Integrated membrane systems and processes 1st Edition Basile
Visit to download the full and correct content document: https://textbookfull.com/product/integrated-membrane-systems-and-processes-1st-edi tion-basile/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Membrane processes pervaporation vapor permeation and membrane distillation for industrial scale separations
1st Edition Moulik
https://textbookfull.com/product/membrane-processespervaporation-vapor-permeation-and-membrane-distillation-forindustrial-scale-separations-1st-edition-moulik/
Fundamentals of Membrane Bioreactors Materials Systems and Membrane Fouling 1st Edition Bradley Ladewig
https://textbookfull.com/product/fundamentals-of-membranebioreactors-materials-systems-and-membrane-fouling-1st-editionbradley-ladewig/
Modeling
in
Membranes and Membrane Based Processes
Industrial Scale Separations 1st Edition Anirban Roy (Editor)
https://textbookfull.com/product/modeling-in-membranes-andmembrane-based-processes-industrial-scale-separations-1stedition-anirban-roy-editor/
Integrated life-cycle and risk assessment for industrial processes and products Second Edition Marta Schuhmacher
https://textbookfull.com/product/integrated-life-cycle-and-riskassessment-for-industrial-processes-and-products-second-editionmarta-schuhmacher/
Enabling the Internet of Things From Integrated Circuits to Integrated Systems 1st Edition Massimo Alioto (Eds.)
https://textbookfull.com/product/enabling-the-internet-of-thingsfrom-integrated-circuits-to-integrated-systems-1st-editionmassimo-alioto-eds/
Controlling Biofouling in Seawater Reverse Osmosis
Membrane Systems First Edition Nirajan Dhakal
https://textbookfull.com/product/controlling-biofouling-inseawater-reverse-osmosis-membrane-systems-first-edition-nirajandhakal/
Solar
Shading Systems: Design, Performance, and Integrated Photovoltaics Maria Mandalaki
https://textbookfull.com/product/solar-shading-systems-designperformance-and-integrated-photovoltaics-maria-mandalaki/
Advancing
Information Systems Theories: Rationale and Processes 1st Edition Nik Rushdi Hassan
https://textbookfull.com/product/advancing-information-systemstheories-rationale-and-processes-1st-edition-nik-rushdi-hassan/
Integrated
Model of Distributed Systems Wiktor B. Daszczuk
https://textbookfull.com/product/integrated-model-of-distributedsystems-wiktor-b-daszczuk/
Integrated Membrane Systems and Processes
Editors Angelo Basile • Catherine Charcosset
IntegratedMembrane SystemsandProcesses
Editedby ANGELOBASILE
InstituteonMembraneTechnology–ItalianNationalResearch Council(ITM-CNR),UniversityofCalabria,Cosenza,Italy and
CATHERINECHARCOSSET
Laboratoired’AutomatiqueetdeG ´ eniedesProc ´ ed ´ es,CNRS, Universit ´ eLyon1,VilleurbanneCedex,France
Thiseditionfirstpublished2016 ©2016JohnWiley&SonsLtd
Registeredoffice
JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissiontoreuse thecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com.
TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright,Designs andPatentsAct1988.
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorby anymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,Designsand PatentsAct1988,withoutthepriorpermissionofthepublisher.
Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicbooks.
Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproduct namesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.The publisherisnotassociatedwithanyproductorvendormentionedinthisbook.
LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook, theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookand specificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstanding thatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliablefor damagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofacompetentprofessional shouldbesought.
Theadviceandstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofongoingresearch,equipment modifications,changesingovernmentalregulations,andtheconstantflowofinformationrelatingtotheuseofexperimental reagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertor instructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.ThefactthatanorganizationorWebsiteisreferredtointhisworkas acitationand/orapotentialsourceoffurtherinformationdoesnotmeanthattheauthororthepublisherendorsestheinformation theorganizationorWebsitemayprovideorrecommendationsitmaymake.Further,readersshouldbeawarethatInternet Websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.No warrantymaybecreatedorextendedbyanypromotionalstatementsforthiswork.Neitherthepublishernortheauthorshallbe liableforanydamagesarisingherefrom.
LibraryofCongressCataloging-in-PublicationData
Integratedmembranesystemsandprocesses/editedbyAngeloBasileandCatherineCharcosset. pagescm
Includesbibliographicalreferencesandindex. ISBN978-1-118-73908-2(cloth) 1.Membranefilters.2.Filtersandfiltration.I.Basile,Angelo,editor.II.Charcosset,Catherine,editor. TP156.F5I572016 660′ .284245–dc232015024794
AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:9781118739082
Setin10/12ptTimesbyAptaraInc.,NewDelhi,India. 12016
ListofContributors ix
Preface xi
1Ultrafiltration,Microfiltration,NanofiltrationandReverseOsmosisin IntegratedMembraneProcesses1
CatherineCharcosset
1.1Introduction1
1.2MembraneProcesses2
1.2.1Ultrafiltration,MicrofiltrationandNanofiltration2
1.2.2ReverseOsmosis3
1.2.3MembraneDistillation3
1.2.4Electrodialysis4
1.2.5MembraneBioreactors5
1.3CombinationofVariousMembraneProcesses6
1.3.1Pressure-DrivenSeparationProcesses6
1.3.2MembraneDistillationandPressure-Driven MembraneProcesses12
1.3.3ElectrodialysisandPressure-DrivenMembraneProcesses13
1.3.4MembraneBioreactorsandPressure-Driven SeparationProcesses14
1.3.5OtherProcessesandPressure-DrivenSeparationProcesses15 1.4Conclusion17 ListofAbbreviations18 References18
2BioseparationsUsingIntegratedMembraneProcesses23
RajaGhosh
2.1Introduction23
2.2IntegratedBioseparationProcessesInvolvingMicrofiltration24
2.3IntegratedBioseparationProcessesInvolvingUltrafiltration28 2.4Conclusion31 References32
Contents
3IntegratedMembraneProcessesintheFoodIndustry35 AlfredoCassano
3.1Introduction35
3.2FruitJuiceProcessing36
3.2.1FruitJuiceClarification36
3.2.2FruitJuiceConcentration38
3.2.3IntegratedSystemsinFruitJuiceProcessing40
3.3MilkandWheyProcessing48
3.3.1IntegratedSystemsinMilkProcessing48
3.3.2IntegratedSystemsinCheesemaking51
3.3.3IntegratedSystemsinWheyProcessing52
3.4Conclusions54 ListofAbbreviations54 References55
4ContinuousHydrolysisofLignocellulosicBiomassviaIntegrated MembraneProcesses61 MohammadmahdiMalmaliandS.RanilWickramasinghe
4.1Introduction61
4.2ContinuousEnzymaticHydrolysis63
4.3IntegratedSubmergedMembraneSystem65
4.4SugarConcentration66
4.5SugarConcentrationandHydrolysateDetoxificationbyNanofiltration68
4.6StatisticalDesignofExperiments69
4.7AnalysisofVarianceusingResponseSurfaceMethodology69
4.8FutureChallenges74
4.9Conclusion75 Acknowledgements75 ListofAbbreviations75 ListofSymbols75 References76
5IntegratedMembraneProcessesforthePreparationofEmulsions, ParticlesandBubbles79 GoranT.Vladisavljevi ´ c
5.1Introduction79
5.1.1MembraneDispersionProcesses80
5.1.2MembraneTreatmentofDispersions81
5.1.3ComparisonofMembraneandMicrofluidicDrop GenerationProcesses82
5.1.4ComparisonofMembraneandConventional HomogenisationProcesses83
5.2MembranesforPreparationofEmulsionsandParticles84
5.2.1SPGMembrane84
5.2.2MicroengineeredMembranes90
ivContents
5.3ProductionofEmulsionsUsingSPGMembrane92
5.4ProductionofEmulsionsUsingMicroengineeredMembranes96
5.5FactorsAffectingDropletSizeinDME98
5.5.1EffectofTransmembranePressureandFlux99
5.5.2InfluenceofPore(Channel)SizeandShearStressonthe MembraneSurface101
5.5.3InfluenceofSurfactant101
5.6FactorsAffectingDropletSizeinPME103
5.7IntegrationofMEwithSolid/Semi-SolidParticleFabrication104
5.7.1IntegrationofMEandCrosslinkingof Gel-formingPolymers104
5.7.2IntegrationofMEandMeltSolidification114
5.7.3IntegrationofMEandPolymerisation115
5.7.4IntegrationofMEandSolventEvaporation/Extraction118
5.8IntegrationofMembranePermeationandGasDispersion120
5.9IntegrationofMembraneMicromixingandNanoprecipitation121
5.10Conclusions123 ListofAcronyms123 Symbols124 Subscripts126 References126
6NanofiltrationinIntegratedMembraneProcesses141 BartVanderBruggen
6.1Introduction141
6.2PretreatmentforNanofiltration144
6.3NanofiltrationasaPretreatmentMethod146
6.4ProcessesinSeries148
6.5IntegratedProcesses150
6.6HybridProcesses153
6.7NanofiltrationCascades156
6.8Conclusions158 ListofAbbreviations159 References159
7Seawater,BrackishWaters,andNaturalWatersTreatment withHybridMembraneProcesses165 MaximePonti ´ eandCatherineCharcosset
7.1Introduction165
7.2DesalinationMarket166
7.2.1GrowthofDesalinationCapacityWorldwide166
7.2.2DesalinationTechnologies167
7.3SeawaterandBrackishWatersComposition168
7.3.1SeawaterComposition168
7.3.2BrackishWaterversusSeawater168
7.3.3ProductWaterSpecification170
Contentsv
7.4DesalinationwithIntegratedMembraneProcesses170
7.4.1MF/UF–RO170
7.4.2NFversusRO172
7.4.3NF–RO174
7.5NaturalWaterTreatmentUsingHybridMembraneProcesses176
7.5.1NaturalOrganicMatter178
7.5.2Arsenic183
7.5.3OtherSpecies186
7.6Conclusion190 ListofAcronyms191 References192
8WastewaterTreatmentUsingIntegratedMembraneProcesses197 JinsongZhangandAnthonyG.Fane
8.1Introduction197
8.2IMSApplicationforWastewaterTreatment:CurrentStatus198
8.2.1IMSforTextileIndustrialWastewater:Targetto ZeroDischarge198
8.2.2IntegratedPressure-DrivenMembraneProcessforMunicipal WastewaterReclamation200
8.2.3IntegratedMultipleFunctionDrivenMembraneProcessfor WastewaterReclamation212
8.3StrategicCo-locationConceptforIntegratedProcessInvolvingRO, PRO,andWastewaterTreatment219
8.4Conclusions221 Nomenclature221 ListofGreekletters222 References222
9MembraneReactor:AnIntegrated“Membrane + Reaction”System231 AngeloBasile,AdolfoIulianelliandSimonaLiguori
9.1Introduction231
9.2HydrogenEconomy232
9.2.1WhyMembraneReactors?232
9.3MembraneReactors235
9.3.1MembraneReactorsUtilization236
9.4MembranesforMembraneReactors236
9.4.1CeramicMembranes237
9.4.2ZeoliteMembranes237
9.4.3CarbonMembranes238
9.4.4MetalMembranes238
9.4.5CompositeMembranes239
9.5MassTransportMechanismsforInorganicMembranes239
9.6ApplicationsofInorganicMembraneReactors241
9.6.1RecentAdvancesonHydrogenProductioninMRsfromSteam ReformingofRenewableSources241
viContents
9.7Conclusions244
ListofSymbols245 ListofAbbreviations245 References246
10MembranesforIGCCPowerPlants255 KamranGhasemzadeh,AngeloBasile,andSeyyedMohammadSadatiTilebon
10.1Introduction255
10.2IGCCTechnologyforPowerGeneration256
10.3ApplicationofMembranesinanIGCCPowerPlants257
10.3.1HydrogenSelectiveMembranes264
10.3.2OxygenSelectiveMembranes272
10.3.3CO2 SelectiveMembranes275
10.4ConclusionandFutureTrends280 Abbreviations280 References281
11IntegrationofaMembraneReactorwithaFuelCell285 ViktorHacker,MeritBodner,andAlexanderSchenk
11.1Introduction285
11.2FuelCellBasics286
11.2.1ReactionMechanisms287
11.2.2ElectrochemicalBasicsoftheFuelCell289
11.3DifferentTypesofFuelCells292
11.3.1MethodsofClassification292
11.3.2FuelCellTypes294
11.4ContaminationsofthePEFC295
11.4.1AnodeGasStream295
11.4.2CathodeGasStream297
11.4.3ContaminationsofComponents298
11.5MethodstoAvoidPoisoning298
11.5.1IncreasingtheFuelCellTolerancetowards Contaminations299
11.5.2AvoidingContaminations300 11.6Conclusion302
ListofAbbreviations302 ListofSymbols302 References303
12SolarMembraneReactor307 KamranGhasemzadeh,AngeloBasile,andAbbasAghaeinejad-Meybodi
12.1Introduction307
12.2ConfigurationsofSolarMRSystems308
12.2.1SolarMRsforWaterandWastewaterTreatment309
12.2.2SolarMRsforHydrogenProduction312
Contentsvii
12.3SolarMRsApplicationfromaModelingPointofView319
12.3.1WaterDecompositionLiterature319
12.3.2SteamReformingLiterature320
12.4SolarMRsApplicationfromanExperimentalPointofView322
12.4.1WaterDecompositionLiterature322
12.4.2WaterElectrolysisLiterature329
12.4.3SteamReformingLiterature331
12.5TheMainChallenges334
12.6ConclusionandFutureTrends335
ListofAbbreviations335 References336
13Membrane-AdsorptionIntegratedSystems/Processes343 SayedS.MadaeniandEhsanSalehi
13.1Introduction343
13.2AdsorptionPretreatmentforMembranes345
13.3IntegratedMembrane-AdsorptionSystems347
13.3.1LPM-AdsorptionIntegration348
13.3.2Membrane-AdsorptionBioreactors352
13.3.3MABROperatingConditions354
13.3.4MABRApplications355
13.4MembraneAdsorbents356
13.4.1Protein-AdsorbentMembranes357
13.4.2Metal-AdsorbentMembranes358
13.4.3Imprinted-MembraneAdsorbents360
13.4.4ThinMembraneAdsorbents362
13.4.5ModelingAspects362
13.4.6RegenerationandReuse365
13.5AdsorptionPost-treatmentforMembranes366 References367
viiiContents
Index 375
ListofContributors
AbbasAghaeinejad-Meybodi,ChemicalEngineeringDepartment,SahandUniversityof Technology,Tabriz,Iran
AngeloBasile,InstituteonMembraneTechnology–ItalianNationalResearchCouncil (ITM-CNR),UniversityofCalabria,Rende(Cs),Italy
MeritBodner,InstituteofChemicalEngineeringandEnvironmentalTechnology,Graz UniversityofTechnology,Graz,Austria
AlfredoCassano,InstituteonMembraneTechnology–ItalianNationalResearchCouncil (ITM-CNR),UniversityofCalabria,Cosenza,Italy
CatherineCharcosset,Laboratoired’AutomatiqueetdeG ´ eniedesProc ´ ed ´ es,CNRS, Universit ´ eLyon1,VilleurbanneCedex,France
AnthonyG.Fane,SingaporeMembraneTechnologyCentre,NanyangTechnologicalUniversity,Singapore
KamranGhasemzadeh,ChemicalEngineeringDepartment,UrmiaUniversityofTechnology,Urmia,Iran
RajaGhosh,DepartmentofChemicalEngineering,McMasterUniversity,Ontario,Canada
ViktorHacker,InstituteofChemicalEngineeringandEnvironmentalTechnology,Graz UniversityofTechnology,Graz,Austria
AdolfoIulianelli,InstituteonMembraneTechnology–ItalianNationalResearchCouncil (ITM-CNR),UniversityofCalabria,Cosenza,Italy
SimonaLiguori,InstituteonMembraneTechnology–ItalianNationalResearchCouncil (ITM-CNR),UniversityofCalabria,Cosenza,Italy
SayedS.Madaeni,MembraneResearchCenter,ChemicalEngineeringDepartment,FacultyofEngineering,RaziUniversity,TaghBostan,Kermanshah,Iran
MohammadmahdiMalmali,RalphE.MartinDepartmentofChemicalEngineering,UniversityofArkansas,Fayetteville,AR,USA
xListofContributors
MaximePonti ´ e,L’UNAM,LaboratoryGEPEAUMRCNRS6144,Nantesuniversity, Nantes,France
EhsanSalehi,DepartmentofChemicalEngineering,FacultyofEngineering,ArakUniversity,Arak,Iran
AlexanderSchenk,InstituteofChemicalEngineeringandEnvironmentalTechnology, GrazUniversityofTechnology,Graz,Austria
BartVanderBruggen,DepartmentofChemicalEngineering,ProcESS–ProcessEngineeringforSustainableSystems,KULeuven,Belgium;FacultyofEngineeringandthe BuiltEnvironment,TshwaneUniversityofTechnology,PrivateBagX680,Pretoria0001, SouthAfrica
GoranT.Vladisavljevi ´ c,ChemicalEngineeringDepartment,LoughboroughUniversity, Leicestershire,UK
S.RanilWickramasinghe,RalphE.MartinDepartmentofChemicalEngineering,UniversityofArkansas,Fayetteville,AR,USA
JinsongZhang,SingaporeMembraneTechnologyCentre,NanyangTechnological University,Singapore
Preface
Membranescienceandtechnologyhaveshownanimpressivegrowthsincetheearly1960s withthediscoveryofaneffectivemethodforthepreparationofasymmetriccellulose acetatemembranes.Membranetechnologyisnowrecognizedforanumberofadvantagessuchasoperationalsimplicity,lowenergeticrequirements,goodstabilityundera widerangeofoperativeconditions,easycontrolandscale-up,andlargeflexibility.With theincreasingunderstandinganddevelopmentofmembranetechniques,itbecamepossibletointegratevariousoperationswiththepurposetoimproveperformanceinterms ofproductquality,plantcompactness,environmentalimpact,andenergyuse.Hybridor integratedmembraneprocessescanbeclassifiedintoseveralcategories.Insomeprocesses,adsorptionorreactionmaybeincludedinthemembraneitself,likeinmembrane reactors,ion-exchangemembranes,adsorptivemembranes,andothers.Otherhybridorintegratedmembraneprocessescombineseveralmembraneseparationsteps,onestepbeing dependentontheformerone,inamultistageconfiguration.Finally,membranefiltrationmaybeassociatedwithotherunitoperationslikeadsorptiononactivatedcarbonor ion-exchangeresins.
Thisbookissplitintotwoparts.Thefirstpartcoversseveralexamplesofintegrated membranesystemsandprocessesinthewater,food,biotechnology,andpharmaceutical fields.Chapter1(Charcosset)reviewsanddiscussesprocessesbasedontheintegration ofultrafiltration,microfiltration,nanofiltration,reverseosmosis,andothermembraneprocessessuchasmembranedistillationandmembranebioreactors.Examplesofseawater desalination,wastewatertreatment,andseparationinbiotechnologyandfoodindustries arealsogiven.Chapter2(Ghosh)reviewsdevelopmentsintheareaofintegratedmembraneprocessforbioseparations.Byusingintegratedmembraneprocesses,thenumberof separationstepsrequiredforpurificationofbiologicalmacromoleculessuchasproteins andnucleicacidscouldbesignificantlyreduced.Mostintegratedmembraneprocessesfor biologicalapplicationshavebeendevelopedbasedonmicrofiltrationandultrafiltration.In Chapter3(Cassano),themostrelevantapplicationsofintegratedmembranesystemsin specificareasoftheagro-foodproduction,suchasfruitjuice,milk,andwheyprocessing, arereviewedanddiscussed,highlightingtechnologicaladvancesandimprovementsover conventionalmethodologies.InChapter4(MalmaliandWickramasinghe),itisshown thatmembrane-basedseparationprocessesprovidetheopportunityforsignificantprocess intensificationthroughdevelopmentofacontinuoushydrolysisprocess.However,design ofacontinuoushydrolysisprocessislikelytoinvolvetheuseofmorethanonemembrane unitinseries.Chapter5(Vladisavljevi ´ c)isanoverviewofmembraneprocessesusedforthe
preparationofliquid–liquidandgas–liquidmicro-andnano-dispersions,includingdirect andpremixmembraneemulsification,membranemicromixing,andmembranemicro-and nano-bubbling.Integrationofmembraneemulsificationanddownstreamprocessingforthe preparationofstructuredmicroparticlesisalsocovered.InChapter6(VanderBruggen), integrationofnanofiltrationwithotherprocessesisdescribedonthebasisofdifferentlevelswithincreasinginterdependency:pretreatmentpriortonanofiltrationandnanofiltration asapretreatmentforfurtherprocessing,aspartofprocessesinseries,intheintegration ofprocessesandhybridization,andinmembranecascades.Itisshownthatbyintegratingprocesses,theperformanceoftheoverallsystemcanbesubstantiallyenhanced,far beyondthelimitationsofasinglemembrane.Chapter7(Ponti ´ eandCharcosset)highlights recentdevelopmentsinhybridmembraneprocessesfordesalination,suchasmembrane pre-treatmentbeforereverseosmosis,andnaturalwatertreatment,suchasactivatedcarbonadsorptionoroxidationassociatedwithultrafiltrationormicrofiltration.InChapter8 (ZhangandFane),integratedmembranesystemsforindustrywastewatertreatmentare presented,providingmoresustainablesolutionsforenergyandcost-saving,thatis,smaller footprint,approachingtozerodischarge,etc.Theconceptofintegratedmembranesystem aswellassomecasestudiesforwastewatertreatmentisintroducedanddiscussed.The secondpartconsidersvariousexamplesofintegratedmembranesystemsandprocessesin inorganicapplications,IGCCpowerplants,solarreformers,fuelcells,pervaporationsystems,aswellasadsorption-membraneintegratedprocesses.Chapter9(Basile,Iulianelli, andLiguori)pointsouttherelevanceofmembranereactortechnology.Inparticular,once appliedforhydrogengeneration,specialattentionispayedtotheconceptofamembrane reactorusedforreformingprocesses.Furthermore,anoverviewofdifferentkindsofinorganicmembranesusefulinmembranereactorapplicationsisgiven,highlightingtherole ofthePd-basedmembranesandtheirbenefitsanddrawbacks.Chapter10(Ghasemzadeh, Basile,andTilebon)reviewstheapplicationofmembranes(microporousceramic,palladiumbased,polymeric,andmixedionicandelectronicmembranes)forhydrogen,carbon dioxide,andoxygenseparationintheintegratedgasificationcombinedcycle(IGCC)power plant.Moreover,theroleofmembranetechnologyontheefficiencyofIGCCisalsodiscussed.Chapter11(Hacker,Bodner,andSchenk)investigatestheintegrationofamembrane reactorwithafuelcell.Polymerelectrolytefuelcells(PEFCs)convertthechemicalenergy intoelectricalenergy.Theinfluencesofimpuritiesoffuelandairontheperformanceand thelifetimeofPEFCsarediscussed,andtheadvantagesofthecombinationofareformer unitandamembranereactortocircumventtheselifetimelimitationsforasustainablepower productionoutofhydrocarbonfuelsareshown.InChapter12(Ghasemzadeh,Basile,and Aghaeinejad-Meybodi),anoverviewofthemainissuesdealingwiththecouplingbetween solarplantandmembranereactorispresentedasanoveltechnology,inwhichdifferentprocessessuchaswaterelectrolysis,waterdecomposition,andsteamreformingare investigated.
Chapter13(MadaeniandSalehi)dealswithadsorption-membraneintegratedsystems/ processes.Integrationofadsorptionandmembranesystemsisapromisingsolutionfor theproblemsofindividualprocesses.Membraneadsorptionbioreactorsandmembrane adsorbentsarethemostattemptedadsorption/membraneintegrationswithanimproved separationperformance.
xiiPreface
Theeditorswouldtakethisopportunitytoparticularlythankalltheauthorsfortheir excellentworkandavailabilityinpreparingandreviewingthechaptersofthisbook.Special thanksalsotothevariousexpertsofWiley:theirspecialistichelphighlycontributedto improvethefinalpresentationofthisbook.
AngeloBasile CatherineCharcosset
Prefacexiii
Ultrafiltration,Microfiltration, NanofiltrationandReverseOsmosisin
IntegratedMembraneProcesses
CatherineCharcosset
Laboratoired’AutomatiqueetdeG ´ eniedesProc ´ ed ´ es,CNRS,Universit ´ eLyon1, VilleurbanneCedex,France
1.1Introduction
Membranescienceandtechnologyhaveknownanimpressivegrowthsincetheearly1960s whenLoebandSourirajandiscoveredaneffectivemethodforthepreparationofasymmetric celluloseacetatemembraneswithincreasedpermeationfluxwithoutsignificantchangesin selectivity.Pressure-drivenseparationtechniquessuchasmicrofiltration(MF),ultrafiltration(UF),nanofiltration(NF)andreverseosmosis(RO)havethenbeenextensivelystudied anddevelopedinindustriesincludingdesalinationandwastewatertreatment,biotechnologyandpharmaceutics,chemicalandfoodindustries.Othermembraneprocesseshave beendevelopedandfoundindustrialapplicationssuchasgasseparationandpervaporation, membranedistillation(MD),electrodialysis(ED),membranebioreactor(MBRs),andmembranecontactors.Membranetechnologyisusuallyrecognizedforthefollowingadvantages: operationalsimplicity,lowenergeticrequirements,goodstabilityunderawiderangeof operativeconditions,higheco-compatibility,easycontrolandscale-up,largeflexibility[1].
Withtheincreasingunderstandinganddevelopmentofmembranetechniques,itbecame possibletointegratevariousmembraneoperationsinthesameprocesswiththepurposeto improveperformanceintermsofproductquality,plantcompactness,environmentalimpact, andenergyuse.Theconceptofintegratedmembraneprocessesappearsclearlyattheend
IntegratedMembraneSystemsandProcesses,FirstEdition.EditedbyAngeloBasileandCatherineCharcosset. ©2016JohnWiley&Sons,Ltd.Published2016byJohnWiley&Sons,Ltd.
1
ofthe1990s[1]whenseveralapplicationswerereportedsuchashybridprocessNF–ED fortreatmentofpulpbleachingeffluents[2],multistagesUF,NFandROforremovalof contaminantsfromwastewatereffluents[3]andRO–MDforseawaterdesalination[4].In thefollowingyears,itbecamemoreandmoreobviousthatothercombinationscouldhave significantimpact[5],suchasMBR–ROforwastewatertreatment[6],pressure-driven membraneprocesses–MDforthetreatmentofwastewaters[7],andmultistagespressuredrivenmembraneprocessesforhigh-resolutionseparationsofbiomoleculesfromfoodand biotechnologyfeeds[8].
Inthischapter,somegeneralbackgroundsonmembraneprocessesarefirstrecalled includingpressure-drivenprocesses(MF,UF,NF,RO),andMD,EDandMBRs.Examplesofmembraneintegratedprocessesarethengivensuchasmultistagespressuredriven membraneprocessesandpressure-drivenmembraneprocessesassociatedtoMD,EDor MBRs.Applicationsconcernseawaterdesalination,wastewatertreatment,separationin biotechnologyandfoodindustriesandchemicalproduction.Thesehybridmembranetechniquesarefurtherdetailedinthefollowingchaptersofthebookaswellasotherintegrated membraneprocesses.Integratedmembraneprocessesincludinggasandvapourseparation andcatalyticmembranereactorsareconsideredinthesecondpartofthisbook.Another importantaspectofintegratedmembraneprocessesconcerntheirassociationwithprocesses otherthanmembranes.Thisisalsoconsideredinthefollowingchapters.
1.2MembraneProcesses
Variousmembraneoperationsareavailableforawiderangeofindustrialapplications. Pressure-drivenmembraneprocessesincludeMF,UF,NFandRO.Othermembraneunit operationsincludeMD,EDandMBRs.
1.2.1Ultrafiltration,MicrofiltrationandNanofiltration
UFisasizeexclusionpressure-drivenseparationprocesswhichcameintouseinthe1960s whenLoebandSourirajandiscoveredthepreparationofasymmetriccelluloseacetate membranes[9].UFmembranestypicallyhaveporesizesintherangeof10–1000 ˚ Aand arecapableofretainingspeciesinthemolecularweightrangeof300–1,000,000Da. Operatingpressuresareusuallyintherangeof0.2–4bar.Typicalrejectedspeciesinclude biomolecules,polymersandcolloidalparticles,aswellasemulsionsandmicelles.UFis foundinaverylargerangeofindustriessuchasfood,biotechnologyandpharmaceutics, chemicalsandwaterproduction.
MFisapressure-drivenseparationprocesssimilartoUFwithmembranestypically havingnominalporesizesontheorderof0.1–1.0 μm[9].MFapplicationsincludeconcentrating,purifyingorseparatingmacromolecules,colloidsandsuspendedparticlesfrom solution.MFprocessingiswidelyused,forexample,inthefoodindustryforapplications suchaswine,juiceandbeerclarification,forwastewatertreatment,andplasmaseparation frombloodfortherapeuticandcommercialuses.
NFdatesbacktothe1970swhenROmembraneswitharelativelyhighwaterflux operatingatrelativelylowpressuresweredeveloped[10,11].Suchlow-pressureRO membranesweretermedNFmembranes.NFisapressure-drivenmembraneprocess, involvingpressuresbetween5and20bar,usedtoseparateionsandmoleculesinthe
2IntegratedMembraneSystemsandProcesses
molecularweightrangeof200–2000gmol 1 .NFmembraneshaverelativelyhighcharge andaretypicallycharacterizedbylowerrejectionofmonovalentionsthanthatofROmembranes,butmaintaininghighrejectionofdivalentions.Applicationsincludepretreatment beforedesalination,watertreatment,foodindustry,chemicalprocessingindustry,pulpand paperindustry,metalandacidrecovery,etc.
1.2.2ReverseOsmosis
RObecamecommerciallyviableinthe1960swhenLoebandSourirajandiscoveredasymmetricmembranes.ROisapressure-drivenprocessthatseparatedtwosolutionswith differentconcentrationsacrossasemi-permeablemembrane[12].InRO,thepressuredifference Δp betweentheconcentratedsideandthedilutesideislargerthanacertainvalue thatdependsuponthedifferenceoftherespectiveconcentrationsandiscalledtheosmotic pressuredifference Δπ.Thedirectionofflowisreversedasobservedinosmosisandwater flowsfromtheconcentratetothediluteside.Therateatwhichwatercrossesthemembrane isthenproportionaltothepressuredifferentialthatexceeds Δπ.Inordertoovercomethe feedsideosmoticpressure,fairlyhighfeedpressureisrequired.Inseawaterdesalination itcommonlyrangesfrom55to70bar.Operatingpressuresforthepurificationofbrackish waterarelowerduetothelowerosmoticpressurecausedbylowerfeedwatersalinity.The mostcommonlyusedapplicationsofROaredesalination,brackishwaterandwastewater treatmentandconcentratingfoodandbiotechnologicalpreparations.
1.2.3MembraneDistillation
MDisathermallydrivenmembraneprocessinwhichahydrophobicmicroporousmembraneseparatesahotandcoldstreamofwater[13].Thehydrophobicnatureofthemembranepreventsthepassageofliquidwaterthroughtheporeswhileallowingthepassageof watervapour(Figure1.1).Thetemperaturedifferenceproducesavapourpressuregradient
Aqueous solution
membrane
r
Figure1.1 Schematicdiagramillustratingtheprincipleofmembranedistillation.
Ultrafiltration,Microfiltration,NanofiltrationandReverseOsmosis3
Hydrophobic
Aqueous solution Sweep gas Vacuum or Air gap Vapour
whichcauseswatervapourtopassthroughthemembraneandcondenseonthecoldersurface.Theresultisadistillateofveryhighpurity.MDhasbeendevelopedintofourdifferent configurations,differingbythemethodemployedtoimposethevapourpressuredifference acrossthemembrane.Thepermeatesideofthemembranemayconsistofacondensingfluid indirectcontactwiththemembrane,acondensingsurfaceseparatedfromthemembraneby anairgap,asweepinggas,oravacuum.MDhasbeenappliedforwaterdesalination,waste treatment,andfoodprocessinglikemilkandjuiceconcentration,biomedicalapplications suchaswaterremovalfrombloodandtreatmentofproteinsolutions[14].Indesalination byMD,theheatedseawaterisindirectcontactwithonesideofthemembrane.Saltsand organicmatterstayinthefeedwhilepurewaterdiffusesthroughthemembrane.
Osmoticdistillation(OD)isavariantofMDforwhichthedrivingforceisadifferencein concentration.ODusesthehydrophobicmicroporousmembranetoseparatetwoaqueous solutionshavingdifferentsoluteconcentrations:adilutesolutionononesideandahypertonicsaltsolution(concentratedbrinestripper)ontheoppositeside[15].Thehydrophobic natureofthemembranepreventspenetrationoftheporesbyaqueoussolutions,creating airgapswithinthemembrane.Thewatervapourpressuregradientacrossthemembrane determinesatransferofvapouracrosstheporesfromthehighvapourpressurephasetothe lowone.Thismigrationofwatervapourresultsintheconcentrationofthefeedanddilution oftheosmoticagentsolution.ODcanproceedatambienttemperatureandisanattractive processfortheconcentrationofsolutionscontainingthermo-sensitivecompoundssuchas fruitjuicesandpharmaceuticals.
Membranecrystallization(MCr)[16]hasbeenproposedasanextensionofMD:solutions,concentratedabovetheirsaturationlimitbysolventevaporationthroughmicroporous hydrophobicmembranes,reachasupersaturatedstateinwhichcrystalsnucleateandgrow. Thecrystallizingsolutionflowsalongthemembranefibres.Thedrivingforceoftheprocess isavapourpressuregradientbetweenbothsidesofthemembranewhichmaybeactivated byheatingthefeedsolution.MCrismainlyappliedatlaboratoryscalefortheformationof crystalswithwell-controlledpropertiesandthetreatmentofbrinedisposalfromROplants.
1.2.4Electrodialysis
ThegeneralprincipleofEDisknownsincethe1940s.Theprocessisbasedonthemovementofchargedspeciesinanelectricalfield:anionsmovetowardstheanode,whilecations areattractedbythecathode[17].Themovementoftheionsiscontrolledbyion-selective membranesbetweentheanodeandcathode.Anion-exchangemembranes(AEM)arepermeableforanions,whilecationsareheldback.Cation-exchangemembranes(CEMs)show theoppositebehaviour.TheEDstackisdividedintoseveralcellsbyAEMandCEMinan alternatingsequence(Figure1.2).ThebasicunitofanEDstackconsistsofapairofdiluted andconcentratedcompartments.Theconcentrationofionicspeciesisreducedinthediluted compartmentsandincreasedintheconcentratedcompartments.Onemajoradvantageof EDcomparedtoROisthatahigherbrineconcentrationcanbeachievedbecausethereisno osmoticpressurelimitation.Someofthemoreimportantlargescaleindustrialapplications ofconventionalEDincludebrackishwaterdesalination,wastetreatment,demineralization offoodproductsandtablesaltproduction[17].
ConventionalEDcanbecombinedwithbipolarmembranesinaprocesstermed bipolarmembraneelectrodialysis(BMED)[17].Bipolarmembranesarecomposedof
4IntegratedMembraneSystemsandProcesses
Figure1.2 Schematicdiagramillustratingtheprincipleofelectrodialysis. Source: Reproduced fromReference17withpermissionfromElsevier.
cation-andanion-exchangelayerswitha4–5nmthicktransitionlayerarrangedbetween twoelectrodes;theyareinstalledinalternatingseriesinanelectrodialysisstack.CommercialplantsofBMEDareutilizedtoproduceacidsandbasesfromthecorrespondingsalts.
1.2.5MembraneBioreactors
MBRshavebeenstudiedfromthe1980sasalternativeapproachestoclassicalmethods ofimmobilizingmicroorganisms,suchasenzymes,antibodiesandactivatedsludge.The microorganismsaresuspendedinsolutionandcompartmentalizedbyamembraneina reactororimmobilizedwithinthemembranematrixitself.Inthefirstmethod,thesystem consistsofatraditionalstirredtankreactorcombinedwithamembraneseparationunit, suchasUFandMF.Inthesecondmethod,themembraneactsbothasasupportforthe microorganismsandasaseparationunit.
Today,membranebioreactorsystemsareappliedatindustrialscaleforwatertreatment suchasindustrialwastewater,domesticwastewaterandspecificmunicipalwastewater [18,19].Conventionaltreatmentofwastewaterusuallyconsistsofathree-stageprocess: sedimentationofsolidsinthefeedwaterfollowedbyaerobicdegradationoftheorganic matterusingactivatedsludgeandthenasecondsedimentationprocesstoremovethe biomass.AnMBRcandisplacethetwophysicalseparationprocessesbyfilteringthe biomassthroughanMForUFmembrane.MBRspresentseveraladvantagescomparedto activatedsludgeplantsincludingtheircompactness(uptofivetimesmorecompactthan conventionalplants),reducedsludgeproduction,andhigherproductwaterquality[20]. ThetwomainMBRconfigurationsareimmersedandexternalconfigurationswhichare characterizedbydifferentoperatingconditions(membranematerial,filtrationmode,shear stress,etc.).Membranesareusuallyflatsheetorhollowfibres(immersedconfiguration)or multitube(externalconfiguration).
Ultrafiltration,Microfiltration,NanofiltrationandReverseOsmosis5
Diluate A A CCC Anode Electrode rinse Feed Repeating unit Electrode rinse Cathode + + + + + + + + + + + + + + –– + + + + + + + + –––– –––––+ + + + + + + + + + + + –––––––––––––––––––––––––––––––––+
Concentrate
1.3CombinationofVariousMembraneProcesses
Membraneprocessescanbeassociatedintheoverallpurificationorproductionschemes inindustrialapplications.Theyoftenincludepressure-drivenmembraneprocessesaspretreatmentbeforeotherpurificationstepsorasafinaltreatment.Pressure-drivenmembrane processesmaybeassociatedwithotherprocessessuchasMD,MBRsandED.Some examplesinthefieldofwastewatertreatment,desalination,foodindustryandbiotechnology andpharmaceuticsaregiveninsection1.3.1.
1.3.1Pressure-DrivenSeparationProcesses
Duetotheirdifferentretentionproperties,pressure-drivenmembraneprocessescanbe associatedinacascadeconfigurationinapurificationscheme.Atafirststep,setting, flocculation,sandorcartridgefiltrationsservetoremoveverylargeparticles.Then,MF canbeusedtoremovelargecompounds,suchassuspendedparticles,colloidalmaterials andbacteria.TheobtainedsuspensioncanbetreatedbyUFtoseparateorremovemacromolecules,colloids,solutesinthemolecularweightrangeof300–1,000,000Da.NForRO canthenbeusedtoremoveverysmallmoleculesandsalts.Inageneralway,itcanbeseen thatdifferentmembraneprocessesinacascadearecloselylinked.Themembraneatstep n reducesfoulingofthemembraneatstep n + 1,thusincreasingthepermeationfluxand reducingthefluxdecay.Atstep n + 1,themembraneperformancedependsonsteps <n. Astheseintegratedprocessesareusedtotreatindustrialsuspensionssuchaswastewater effluentandfoodandbiologicalsuspensions,itcanbeforeseenthattheirbehaviourwillbe verydifficulttopredict.
1.3.1.1Pre-treatmentinSeawaterDesalination
Theapplicabilityofmembranesinseawaterdesalinationhasincreasedinthelast30years withmorethan2000ROinstallationsoperatingworldwide.Manydesalinationplantshave beenchangedtousemembraneprocessesbecausetheyaremuchmoreenergeticallyefficient thanthermaltechniques.InseawaterROdesalination,pre-treatmentservestoreducefoulingpotential,increasemembranelife,maintainperformancelevelandminimizescalingon theROmembranesurface[12].MostROplantsusedchemicalandphysicalpre-treatment withoutmembranetechnologies.Physicalpre-treatmentgenerallyusesflocculation,settling,sandfiltrationandcartridgefiltrationtoobtainfeedwaterwithalowsiltdensity index(SDI),whereSDIdescribesthefoulingpotentialofthefeedwaterandisdetermined infiltrationtestswithMFmembranes.Chemicalpre-treatmentincludeschlorinationto disinfectthewaterandpreventbiologicalgrowth,coagulationandflocculationagents,pH adjustment,antiscalingagentstoreduceprecipitationofsaltsontheROmembranesurface anddechlorinationpriortotheROstagetoavoiddamageofthemembranebyoxidation.
Theinterestinmembranepre-treatmentpriortoROhasbeenrecognizedformany years[21]buthasbeenlimitedbyhighcostcomparedtoconventionalpre-treatment. Withadvancesinmembranetechnologyandincreasingrequirementsonwaterquality,the useofmembranepre-treatmentpriortoROisnowasuitablealternativetoconventional pre-treatment[12].Itisgenerallyestimatedthatmembranepre-treatmentwillrapidly growinthecomingyears.BothUFandMFmembranes,usedaspre-treatmentunits,are abletoremovesuspendedparticles,colloidalmaterials,bacteria,virusandpathogenic
6IntegratedMembraneSystemsandProcesses
microorganismsfromrawwater.TheyguaranteeanSDIoftheROfeedwatergenerally below2.5evenwithstrongfluctuationofrawwaterquality,enablingoperationwitha highandstablepermeatefluxeveninlong-termoperation.Theyusuallyrequireless chemicaladditionthanconventionalpre-treatment,whichischaracterizedbyaratherhigh consumptionofchemicals.Inaddition,membranesystemsrequiresignificantlylessspace thanconventionalpre-treatment.
Membranepre-treatmentpriortoROhasbeensuccessfullyappliedatlaboratoryscale andpilotscale.Atlaboratoryscale,Kumaretal.[22]comparedMFandUFmembranes usingdead-endfiltrationbeforeROexperiments.Naturalseawaterwasfirstfilteredthrough a1 μmprefilter.MFpretreatmentwasfoundmoreeffectiveinreducingROfoulingthanconventionalfiltration.UFpretreatmentwiththe100kDamembranedidnotdecreasefouling comparedtotheMFmembrane.The20kDaUFmembraneswasthemosteffectiveinreducingfoulingbutoperatedathigherpressuresforthesamefluxastheMFand100kDaUF membranes.Atthreedifferentlocations,Vialetal.[23]operatedalong-termpilotequipped with0.1 μmhollowfibreMicrozaROmembranesforpre-treatmentofMediterraneanseawater.Dependingonthelocation,thepilotsoperatedwithorwithoutpre-treatmentusing ferricchlorideandwithorwithoutdailysodiumhypochloritebackwash.Thesystemoptimizationyieldedstable,reproduciblepermeateflowandpermeateSDIbelow1.8.Water qualityallowsROoperationathighrecovery,enhancingthetotalsystemrunningcost.
UFwasalsodemonstratedtoprovideexcellentpre-treatmenttoROatvariousdesalinationsites,forexampleinSaudiArabia,GulfofMexico,theRedSeaandtheMediterranean [24],andatQingdaoJiaozhouBay,theYellowSeainChina[25].Forexample,Pearce etal.[24]operatedUFpre-treatmenttoROdesalinationfora6-monthperiodatJeddah Port,SaudiArabia,asanalternativetoitsconventionalpre-treatmentfacility,whichcould notmeettargetedfeedwaterqualityduringperiodsofalgalbloomandstorms.Anaverage filtrateSDIof2.2wasobtained,approximatelytwounitsbetterthantheexistingconventionalpre-treatment.Xuetal.[25]utilizedUFhollowfibremembranesaspretreatment priortoROdesalinationatQingdaoJiaozhouBay,theYellowSeainChina(Figure1.3).
Figure1.3 TheUF–ROpilotsystemforseawaterdesalination.(a)Schematicdiagramofthe pilotsystem.(b)Photographofthepilotsystem. Source: ReproducedfromReference25with permissionfromElsevier.
Ultrafiltration,Microfiltration,NanofiltrationandReverseOsmosis7
Raw seawater (a)
Intake tank Sand filter Buffer tank Injection well UF RO
(b)
Duringtheexperimentalperiods,theUF–ROsystemwasrunstablyandsuccessfully,withoutanychemicalsrequiredfordisinfection,flocculation,enhancedchemicalbackwashand cleaning.
TheuseofNFupstreamROisalsoapossiblealternativeaswaterhardnesscanthusbe stronglyreduced,andthemostpartofmultivalentionscanberejected[26,27].Inaddition, monovalentspeciesareretainedby10–50%,dependingontheirmolecularweightand electrostaticinteractionswiththemembrane.Asaconsequence,theosmoticpressureof ROfeedandretentatestreamsisdecreased,thusallowingthesystemtooperateathigh waterrecoveryfactorswithaconsiderabledecreaseinscaleformingcomponents.For applicationatindustrialscale,theSalineWaterConversionCorporation(SaudiArabia)has developedNFpretreatmentpriortoRO.Initialworkonapilotplantscale,resultedinits applicationinoneofthecommercialROplantsatUmmlujjinoperationsinceSeptember 2000.Al-Hajourietal.[28]detailedthelong-termoperationoftheNF–ROplantaswell asdifferentresearchprogramswhichwereundertakenandtheresultsobtained.
Thecomparisonofoverallcostsofmembranepre-treatmentandconventionalpretreatmentmaydependonsite-specificfactors[12].Fluctuationsinthefeedwaterquality intermsofturbidityandtotaldissolvedsolids(TDS)aswellasalgaebloomcancause problemsforconventionalpre-treatment,whichmightresultinadditionalcost.Membrane pre-treatmentsarelesssensitivetofluctuationsoffeedwaterqualityandsupplytheRO stagewithsuperiorwaterqualityforlong-termoperation.Membranepre-treatmentthereforemightbeabletoincreaseROmembranelifeandensurestableoperationevenunder adverseconditionsandcouldthusleadtooverallcostreductions.
1.3.1.2TreatmentofWasteEffluents
Asindustrialeffluentsareverycomplexmixturesofcontaminantssuchassuspended solids,moleculesandsalts,severalpressure-drivenmembraneprocesseswithdifferent propertiesmaybeneededtoobtainacompletetreatment.MF,UF,NFand/orROin acascadepurificationschemecanbeadequatealternativestootherprocessessuchas coagulation/flocculation,sandorcartridgefiltration,adsorption,etc.Theapplicationof membraneprocessesinthetreatmentofindustrialwastewaterscangiveareductionofthe environmentalimpact,asimplificationofcleaningproceduresofaqueouseffluents,aneasy re-useofsludge,adecreaseofdisposalcostsandasavingofchemicals,waterandenergy [5].Theseprocesseshavebeenreportedfortreatmentofseveralwasteeffluentsfromthe leather,coke,dairyoliveandoilindustries.
Intheleatherindustry,traditionallyconsideredasoneofthemostpollutingindustries, conventionalchrometanningproducesspentliquorscontainingsignificantamountsof chromiumandotherpollutingsubstances,bothorganicandinorganic.Cassanoetal.[29] recoveredandconcentratedchromiumsaltsthroughanintegratedmembraneprocessat laboratoryscale(Figure1.4).Thespenttanningliquorsweresubjectedtoapreliminary UFsteptoremovemostsuspendedsolidsandfatsubstances.Thepermeateobtainedfrom theUFtreatmentwasthensubjectedtoNFinwhichchromiumsaltswereconcentratedto afinalvalueofabout10g/L.TheUFpretreatmentreducedfoulingoftheNFmembrane, thusimprovingthepermeationfluxandreducingthefluxdecay.
Incokingindustries,thetreatmentofdesulphurizationwastewaterandtherecovery ofusablesubstancessuchassuspendedsulphur(SS)andammoniumsalts,forexample,
8IntegratedMembraneSystemsandProcesses
Figure1.4 SchemeoftheUF/NFprocessfortherecoveryofchromiumfromspenttanning effluents. Source: ReproducedwithpermissionfromReference29.Copyright2007American ChemicalSociety.
(NH4 )2 S2 O3 andNH4 SCN,isofmajorconcernandcanavoidsevereenvironmentalproblemsinthecaseofimproperdisposal.Yinetal.[30]proposedanintegratedmembrane processconsistingofUF,NFandROtotreatthewastewater.Thepermeateresultingfrom theUFtreatmentwasthenintroducedtoanNFprocessinwhichbivalentammoniumsalts wereseparatedfrommonovalentammoniumsalts.ThefinalROprocesswasrepeatedly appliedtothetreatmentoftheNFpermeatetoseparatemonovalentsaltsandwater.Both theNFandROretentateswerecirculatedinthesystemforfurtherdialysistoobtainpure saltproducts.
Thedairyindustrygeneratesalargeamountofwastewater,whichcontainshighlevels ofsuspendedsolids,ammonia,proteinandothernutrients.UF,NFandROhavebeen proposedfordairywastewatertreatmenttoproducepurifiedwaterforwaterreuseor recovernutrients.Atwo-stagemembraneprocesswithUF + NFwasinvestigatedto producewaterfordischargeandrecoverthenutrientinwastewater[31].Therecovered nutrientcouldbeusedforfeedproduction.UFoperationcouldremovetheproteininraw wastewateranddecreasethemembranefoulingintheNFprocess.ComparedwithRO operation,transmembranepressurewaslowerandthemembranefluxwashigherthanin NFoperation.
Asimplifiedintegratedmembranesystemwasalsoreportedtobesuccessfulinthe treatmentofolivemillwastewaters[32].Theintegratedmembraneprocessincludedan initialUFstepwith0.02 μmnominalporesizehollowfibremembranesfortheremoval ofsuspendedsolidsfromolivemillwastewaters.ThefirstUFpermeatewastreatedby asecondUFprocessbyusingaflat-sheetmembranehavingamolecularweightcut-off of1000Da.Finally,theresultingpermeatestreamwassubmittedtoanNFprocessto obtainaconcentratedphenolicsolution.Withthisintegratedprocess,differentfractions wereproduced:(1)aconcentratedsolutioncontainingorganicsubstancesathighmolecular
Ultrafiltration,Microfiltration,NanofiltrationandReverseOsmosis9 Water NaCl Cr2(SO4)3 NaHCO3 Water NaCl acids NF UF Skins Exhausted solution Chromium tannage Equalization tank Permeate Skins Pickel
weight(retentateofbothUFprocesses),(2)aconcentratedsolution(NFretentate)enriched inpolyphenoliccompoundssuitableforcosmetic,foodandpharmaceuticalindustriesand (3)awaterstream(NFpermeate)whichcanbereusedintheoliveoilextractionprocessas processwaterorintheintegratedmembranesystemasmembranecleaningsolutionorin thediafiltrationsteptoincreasetheyieldofpolyphenolsinUFpermeates.
1.3.1.3FoodandBiotechnologyIndustries
Infoodandbiotechnologyindustries,feedsarealsocomplexandmulticomponent.Membraneprocessperformancesforbiomoleculefractionation,concentrationandpurification fromthesefeedsarethenmuchmorelimitedthanfromsimpleones.Theselastyears,a numberofsolutionshavebeenproposedtoachievehigh-resolutionseparations.Forexample,ZydneyandvanReis[33]haveexploitedanumberofdifferentstrategiestoobtain highperformancetangentialflowfiltration(HPTFF),acompleteprocedurewhichincludes: (1)properchoiceofpHandionicstrengthtomaximizedifferencesinthehydrodynamic volumeoftheproductandimpurity,(2)useofelectricallychargedmembranestoenhance theretentionoflikechargedproteins,(3)operationinthepressure-dependentregimeto maximizetheselectivityand(4)useofadiafiltrationmodetowashimpuritiesthroughthe membrane.Cascadeormultistagemembranesystemshavebeenproposedfromthemid2000sasanalternativetoachievethesehigh-resolutionseparations.MF,UFandevenNF membranes,withdifferentorsimilarproperties,canbeconsideredatthedifferentstages ofthecascade[34].Insuchsystems,themannerinwhichthedifferentflowsstreamwithin thecascade(e.g.recyclingofretentates)contributestowardsefficiencyofseparationand notmerelythenumberofstages[35].
Inthebiotechnologyindustry,separationofbiomoleculesfromfermentationbroths isacommonoperation.Zhouetal.[36]investigatedtheuseofatwo-stagetangential flowfiltrationprocessfortheseparationofhyaluronicacidfromfermentationbroth.MF membranes(0.45and0.20 μmsize)andUFmembranes(300and100kDa)wereusedto achievetheseparationinseries.Thetwo-stagemembraneprocesswasundertakenwithtwo separatingschemes:thefirstusingMFfollowedbyUFwithpurewaterasdiafiltrate,the secondsimilartothefirstexceptpermeatefrompreviousUFstageasdiafiltrateforMF stage.Thetwoschemescouldeffectivelyseparateandpurifyhyaluronicacidwithabove 77%overallyieldandabout1000purificationfactor.Thesecondschemeseemedtobe moreeffectiveforitshigheroverallyield(89%)andsavingwater.Athree-stageprocess (MF,UF,NF)wasalsodesignedforthepurificationofsweetenersfrom Steviarebaudiana Bertoni[37].Retentionsofthesweetenersforasyntheticmixtureandplantextractwere measuredincombinationwithfluxdecline.Startingfromanextractpurityof11%withthe overallprocess,apurityof37%andayieldof30%couldbereached.Itwasconcludedthat thisprocessshouldbeseenasapre-treatmentpriortootherpurificationsteps,forinstance crystallization.
Inthedairyindustry,thereiscommercialinterestintheproductionofindividualwhey proteinswithwell-characterizedfunctionalandbiologicalpropertiessuchas α-lactalbumin (α-LA)and β-lactoglobulin(β-LG).Atwo-stagetangentialflowfiltrationsystemhasbeen proposedforthepurificationofboth α-LAand β-LGfromwheyproteinisolate[8].Separationwasachievedusing100and30kDamembranesinseries.Twopurificationstrategies wereexamined(Figure1.5).InStrategyI,the100kDamembranewasusedinthefirststage
10IntegratedMembraneSystemsandProcesses
Feed
DF1 BSA WPI
Membrane 100 kD
Retentate 1
Permeate 1
α-LA, β-LG
UF-DF2
Membrane 30-kD
Retentate 2
Strategy I
β-LG
Permeate 2
α-LA
Retentate 1 DF1
Membrane 30 kD
Permeate 1
Strategy II
β-LG BSA
Feed WPI BSA
α-LA
Retentate 2 DF2
β-LG Membrane 100 kD
Permeate 2
Figure1.5 Schematicdiagramshowingtwoseparationstrategiesforthepurificationof α-LA and β-LGfromwheyproteinisolate.Eachblockrepresentsaseparatediafiltrationprocess. Source: ReproducedfromReference8withpermissionfromElsevier.
toremovebovineserumalbumin(BSA)whilecollecting α-LAand β-LGinthepermeate solution.Thecollectedpermeatewasthenusedasafeedinthesecondstagewherethe α-LAand β-LGwereseparatedusinga30kDamembrane.Themembranecombination wasreversedinStrategyII,withthe30kDamembraneusedinstageItoobtainpurified α-LAinthepermeatesolutionwhileretainingthe β-LGandBSA.Thecollectedretentate wasthenseparatedinstageIIusinga100kDamembrane.Inordertoachievehighdegrees ofpurificationandyieldduringtheproteinseparation,thefiltrationsinstagesIandII werebothperformedusingadiafiltrationprocesstoeffectivelywashthemorepermeable protein(s)throughthemembrane.Inbothcases,the α-LApurificationwasgreaterthan
Ultrafiltration,Microfiltration,NanofiltrationandReverseOsmosis11
10-foldat90%yield.Therecoveryof β-LGwasmorechallengingsinceitwasobtainedin thepermeatefromonestageandtheretentatefromtheother.Theauthorsconcludedthat stagedmembraneprocessesforhigh-resolutionseparationsrequirefurtherexperimental andtheoreticalinvestigationstoreachoptimalperformances[8].
1.3.2MembraneDistillationandPressure-DrivenMembraneProcesses
MDcanmakeasignificantcontributioninincreasingtheefficiencyoftheROprocess [4].InRO,theosmoticeffectoftendoesnotpermitreachingvaluesofinterest.InMD, concentrationpolarizationphenomenadonothavethesamelimitingeffect.Therefore, purewatercanbeobtainedbyMDfromhighlyconcentratedfeeds,withwhichROcannot operate.Hybridpressure-drivenmembraneprocessesandMDhavebeenimplemented mainlyindesalinationunits,inproductionofhighconcentratesolutionsinthebeverage industryandintreatmentofwastewaters.
SeawaterdesalinationbyROislimitedbytheosmoticpressure;therefore,ahighrecovery factorisnotattainable.Consequently,largevolumesofbrinearedischargedintotheseaand thepermeateflowrateislimited.Fromtheendofthe1990s[4],MDhasbeeninvestigatedto concentrateRObrineandincreasetheglobalrecoveryoftheprocess.Inthefollowingyears, aspecificattentionwaspaidtooptimizeoperatingconditionssuchasahighlypermeable membrane,highfeedtemperature,lowpermeatepressureandaturbulentfluidregime.At theseoperatingconditions,Mericqetal.[38]obtainedhighpermeateflowratesevenat averyhighsaltconcentration(300gL 1 ).Athighsaltconcentrations,scalingoccurred (mainlyduetocalciumprecipitation)buthadonlyalimitedimpactonthepermeateflux (24%decreaseforapermeate-specificvolumeof43Lm 2 forthehighestconcentration ofsalt).Aglobalrecoveryfactorof89%wasobtainedbycouplingROandMD.When MCrunitfollowsNFand/orRO,thehighlyconcentratedbrinedoesnotrepresentwastebut ratherthemotherliquorinwhichcrystalsmaynucleateandgrow.LikeMD,MCrleadsto afurtherincreaseoftheoverallwaterrecoveryfactor.BeforetheMCrunit,Ca2+ ionsare precipitatedascarbonatesbyaddingNa2 CO3 .Thisisnecessaryinordertoavoidcalcium sulphateprecipitation,whichcausesscaleanddrasticallylimitstherecoveryofmagnesium sulphate[26].
ThepossibilityofintegratingMDafterpressure-drivenmembraneprocesseshasalso beenreportedinthebeverageindustryforproducingvarioushighconcentratedfruitjuices (orange,apple,kiwifruit,passionfruit,etc.)[39,40].Separatingthesuspendedsolidsand pectinsfromjuicesbyUForMFdecreasesviscosityandincreasesfluxofROand/or OD,maximizingyieldandminimizingnutrientandflavourlosses.Forexample,Galaverna etal.[41]reportedtheproductionofconcentratedbloodorangejuiceaccordingtothe followingscheme:aninitialclarificationoffreshlysqueezedjuicebyUF;theclarified juicewassuccessivelyconcentratedbyRO,usedasapre-concentrationtechnique(up to25–30 ◦ Brix),thenOD,uptoafinalconcentrationofabout60 ◦ Brix(Figure1.6). Theintegratedmembraneprocesswaspresentedasavaluablealternativetoobtainhigh qualityconcentratedjuice,asthefinalproductshowedaveryhighantioxidantactivityand averyhighamountofnaturalbioactivecomponents.Anintegratedmembraneprocess, whichinvolvedUF,ROandODwasalsoreportedtoconcentrateanthocyanin,anatural redcolorantfromredradish[42].Theintegratedmembraneprocesshadtheadvantagesof achievinghigherconcentrationofanthocyanincomparedtothatoftheindividualmembrane
12IntegratedMembraneSystemsandProcesses
Fruit juice (10–11°Brix)
Preconcentrated juice (25–26°Brix) Concentrated juice (63–65°Brix)
Figure1.6 Schemeoftheintegratedmembraneprocessfortheproductionofconcentrated orangejuice. Source: ReproducedfromReference41withpermissionfromElsevier.
processes.Finalconcentrationof26 ◦ Brix(from1 ◦ Brix)wasachieved,withanincrease intheconcentrationofanthocyaninfrom40to980mg/100mL.
HybridmembraneprocessesincludingMF,UFandNFandMDhavealsobeenusedfor treatmentofwastewatersuchaspurificationofoilywastewater[7],drainedwastewater[43], andtextiledyebathwastewater[44].Forexample,Grytaetal.[7]performedthetreatment ofoilywastewatercollectedfromaharbourwithoutpre-treatmentbyacombinationof tubularUFandcapillaryMDasafinalpurificationmethod.Thepermeateobtainedfrom theUFprocessgenerallycontainslessthan5ppmofoil.AfurtherpurificationoftheUF permeatebyMDresultedinacompleteremovalofoilfromwastewaterandaveryhigh reductionofthetotalorganiccarbon(TOC)(99.5%)andTDS(99.9%).
1.3.3ElectrodialysisandPressure-DrivenMembraneProcesses
Fromthe1990s,pressure-drivenmembraneprocesseshavebeenproposedasapre-treatment steppriortoEDfortreatmentofdifferenttypesofwastewaters.Ahybridprocessinvolving NF–EDwasdesignedtorecoverwaterfromalkalinepulpbleachingeffluenthavingahigh contentoforganicandorganochlorinatedcompoundsandsalts[2].NFwasselectedto removeorganiccompoundsandundertakepartialdesalination.Ahigherdegreeofwater puritywasfurtherachievedusingED.Inanotherapplication,ceramicMFmembraneswere reportedasapre-treatmentsteppriortoEDforremovalofcolourandcontaminantsfrom paperindustrywastewaters[45].Thehybridpilotplantwasfoundmoreefficientthanthe singleEDprocesssincetheceramicMFmembraneeliminatedthesuspendedcolloids.
Ultrafiltration,Microfiltration,NanofiltrationandReverseOsmosis13
Water Diluted brine Concentrated
UFRO OD Evaporator
brine (CaCl2)