Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Page 14

Journal of Modern Mathematics Frontier

Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

for all x, y, z, w U . Then, for s  2 if i  0 and for s  1 if i  1 we get

Hence the (IV.3) holds either, L  2s 1 for s  1 if i  0 and L

  in x, in y, in z , in w 

in

1 for s  1 if i  1 . 2s 1

Now from (IV.4), we prove the following cases for (i).

s s s  n n n s n   n i x  i y  i z  i w ,  i  n s n s n s n s  n i x i y i z i w ,   i    n x s  n y s  n z s  nw s i i i i n  i 4s 4s 4s  in x  in y  in z  in w   0 as n  ,    0 as n  ,  0 as n  , 

Case (i): L  2s 1 for s  1 if i  0 . f (2 x, 2 x)  8 f ( x, x)  A( x, x)

2 

s 1 1 0

1 2

18  2 s 1  s    || x || 2  

s 1

 2  18  2 s 1

4s



,

1 2

s 1

 

s 1

2

 2   2 18  2 s 1

22

 

s

Thus (IV.1) is holds. But we have x    x   12   x  , has

s 1

2

 s   || x || 

 2  18  2   || x || s 1 1

 s   || x || 

s 1

s

2  2s

1 for s  1 if i  1 . 2s 1 f (2 x, 2 x)  8 f ( x, x)  A( x, x)

the property   x   L  i   i x  , for all x U . Hence

Case (ii): L 

1 2 1  (4 ( x, x, x, x)   ( x, 2 x, x, 2 x)) 2  s s  2 (18 || x || 2 || 2 x || )     (4  2 2 s ) || x ||4 s 2  2s 4s 4s  2 (22  2  2  2 ) || x || 

  x    x

11

 1   s 1  18  2 s 1  2  s    || x || 1  2  1  s 1 2 s 1 18  2 s 1  2 s  s 1    || x || 2 1 2 

 2   2 18  2 s 1

 2s  2 

  (18 || i x ||s 2 || 2 i x ||s )  2   i   1   i x    (4  22 s ) || i x ||4 s i 2  i    (22  22 s  2  24 s ) || i x ||4 s   2i

2

 s   || x || 

 2 18  2   || x || s 1

Now

s 1

s 1

s

2s  2

In similar manner we can prove the following cases 1 for s  1 if i  1 , 2 4 s 1 1 for s  1 if i  0 and L  4 s 1 for s  1 if 2

L  24s 1 for s  1 if i  0 and L 

and L  24s 1

i  1 for (ii) and (iii) respectively. complete.

  s i (18 || x ||s 2 || 2 x ||s )  2   i   4 s  i (4  22 s ) || x ||4 s  2 i   4s i (22  22 s  2  24 s ) || x ||4 s   2i   s 1 s s  2 i (18 || x || 2 || 2 x || )     i4 s 1 (4  22 s ) || x ||4 s 2   4 s 1 2s 4s 4s  2 i (22  2  2  2 ) || x || 

Hence the proof is

Theorem 4.4: Let f : U 2  V be a mapping for which there exist a function  : U 4  (0, ] with the condition lim

n 

1

i3n

 ( in x, in y, in z , in w)  0

with i  2 if i  0 and i 

1 2

(IV.10)

if i  1 such that the

functional inequality F ( x, y, z, w)   ( x, y, z, w)

(IV.11)

for all x, y, z, w U . If there exists L  L  i   1 such that the function

 is 1 ( x)    i4 s 1 ( x)  4 s 1  i  ( x )

x    x   12   x  ,

has the property   x   L  i3   i x  .

for all x U .

23

(IV.12)


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.