubiberg,Germany
WentongCai NanyangTechnologicalUniversity Singapore,Singapore
ISSN1865-0929ISSN1865-0937(electronic) CommunicationsinComputerandInformationScience
ISBN978-981-15-1077-9ISBN978-981-15-1078-6(eBook) https://doi.org/10.1007/978-981-15-1078-6
© SpringerNatureSingaporePteLtd.2019
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore
Preface
TheAsiaSimconferenceisanannualinternationalconferencethatstartedin1999,and hasprimarilybeenorganizedbythethreeAsiansimulationsocieties:Chinese AssociationforSystemSimulation(CASS),JapaneseSocietyforSimulation Technology(JSST),andKoreaSocietyforSimulation(KSS).In2011,theFederation ofAsiaSimulationSocieties(ASIASIM)wassetuptopromotetheadvancementof modelingandsimulationinindustry,research,anddevelopmentinAsiaandbeyond.In 2013,theAsiaSimseries finallyleftthe ‘GoldenTriangle’ ofChina,Japan,andKorea andwasheldinSingaporeforthe fi rsttime.Thenin2017,itwasMalaysia’sturnto hosttheconference.
OnbehalfoftheOrganizingCommitteeofAsiaSim2019,weareproudtopresent the19theditionoftheAsiaSimconferenceseries(heldinSingaporeforthesecond time).
Asiasim2019isorganizedbytheSocietyofSimulationandGamingofSingapore, theNationalUniversityofSingapore,andNanyangTechnologicalUniversity.The SocietyofSimulationandGamingofSingaporeisanon-profi tprofessional organizationsetuptocontributetothedevelopmentofsimulationandgamingin Singaporeandtheregion.Itisafocusedcommunityforresearchers,practitioners,and developerswhoarekeentofurthertheirprofessionalknowledgethroughlearningand workingtogetherandpromotingtheexperientialactivitiestothepublic.
WereceivedsubmissionsfromChina,Japan,SouthKorea,Indonesia,India,Italy, Pakistan,Philippines,Germany,Malaysia,Columbia,andofcourseSingapore.After anintensivereviewprocessbyacarefullyassembledinternationalProgramCommittee, whereeachpaperwasreviewedbynolessthan3reviewers,we fi nallyaccepted19full papersand5shortpapers.Thefollowingthreepaperswereshortlistedforthebest paperaward:
–“DigitalTwinTechnologyforAquaponics:TowardsOptimizingFoodProduction withDynamicDataDrivenApplicationSystems” byAyyazAhmed,Shahid Zulfiqar,AdamGhandar,YangChen,MasatoshiHanai,GeorgiosTheodoropoulos.
–“OnEvaluatingRustasaProgrammingLanguagefortheFutureofMassive Agent-basedSimulations” byAlessiaAntelmi,GennaroCordasco,MatteoD’Auria, DanieleDeVinco,AlbertoNegro,andCarmineSpagnuolo.
–“Conv-LSTM:PedestrianTrajectoryPredictioninCrowdedScenarios” by KaiChen,XiaoSong,andHangYu.
Theacceptedpapersareconsolidatedinthisvolumeofthe Communicationsin ComputerandInformationScience series,andaredividedintomanyrelevanttopics, includingAgentBasedSimulation,SimulationMethodsandTools,Visualization, ModelingMethodology,andSimulationApplicationsinScienceandEngineering.
Thediversityoftopicspresentedatthisconferencemadeforahealthyexchangeof researchideasandtechnicalexchanges.
WewouldliketotakethisopportunitytothanktheASIASIMFederationfor allowingustohostAsiaSim2019forthesecondtimeinSingapore,andwehopethat youfoundtheconferenceenrichingandmemorable.
WealsothankthemembersoftheProgramCommitteefortheirvaluableeffortin thereviewofthesubmittedpapers.Finally,wewouldalsoliketothankourtechnical co-sponsorsandsponsors.YourcontributionsandsupporthelpedtomakeAsiaSim 2019arealityandasuccess.
October2019GaryTan
YongMengTeo WentongCai
AxelLehmann
viPreface
AsiaSim2019Organisation
ConferenceChairs
GaryTanNationalUniversityofSingapore,Singapore
AxelLehmannUniversitätderBundeswehrMünchen,Germany
ProgramChairs
YongMengTeoNationalUniversityofSingapore,Singapore WentongCaiNanyangTechnologicalUniversity,Singapore
InternationalProgramCommittee
AnastasiaAnagnostouBrunelUniversity,UK
PhilippAndelfingerNanyangTechnologicalUniversity,Singapore AgostinoBruzzoneUniversityofGenoa,Italy GabrieleD’angeloUniversityofBologna,Italy
TerenceHungRollsRoyce,Singapore
DongJinIllinoisInstituteofTechnology,USA FarzadKamraniKTHRoyalInstituteofTechnology,Sweden HelenKaratzaAristotleUniversityofThessaloniki,Greece SyeLoongKeohUniversityofGlasgow,UK,andSingaporeCampus, Singapore
YunBaeKimSungkyunkwanUniversity,SouthKorea BohuLiBeijingUniversityofAeronauticsandAstronautics, China
GeLiNationalUniversityofDefenceTechnology,China LiangLiRitsumeikanUniversity,Japan ZengxiangLiInstituteofHighPerformanceComputing,A*STAR, Singapore
MalcolmLowSingaporeInstituteofTechnology,Singapore LinboLuoXidianUniversity,China ImranMahmoodNationalUniversityofScience&Technology,Pakistan YahayaMdSamUniversitiTeknologiMalaysia,Malaysia ZaharuddinMohamedUniversitiTeknologiMalaysia,Malaysia NavonilMustafeeUniversityofExeter,UK
viiiAsiaSim2019Organisation
BhaktiStephanOnggoUniversityofSouthampton,UK RaviSeshadriSingapore-MITAllianceforResearchandTechnology, Singapore
XiaoSongBeihangUniversity,China YuenJienSooNationalUniversityofSingapore,Singapore ClaudiaSzaboTheUniversityofAdelaide,Australia SunTeckTanNationalUniversityofSingapore,Singapore SatoshiTanakaRitsumeikanUniversity,Japan WenjieTangNationalUniversityofDefenseTechnology,China YifaTangChineseAcademyofSciences,China SimonTaylorBrunelUniversity,UK YongMengTeoNationalUniversityofSingapore,Singapore GeorgiosTheodoropoulosSouthernUniversityofScienceandTechnology,China StephenJohnTurnerVidyasirimedhiInstituteofScienceandTechnology, Thailand
BimleshWadhwaNationalUniversityofSingapore,Singapore YipingYaoNationalUniversityofDefenseTechnology,China AllanN.ZhangSingaporeInstituteofManufacturingTechnology, Singapore
LinZhangBeihangUniversity,China JinghuiZhongSouthChinaUniversityofTechnology,China
BestPaperChair
AxelLehmannUniversitätderBundeswehrMünchen,Germany
BestPaperSub-committee
Yun-BaeKimSungKyunKwanUniversity,SouthKorea YahayaMdSamUniversitiTeknologiMalaysia,Malaysia SatoshiTanakaRitsumeikanUniversity,Japan YongMengTeoNationalUniversityofSingapore,Singapore LinZhangBeihangUniversity,China
FinanceChair
SunTeckTanNationalUniversityofSingapore,Singapore
LocalArrangementChairs
BimleshWadhwaNationalUniversityofSingapore,Singapore YuenJienSooNationalUniversityofSingapore,Singapore
PublicationsChair
MuhammadShalihinbin Othman
WebMasters
NationalUniversityofSingapore,Singapore
ChengxinWangNationalUniversityofSingapore,Singapore
MuhammadShalihinbin Othman
ASIASIMCouncil2019
President
NationalUniversityofSingapore,Singapore
GaryTan(President)SSAGSG
CouncilMembers
BoHuLi(President)CSF
LinZhang(VicePresident)CSF
XiaoSong(BoardMember)CSF
SatoshiTanaka (ChairofForeign Affairs) JSST
KyokoHasegawa (BoardMember) JSST
LiangLi(BoardMember)JSST
Yun-BaeKimSKKU
KangSunLee(Vice President) KSS
Soo-HyunPark(Board Member) KSS
YongMengTeo(Board Member) SSAGSG
YahayaMdSam(President)MSS
RubiyahbinteYusofUTM
ZaharuddinMohamedUTM
HonoraryMember
AxelLehmannUniversitätderBundeswehrMünchen,Germany
Sponsors
ASIASIM:FederationofAsiaSimulationSocieties SocietyofSimulationandGamingofSingapore Advent2LabsConsultationPteLtd TezosSoutheastAsia
AsiaSim2019Organisationix
TechnicalCo-sponsors
ChinaSimulationFederation(CSF)
JapaneseSocietyforSimulationTechnology(JSST)
KoreaSocietyforSimulation(KSS)
MalaysianSimulationSociety(MSS)
SocietyforModelingandSimulationInternational(SCS)
Organisers
SocietyofSimulationandGamingofSingapore
NationalUniversityofSingapore,Singapore
NanyangTechnologicalUniversity,Singapore
xAsiaSim2019Organisation
KeynoteSpeakers
KeynoteI:TheChallengesofRepeatabilityandFidelityofCyber-PhysicalDigital Twins
DavidM.Nicol
FranklinW.WoeltgeProfessorofECE UniversityofIllinois,Urbana-Champaign
Director,InformationTrustInstitute Director,AdvancedDigitalSciencesCenter Director,CriticalInfrastructureResilienceInstitute
Abstract. Adigitaltwinofacyber-physicalsystemisasimulationwhoseexecution mimicsthebehaviorofboththephysicalandcybercomponentsofthesystem.While theideaofco-joiningorfederatingsimulationshasbeenconsideredforquitealong time,theriseininterestofcyber-physicalsystems,coupledwithincreasedcomputationalpowerhasbroughttheideatotheforefrontunderthelabelingof ‘digitaltwin’ . Usesincludeexplorationofhowcybermalfeasancemightnegativelyimpactthe physicalsystem,howthephysicalsystemmayreacttounusualinputsorboundary conditions,whetheraparticularcontrolappliedtothesystemwillpushitintoaregion ofunsafebehavior.Fidelityofdigitaltwinsisclearlyadesirableattribute,asis repeatability.Intheformercasewewantconfidencethatthedigitaltwinfaithfully (enough)capturesthebehaviorofinterest,inthelattercaseweneedtobeableto understand,byreplyingthesimulation,howaparticularbehaviorobservedinthe simulationcametooccur.Thistalkfocusesonthechallengesofrepeatabilityand fidelityinacyber-physicaldigitaltwin,whenthattwincombinesclassicalsimulation withemulationofexecutingsoftware.
Biography
DavidM.NicolistheFranklinW.WoeltgeProfessorofElectricalandComputer EngineeringattheUniversityofIllinoisinUrbana-Champaign,wherehealsoservesas theDirectoroftheInformationTrustInstitute,andDirectoroftheAdvancedDigital SciencesCenter(Singapore).HehasaB.A.inMathematicsfromCarletonCollege (1979),andM.S.andPh.D.degreesinComputerScience(1985)fromtheUniversityof Virginia.ProfessorNicol’sresearchinterestsencompasshighperformancecomputing, discretesystemmodelingandsimulation,andend-to-endmodeling/analysisof
xiiKeynoteSpeakers
cyber-security,resilience,andtrustincomplexsystems.HeservedasEditor-in-Chief ofACMTransactionsonModelingandComputerSimulation(1997-2003)andsince 2018hasservedasEditor-in-ChiefofIEEE’s flagshippublicationoncyber-security, IEEESecurityandPrivacy.HewaselectedFellowoftheIEEEin2003,Fellowofthe ACMin2006,andin2007wastheinauguralrecipientoftheACMSIGSIM DistinguishedContributionsaward.
KeynoteII:BlockchainSafetyandSmartContractSimulation
JunFuruse ChiefExecutiveOffi cer(CEO) DaiLambda,Inc.
Scientifi cDirector,
TezosJapan
Abstract. Blockchainisadistributeddatabaseinanopennetwork,whereanyonecan joinbyrunninganodewithoutpermission.Asfarasweknow,suchasystemcanbe maintainedonlybyincentivizingtheparticipantstobehavehonestlyatitsresolution oftheconflicts.Consequently,blockchainmusthandleahugeamountofrewardsas cryptocurrenciesandanybugsmaybecomeattackvectorsfortheft.Therefore,safetyis the fi rstconcernforblockchaindevelopers.
Smartcontractsareprogramsassociatedwithblockchainaccountsandexecutedat transactions.Sincetheexecutionhappensonallthenodes,thecallermustpayafeeto thenetwork.Toestimatethecost,thecallermustsimulateeachtransactionbefore sendingittothenetwork.Thissimulationisalsoimportanttosecurethesmart contractsalongwithformallyverifyingtheirsafetyproperties,sinceanybugor misspeci ficationmayturnthemtoautomaticstealingmachines.Severalexistingworks ofthissmartcontractsimulationinTezosblockchainanditsfuturedirectionswillbe discussed.
Biography
JunisworkingforTezosblockchaintechnologyasoneofthefewAsiancore developerssinceitsmainnetlaunchinSeptember2019.Heisalsoascienti ficdirector ofTezosJapan,anNPOtopromoteTezostechnologyinJapantotheindustryandthe academia.Beingaresearcheroffunctionalprogramminganditsstatictypesystem(Ph. D.,Université ParisDiderot),hisinterestsarealwaysinapplyingprogramming languagetheoryandformalveri ficationmethodstoprovidebettersecurityto mission-criticalsystems.HehasstartedhisowncompanyDaiLambdainthelastyear, after10yearsofcareerasaquantitativedeveloperforsystemsforderivativeproduct modeling(LexiFi,StandardCharteredBank)andhigh-frequencytrading(JaneStreet Capital).
KeynoteSpeakersxiii
Contents
BestPaperNominees
DigitalTwinTechnologyforAquaponics:TowardsOptimizingFood ProductionwithDynamicDataDrivenApplicationSystems.............3 AyyazAhmed,ShahidZulfiqar,AdamGhandar,YangChen, MasatoshiHanai,andGeorgiosTheodoropoulos
OnEvaluatingRustasaProgrammingLanguagefortheFuture ofMassiveAgent-BasedSimulations.............................15 AlessiaAntelmi,GennaroCordasco,MatteoD’Auria,DanieleDeVinco, AlbertoNegro,andCarmineSpagnuolo
Conv-LSTM:PedestrianTrajectoryPredictioninCrowdedScenarios.......29 KaiChen,XiaoSong,andHangYu
SimulationandModelingMethodology
AFrameworkforJointSimulationofDistributedFMUs...............43 HangJi,JunhuaZhou,LuanTao,XiaoSong,GuoqiangShi, ChaoRuan,TingyuLin,andXiangZhai
InteractiveModelingEnvironmentBasedontheSystemEntityStructure andModelBase...........................................54 HanWoolKimandChangbeomChoi
AGenericMaturityModelforVerificationandValidationofModeling andSimulationApplications...................................65 ZhongshiWangandAxelLehmann
NumericalandMonteCarloSimulation
Non-LocalFokker-PlanckEquationofImperfectImpulsiveInterventions anditsEffectivelySuper-ConvergentNumericalDiscretization...........79 HidekazuYoshioka,YutaYaegashi,MotohTsujimura, andMasayukiFujihara
ForceTrackingControlofNonlinearActiveSuspensionSystem withHydraulicActuatorDynamic...............................92 ErlianaSamsuria,YahayaM.Sam,andFazilahHassan
IntervalEstimationofRangeofMotionafterTotalHipArthroplasty ApplyingMonte-CarloSimulation...............................103 GisunJung,YoungKim,JongyouChoi,YounghanSong,SunwooJang, YunBaeKim,andJinsooPark
SimulationApplications:Blockchain,DeepLearningandCloud
Agent-BasedSimulationofBlockchains...........................115 EdoardoRosa,GabrieleD’Angelo,andStefanoFerretti
RobotArmControlMethodofMovingBelowObjectBasedonDeep ReinforcementLearning......................................127
HeYuLi,LiQinGuo,GuoQiangShi,YingYingXiao,BiZeng, TingYuLin,andZhengXuanJia
Distributed3DPrintingServicesinCloudManufacturing: ANon-cooperativeGame-Theory-BasedSelectionMethod..............137 SichengLiu,YingLiu,andLinZhang
SimulationandVisualization
VisualGuidetoImprovingDepthPerceptioninSee-Through VisualizationofLaser-Scanned3DPointClouds.....................149 KyoumaNishimura,LiangLi,KyokoHasegawa,AtsushiOkamoto, YuichiSakano,andSatoshiTanaka
RealizingUniformityof3DPointCloudsBasedonImproved Poisson-DiskSampling......................................161 YutoSakae,YukihiroNoda,LiangLi,KyokoHasegawa, SatoshiNakada,andSatoshiTanaka
EffectofMultipleIso-surfacesinDepthPerceptioninTransparent StereoscopicVisualizations....................................174 DaimonAoi,KyokoHasegawa,LiangLi,YuichiSakano, andSatoshiTanaka
3DTransparentVisualizationofRelief-TypeCulturalHeritageAssets BasedonDepthReconstructionofOldMonocularPhotos..............187 JiaoPan,LiangLi,HiroshiYamaguchi,KyokoHasegawa, FadjarI.Thufail,Bramantara,andSatoshiTanaka
SimulationApplications
ToleranceCoefficientBasedImprovementofPedestrian SocialForceModel.........................................201 RuipingWang,XiaoSong,JunhuaZhou,andXuLi xviContents
CapturingHumanMovementsforSimulationEnvironment.............211 ChengxinWang,MuhammadShalihinBinOthman,andGaryTan
SimulationModelSelectionMethodBasedonSemanticSearch inCloudEnvironment.......................................222 SiqiXiong,FengZhu,YipingYao,andWenjieTang
ShortPapers
ResearchonNewGenerationofMulti-domainUnifiedModeling LanguageforComplexProducts................................237 LinZhang,Li-YuanjunLai,andFeiYe
ImprovedGreyRelationalAnalysisforModelValidation...............243 KeFang,YuchenZhou,andJuHuo
ResourcesOptimisationinNewHospitalCentralKitchenDesign –ADiscreteEventSimulationApproach...........................251 KianAnnChan,MackJiaJiaPan,BengTeeChua,XiuMingHu, andMalcolmYokeHeanLow
PrototypeDevelopmentoftheReal-TimeQuadrotorUAVSimulation inLitmus-RT.............................................260 MuhammadFarisFathoni,Yong-IlJo,andKyongHoonKim
ResearchontheSecondaryDevelopmentMethodofFiniteElement AnalysisModuleofSIEMENSNX..............................267 LinWang,ZhiqiangLi,ChenliDeng,andJialiangSun
AuthorIndex ............................................275
Contentsxvii
BestPaperNominees
AyyazAhmed1,2 ,ShahidZulfiqar2 ,AdamGhandar1(B) ,YangChen1 , MasatoshiHanai1 ,andGeorgiosTheodoropoulos1
1 SouthernUniversityofScienceandTechnology, Shenzhen,People’sRepublicofChina {aghandar,yajun,gtheodoropoulos}@sustc.edu.cn,aghandar@sustech.edu.cn, 11849250@mail.sustech.edu.cn
2 Al-KhawarizmiInstituteofComputerScience,UniversityofEngineering andTechnology(UET)-Lahore,Lahore,Pakistan {ayyaz.ahmed,shahid.zulfiqar}@kics.edu.pk
Abstract. Aquaponics,orrecirculatingaquacultureproductionsystems,harnessthesymbioticrelationshipbetweenplantsandfishforfood production.Alargequantityoffishcanberaisedinasmallvolumeof waterbytheeffectofplantsinremovingtoxicwasteproductsexcretedby fish;inturnthewasteisbrokendownbymicrobialactivitytoobtainconcentratednutrientsforintensiveplant/cropgrowing.Theconcentration ofnutrientsgeneratedissimilartohydroponicnutrientsolutions.Water isconservedintheintegratedprocessandmaybereused.Inthispaper weconsideranapproachcomprisingself-containedaquaponicsproductionunitseachofwhichisaclosedsystemwherethebalanceoffishstock andplantsismonitoredandcontrolledautomatically.Weprovideempiricalresultsofasimulationandaphysicalimplementation.Thedesign involvesanonlinevirtualproductionunitimplementedwithasimulation thatisupdatedwithdatafromtherealsystem(adynamicdatadriven applicationsystem).Thevirtualunitanticipatestheperformanceofthe realsystemandenablingwhatifanalysisandoptimizationofthebehaviorofthewholesystem:forexampletomaximizeproduction,minimize waste,conservewaterandotherresources,meetqualitystandards,and otherproductiongoals.
Keywords: DynamicDataDrivenApplicationSystem(DDDAS) · Simulationmodelling · Digitaltwin · Cyber-physicalsystem · Aquaponics
1Introduction
Humansocietyfaceschallengesinfoodsecurityandsustainabilityduetofactors suchasurbanization,naturalresourcedepletionandlossofbiodiversity[11].
c SpringerNatureSingaporePteLtd.2019 G.Tanetal.(Eds.):AsiaSim2019,CCIS1094,pp.3–14,2019. https://doi.org/10.1007/978-981-15-1078-6 1
DigitalTwinTechnologyforAquaponics:
TowardsOptimizingFoodProduction withDynamicDataDriven ApplicationSystems
Technologicalinnovationissignificantineffortstowardfoodsystemimprovementthatareguidedforinstancebyintergovernmentalorganizationssuchas theUnitedNationsFoodandAgricultureOrganization(FAO)[8]andtheG201 . Theseeffortsrecognizethatwhileinthepastafocuswasonboostingagriculture productionquantity(forasurveyofrecenttechnologicaladvancesinthisarea see[26])anewfocusisneededtotacklebasiccausesofhungerandmalnutrition.Effortstodayfocusontransformativechangesacrosstheentirevaluechain inthewayfoodisproduced,consumedanddistributed2 [25].Forexamplesof applicationsthatinvolveinnovationinagriculturalvaluechains,see[27]which proposesahydroponicplanterforurbanagriculturethatisdesignedtosupport anovelserviceindustryandvaluechainconfigurationthroughlocalproduction inanurbanenvironment;[9]looksatthelinkingproducersofdifferentscales, traditionalandnon-traditionalwithcustomersthroughanetworkinterfaceand gatewaysoastoattainnecessaryattributesofvolume,traceability,andconsistencythatareimportantinmassproductionfoodsystemsbutalsogainbenefits ofsmallscaleproductionsuchascustomizedproduceandlocalproduction.
AccordingtotheFAO,agriculturalinnovationneedstoencompassdiverse stakeholdersincludingsmallfamilyfarmersandlocalindustrytakinginto accountuniqueculturalandgeographicconstraints(technologicalaswellas policy,organizationalandsocialaspects).Aquaoponics[7],canprovidefishand freshproducethatisproduced,potentially,co-locatedwithconsumersinurban environmentssuchasrooftopsthusreducingnecessityfortransportationand storage.Itcanfacilitateintensivefarmingforhighyieldsinlimitedspacewith efficientuseofresources.Aquaponicshasbeenappliedtoproducefoodindifficultandconstrainedconditions,forinstancetheFAOdescribesapplication intheGazastrip[1]:anarid,urbanareainprotractedcrisis3 .Thepotential foraquaponicstoprovidefoodsecurityandsustenanceindifficultconstrained environmentssustainablywithlimitedresources,andtoformacomponentof aninnovativesustainablevaluechainwithdiversestakeholderparticipation,has resultedinrecentresearchinterest.
Aquaponicscombineshydroponics(growingplantswithoutsoil)andaquaculture(raisingfish).Fishexcretewaste,thesedissolvednutrientsaccumulatein thewaterandprovideplantswithnutrition[24].Waterisrecirculatedbetween fishandplantsresultinginamuchlowerrequirementforwaterthantraditional soilbasedagriculture.Ineffectaquaponicsisaholisticfarmingtechnologywhere acontrolledecosystemisformulatedwhereplantsandfishliveinsymbioticrelationsupportedbymicrobialactivity(tobreakdownwasteandgeneratenutrients)[16, 19].
Fromawholesystempointofview,aquaponicimplementationsarecomplex systems.Combiningnaturalandhumanelementsinteractingtogetherincomplex dynamicsthatresultfromfactorssuchasheterogeneityofplantsandfish,non lineardynamicswiththresholdsrelatingtoparameters(suchasconcentrations
1 http://www.g20.utoronto.ca/2018/2018-07-28-agriculture.html
2 http://www.fao.org/3/CA2460EN/ca2460en.pdf .
3 http://www.fao.org/3/a-i5620e.pdf
4A.Ahmedetal.
DigitalTwinTechnologyforAquaponics5
ofnutrientsandwaterquality),feedbackloops,andotherfactorsresultingfrom combininghumanandnaturalsystemsthatarefundamentallyhighlychallengingtomodelaccurately[14].Duetothecomplexityoftheaquaponicsystem, itisverychallengingfirsttoaccuratelymodelandthentopredictoroptimizethewholesystemtowardsystemgoalssuchastomaximizeproduction, minimizewaste,conservewaterandotherresources,meetqualitystandards, orotherperformancecriteria.Possiblyasaresult,thecurrentstate-of-the-art cyber-physicalaquaponicsystemsproposedintheliteraturedonotattemptoptimizationofthewholesystem[23, 30].Rather,silosorcomponents,arecontrolled bylocaloptimizationprocessesordecisionrulesbasedonpriorassumptions.We investigateanewapproachusingadynamicdatadrivenapplicationsystem (DDDAS)[6, 15, 21].
Themaincontributionsofthepaperareasfollows:
Cyber-physicalAquaponicSystem. Wedescribeacyber-physicalaquaponicssystembasedonInternet-of-Things(IoT)sensorsformonitoringsystemand environmentalconditions.
– DigitalTwinofanAquaponicSystem. Avirtualaquaponicsystemis implementedasasimulationandvalidated.
Therestofthepaperisorganizedasfollows:technologicalinnovationsin aquaponicsarereviewedinSect. 2;Sect. 3 describesourIoTenabledphysical system;Sect. 4 describesthevirtualreplica;Sect. 5 evaluatesandvalidatesboth; Sect. 6 concludesthepaper.
2BackgroundandLiteratureReview
Digitizationhasbeenappliedtoobtainbenefitsinmanyspheresofsociety includingdevelopingstate-of-the-artproductionsystems,seeIndustry4.0[12]. Indigitaltwin,realtimedataacquisitionfromphysicalentitiesareconnected tosimulatedrepresentations.Theapproachwasanticipatedbytheconceptof DynamicDataDrivenApplicationSystems[4].Theuptakeofdigitaltwintechnologyhasbeenslowerinsmallenterprisesalthoughthepotentialbenefitsare verylarge[28].Inothersectorsapartfromagriculturerealtimedataacquisition combinedwithsimulationhasalsoprovenbeneficial.Foraselectionsee[5, 20, 22].
IoT-BasedAquaponicSystems. Forarecentsurveyofworkapplying automationandIoTtechnologyforaquaponicproductionsee[2].Realtime dataandIoTsensorsenabledatarelatingtovarioussystemparameterstobe obtainedandanalyzed.Acontrolloopiscompletedwhenbasedonthedata tasksintheoperationofthesystemareperformed,forexample:addfishfood, alterthewaterlevelinthefishtank,recirculatewaterbetweenfishtankand growbed,turnon/offthegrowlights,adjustthePHlevel,etc.Recentresearch reportsimplementationofnetworkedsensorstosupportmonitoringkeyvariables suchaswaterqualityinaquaponicsystemsthataredesignedtoprovidelocally grownorganicfoodinsmartcityconceptandreducerelianceontraditional agriculture[18].
–
Manyrecentapplicationshaveacontextofprovidinglocalhighqualityproduceinurbansettingsandcanimplementlowcostintegratedmonitoringand controlusingmicrodevicessuchastheArduino,RasberryPiandIntelEdison tocoordinatevariousnetworkcomponentsandsensorfeeds.Forinstance,in[17] animplementationusesRasberryPitomonitorsPH,temperatureanddissolved oxygenlevels.In[23]thereisafocusonthePHanditsapplicationtocontrol plantandfishgrowthrates.In[30]amobileapplicationtomonitortemperature andhumidityandonthebasisofreadingscontrolafan,waterpumpandmist makerisdescribed.AsomewhatrelatedimplementationwhichusesIntelEdison asaprocessorisdescribedin[29].
AnalyticsandSimulationEnhancedAquaponicSystems. Variousanalytictechniquescanbecombinedwithrealtimedatatoprovidedecisionsupport andautomatedmanagementcapabilities.Thereislimitedresearchinmodeling thebehaviorofaquaponicsasacomplexsystem.Thereishoweverworkthat describesdevelopmentofmathematicaltechniquestopredictimportantsystem variables.In[13]analyticssupportsamodelbasedmanagementstrategyand determinesoptimizednutrientmanagementstrategiesforproducingtomatoand Nileperch(Tilapia)fishbypredictingandmitigatingexcessconcentrationof totalsuspendedsolidsandsodiumandammoniaconcentrationsandbalancethe concentrationofnutrientsforplantgrowthversusthewaterqualityrequiredfor raisingfish.
3Cyber-PhysicalAquaponicSystem
Thissectionprovidesoverviewoftheaquaponicsystemandimplementationof sensorhardware.
3.1SystemOverview
Thecyber-physicalaquaponicsystemconsistsofhydroponics,aquacultureand anIoTsensorsystem.
Figure 1 showsthecompleteschematiccycleoftheaquaponicssystem.Water flowsfromthefishtankintoamechanicalfiltrationwheresolidwasteisremoved. Solidwasteisremovedbutammoniaisdissolvedinwater,waterthenentersa bio-filterwherenitrifyingbacteriaconvertammoniatonitrates.Ammoniais dangerousforbothfishandplants,thereforewehavetoconvertitintonitrates whichareafertilizerforplants.Nitraterichwateristhenmovedintogrowbed andplantsabsorbthenitrates.Cleanedwaterwithreducedamoniaandnitrates finallyreturnsbacktothefishtank.Growlightswereinstalledabovethegrow bedasthesystemisinstalledindoors.Multiplesensorswereinstalledinboth thefishtankandgrowbed.Airisintroducedinsystemforthefish.Italso helpsthenitrificationprocessinbio-filter.Detailsofthehardwareandsoftware componentsareprovidedinFig. 2.
6A.Ahmedetal.
Fig.1. Architectureofaquaponicssystem.
3.2HardwareImplementation
TheIoTsensorsystemthatwasimplementedconsistsof3maincomponentsor modules:sensorunits,networkingunits,andcomputationalunits,seeFig. 2.The sensordataiscommunicatedthroughthenetworkingunitstothecomputational unitsforanalysisincomputationalunits.
Sensorunitsmeasuretemperature,lightintensity,waterflow,dissolvedsalts (TDS/ECsensor),andPH.Thedatafeedistransferredthroughnetworking componentsforanalysisandactuation.NetworkingUnitsincludeanESP8266 devicefortransferringdataoverWiFitoMQQTbroker.A4channelmechanical coilrelayboardisusedtocontroltheairandwaterpumpsandthegrowthlights. Energysavingfeaturesincludeswitchingoffgrowthlightswhenambientlightis sufficientforgrowth(greaterthan50lumens).MQQTBroker4 isusedtogather topicssentbyESP8266,itisabletosendbackmessagesforcontrolandactuation.AsecureMQQTbrokerissituatedonthelocalIPonRasberryPi.ARaspberryPideviceprovidescomputation.ItcollectsdatafromESP8266viabroker andweuseNODE-REDtohandleresultsandperformlogging.Thingspeakis5 providesanalyticsfunctionalityandvisualization,italsoincludesfunctionality forbackstorage.FurtherdatastorageisthroughMangoDBandMyPHPfor back-endprocessingofdata.Otherphysicalunitsincludeawaterpump(15 L/min),airpump(3.5L/min).Asecondaryairpumpprovidesredundancyin caseoffailure(crucialcomponentforfishsurvival).Weplacedoursystemneara windowwhichprovidesnaturallightstillweneedgrowlightsasdirectsunlight isnotavailable.Weusedtwo12wattwhiteledpanellightandone30wattgrow light.Anautomaticfishfeederfordispensingfood(4times/day)isanimportant partasfisharesensitivetoovereating.
4 http://mqtt.org/.
5 https://thingspeak.com/
DigitalTwinTechnologyforAquaponics7
Implementationofthesensorsystem.
4Simulation
Thesimulationcodeisaccessibleatthefollowingurl: https://github.com/ Monsooooon/AquaponicSim.Themainsimulationmodulesinclude:fishfeed, TDS,fishweightgain,PH,Nitratesandplantgrowtharemodeled.Thefeed ratedependsonfeedconversionratio,fishweightandnumberoffish.Forthe typeoffishinthesystemwesettheFCRto0.6,thismeansthatiffisheats onekgoffeed,itwillconvert60%ofitinitsbodyweight.Figure 4 illustrates theinteractionbetweenthesystemvariablesasmodeled.Theconversionrate betweenthemaredeterminedbymultipleenvironmentfactors,includingpH, lightstrengthandtemperatures,andwillalsoinfluencethegrowthrateofthe plantsandfish.
Fr = Fcr wf Nf , (1)
where Fr isfishfeedrate, Fcr isfeedconservationratio, wf isfishweightgain and Nf isthenumberoffishinthesystempermetercubic(Fig. 3).
Fishweightgaindependsonfishinitialweight,watertemperature,thefish growthco-efficientisasprescribedbyGoddek[10]:
8A.Ahmedetal.
Fig.2.
Wf (t)i =[W 1 βf 0 +(1 βf )αf eγf Tw Δt] 1 1 βf (2)
Cyberphysicalaquaponicssystem
where Wf (g)isthefishweightataspecifictimeincreasing, W0 (g)isthe initialfishweight, Tw isthewatertemperature(◦ C),and αf , βf and γf are species-specificgrowth-coefficients(αf =0.0277, βf =0.4071and γf =0.0697), and i denotesforaccumulationof Wf intime(i.e.changingbiomasswitheach simulationstep).
TDSofwaterdependsonfishfeed,EC(electricalconductivity)andtheir co-relationfactorwhichisdifferentforeachfishspecies:
WaterPHdependsonhydronium HO3 ,nitratesandwatertemperature.
Nitrateswhichisessentialforplantsandnottoxicforfish.Itismodeledbythe followingequation:
(ppm)= Ammonia(NH3 ) · NitrificationCoefficient (5)
Thecurrentassumptionistokeepwatertemperatureconstant.Theplant growthmodelcontainsfactorsof CO2 ,nutrients,sunlightandoxygendissolved inwater.WeapplyamodelpresentedbyAkyol[3]extendedwithfactorsfor BODandnitrates.
DigitalTwinTechnologyforAquaponics9
Fig.3.
TDS = F.EC.KE (3)
pH
NO3 · Tw
= HO3 ·
(4)
Nitrates
X
new =(i,It +1)+ y + β + BODmg/L (6)
Fig.4. Thesimulationmodelsvariables
Waterisre-circulatedagainandagaininoursystemwithwaterlossbecause ofevaporationandsolidwasteremoval.Wemodeltotalwaterlossinfour-week timeasdescribedbyWetzel[31]
h = ΘA(ys y ),
where, gh:amountofevaporatedwaterperhour(kg/h), θ =(25+19v)evaporationcoefficient(kg/m2 h), v :velocityofairabovethewatersurface(3m/s), A:watersurfacearea(1m2 ), S :Dissolvedsolidquantityremovedfromsystem kg/h, ys:maximumhumidityratioofsaturatedair(0.51),and y ishumidity ratioair(0.43kgH2OinkgDryAir).
5ResultsandEmpiricalAnalysis
Thissectionprovidesresultsofimplementationoftheaquaponicsystem describedintheprevioussections.Theresultsdiscussedinthissectionwere obtainedduringafour-weekexperimentwithphysicalsystem.
Thehumidityofoursystemrangesbetween32–51%,roomtemperaturevariedfrom24–30 ◦ C.Fishaquariumwatertemperaturewasalittlelowerthan roomtemperature.Watertemperaturewas24–29 ◦ C.Humidityandtemperaturelevelsarebothinagoodrangeforplantandfishgrowth.Wehavenot observedanysignificantproblemsduetotemperatureandhumiditychanges. Fishfeedwassetat20gramsperday.AsshowninFig. 5a,afteroneweek feedwasreducedastheTDSlevelincreases.Afteranotherweekthefeedwas increase10%againastheTDSandPHbecomestable.Afterthethirdweekthe
10A.Ahmedetal. Fish Weight Ammonia Produce Rate Ammonia Consume Rate Nitrate Consume Rate Ammonia Concentration Nitrate Concentration Plant Weight pH Ammonia/Nitrate Conversion Factor Fish Grow Rate Plant Grow Rate Temperature Light Strength Nitrate Produce Rate + +/+/+ + +/+/+/+ + + + +/+/+ + + +/Positive Influence Negative Influence Value-dependent Influence
g
(7)
feedwasdecreasedagainasthenitratesarehigh.Comparedwiththerealfish weightwithsimulationasinFig. 5b,actualfishweightgainislower.Feedwas reducedtokeeptheammoniaandnitrateslevelstable.
ThereisverylittledifferencebetweenthePHofphysicalwithdigitaltwin,as showninFig. 6a.ActualPHincreasesinthefirsttwoweeks,becomesstableas thenitrifyingbacteriastartconvertingtheammoniaintonitrates.ThesimulationalsopredictedPHandTDSbothdependentonfishfeedandbio-filtration.
Thetotaldissolvedsolids(TDS)isshowninFig. 6.TDSdecreaseswhenthe plantsstarttogrowatfullspeed.TDSiscorrelatedwiththeamountoffood introducedtothesystem.Inthesimulation,TDSwasalineartrend,ranging from400to472in4-weektime.Fishcanthrivewithconditionsupto600ppm
DigitalTwinTechnologyforAquaponics11
(a)FishFeed(b)FishWeight
Fig.5. FishFeedandfishweight.
(a)WaterPH(b)WaterTDS
Fig.6. WaterPHandTDS
(a)NitrateLevel(b)PlantGrowth
Fig.7. Nitratelevelandplantgrowth.
TDS.Figure 6bshowsmaximumTDSis550ppm,theminimumactualwas 389ppm.TDSalsodecreasesasweremovesolidwasteattheendoneachweek.
Thesimulationfailstopredictactualnitrates.Actualnitratesriseinweeks 3and4(Fig. 7a).Itreachesat32mg/lattheendofweek4.Twoplantsarenot sufficienttoabsorballnitratesfromwater.AsshowninFig. 7bactualplant growthisgreaterthanexpectedbythesimulatedoneasthenitrateslevels increasesunexpectedlyandtheplantgrowsfaster.Wehavealsocontrolledthe plantgrowthbychangingthefishfeedrates.Thisisaneffectivemethodto controlplantproductioninaquaponicssystem.
6Conclusion
ThispaperdescribedimplementationandvalidationofaphysicalIoTaquaponic systemandasimulatedrepresentation.Empiricalresultsshowedthatsomequantities(e.g.PHandtotaldissolvedsolids)wereabletobeeasilyestimatedinthe simulationbutothersweremoredifficulttoanticipateaccuratelyintheapproachusedsuchasnitratelevelsandgrowthrateswhichwereunderestimated. Infutureworkcouplingthesimulationandrealsystemmorecloselywillenable thesimulationvariablestobeupdatedinordertoprovidemoreaccuratepredictionsofthebehaviorofthesystemandhencebettercontrolfunctionality.
References
1.Abdelnour,S.,Tartir,A.,Zurayk,R.:Farmingpalestineforfreedom(2012)
2.Aishwarya,K.,Harish,M.,Prathibhashree,S.,Panimozhi,K.:Surveyonautomatedaquponicsbasedgardeningapproaches.In:2018SecondInternationalConferenceonInventiveCommunicationandComputationalTechnologies(ICICCT), pp.1377–1381.IEEE(2018)
12A.Ahmedetal.
DigitalTwinTechnologyforAquaponics13
3.Akyol,A.:Plantintelligencebasedmetaheuristicoptimizationalgorithms.Artif. Intell.Rev.(2013). https://doi.org/10.1007/s10462-016-9486-6
4.Blasch,E.,Seetharaman,G.,Reinhardt,K.:Dynamicdatadrivenapplications systemconceptforinformationfusion.ProcediaComput.Sci. 18,1999–2007(2013)
5.Bubak,M.,vanAlbada,G.D.,Dongarra,J.,Sloot,P.M.A.(eds.):ICCS2008. LNCS,vol.5103.Springer,Heidelberg(2008). https://doi.org/10.1007/978-3-54069389-5
6.Chhetri,S.R.,Faezi,S.,Faruque,M.:Digitaltwinofmanufacturingsystems.CenterforEmbedded&Cyber-PhysicalSystems(2017)
7.Diver,S.,Rinehart,L.:Aquaponics-Integrationofhydroponicswithaquaculture. Attra(2000)
8.Food,FAO:Agriculture:keytoachievingthe2030agendaforsustainabledevelopment.Rome:FoodandAgricultureOrganizationoftheUnitedNations(2016)
9.Ghandar,A.,Theodoropoulos,G.,Zheng,B.,Chen,S.,Gong,Y.,Zhong,M.:A dynamicdatadrivenapplicationsystemtomanageurbanagriculturalecosystems insmartcities.In:20184thInternationalConferenceonUniversalVillage(UV), pp.1–7.IEEE(2018)
10.Goddek,S.:Afullyintegratedsimulationmodelofmulti-loopaquaponics:a casestudyforsystemsizingindifferentenvironments.Agric.Syst. 171,143–154 (2019)
11.Godfray,H.C.J.,etal.:Foodsecurity:thechallengeoffeeding9billionpeople. Science 327(5967),812–818(2010)
12.Lasi,H.,Fettke,P.,Kemper,H.G.,Feld,T.,Hoffmann,M.:Industry4.0.Bus.Inf. Syst.Eng. 6(4),239–242(2014)
13.Lastiri,D.R.,etal.:Model-basedmanagementstrategyforresourceefficientdesign andoperationofanaquaponicsystem.Aquac.Eng. 83,27–39(2018)
14.Liu,J.,etal.:Complexityofcoupledhumanandnaturalsystems.Science 317(5844),1513–1516(2007)
15.Madey,G.R.,etal.:Enhancedsituationalawareness:applicationofDDDASconceptstoemergencyanddisastermanagement.In:Shi,Y.,vanAlbada,G.D., Dongarra,J.,Sloot,P.M.A.(eds.)ICCS2007.LNCS,vol.4487,pp.1090–1097. Springer,Heidelberg(2007). https://doi.org/10.1007/978-3-540-72584-8 143
16.Mamatha,M.,Namratha,S.:Design&implementationofindoorfarmingusing automatedaquaponicssystem.In:2017IEEEInternationalConferenceonSmart TechnologiesandManagementforComputing,Communication,Controls,Energy andMaterials(ICSTM),pp.396–401.IEEE(2017)
17.Mandap,J.P.,Sze,D.,Reyes,G.N.,Dumlao,S.M.,Reyes,R.,Chung,W.Y.D.: Aquaponicsphlevel,temperature,anddissolvedoxygenmonitoringandcontrol systemusingraspberrypiasnetworkbackbone.In:TENCON2018–2018IEEE Region10Conference,pp.1381–1386.IEEE(2018)
18.Manju,M.,Karthik,V.,Hariharan,S.,Sreekar,B.:Realtimemonitoringofthe environmentalparametersofanaquaponicsystembasedoninternetofthings. In:2017ThirdInternationalConferenceonScienceTechnologyEngineering& Management(ICONSTEM),pp.943–948.IEEE(2017)
19.Munguia-Fragozo,P.,etal.:Perspectiveforaquaponicsystems:“omic”technologiesformicrobialcommunityanalysis.BioMedRes.Int. 2015 (2015)
20.Mustafee,N.,Powell,J.H.:Fromhybridsimulationtohybridsystemsmodelling. In:2018WinterSimulationConference,WSC2018,Gothenburg,Sweden,9–12 December2018,pp.1430–1439(2018)