Issuu on Google+

Bright Sheng

PRELUDE TO BLACK SWAN (full score)

G. Schirmer, Inc. New York, NY


Bright Sheng

PRELUDE TO BLACK SWAN (full score)

G. Schirmer, Inc. New York, NY


"To Jerry with Love" A Gund/Simonyi Commission for the Seattle Symphony Orchestra celebrating Gerard Schwarz's farewell season as Music Director.

Prelude to Black Swan (After Brahms Intermezzo Op. 18, No. 1)

TRANSPOSED SCORE

Bright Sheng

Allegro non assai, ma molto appasionato legato 1

Flute 1

    f

Flute 2

Oboe 1

 

f

 

   

 

f

    

 

  



f

Bassoon 2

Horn 1 in F

Horn 3 in F

Horn 2 in F

Horn 4 in F

f

Violoncello

Double Bass

 

p



p



  





p

f

mf

  

f

mf



pp





ff

f

  

mf



f

   

f

 

 



mp



 

mf

mf

mf

  

  ff 

      

  

ff

ff

 

 

 

 

 

  

f

f

f

f

   



mp

   

f

f

f

ff

f

f

f





f

f

f

mf



f

mf



f

mf



f

mf



f

mp

mf

 

mp



 

mf

mp



 

mf

 

 

mp



mp

f



mf

 

ff



ff



2

f

ff

ff

pp

ff

 





   ff     ff   

pp

assai, ma molto appasionato   Allegro non     

  

pp

mp



f

pp

 

mp

mf

   



mp



   

mf

 

    

p

1

Viola

 

f

   

  

Violin 2



Trombone 2

Violin 1

 



  

Timpani

3

f

   

Trombone 1

Bass Trombone

p

p

f

mf

Trumpet 2 in Bb

 

f

f

 

ff

legato

Trumpet 1 in Bb

 

ff

p

f

ff

legato

Bassoon 1

     f

Clarinet 2 in Bb

f

ff

legato

Clarinet 1 in Bb

  

 

p

ff

legato

f

ff

legato f

Oboe 2

ff

legato

2

 



mp

mf

 

 

mp

Copyright © 2011 by G. Schirmer Inc. (ASCAP), New York, NY International Copyright Secured. All Rights Reserved. Warning: Unauthorized reproduction of this publication is prohibited by Federal law and subject to criminal prosecution.

    ff    

mf

3

 p

 

ff

ff

 

  

ff

ff

    

   mf

   


4

Fl. 1

Fl. 2

Ob. 1

Ob. 2

Cl. 1 in Bb

    

 

 

 

 

 

p

p

p

p

  

Bsn. 1

Bsn. 2

Hn. 1 in F

Hn. 3 in F

Hn. 2 in F

Hn. 4 in F

Tpt. 1 in Bb

Tpt.2 in Bb

f espr.













f espr.

7

  

p

f espr.



f

pp

mf

p

mf

 



pp

      pp

mp

mf

pp



















 



mf



mf



f

mf

f





f

mf

f

mf

f

p



f

mp

 p

Tbn. 1

Tbn. 2

 

B. Tbn.

Timp.

    4

Vln. 1

Vln. 2

Vla.

 

  

  

 

  

mp

  

5

  

 



mf

mp

 

  

ff

    

mp

Db.

7

mp

Vc.

6

 

mf

 



mf

pp

mf

f



mf

3

mf

f espr.

 



 

  

6

mf

  

f espr.

f espr.

p

Cl. 2 in Bb

5

ff

p

 

ff



 

 

       

 

  

 

 

 

 

      

 

  

 

f

  

f

 

f




4

  8

Fl. 1

Fl. 2

Ob. 1

Ob. 2

Cl. 1 in Bb

  

 

9

ff

mf

ff

Bsn. 1

p

mf

 

ff

mf

ff

 

ff

 

 

mp

Bsn. 2

 

Hn. 1 in F

 

Hn. 3 in F

Hn. 2 in F

Hn. 4 in F

mp

f

f

 

   

p



mf

 

p



f

 

mf

f

p

f

       ff

f

 f

 

 

  

 

   

  

Tbn. 1

Tbn. 2

 

   

   

   

      

Tpt.2 in Bb

B. Tbn.

Timp.

 

 

 

mf

8

Vln. 1

Vln. 2

Vla.

9

  

ff

Db.

 

  

ff

mf

   

10

          ff

Vc.

pp

  mf

          ff

  

ff

  

mf ff

   

 

   

   

   

f

    

         f

p

   

f

       p

ff

  

Tpt. 1 in Bb

 

f

  

 

ff

p

ff

p



ff

   

mf

f



  

mf

  ff  

f

ff

   



  

  

p

mp ff

 

 

  ff  

  

mf

ff

ff

 



f

ff

ff

   



ff

mp

 

11

f

mf

mf

 

   

p

      

 

 

ff

Cl. 2 in Bb

10



 

11

ff

 



ff

ff

 

f ff

(arco)     p f

ff

 

 


12

Fl. 1

Fl. 2

Ob. 1

Ob. 2

Cl. 1 in Bb

   

13

  

   

14

p



   

  

   

p

   

p



p

          

          

 f

 

ff



mf

f

ff

mf

ff

mf

 

 f

f

ff

Bsn. 1

Bsn. 2

Hn. 1 in F

  



p

  

Hn. 2 in F

  

  

Tbn. 1

Tbn. 2

Tpt. 1 in Bb

Tpt.2 in Bb

B. Tbn.

Timp.

ff

Vln. 2



   

f

        



      

 

  p

   



f

 

p

 

 

 

   

ff div.

f

     unis.

  

13

14

        

   

       

      

       

      

       

f

unis.

f

f unis.

ff



ff

f

ff

unis.        

f

f

ff

f

div. 

p

 

ff

Db.

div.

Vc.

ff

Vla.

mf

12

Vln. 1

Hn. 3 in F

Hn. 4 in F

p

 

f

  



 

ff

Cl. 2 in Bb

5

15

f

f

ff

ff

 f

  

f



f

         

   

 

 

15

ff

  ff

ff

   



     


6

16

Fl. 1

Fl. 2

Ob. 1

 

 

17

Cl. 1 in Bb

Cl. 2 in Bb

Bsn. 1

   

Hn. 1 in F

 

 

ff

ff

f

   

   

 

p

p



  

ff

mf

p



p

p

   

ff

mf



ff



 

ff

ff





ff

f

   

p

 

Hn. 2 in F

Hn. 4 in F

  

  

Tbn. 1

Tbn. 2

 

  16

Vln. 1

   

ff

Vln. 2

Vla.

 

div.



ff

div. 

Vc.

Db.

 

 

   

      

    

    unis.

f

   

mf

      

ff

    

pizz.

ff

18

    

mf

   

unis.

     ff

         

ff

f

f

ff

ff

ff

 

17

mf

ff

p

 

p

p

Timp.

 

  

B. Tbn.

p

 

Tpt.2 in Bb

 



Hn. 3 in F

Tpt. 1 in Bb

p

ff



p

ff

ff

p

    

 

      

f

 

   

 

  

          ff           ff        

19

p

ff

Bsn. 2

18

p

   ff    

   

ff

ff

Ob. 2

  

    



19

 

f

    f

         

          

 f

 

ff

f

     

 

ff

f

     ff

   

mp f

  

f

mp ff

   

f

 

ff



f


20

Fl. 1

Fl. 2

Ob. 1

Ob. 2

Cl. 1 in Bb

Cl. 2 in Bb

    

  

 

   

21

 p

p



p

 

Hn. 1 in F

 

Hn. 3 in F

Hn. 2 in F

 

Tpt. 1 in Bb

Tpt.2 in Bb

Tbn. 1

Tbn. 2

B. Tbn.

Timp.

p

p



Vln. 1

Vln. 2

Vla.

Vc.

Db.

pp



mf

mf

mf

 

 

mf

         f

          f

                  

  



   

      

div.

ff

 

ff

 

ff arco

 

ff

  

  

 

 

 



ff

ff

        

  

pp

ff

pp

 

ff



mf

f

ff

  f

   

      

unis.

      

  

f

f

    mp

    

 

 

  

ff

    

f

ff

f

22

ff

mp



f

  

ff

ff

pp

mp

21

 

p

  

mf

 

mp

 



pp

mp

 

ff

mf

 

mf



ff

mf

 

 

f

mf

7

        



mf

23

ff

ff

  

f



 

f

    p

ff

   

 

ff

f

p

mf

  

p

      

f

   

mf

ff

     

 

f

  ff   



20

ff

f

p

f

   

       

f

p

 f

   

  

ff

p

Hn. 4 in F

f

    

ff

  

ff

f

Bsn. 2

   

f

 

pp

Bsn. 1

ff

p

ff

     

   

f

 

p

  

ff

22

 

f 23



                 

ff

 

div.

ff

 unis.   

        

ff

        

p

ff

 p

 

ff


8

24

Fl. 1

Fl. 2

Ob. 1

Ob. 2

Cl. 1 in Bb

Cl. 2 in Bb

Bsn. 1

Bsn. 2

Hn. 1 in F

Hn. 3 in F

Hn. 2 in F

Hn. 4 in F

Tpt. 1 in Bb

    

  

f

f

f

    f

   

f

f

   

f

   

f

   

  

ff

f

ff

f

ff

f

ff

f

26

 

 p





 

p









p

p

f



        

ff

f

        

        



 

p

f









f









f

        

ff



f

ff





f

ff

f



   

27



   

 

p

 

25

f

f





f

         f

         f



p

f

mf

 p

   

   

   

   

f

   

p

 p

Tbn. 1

Tbn. 2

 

 

Vln. 1

Vln. 2

  

     f

 

Vc.

Db.

 

    

 

        f

    

f

Vla.

p

  24

Timp.

f

B. Tbn.

f

  

Tpt.2 in Bb

       



ff

f

25

ff

f

ff

f



  

ff

ff

 

���

 

f

26

p

ff

         

pizz.

ff

    



 



 

f

  

div.

  

f

f

   

27

          

f

 

         f


rit.

Fl. 1

 28   

 

f

 

ff

f

 

ff

 

ff

Fl. 2

Ob. 1

Ob. 2

ff

f

 

ff

Cl. 1 in Bb

Cl. 2 in Bb

  

ff

f

   ff

Bsn. 1

f

  

  

ff

Bsn. 2

Hn. 1 in F

 

   

ff

 



ff

 

 

f

    

    

pp

     

 



p



Hn. 2 in F





Hn. 4 in F

    

ff



  

 

ff

mf

  

Tbn. 1

Tbn. 2

Tpt.2 in Bb

B. Tbn.

Timp.

   

 

mf

   

Vln. 2

ff unis.

Vc.

ff

Db.

ff

(2nd x) 

  

p

 

 

   

 



f

f

ff

mf

   

ff





mf







   mp 

 2.

rit.

 

   

mf

  

p

    

f

   

 p

f

   

ff

 p

 p

   

 

div.

pizz.

Arco

 

pp

   

ff

p

ff

 

(2nd x) 

 

  

1. 29

p

ff

Vla.

 (2nd x) 

  

mp

p

28

Vln. 1





p

Tpt. 1 in Bb

ff

  

ff

mf

ff

 

pp

ff

Hn. 3 in F

ff

ff



p

  

 

p

  

pp

pp

p

  

  

p

f

  

  

pp

f

p



pp

f

f

  

ff



ff

p

f

 





  

p

ff

ff

  

 

2.

p

ff

f

    

  

ff

  

9

1. 29

p

     ff

    ff

    

ff

 

 


10

 

32

Fl. 1

Fl. 2

Ob. 1

Ob. 2

Cl. 1 in Bb

Cl. 2 in Bb

Bsn. 1

33

 



  

p

 p

Hn. 1 in F

 

        

Hn. 2 in F

Hn. 4 in F

Tpt. 1 in Bb

Tpt.2 in Bb

Tbn. 1

Tbn. 2

B. Tbn.

Timp.

        

  

Hn. 3 in F

f

Bsn. 2

f

f

p

mf

p

 

 

ff

ff



f

p

mf

p

ff

p

Db.

f

   

f

f

            mf f           mf

        ff

ff

        ff

        ff

        ff         ff

  

      

mf

 

  

f

    

 



mf

 

 

 

    

    



 

pizz.

mf

        

mf

ff pizz.

p

  

p

p

pp

34

35

ff

 

   

pizz.



  

f

33

 

mf

 

ff pizz.

 

ff pizz.



 

ff

   

f

p

ff

   

ff

f

   

ff

f

mf

Vc.

   

           

   

 

f

 

       

35

mf

Vla.

f

 

  

 

  

32

Vln. 2

mf

Vln. 1

mf

   

34


    36

Fl. 1

Fl. 2

Ob. 1

Ob. 2

Cl. 1 in Bb

Cl. 2 in Bb

Bsn. 1

Bsn. 2

Hn. 1 in F

  

     

    

11

    

            

 

              

37

   

 fff

 

  



  

  

 

 



fff

fff

fff



fff

 

fff

Hn. 2 in F

Hn. 4 in F

Tpt. 1 in Bb

Tpt.2 in Bb

Tbn. 1

 

   

 

f

   

B. Tbn.

Timp.

Vln. 2

 

  

  

 

  

  

    

  

 

  

f

 

        

mf

p

mf

 p

mf

f

  fff  

f

fff

 

p

 

fff

 

Vc.

     

 

 

ff

  ff

  ff  

p

ff

  ff  

p

sub f

p

 

sub. f

  

 

p

sub. f

  

sub. f

fff

37

 

38



f

 

f

Vla.

 

ff

p

fff

p

 

fff

fff

p

 

 

 

39

 

 

rit.

ff div.

 

ff

    ff

Db.

rit.

 

mf

  

fff

p

 

f

p

mf

  36

Vln. 1

 

mf

Tbn. 2

f

f

f

39

f

fff

f

Hn. 3 in F

 



fff

 

  

 

  

 

38

  

ff

  

ff

  


12

  40

Fl. 1

Fl. 2

Ob. 1

Ob. 2

Cl. 1 in Bb

Cl. 2 in Bb

Bsn. 1

Bsn. 2

Hn. 1 in F

Hn. 3 in F

Hn. 2 in F

Hn. 4 in F

Tpt. 1 in Bb

  

41

 mf

 

 

Tbn. 1

 

 

mf

pp

mf

Tbn. 2

p

B. Tbn.

mf

p

mf

p



Timp.





Vln. 2

Vla.

 

Vc.

  

(pp)

(pp)

 

 

 

  

 

 

 

pp

mf

pp

pp

  

mf

pp

ppp

  

 

 

mf

  

pp

  

 

 

 mf

pp



mf

pp

 

p

pp 41

p

   

 p

 

p

(pp)

40

Vln. 1

pp

   

 

 

  

mf

   

pp

p

 

(pp)

pp

p

 



p

mf

 

pp

mf

 

pp

pp

 

pp

pp

 

pp

pp

mf

 

pp

pp

mf

Tpt.2 in Bb

mf

      mf   

 

rit.

      

 

            

unis.

      

 p

 

div. 43 pizz.

42

p

p

pp



  

 

pp

    pp

  

ppp

  

div. pizz.

  

   



 

pp

pp

Db.

        

  

   

p

   

pizz.

pp

Attacca to Black Swan

pp div. pizz.

  

arco

 

Attacca to Black Swan

43

pp

 

42

rit.

pp

 


Sheng PRELUDE TO BLACK SWAN