Integrated uncertainty in knowledge modelling and decision making 5th international symposium iukm 2

Page 1

Integrated

Uncertainty in Knowledge Modelling and Decision Making 5th International Symposium IUKM 2016 Da

Nang Vietnam November 30 December

2 2016 Proceedings 1st Edition Van-Nam Huynh

Visit to download the full and correct content document: https://textbookfull.com/product/integrated-uncertainty-in-knowledge-modelling-and-d ecision-making-5th-international-symposium-iukm-2016-da-nang-vietnam-november30-december-2-2016-proceedings-1st-edition-van-nam-huynh/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Computational Collective Intelligence 12th

International Conference ICCCI 2020 Da Nang Vietnam

November 30 December 3 2020 Proceedings Ngoc Thanh Nguyen

https://textbookfull.com/product/computational-collectiveintelligence-12th-international-conference-iccci-2020-da-nangvietnam-november-30-december-3-2020-proceedings-ngoc-thanhnguyen/

Knowledge and Systems Sciences 17th International Symposium KSS 2016 Kobe Japan November 4 6 2016 Proceedings 1st Edition Jian Chen

https://textbookfull.com/product/knowledge-and-systemssciences-17th-international-symposium-kss-2016-kobe-japannovember-4-6-2016-proceedings-1st-edition-jian-chen/

Information and Communications Security 18th

International Conference ICICS 2016 Singapore Singapore November 29 December 2 2016 Proceedings 1st Edition Kwok-Yan Lam

https://textbookfull.com/product/information-and-communicationssecurity-18th-international-conference-icics-2016-singaporesingapore-november-29-december-2-2016-proceedings-1st-editionkwok-yan-lam/

Radio Frequency Identification and IoT Security 12th

International Workshop RFIDSec 2016 Hong Kong China

November 30 December 2 2016 Revised Selected Papers 1st Edition Gerhard P. Hancke

https://textbookfull.com/product/radio-frequency-identificationand-iot-security-12th-international-workshop-rfidsec-2016-hongkong-china-november-30-december-2-2016-revised-selectedpapers-1st-edition-gerhard-p-hancke/

Decision and Game Theory for Security 7th International Conference GameSec 2016 New York NY USA November 2 4 2016 Proceedings 1st Edition Quanyan Zhu

https://textbookfull.com/product/decision-and-game-theory-forsecurity-7th-international-conference-gamesec-2016-new-york-nyusa-november-2-4-2016-proceedings-1st-edition-quanyan-zhu/

Games and Learning Alliance 5th International Conference GALA 2016 Utrecht The Netherlands December 5 7 2016 Proceedings 1st Edition Rosa Bottino

https://textbookfull.com/product/games-and-learning-alliance-5thinternational-conference-gala-2016-utrecht-the-netherlandsdecember-5-7-2016-proceedings-1st-edition-rosa-bottino/

Future Data and Security Engineering Third International Conference FDSE 2016 Can Tho City Vietnam November 23 25 2016 Proceedings 1st Edition Tran Khanh Dang

https://textbookfull.com/product/future-data-and-securityengineering-third-international-conference-fdse-2016-can-thocity-vietnam-november-23-25-2016-proceedings-1st-edition-trankhanh-dang/

Foundations of Information and Knowledge Systems 9th International Symposium FoIKS 2016 Linz Austria March 7 11 2016 Proceedings 1st Edition Marc Gyssens

https://textbookfull.com/product/foundations-of-information-andknowledge-systems-9th-international-symposium-foiks-2016-linzaustria-march-7-11-2016-proceedings-1st-edition-marc-gyssens/

Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling: Uncertainties 2020 José Eduardo Souza De Cursi

https://textbookfull.com/product/proceedings-of-the-5thinternational-symposium-on-uncertainty-quantification-andstochastic-modelling-uncertainties-2020-jose-eduardo-souza-decursi/

Van-Nam Huynh · Masahiro Inuiguchi

Bac Le · Bao Nguyen Le

Thierry Denoeux (Eds.)

Integrated Uncertainty in Knowledge Modelling and Decision Making

5th International Symposium, IUKM 2016 Da Nang, Vietnam, November 30 – December 2, 2016 Proceedings

123 LNAI 9978

LectureNotesinArtificialIntelligence9978

SubseriesofLectureNotesinComputerScience

LNAISeriesEditors

RandyGoebel UniversityofAlberta,Edmonton,Canada

YuzuruTanaka HokkaidoUniversity,Sapporo,Japan

WolfgangWahlster

DFKIandSaarlandUniversity,Saarbrücken,Germany

LNAIFoundingSeriesEditor

JoergSiekmann

DFKIandSaarlandUniversity,Saarbrücken,Germany

Moreinformationaboutthisseriesathttp://www.springer.com/series/1244

Van-NamHuynh • MasahiroInuiguchi

BacLe • BaoNguyenLe

ThierryDenoeux(Eds.)

5thInternationalSymposium,IUKM2016 DaNang,Vietnam,November30 – December2,2016

Proceedings

IntegratedUncertainty inKnowledgeModelling andDecisionMaking
123

Editors

Van-NamHuynh

JapanAdvancedInstituteofScience andTechnology

Nomi,Ishikawa Japan

MasahiroInuiguchi

GraduateSchoolofEngineeringScience

OsakaUniversity Toyonaka,Osaka Japan

BacLe UniversityofScience

HoChiMinhCity Vietnam

BaoNguyenLe DuyTanUniversity DaNang Vietnam

ThierryDenoeux

Université deTechnologiedeCompiègne

Compiègne France

ISSN0302-9743ISSN1611-3349(electronic)

LectureNotesinArtificialIntelligence

ISBN978-3-319-49045-8ISBN978-3-319-49046-5(eBook) DOI10.1007/978-3-319-49046-5

LibraryofCongressControlNumber:2016955999

LNCSSublibrary:SL7 – ArtificialIntelligence

© SpringerInternationalPublishingAG2016

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Preface

Thisvolumecontainsthepapersthatwerepresentedatthe5thInternationalSymposiumonIntegratedUncertaintyinKnowledgeModellingandDecisionMaking(IUKM 2016)heldinDaNang,Vietnam,fromNovember30toDecember2,2016.

TheIUKMsymposiaaimtoprovideaforumfortheexchangeofresearchresults andideas,andexperiencesinapplicationamongresearchersandpractitionersinvolved withallaspectsofuncertaintymodellingandmanagement.Previouseditionsofthe conferencewereheldinIshikawa,Japan(originallyunderthenameofInternational SymposiumonIntegratedUncertaintyManagementandApplications – IUM2010), Hangzhou,China(IUKM2011),Beijing,China(IUKM2013),andNhaTrang, Vietnam(IUKM2015).

IUKM2016wasjointlyorganizedbyDuyTanUniversity(DaNang,Vietnam), JapanAdvancedInstituteofScienceandTechnology(JAIST),andBeliefFunctions andApplicationsSociety(BFAS).

Theorganizersreceived78submissions.Eachofwhichwaspeerreviewedbyat leasttwomembersoftheProgramCommittee.While35paperswereacceptedafterthe firstroundofreviews,22otherswereconditionallyacceptedandunderwentarebuttal stageinwhichauthorswereaskedtorevisetheirpaperinaccordancetothereviews, andprepareanextensiveresponseaddressingthereviewers’ concerns.The final decisionwasmadebytheprogramchairs.Finally,57paperswereacceptedforpresentationatIUKM2016andpublicationintheproceedings.Invitedtalkspresentedat thesymposiumarealsoincludedinthisvolume.

Asafollow-upofthesymposium,aspecialvolumeofthe InternationalJournalof ApproximateReasoning isanticipatedtoincludeasmallnumberofextendedpapers selectedfromthesymposiumaswellasotherrelevantcontributionsreceivedin responsetosubsequentopencalls.Thesejournalsubmissionswillgothroughafresh roundofreviewsinaccordancewiththejournal’sguidelines.

TheIUKM2016symposiumwaspartiallysupportedbytheNationalFoundationfor ScienceandTechnologyDevelopmentofVietnam(NAFOSTED)andDuyTan University.TheIUKM2016beststudentpaperawardwassponsoredbyElsevier.We areverythankfultoDr.Gia-NhuNguyenandhislocalorganizingteamfromDuyTan Universityfortheirhardworkandefficientservicesandforthewonderfullocal arrangements.

WewouldliketoexpressourappreciationtothemembersoftheProgramCommitteefortheirsupportandcooperationinthispublication.Wearealsothankfulto AlfredHofmann,AnnaKramer,andtheircolleaguesatSpringerforprovidinga meticulousserviceforthetimelyproductionofthisvolume.Last,butcertainlynotthe

least,ourspecialthanksgotoalltheauthorswhosubmittedpapersandalltheattendees fortheircontributionsandfruitfuldiscussionsthatmadethisconferenceagreat success.

December2016Van-NamHuynh MasahiroInuiguchi BacLe BaoN.Le ThierryDenoeux

VIPreface

Organization

GeneralCo-chairs

BaoN.LeDuyTanUniversity,DaNang,Vietnam ThierryDenoeuxUniversityofTechnologyofCompiègne,France

HonoraryCo-chairs

MichioSugenoEuropeanCenterforSoftComputing,Spain HungT.NguyenNewMexicoStateUniversity,USA; ChiangMaiUniversity,Thailand CoC.LeDuyTanUniversity,DaNang,Vietnam SadaakiMiyamotoUniversityofTsukuba,Japan

ProgramCo-chairs

Van-NamHuynhJAIST,Japan

MasahiroInuiguchiUniversityofOsaka,Japan

BacLeUniversityofScience,VNU-HoChiMinh,Vietnam

LocalArrangementsChair

Gia-NhuNguyenDuyTanUniversity,DaNang,Vietnam

PublicationandFinancialChair

Van-HaiPhamPaci ficOceanUniversity,NhaTrang,Vietnam

ProgramCommittee

Byeong-SeokAhnChung-AngUniversity,Korea YaxinBiUniversityofUlster,UK

Bernadette Bouchon-Meunier Université PierreetMarieCurie,France

LamThuBuiLeQuyDonTechnicalUniversity,Vietnam HumbertoBustinceUniversidadPublicadeNavarra,Spain TruCaoHoChiMinhCityUniversityofTechnology,Vietnam FabioCuzzolinOxfordBrookesUniversity,UK

Tien-TuanDaoUniversityofTechnologyofCompiègne,France

BernardDeBaetsGhentUniversity,Belgium YongDengXianJiaotongUniversity,China

ThierryDenoeuxUniversityofTechnologyofCompiègne,France

SebastienDesterckeUniversityofTechnologyofCompiègne,France

KarimElKiratUniversityofTechnologyofCompiègne,France

ZiedElouediLARODEC,ISGdeTunis,Tunisie TomoeEntaniUniversityofHyogo,Japan

LluisGodoIIIA-CSIC,Spain

FernandoGomideUniversityofCampinas,Brazil

PeijunGuoYokohamaNationalUniversity,Japan EnriqueHerrera-ViedmaUniversityofGranada,Spain

Marie-ChristineHo BaTho UniversityofTechnologyofCompiègne,France

KatsuhiroHondaOsakaPrefectureUniversity,Japan Tzung-PeiHongNationalUniversityofKaohsiung,Taiwan

VanNamHuynhJAIST,Japan

MasahiroInuiguchiOsakaUniversity,Japan

RadimJirousekUniversityofEconomics,CzechRepublic JanuszKacprzykPolishAcademyofSciences,Poland

GabrieleKern-IsbernerTechnischeUniversitätDortmund,Germany

EtienneKerreGhentUniversity,Belgium

LaszloT.KoczyBudapestUniversityofTechnologyandEconomics, Hungary

VladikKreinovichUniversityofTexasatElPaso,USA RudolfKruseUniversityofMagdeburg,Germany

YasuoKudoMuroranInstituteofTechnology,Japan YoshifumiKusunokiOsakaUniversity,Japan

JonathanLawryUniversityofBristol,UK

Anh-CuongLeTonDucThangUniversity,Vietnam BacLeUniversityofScience,VNU-HoChiMinh,Vietnam Churn-JungLiauAcademiaSinica,Taipei,Taiwan

Chin-TengLinNationalChiao-TungUniversity,Taiwan JunLiuUniversityofUlster,UK

WeiruLiuQueen’sUniversityBelfast,UK

AnitawatiMohd Lokman UniversitiTeknologiMARA(UiTM)Malaysia

TiejuMaEastChinaUniversityofScienceandTechnology,China

CatherineK.MarqueUniversityofTechnologyofCompiègne,France LuisMartinezUniversityofJaen,Spain

RadkoMesiarSlovakUniversityofTechnologyinBratislava,Slovakia

TetsuyaMuraiHokkaidoUniversity,Japan

CanhHaoNguyenKyotoUniversity,Japan ThanhBinhNguyenDuyTanUniversity,Vietnam;IIASA,Austria LeMinhNguyenJAIST,Japan

HungSonNguyenUniversityofWarsaw,Poland XuanHoaiNguyenHanoiUniversity,Vietnam

ThanhHienNguyenTonDucThangUniversity,Vietnam AkiraNotsuOsakaPrefectureUniversity,Japan

VIIIOrganization

VilemNovakOstravaUniversity,CzechRepublic NikhilPalIndianStatisticalInstitute,India

IrinaPerfilievaOstravaUniversity,CzechRepublic TuanPhung-DucTokyoInstituteofTechnology,Japan ZengchangQinBeihangUniversity,China YasuoSasakiJAIST,Japan

HirosatoSekiOsakaUniversity,Japan

DominikSlezakUniversityofWarsawandInfobrightInc.,Poland NoboruTakagiToyamaPrefecturalUniversity,Japan YongchuanTangZhejiangUniversity,China

Phantipa

Thipwiwatpotjana

ChulalongkornUniversity,Thailand

VicencTorraUniversityofSkovde,Sweden

SeikiUbukataOsakaUniversity,Japan

BayVoHUTECH,Vietnam

GuoyinWangChongqingUniversityofPostsandTelecom.,China

Thanuka

Wickramarathne UniversityofMassachusetts,USA

ZeshuiXuSichuanUniversity,China

Hong-BinYanEastChinaUniversityofScienceandTechnology,China ChunlaiZhouRenminUniversityofChina

LocalOrganizingCommittee

VietHungDangDuyTanUniversity,DaNang,Vietnam VanSonPhanDuyTanUniversity,DaNang,Vietnam PhungHoiPhanDuyTanUniversity,DaNang,Vietnam ThanhDuongNguyenDuyTanUniversity,DaNang,Vietnam DucManNguyenDuyTanUniversity,DaNang,Vietnam ThoaiMyHoDuyTanUniversity,DaNang,Vietnam NgocTrungDangDuyTanUniversity,DaNang,Vietnam VuTienTruongDuyTanUniversity,DaNang,Vietnam DacNhuongLeHaiPhongUniversity,HaiPhong,Vietnam

OrganizationIX

SponsoringInstitutions

TheNationalFoundationforScienceandTechnology DevelopmentofVietnam(NAFOSTED)

DuyTanUniversity,DaNang,Vietnam

JapanAdvancedInstituteofScienceandTechnology

XOrganization

InvitedSpeakers

MachineLearningApplications: Past,PresentandFuture

KyotoUniversity,Kyoto,Japan

Shortbiography: Dr.HiroshiMamitsukaisaProfessorofBioinformaticsCenter, InstituteforChemicalResearch,KyotoUniversity,beingjointlyappointedasaProfessorofSchoolofPharmaceuticalSciencesofthesameuniversity.Alsocurrentlyheis aFiDiPro(FinlandDistinguishedProfessorProgram)ProfessorofDepartmentof ComputerScience,AaltoUniversity,Finland.Hispresentresearchinterestincludesa varietyofaspectsofmachinelearninganddiverseapplications,primarilycellular-or molecular-levelbiology,chemistryandmedicalsciences.Hehaspublishedmorethan 100scientifi cpapers,includingthoseappearingintop-tierconferencesorjournalsin machinelearningandbioinformatics,suchasICML,KDD,ISMB,MachineLearning, Bioinformatics,etc.Alsohehasservedprogramcommitteememberofnumerous conferencesandassociateeditorofseveralwell-knownjournalsoftherelated fields. PriortojoiningKyotoUniversity,heworkedinindustryformorethantenyears, mainlydataanalyticsinbusinesssectors,forexample,customer/revenuechurn,webaccesspattern,campaignmanagement,collaborative filtering,recommendationengine, etc.SoaftermovingtoKyotoUniversity,hehasworkedasresearchadvisorondata miningofseveralenterprises.

Summary: Machinelearningisdata-drivenandsoapplication-driventechnology alwaysseekingrealproblems.Interestinglyinthebeginning,techniquescurrently consideredaspartofmachinelearning,weredevelopedinotherdomainsmainly.A typicalexampleishiddenMarkovmodel(HMM),whichwasextensivelystudiedfor speechrecognitionwhilenotnecessarilyinmachinelearningcommunity.HMMisnow technicallywellmaturedandcommonlyusednotonlyforspeechbutinmanyother applicationsincludingbiologicalsequencealignment.Thistypeof “machinelearning” canbefoundinclassicalapplications,suchasnaturallanguageprocessing,computer visionandpatternrecognition.Currently,duetotheeraofInternet,bigdataandbig science,machinelearningapplicationsaremuchbroader,coveringnumerous fields, suchasscience,engineering,economicsandothermanyaspectsofoursociety.Particularlycommercialorbusiness-orientedapplicationsareweightedmore,beingpartof ordataminingitself.Thequestionisonfuture.Inthistalk,I’dliketoreviewthepast andpresentapplicationsofmachinelearning,andalsoshedlightonpossibleand promisingfutureapplications,whicharealreadygraduallycomingout.

OnEvidentialMeasuresofSupport forReasoningwithIntegratedUncertainty

NewMexicoStateUniversity,LasCruces,USA ChiangMaiUniversity,ChiangMai,Thailand

Shortbiography: Prof.HungT.NguyenreceivedtheBSdegree(1967)from UniversityofParisXI,theMasterdegree(1968)fromUniversityofParisVI,andthe PhDdegree(1975)fromUniversityofLille(France),allinMathematics.After spendingseveralyearsattheUniversityofCalifornia,BerkeleyandtheUniversityof Massachusetts,Amherst,hejoinedthefacultyofMathematicalSciences,NewMexico StateUniversity(USA),whereheiscurrentlyaProfessorEmeritus.Heisalsoan AdjunctProfessorofEconomics,ChiangMaiUniversity,Thailand,andwasonthe LIFEChaironFuzzyTheoryatTokyoInstituteofTechnology(Japan)during19921993,DistinguishedVisitingLukacsProfessorofStatisticsatBowlingGreenState University,Ohio,in2002,DistinguishedFellowoftheAmericanSocietyofEngineeringEducation(ASEE),FellowoftheInternationalFuzzySystemsAssociation (IFSA).Hehaspublished16books,6editedbooksandmorethan100papers.Dr. Nguyen’scurrentresearchinterestsincludeFuzzyLogicsandtheirApplications, RandomSetTheory,RiskAnalysis,andCasualInferenceinEconometrics.

Summary: InviewoftherecentbanoftheuseofP-valuesinstatisticalinference,since theyarenotquali fiedasinformationmeasuresofsupportfromempiricalevidence,we willnotonlytakeacloserlookatthem,butalsoembarkonapanoramaofmore promisingingredientswhichcouldreplaceP-valuesforstatisticalscienceaswellasfor any fieldsinvolvingreasoningwithintegrateduncertainty.Theseingredientsinclude therecentlydevelopedtheoryofInferentialModels,theemergentInformationTheoreticStatistics,andofcourseBayesianstatistics.Onemainfocusofouranalysisof informationmeasuresisitslogicalaspectwhereemphasiswillbeplaceduponconditional(event)logic,probabilitylogic,possibilitydistributions,andsomefuzzysets.

AutonomousSystems:ManyPossibilities andChallenges

NationalDefenseAcademyofJapan,Yokosuka,Japan

AsianOfficeofAerospaceResearch&Development(AOARD), USAirForceResearchLaboratory(AFRL)

Shortbiography: Dr.AkiraNamatameisProfessoremeritusofNationalDefense Academy,Japan.HeisnowScienti ficAdvisor,AsianOfficeofAerospaceResearch& DevelopmentofUSAirForceResearchLaboratory.Hisresearchinterestsinclude multi-agentsystems,complexnetworks,arti ficialintelligence,computationalsocial science,andgametheory.Inthepasttenyears,hehasgivenover35invitedtalks,and over15tutoriallecturesininternationalconferencesandworkshops,andacademic institutions.Hehasorganizedmorethat30internationalconferencesandworkshops, andspecialsessions.Heistheeditor-in-chiefofSpringer ’sJournalofEconomic InteractionandCoordination(JEIC),editorinModelingandSimulationSocietyLetter. Hehaspublishedmorethan300refereedscientifi cpapers,togetherwitheightbookson multi-agentsystems,agentmodelingandnetworkdynamics,collectivesystemsand gametheory.Moredetailinformationcanbeobtainedthrough http://www.nda.ac.jp/ *nama.

Summary: Ourliveshavebeenimmenselyimprovedbydecadesofautomation technologies.Mostmanufacturingequipment,homeappliance,carsandotherphysical systemsaresomehowautomated.Wearemorecomfortable,moreproductiveandsafer thaneverbefore.Withoutautomation,theyaremoretroublesome,moretimeconsuming,lessconvenient,andfarlesssafe.Systemsthatcanchangetheirbehaviorin responsetounanticipatedeventsduringoperationarecalledautonomous.Autonomous systemsgenerallyarethosethattakeactionsautomaticallyundercertainconditions. Theycanbethoughtofasself-governingsystemscapableofactingontheirownwithin programmedboundaries.Dependingonasystem’spurposesandrequiredactions, autonomymayoccuratdifferentscalesanddegreesofsophistication.Thecapabilityof suchautonomoussystemsandtheirdomainsofapplicationhaveexpandedsignifi cantly inrecentyears.Thesesuccesseshavealsobeenaccompaniedbyfailuresthatcompellinglyillustratetherealtechnicaldifficultiesassociatedwithseeminglynatural behaviorspecificationfortrulyautonomoussystems.Theautonomoustechnologyalso holdsthepotentialforenablingentirelynewcapabilitiesinenvironmentswheredirect humancontrolisnotphysicallypossible.Forallofthesereasons,autonomoussystems technologyisasanimportantelementofitsscienceandtechnologyvisionandacritical areaforfuturedevelopment.

Autonomyisagrowing fi eldofresearchandapplication.Specializedrobotsin hazardousenvironmentsandmedicalapplicationunderhumansupervisorycontrolfor spaceandrepetitiveindustrialtaskshaveprovensuccessful.However,researchinareas

ofself-drivingcars,intimatecollaborationwithhumansinmanipulationtasks,human controlofhumanoidrobotsforhazardousenvironments,andsocialinteractionwith robotsisatinitialstages.Autonomoussystemsareintheirinfancyandarecapableonly ofperformingwell-definedtasksinpredictableenvironments.Advancesintechnologiesenablingautonomyareneededforthesesystemstorespondtonewsituationsin complex,dynamicenvironments.Researchonautonomyincludesmanychallenging problemsandhasthepotentialtoproducesolutionswithpositivesocialimpact.Its interdisciplinarynaturealsorequiresthatresearchersinthe fieldunderstandtheir researchwithinabroadercontext.Inthistalk,Iwilldiscussautonomoustechnologies thatpromisetomakehumansmoreproficientinaddressingsuchneeds.Thecurrent statusofautonomyresearchisreviewed,andkeycurrentresearchchallengesforthe humanfactorscommunityaredescribed.Iwillalsopresentaunifiedtreatmentof autonomoussystems,identifykeythemes,anddiscusschallengeproblemsthatare likelytoshapethescienceofautonomy.

XVIA.Namatame

FuzzyCo-clusteringandApplication toCollaborativeFiltering

OsakaPrefectureUniversity,Sakai,Japan

Shortbiography: KatsuhiroHondaisaprofessoroftheDepartmentofComputer ScienceandIntelligentSystems,GraduateSchoolofEngineering,OsakaPrefecture University,Japan.Hisresearchinterestsincludehybridtechniquesoffuzzyclustering andmultivariateanalysis,dataminingwithfuzzydataanalysis,andneuralnetworks. Hehaspublishedmorethan100scientificpapers,includingthoseappearinginsuch journalsasIEEETransactionsonFuzzySystems,InternationalJournalofApproximate Reasoning,etc.HereceivedtheOutstandingBookAward(2010),theBestPaper Award(2002,2011,2012)andsoonfromtheJapanSocietyforFuzzyTheoryand IntelligentInformatics,anddeliveredatutoriallectureatthe2004IEEEInternational ConferenceonFuzzySystems.

Summary: Cooccurrenceinformationanalysisbecamemorepopularinmanywebbasedsystemanalysissuchasdocumentanalysisorpurchasehistoryanalysis.Rather thantheconventionalmultivariateobservations,eachobjectischaracterizedbyits cooccurrencedegreeswithvariousitems,andthegoalisoftentoextractco-cluster structuresamongobjectsanditems,suchthatmutuallyfamiliarobject-itempairsform aco-cluster.Atypicalapplicationofco-clusterstructureanalysiscanbeseenincollaborative filtering(CF).CFisabasictechniqueforachievingpersonalizedrecommendationinvariouswebservicesbyconsideringthesimilarityofpreferencesamong users.Inthistalk,I’dliketointroduceafuzzyco-clusteringmodel,whichismotivated fromastatisticalco-clusteringmodel,anddemonstrateitsapplicabilitytoCFtasks followingabriefreviewoftheCFframework.

Contents

InvitedPapers

OnEvidentialMeasuresofSupportforReasoningwithIntegrated Uncertainty:ALessonfromtheBanofP-valuesinStatisticalInference.....3 HungT.Nguyen

FuzzyCo-ClusteringandApplicationtoCollaborativeFiltering..........16 KatsuhiroHonda

EvidentialClustering:AReview................................24 ThierryDenœuxandOrakanyaKanjanatarakul

UncertaintyManagementandDecisionSupport

Non-uniquenessofIntervalWeightVectortoConsistentIntervalPairwise ComparisonMatrixandLogarithmicEstimationMethods...............39 MasahiroInuiguchi

SequentialDecisionProcessSupportedbyaCompositionalModel........51 RadimJiroušekandLucieVáchová

ATheoryofModelingSemanticUncertaintyinLabelRepresentation......64 ZengchangQin,TaoWan,andHanqingZhao

AProbabilityBasedApproachtoEvaluationofNewEnergyAlternatives...76 Hong-BinYan

MinimaxRegretRelaxationProcedureofExpectedRecourseProblem withVectorsofUncertainty...................................89 ThibhadhaSaraprangandPhantipaThipwiwatpotjana

BottomUpReviewofCriteriainHierarchicallyStructuredDecision Problem.................................................99 TomoeEntani

ATwo-StageFuzzyQualityFunctionDeploymentModelforService Design..................................................110 Hong-BinYan,ShaojingCai,andMingLi

UsagesofFuzzyReturnsonMarkowitz’sPortfolioSelection............124 TanaratRattanadamrongaksorn,JirakomSirisrisakulchai, andSongsakSriboonjitta

AFloodRiskAssessmentBasedonMaximumFlowCapacityofCanal System.................................................136

JirakomSirisrisakulchai,NapatHarnpornchai, KittawitAutchariyapanitkul,andSongsakSriboonchitta

SoftClusteringandClassification

GeneralizationsofFuzzy c-MeansandFuzzyClassifiers...............151

SadaakiMiyamoto,YoshiyukiKomazaki,andYasunoriEndo

PartialDataQueryingThroughRacingAlgorithms...................163

Vu-LinhNguyen,SébastienDestercke,andMarie-HélèneMasson

FuzzyDAClustering-BasedImprovementofProbabilisticLatentSemantic Analysis.................................................175

TakafumiGoshima,KatsuhiroHonda,SeikiUbukata,andAkiraNotsu

ExclusiveItemPartitionwithFuzzinessTuninginMMMs-InducedFuzzy Co-clustering.............................................185

TakayaNakano,KatsuhiroHonda,SeikiUbukata,andAkiraNotsu

AHybridModelofARIMA,ANNsand k-MeansClusteringforTime SeriesForecasting..........................................195

WarutPannakkong,VanHaiPham,andVan-NamHuynh

TheRoughMembership k-MeansClustering.......................207

SeikiUbukata,AkiraNotsu,andKatsuhiroHonda

InstanceReductionforTimeSeriesClassificationbyExploiting RepresentativeCharacteristicsusingk-means.......................217 VoThanhVinh,HienT.Nguyen,andTinT.Tran

ANewFaultClassificationSchemeUsingVibrationSignalSignatures andtheMahalanobisDistance..................................230 JaeyoungKim,HungNguyenNgoc,andJongmyonKim

MachineLearningforSocialMediaAnalytics

EstimatingAsymmetricProductAttributeWeightsinReviewMining......245 WeiOu,Anh-CuongLe,andVan-NamHuynh

DeepBi-directionalLongShort-TermMemoryNeuralNetworks forSentimentAnalysisofSocialData............................255

NgocKhuongNguyen,Anh-CuongLe,andHongThaiPham

LinguisticFeaturesandLearningtoRankMethodsforShoppingAdvice....269 Xuan-HuyNguyenandLe-MinhNguyen

XXContents

AnEvidentialMethodforMulti-relationalLinkPredictioninUncertain SocialNetworks...........................................280

SabrineMallek,ImenBoukhris,ZiedElouedi,andEricLefevre

DetectingThaiMessagesLeadingtoDeceptiononFacebook............293 PanidaSongram,AtcharaChoompol,PaitoonThipsanthia, andVeeraBoonjing

AnswerValidationforQuestionAnsweringSystemsbyUsingExternal Resources................................................305 Van-TuNguyenandAnh-CuongLe

OptimizingSelectionofPZMIFeaturesBasedonMMASAlgorithm forFaceRecognitionoftheOnlineVideoContextualAdvertisement User-OrientedSystem.......................................317 BaoNguyenLe,Dac-NhuongLe,GiaNhuNguyen,andDoNangToan Phrase-BasedCompressiveSummarizationforEnglish-Vietnamese........331 TungLe,Le-MinhNguyen,AkiraShimazu,andDinhDien

ImprovethePerformanceofMobileApplicationsBasedonCode OptimizationTechniquesUsingPMDandAndroidLint................343 ManD.Nguyen,ThangQ.Huynh,andT.HungNguyen

BiomedicalandImageApplications

ClusteringofChildrenwithCerebralPalsywithPriorBiomechanical KnowledgeFusedfromMultipleDataSources......................359 TuanNhaHoang,TienTuanDao,andMarie-ChristineHoBaTho Co-SimulationofElectricalandMechanicalModelsoftheUterineMuscle...371 MaximeYochum,JérémyLaforêt,andCatherineMarque

ComputingEHGSignalsfromaRealistic3DUterusModel: AMethodtoAdaptaPlanarVolumeConductor.....................381 MaximeYochum,PamelaRiahi,JérémyLaforêt,andCatherineMarque

AntColonyOptimizationBasedAnisotropicDiffusionApproachfor DespecklingofSARImages...................................389 VikrantBhateja,AbhishekTripathi,AditiSharma,BaoNguyenLe, SureshChandraSatapathy,GiaNhuNguyen,andDac-NhuongLe AFusionofBagofWordModelandHierarchicalK-Means++ inImageRetrieval..........................................397 MyKieu,KhaiDinhLai,TamDucTran,andThaiHoangLe

ContentsXXI

AcceleratingEnvelopeAnalysis-BasedFaultDiagnosis UsingaGeneral-PurposeGraphicsProcessingUnit...................409 VietTra,SharifUddin,JaeyoungKim,Cheol-HongKim, andJongmyonKim

TheMarkerDetectionfromProductLogoforAugmentedReality Technology..............................................421 ThummaratBoonrod,PhatthanaphongChomphuwiset, andChatklawJareanpon

DataMiningandApplication

AnApproachtoDecreaseExecutionTimeandDifferenceforHidingHigh UtilitySequentialPatterns....................................435 MinhNguyenQuang,UtHuynh,TaiDinh,NghiaHoaiLe,andBacLe

ModelingGlobal-scaleDataMartsBasedonFederatedDataWarehousing ApplicationFramework......................................447 NgocSyNgoandBinhThanhNguyen

HowtoSelectanAppropriateSimilarityMeasure:TowardsaSymmetryBasedApproach...........................................457 IldarBatyrshin,ThongchaiDumrongpokaphan,VladikKreinovich, andOlgaKosheleva

AConvexCombinationMethodforLinearRegressionwithIntervalData...469 SomsakChanaim,SongsakSriboonchitta,andChongkolneeRungruang

ACopula-BasedMarkovSwitchingSeeminglyUnrelatedRegression ApproachforAnalysistheDemandandSupplyonSugarMarket.........481 PathairatPastpipatkul,NisitPanthamit,WoraphonYamaka, andSongsakSriboochitta

TheBestCopulaModelingofDependenceStructureAmongGold,Oil Prices,andU.S.Currency....................................493 PathairatPastpipatkul,ParaveeManeejuk,andSongsakSriboonchitt

ModelingandForecastingInterdependenceoftheASEAN-5StockMarkets andtheUS,JapanandChina..................................508 KritLattayaporn,JianxuLiu,JirakomSirisrisakulchai, andSongsakSriboonchitta

XXIIContents

StatisticalMethods

NeedforMostAccurateDiscreteApproximationsExplainsEffectiveness ofStatisticalMethodsBasedonHeavy-TailedDistributions.............523 SongsakSriboonchitta,VladikKreinovich,OlgaKosheleva, andHungT.Nguyen

ANewMethodforHypothesisTestingUsingInferentialModels withanApplicationtotheChangepointProblem.....................532 SonPhucNguyen,UyenHoangPham,ThienDinhNguyen, andHoaThanhLe

ConfidenceIntervalsfortheRatioofCoefficientsofVariation intheTwo-ParameterExponentialDistributions.....................542 PatarawanSangnawakij,Sa-AatNiwitpong,andSuparatNiwitpong

SimultaneousFiducialGeneralizedConfidenceIntervalsforAllDifferences ofCoefficientsofVariationofLog-NormalDistributions...............552 WarisaThangjai,Sa-AatNiwitpong,andSuparatNiwitpong

ConfidenceIntervalsforCommonVarianceofNormalDistributions.......562 NarudeeSmithpreecha,Sa-AatNiwitpong,andSuparatNiwitpong

ConfidenceIntervalsforCommonMeanofNormalDistributions withKnownCoefficientofVariation.............................574 SukrittaSodanin,Sa-AatNiwitpong,andSuparatNiwitpong

PairTradingRulewithSwitchingRegressionGARCHModel...........586 KongliangZhu,WoraphonYamaka,andSongsakSriboonchitta

EconometricApplications

AnEmpiricalConfirmationoftheSuperiorPerformanceofMIDAS overARIMAX............................................601 TanapornTungtrakul,NatthaphatKingnetr,andSongsakSriboonchitta

ModellingCo-movementandPortfolioOptimizationofGold andGlobalMajorCurrencies..................................612 MethasRattanasorn,JianxuLiu,JirakomSirisrisakulchai, andSongsakSriboonchitta

DoesAsianCreditDefaultSwapIndexImprovePortfolioPerformance?....624 ChatchaiKhiewngamdee,WoraphonYamaka, andSongsakSriboonchitta

ACopula-BasedStochasticFrontierModelandEfficiencyAnalysis: EvidencefromStockExchangeofThailand........................637 PhachongchitTibprasorn,SomsakChanaim,andSongsakSriboonchitta

ContentsXXIII

EconomicGrowthandIncomeInequality:EvidencefromThailand........649 ParaveeManeejuk,PathairatPastpipatkul,andSongsakSriboonchitta

Thailand’sExportandASEANEconomicIntegration:AGravityModel withStateSpaceApproach....................................664 PathairatPastpipatkul,PetchaluckBoonyakunakorn, andSongsakSriboonchitta

VolatilityHedgingModelforPreciousMetalFuturesReturns............675 RoengchaiTansuchat,ParaveeManeejuk,andSongsakSriboonchitta

WhatFirmsMustPayBribesandHowMuch?AnEmpiricalStudyofSmall andMediumEnterprisesinVietnam.............................689 ThiThuongVuandChonVanLe

AnalysisofAgriculturalProductioninAsiaandMeasurementofTechnical EfficiencyUsingCopula-BasedStochasticFrontierQuantileModel........701 VarithPipitpojanakarn,ParaveeManeejuk,WoraphonYamaka, andSongsakSriboonchitta

StatisticalandANNApproachesinCreditRatingforVietnamese Corporate:AComparativeEmpiricalStudy........................715 HungNguyenandTungNguyen

AuthorIndex

............................................727 XXIVContents

InvitedPapers

HungT.Nguyen1,2(B)

1 DepartmentofMathematicalSciences,NewMexicoStateUniversity, LasCruces,USA hunguyen@nmsu.edu

2 FacultyofEconomics,ChiangMaiUniversity,ChiangMai,Thailand

Abstract. InviewoftherecentbanoftheuseofP-valuesinstatisticalinference,sincetheyarenotqualifiedasinformationmeasuresof supportfromempiricalevidence,wewillnotonlytakeacloserlookat them,butalsoembarkonapanoramaofmorepromisingingredients whichcouldreplaceP-valuesforstatisticalscienceaswellasforany fieldsinvolvingreasoningwithintegrateduncertainty.Theseingredients includetherecentlydevelopedtheoryofInferentialModels,theemergent InformationTheoreticStatistics,andofcourseBayesianstatistics.The lessonlearnedfromthebanofP-valuesisemphasizedforothertypesof uncertaintymeasures,whereinformationmeasures,theirlogicalaspects (conditionalevents,probabilitylogic)areexamined.

Keywords: Bayesianstatistics · Conditionalevents · Entropyinference procedures · Informationmeasures · Informationtheoreticstatistics · IntegrateduncertaintyprobabilitylogicP-values · Testinghypotheses

1Introduction

TherecentbanontheuseofthenotionofP-valuesinhypothesistesting(TrafimowandMarks[32])triggeredaseriousreexaminationofthewayweused toconductinferenceinthefaceofuncertainty.Sincestatisticaluncertaintyis animportantpartofanintegrateduncertaintysystem,acloserlookatwhat wentwrongwithstatisticalinferenceisnecessaryto“repair”thewholeinferencemachineryincomplexsystems.

Thus,thispaperisorganizedasfollows.Westartout,inSect. 2,by elaboratingonthenotionofP-valuesasatestingprocedureinnullhypothesissignficancetesting(NHST).InSect. 3,withinthecontextofreasoningwith uncertaintywherelogicalaspectsandinformationmeasuresareemphasized,we elaborateonwhyp-valuesshouldnotbeusedasaninferenceprocedureanymore.Section 4 addressesthequestion“Whataretheitemsinstatisticaltheory

c SpringerInternationalPublishingAG2016 V.-N.Huynhetal.(Eds.):IUKM2016,LNAI9978,pp.3–15,2016. DOI:10.1007/978-3-319-49046-5 1

OnEvidentialMeasuresofSupport forReasoningwithIntegratedUncertainty: ALessonfromtheBanofP-values inStatisticalInference

whichareaffectedbytheremovalofP-values?”.Section 5 pointsoutalternative inferenceproceduresinaworldwithoutP-values.WereservethelastSect. 6 for apossible“indefenseofP-values”.

2TheNotionofP-valuesinStatisticalInference

ItseemsusefultotracebackabitofFisher’sgreatachievementsinstatistical science.Thestorygoeslikethis.Aladyclaimedthatshecantellwhetheracupof teawithmilkwasmixedwithteaormilkfirst,R.Fisherdesignedanexperiment inwhicheightcupsofmixedtea/milk(fourofeachkind)waspresentedtoher (lettingherknowthatfourcupsaremixedwithmilkfirst,andtheotherfour aremixedwithteafirst)inarandomsequence,andaskedhertotasteandtell theorderofmixtureofallcups.Shegotalleightcorrectidentifications.How didFisherarriveattheconclusionthattheladyisindeedskillful?SeeFisher [10],alsoSalbursg[29].ThiskindoftestingproblemistermedNullHypothesis SignificanceTesting(NHST),duetoFisher[9].

Theimportantquestionis“CouldweuseP-valuestocarryoutNHST?”.You mayask“whatistherationaleforusingP-valuetomakeinference?”.Well,don’t youknowtheanswer?Itcouldbethe Cournot’sprinciple (see,e.g.,Shaferand Vork,[31],pp.44+),accordingtowhich,itispracticallycertainthatpredicted eventsofsmallprobabilitieswillnotoccur.Butitisjusta“principle”,nota theorem!Itdoeshavesomeflavoroflogic(forreasoning),butwhichlogic?See alsoGurevichandVovk[14],wheretwo“interesting”thingstobenoted:First, tocarryoutatest,onejust“adopts”a“convention”,namely“foragiventest, smallervaluesprovidestrongerimpugningevidence”!Andsecondly,itisafact that“everyteststatisticisequivalenttoauniqueexactP-valuefunction”.

3WhyP-valuesAreBanned?

StartingwithNHST,theuniquewaytoinferconclusionsfromdataisthetraditionalnotionofP-values.However,thereissomethingfishyabouttheuseof P-valuesasa“valid”inferenceprocedure,sincequitesometimesseriousproblemswiththemarised,exemplifiedbyCohen[6],Schervish[30],Goodman[13], HurlbertandLombardi[15],Lavine[16],andNuzzo[28].

HavingrelieduponP-valueastheinferenceproceduretocarryoutNHST (theirbreadandbutterresearchtool)forsolong,thePsychologycommunity finallyhasenoughofits“wrongdoings”,andwithoutanyreactionsfromthe internationalstatisticalcommunity(whichisresponsableforinventinganddevelopingstatisticaltoolsforallothersciencestouse),decided,ontheirown,toban NHST-Procedure(meaningP-values),TrafimowandMarks[32].Whilethisisa banonlyfortheirBasicandAppliedSocialPsychologyJournal,theimpactis worldwide.Itisnotaboutthe“ban”,itisabout“whatwrongwithP-values?” thatweshouldallbeconcerned.Foraflavorofdoingwrongstatistics,seee.g., Wheelan[34].

4H.T.Nguyen

Even,thebangetseverybody’sattentionnow,whathappendsincelastyear? Nothing!Why?EvenaftertheAmericanStatisticalAssociationissueda“statement”aboutP-values(ASANews[2]),andWasserteinandLazar[33],notbanningP-values(whynot?),but“stating”six“principles”.

Whatdoyoureadandexpectfromtheabove“statement”?Someliterature searchrevealsstufflikethis.“Togetherweagreedthatthe currentculture of statisticalsignificancetesting,interpretation,andreporting hastogo,andthat adherencetoaminimumofsixprinciplescanhelptopavethewayforwardfor scienceandsociety”.Andinthe SciencesNews,forlaymen,“P-valueban:small stepforajournal,giantleapforsicence”.Seealso,Lavine[16].

TherearethreetheoreticalfactswhichmakeP-valuesundesirableforstatisticalinference:

(i)P-valuesarenotmodelprobabilities.

First,observethatahypothesisisastatisticalmodel.TheP-value P (Tn ≥ t|Ho )istheprobabilityofobservingofanextremevalue t ifthenullhypothesis istrue.Itisnot P (Ho |Tn ≥ t)evenwhenthis“modelprobabilitygiventhe data”makessense(e.g.,asintheBayesianframeworkwhere Ho isviewedasa randomevent).Notethatwhen P (Ho |Tn ≥ t)makessenseandisavailable,it islegitimatetouseitformodelselection(avalidinferenceprocedurefromat leastacommonsensestandpoint).Inafrequentistframework,thereisnoway toconvert P (Tn ≥ t|Ho )to P (Ho |Tn ≥ t).Assuch,theP-value P (Tn ≥ t|Ho ), alone,isuselessforinference,preciselyas“stated”inthesixthprincipleof theASA.

(ii)ThereasoningwithP-valuesisbasedonaninvalidlogic.

AsmentionedbyCohen[6]andintheprevioussection,theuseofP-valuesto reject Ho seemstobebasedonaformofModusTollensinlogic,sinceafterall, reasoningunderuncertaintyisinference!and,eachmodeofreasoningisbased uponalogic.Now,thankstoArtificialIntelligence(AI),weareexposedtoa varietyoflogics,suchasprobabilitylogic,conditionalprobabilitylogic,fuzzy logics...whicharelogicsforreasoningundervarioustypesofuncertainty.Seea textlikeGoodman,NguyenandWalker[12].Inparticular,wecouldfacerules thathaveexceptions(seee.g.,Bamber,GoodmanandNguyen,[3]).Thefamous “penguintriangle”inAIcanbeusedtoillustratewelltheinvalidityofModus Tollensinuncertainlogics.

WhilewefocusinthisaddressonreasoningwithP-valuesinprobabilisticsystems,perhapsfewwordsaboutreasoningwithmorecomplexsystems inwhichseveraldifferenttypesofuncertaintyareinvolved(integrateduncertainsystems)shouldbementioned.Tocreatemachinescapableofevermore sophisticatedtasks,andofexhibitingevermorehuman-likebehavior,weneed knowledgerepresentationandassociatedreasoning(logic).Inprobabilisticsystems,noadditionalmathematicaltoolsareneeded,sincewearesimplydealing withprobabilitydistributions,andthelogicusedisclassicaltwo-valuedlogic. Forgeneralintegrateduncertainsystems,newmathematicaltoolssuchasconditionalevents,possibilitytheory,fuzzylogicsareneeded.See,e,g.,Nguyenand Walker[25],NguyenandWalker[26],Nguyen[27].

OnEvidentialMeasuresofSupportforReasoning5

(iii)Asset-functions,P-valuesarenotinformationmeasuresofmodelsupport.

Schervish[30],whilediscussingthe“usual”useofP-valuestotesthypotheses(inbothNHSTandNeyman-Pearsontests),“discovered”that“acommon informaluseofP-valuesasmeasuresofsupportorevidenceforhypotheseshas seriouslogicalflaws”.Wewillelaborateonhis“discovery”inthecontextof informationtheory.

Essentially,thereasontouseP-values,inthefirstplace,althoughnotstated explicitlyassuch,to“infer”conclusionsfromdata,isthattheyseemstobe “informationmeasuresoflocation”derivedfromdata(evidence)insupportof hypotheses.Isthattrue?Specifically,Givenanullhypothesis Ho andastatistic Tn andtheobservedvalue Tn = t,theP-value p(Ho )= P (Tn ≥ t|Ho ),as afunctionof Ho ,forfixed Tn andtheobservedvalue Tn = t,is“viewed”asa measureofsupportthattheobservedvalue t lendsto Ho (oramountofevidence infavorof Ho )sincelargevaluesof p(Ho )= P (Tn ≥ t|Ho )makeitharderto reject Ho (whereas,smallvaluesreflectnon-supportfor Ho ,i.e.,rejection).But this“practice”isalwaysinformal,and“notheoryiseverputforwardforwhat propertiesameasureofsupportorevidenceshouldhave”.

Whatisaninformationmeasure?Informationdecreasesuncertainty.Qualitativeinformationishighifsurpriseishigh.Whenanevent A isrealized,itprovides aninformation.Clearly,inthecontextof“statisticalinformationtheory”,informationisadecreasingfunctionofprobability:thesmallertheprobabilityfor A tooccur,thehighertheinformationobtainedwhen A isrealized.If A standsfor “snowing”,thenwhen A occured,say,inBangkok,itprovidesa“huge”amount ofinformation I (A).Putitmathematically(asinInformationTheory,seee.g., CoverandThomas,[7], I (A)= log P (A).Forageneraltheoryofinformation withoutprobability,butkeepingtheintuitivebehaviorthatinformationshould beadecreasingfunctionofevents,see,e.g.,Nguyen[24].Thisintuitivebehavior isaboutaspecificaspectofthenotionofinformationthatweareconsideringin uncertaintyanalysis,namely, informationoflocalization.

Inthecontextoftestingaboutaparametricmodel,say, f (x|θ ),θ ∈ Θ ,each hypothesis Ho canbeidentifiedwithasubsetof Θ ,stilldenotedas Ho ⊆ Θ Aninformationmeasureoflocationon Θ isaset-function I :2Θ → R+ such that A ⊆ B =⇒ I (A) ≥ I (B ).Thetypicalprobabilisticinformationmeasureis I (A)= log P (A).Thisistheappropriateconceptofinformationmeasurein supportofasubsetof Θ (ahypothesis).Now,considerthesetfunction I (Ho )= P (Tn ≥ t|Ho )on2Θ .Let Ho ⊇ Ho .IfweuseP-valuestorejectnullhypotheses ornot,e.g.,rejecting Ho (i.e.,thetrue θo / ∈ Ho )when,say, I (Ho ) ≤ α =0.05, thensince Ho ⊇ Ho ,wealsoreject Ho ,sothat I (Ho ) ≤ α,implyingthat Ho ⊇ Ho =⇒ I (Ho ) ≥ I (Ho )whichindicatesthat I (.)isnotaninformationmeasure (derivedfromempiricalevidence/data)insupportofhypotheses,sinceitisan increasingratherthanadecreasingsetfunction. P-valuesarenotmeasuresof strengthofevidence.

6H.T.Nguyen

4AreNeyman-PearsonTestingTheoryAffected?

SofarwehavejusttalkedaboutNHST.HowNeyman-Pearson(NP)testing frameworkdiffersfromNHST?Ofcourse,theyare“different”,butnow,inview ofthebanofP-valuesinNHST,you“love”toknowifthatban“affects”your routinetestingproblemswhereinteachingandresearch,infact,youareusing NPtestsinstead?Clearlythefindingsareextremelyimportant:eitheryoucan continuetoproceedwithallyourfamiliar(asymptotic)testssuchas Z -test, t-test, X 2 -test,KS-test,DF-test,....or...youarefacing“thefinalcollapseof theNeyman-Pearsondecisiontheoreticframework”(asannouncedbyHurlbert andLombardi[15]!Andinthelatter(!),areyoupanic?

InaccusingFisher’sworkonNHSTas“worsethanuseless”,Neymanand PearsonembarkedonshapingFisher’stestingsettingintoadecisionframework asweallknowandusesofar,althoughscienceisaboutdiscoveryofknowledge, andnotaboutdecision-making.The“improved”frameworkisthis.Besidesa hypothesis,denotedas Ho (althoughitisnotfornullifying,butinfactforacceptance),thereisaspecifiedalternativehypothesis Ha (tochooseif Ho happensto berejected).Itisamodelselectionproblem,whereeachhypothesiscorresponds toastatisticalmodel.TheNPtestingisadecision-makingproblem:usingdata torejectoraccept Ho .Bydoingso,twotypesoferrorsmightbecommitted: falsepositive: α = P (reject Ho |Ho istrue),falsenegative β = P (accept Ho |Ho isfalse).It“improves”uponFisher’sarbitrarychoiceofastatistictocompute theP-valuetoreachadecision,namelyamostpowerful“test”atafixed α-level. Notethatwhilethevalueof α couldbethesameinbothapproaches,say0.05 (a“small”numberin[0, 1]forFisher),itsmeaningisdifferent,as α =5%in NPapproach(theprobabilityofmakingthewrongdecisionofthefirstkind).

Let’sseehowNP carryout theirtests?Asatestisusuallybasedonsome appropriatestatistic Tn (X1 ,X2 ,...,Xn )(thoughtechnicallynotrequired)where, say, X1 ,X2 ,...,Xn isarandomsample,ofsize n,drawnfromthepopulation,so thatweselectaset B inthesamplespaceof Tn asarejection(critical)region.

Themostimportantquestionis :Whatisthe rationale forselectingaset B asarejectionregion?Sincedata(valuesofthestatistics Tn )in B leadto rejectionof Ho (i.e.,onthebasisofelementsof B wereject Ho ),this inference procedure hastohavea“plausible”explanationforpeopletotrust!Notethatan inferenceprocedureisnotamathematicaltheorem!Inotherwords,whyadata in B providesevidencetoreject Ho ?Clearly,thishassomethingtodowiththe statistic Tn (X1 ,X2 ,...,Xn )!

Given α anda(test)statistic Tn ,therejectionregion Rα isdeterminedby P (Tn ∈ Rα |Ho ) ≤ α

AreP-valuesleftoutinthisdeterminationofrejectionregions?(i.e.,the rationaleofinferenceinNPtestsdoesnotdependonP-valuesof Tn ?).Putit differently:Howto“pick”aregion Rα tobearejectionregion?

NotethattheP-valuestatistic p(Tn )=1 FTn |Ho (Tn )correspondstoaN-P test.Indeed,let α begivenasthetype-Ierror.Then,thetest,say, Sn ,which

OnEvidentialMeasuresofSupportforReasoning7

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Integrated uncertainty in knowledge modelling and decision making 5th international symposium iukm 2 by sean.low999 - Issuu