Page 1

Edward Gregson

A SONG FOR CHRIS concerto for cello and chamber orchestra

(2007) Full Score

NOVELLO & CO. part of the Music Sales Group 14-15 Berners Street, London W1T 3LJ tel. +44 (0)20 7612 7400 fax +44 (0)20 7612 7545 Exclusive distributors: Music Sales Limited Newmarket Road, Bury St. Edmunds, Suffolk IP33 3YB Tel. +44 (0)1284 702600 fax +44 (0)1284 702592 www.chesternovello.com e-mail: promotion@musicsales.co.uk


Programme Note

A Song for Chris concerto for cello and chamber orchestra

This concerto was commissioned by the RNCM Manchester International Cello Festival. It was premiered and broadcast on BBC Radio 3 in May/June 2007 by LiWei, with Manchester Camerata, conducted by Douglas Boyd. The work is dedicated to the memory of Christopher Rowland, former Director of Chamber Music at the Royal Northern College of Music (RNCM), a dear friend and colleague for many years. The concerto is in four movements which are played without a break: Meditation, Intermezzo, Toccata-Scherzo and Song. The work lasts for some 18 minutes and is scored for two oboes, two horns, timpani (doubling tubular bells) and strings. It is organised in one large arch-shaped structure, with two fast inner movements flanked by two outer slow ones. The solo cello opens the work reflectively, and introduces core melodic material which is continuously developed throughout the concerto. Gradually the strings enter, then wind and timpani, and build a pyramid twelve-note chord, at the peak of which there is a dramatic climax. The music then subsides (solo cello again), but links to the two faster middle movements. The second movement – Intermezzo – has an ABA structure and in its middle section quotes the opening of Shostakovich’s Third String Quartet (written in the same year as Christopher Rowland was born!). Indeed, the ghost of Shostakovich looms large throughout the concerto in more ways than one. The Toccata-Scherzo is energetic and rhythmically-charged, again using an ABA structure. Here the writing for solo cello is quite virtuosic, but not, I hope, in a shallow sense. The music builds inexorably towards a powerful climax, underpinned by the opening twelve-note chord’s re-appearance, together with a violent outburst from the timpani, at which point a tonal resolution (on G) arrives through a pianissimo held chord on strings which leads directly to the final movement – Song. And so the music arrives at its emotional heart through a simple melody (present in other forms throughout the work) announced by solo cello at the very top of its register, against a quiet backdrop of horns and strings. A solo oboe enters, with cello in canonic reply, and all the time the music builds in texture and intensity, now with tubular bells joining in the joyful and optimistic conclusion.

© Edward Gregson


This work was commissioned by the RNCM Manchester International Cello Festival and was given its first performance on 3 May 2007 by Li-Wei (cello) and Manchester Camerata, conducted by Douglas Boyd. The work is dedicated to Christopher Rowland, Director of Chamber Music at the Royal Northern College of Music.

Instrumentation 2 oboes 2 horns Timpani (doubling tubular bells) Solo cello Strings (8, 6, 5, 4, 2)

Duration: 18 minutes


A Song for Chris concerto for cello and chamber orchestra Edward Gregson (2007)

MEDITATION

 

 

 

 

Slow and thoughtful q = 54

Timpani

   

Solo Cello

X X

 

 

X X



 

(

)  

    p



 pp

)      (

mp

non arpegg.

 arco           

pizz.



2 Horns in F



 



2 Oboes

X  X

mp

p

  

       mf

cresc.

dim.

(

) 

n.a.

  arco                      poco pizz.

p



pp

 

X

 

Violins II

X

 



Violas

X

 



X

 

X

 



Violins I

Cellos

Double Basses

cresc.

mf

mp

p





 





  



  







  









2

Ob.

Hns.

Timp.

Solo Vc.

Vlns. I

1

  

        



pp

 

p

    

 

         

   

    

 

      p

poco cresc.





Vlns. II

 





Vlas.

 





Vcs.

 

pp Dbs.

  

pp

( )   

   

( f)

( )

( f)

 

pp

 

pp

© 2007 Novello and Company Limited

Rev. July 2007


2

 















 











 





8

2

















Ob.

Hns.

Timp.

Solo Vc.

sul G

sul G

Vlns. I

 

      

              

sul C

1.2.

                          3

mp

cresc.

3

3

3

3.4.

















mf

  



  

p 1.



pp

2.

Vlas. Div. a3



 

pp

3.



 

pp

 1.

Div. a3

Dbs.

3. 



 

 







2.

Vcs.

 

 



  



  

poco a poco cresc.

 

 

poco a poco cresc.



 

 

 

  



 

  



 

  

poco a poco cresc.

poco a poco cresc.

  poco a poco cresc.

 



 



 

(p )



 

(p )

poco a poco cresc.

poco a poco cresc.

 

(p )

poco a poco cresc.







(p )

poco a poco cresc.

 

            

cresc.

p

Vlns. II Div. a4





 



 



 

(p )

(p )

(p )


3

 



















 



















 









15

Ob.

Hns.

Timp.

3    3                    

Solo Vc.

cresc.

  

Vlns. I Div. a3

1.

2.

3.

   

f

  







  







     mp

     

  

  

 

  

 

 

 

(mp )

 

 

Dbs.

 

  

 

  

 

  

 

(mp )

(mp )

(mp )

mp

     mf

cresc.

 cresc.

  f

3

 

cresc.

cresc.

cresc.

cresc.

 

 

 

 

 

 

 

 

 

cresc.

ff

ff

   

ff

  ff

 ff

 ff

 

 

 

cresc.

ff



ff

cresc.

ff

cresc.

3

cresc.

 

cresc.



(mp )

3

cresc.

 

(mp )

mp

 

(mp )

Vcs.

                     

cresc.

(mp )

  

 



 

 

 

  mp

(mp )

Vlas.

     

cresc.

 

Vlns. II

  

 ff

 ff

 ff


4

3

  

  

  

  

   

poco accel.

21

A little faster q = 62

Ob.

Hns.

Timp.

Solo Vc.

      ff

f

  

  



ff marc. ma sost.

Vlns. I Div. a3

  

ff marc. ma sost.

    

  

3

ff marc. ma sost.

   1.

Vlns. II Div. a3

   3

ff marc. ma sost.

   2.3.

3

   ff marc. ma sost.

   Vlas. Div. a2

 3    3

ff marc. ma sost.

Div. a2

  

3

   

ff marc. ma sost.

  

 3  

3

ff marc. ma sost.

Vcs. Div. a3

  

 

ff marc. ma sost.

   non div.

Dbs.

3

  

3

ff marc. ma sost. 3

     

 

ff marc. ma sost.

ff



 

ffp

ff



       

cresc.

  

non div.

                   arco          

   

     

   

pizz.

f

f

mf

ffp

ff

non div.

     

     

    

     

    

    

     

     

     

  

ffp

 

ffp Div. a2

 

ffp

  

non div.

ffp

 

ffp

 

ffp

  ffp

  

non div.

ffp

  

ffp

ff

ff

ff

ff

ff

ff

ff

ff

ff


5

 



27

Ob.

  Hns.



 Timp. 

 

         

Solo Vc.

Vlns. I

 

 p

Vcs.

Dbs.

Timp.

Solo Vc.

Vlns. I

Vlns. II

Vlas.

Vcs.

Dbs.











 

  

  



 

                 

p

(Div. a 2)

p

              

  

con sord.

p

                         cresc.





   





       

  





(non div.)

  

p

  















  















   

 

    



   

          

          

 

  



   

  





  

mf

 

    



  

mf



                                     

  

mf





cresc.

p

p



      



   

pp

dim.

     

                 con sord.





 

 





 



mf pizz.

mf







  unis. mutes off

 

       

 

 

 

  

    





 

div.

mf





            

mf

  

p



mp

   

   

   Hns.

   34

Ob.

 

(Div. a 3)

Vlas.



poco cresc.

con sord. Vlns. II

       

4



(Div. a 3)



Div. a 2

dim.

pp

           pp

 

 

  

 

 

 

 

dim.

dim.

     

     



p

p

p




6

 



 

42

Ob.

  Hns.

Timp.

  

  

     

 

Dbs.

pp

    

cresc.

Vlns. I







 







mf

cresc.

     slow gliss  mf

    slow gliss 

 mutes off    

f

f

mf



 

mutes off

 



mp

p

   

 

p

dim.

dim.

       









 

mf pesante

   

 

arco   

 

 

 

div.

 

 

mf



 

dim.

p

  p

       

 

 

  

   

 

dim.

p

p

dim.

     

mp

     

    

f

  

mf

  

  

 

  



   



     

mf

  

 



 cresc.

cresc.

 

ff

3

        

ff

cresc.

,

                        

    cresc.

(div. a 2)

  

3

 

p

  

ff 3

mf poco sul pont.

ff

3

       

  3          

mf

 

mp

 

mp

3

3

 

3

3



3

3

cresc.

  

3



cresc.

 cresc.



 

mf

 

mf

3

3

3









,

            3

 

f

f

3

  

  

3

cresc. (norm.)

3

3

3

3

ff

           

3

  

  

  

ff

ff

3                3                        3

cresc.

3

cresc.

unis.



 

             

cresc.

f

     

cresc.



     

    

     

  



 

     mf

                         

unis.

Dbs.

 

dim.

mp

f

 

     

mp

dim.

  



 



         

Vcs.

mf

    

   



poco rit.

 

Vlas.

  



f

  mutes off    

 

                          

  

    

mf



      

      

mf pesante

 

Vlns. II



Solo Vc.

mf pesante

 

Timp.

 

Hns.



cresc.

50

Ob.

cresc.

Vcs.





pp

Vlas.

   

Vlns. II

       

Solo Vc.

Vlns. I

5



 

3

3

cresc.



cresc.



cresc.

3

ff





 





 

ff

ff


7

6

 



 

56

Ob.



fp



fp

p

Hns.



Timp.







 

3

   

        

         5

ff

 1.  

Vlns. I Div. a3

  Vlns. II Div. a4

 

3





cresc.

cresc.

3.

1. 2.

3. 4.

fp

 

 

fp





fp

 





 

fp

2.

 

fp

fp

fp

 

  

fp

fp

fp

fp

 

fp

   fp



fp

fp

 



fp

fp

  

fp

fp

 

 





fp

fp

fp

 

 

fp

 

 fp cresc.

 fp cresc.

  cresc.

cresc.

 cresc.

 cresc.

fp

3.

 

 fp

 Vcs. Div. a2



fp

 



  

fp

  

fp



fp

fp

cresc.

 cresc.

ffp

Dbs.

 

ffp

cresc.

cresc.

(f )

             

f

2.

  

 



 

(f )

                   3

5

1.

Vlas. Div. a3

 

cresc.

 p

fpp

f marcato

Solo Vc.

fp

fp

   

cresc.


8

  



59

  

3

ffp

   

   

ff

ff

cresc.





    









ff

Ob.



ffp

   

 cresc.

f

Solo Vc.

3

ff

  

ff

  

ff

cresc.



ffp

   

  

3

Hns.

Timp.

   ff

cresc.

 ffp



     

ff

  

3

  

ff

ff

     

ff

3

  

ff

     

f

f

  



 

 

 



  

( ff )

  

Vlns. I

    (non div.)

  Vlns. II Div. a2

        

ffp

cresc.



        

ffp

 ffp

 ffp

cresc.

ff

ff

cresc.

ff

 

ffp

(non div.)

 

 

3

ff

3

  

3

ffp

                 

ff

                 

  (non div.)

 

 

ffp

cresc.



ffp

 

 ffp

Dbs.

  

3

        

 

ffp

                 

  



                   



                                   



                                    



3 5                    



                   



5                   



                  



        

ff

ff

3

3

        



ff

5

5

5

3

3

3

3

3

5

5

3

3

ff

        

cresc.

5

ff

cresc.

                    

ff

ff 3

cresc.



5

ff

ff

3

cresc.

ff



ffp

Vcs.

cresc.

                   

ff

3

Vlas. Div. a2



ff

3

cresc.

ff

         cresc.

                    ff

        

(non div.)

 

3



3

ff

ff

5

3

3 5                   

ff

 


9

7

    63

   

   

Div. a2

      

 

 

 

      





      





      





   





 

ff

ff

ff

ffp

   

Vlns. I

ffp

Hns.

Solo Vc.

ffp

Ob.

Timp.

 

    

 

 

ffp

 

 

p

ff

ff

molto cresc.

  

 

f

senza vib.                                              ff

  

(p)

(p)



 



                                  

 



 

                           

 



 

senza vib.                             

 



 

 





(p)

molto dim.

senza vib.

                                

molto dim.

ff



senza vib.

                                 

(p)

molto dim.

senza vib.

ff

(p)

molto dim.

senza vib.

ff

molto dim.

ff

Vcs.

(p)

molto dim.

senza vib.

   

 

 

ff

 

 

3

                 



mp



mp

p

(pp)

(pp)

(pp)

(pp)

 

(pp)



    

(pp)

(p)

molto dim.

ff

(Div.)

 

(pp)

(p)

                        

  

t.

(pp)

 

                                   

por

 

 

senza vib.

ff

Dbs.

 

 



 



 

Vlas.

mf

 

molto dim.

ff

Vlns. II

       

poco rit.   

3

 pizz.

 

68

Solo Vc.

X

mf

   f

  

p

 

(non arpegg.)



poco accel.





  



cresc.

mf



arco (sul pont.)

f

       mf

3

3

 piu accel.

pizz.

Solo Vc.

               3

3

cresc.

ff







rit.





 

arco

 

pp

mf

   

   

p

   

    


INTERMEZZO

8

10

Not too fast, menacing

   

(q = 100)

69

Ob.

Hns.

Timp.

         

Solo Vc.

Vlns. I

  

Vcs.

Dbs.

mf

        

 

mp

ppp

dim.

     

 

 

        

p ritmico

mf ritmico

           mp

dim. unis. pizz.

       

 

mf

(div.) pizz.

 

 

mp



  

         



f

mf

   

 

mf

  

 

 

 

 

 



   

mf

   

   

 

 

fp

 

  

 

f

f

Hns.

 

    

Ob.

Vlns. I

    

74

Solo Vc.

1.

 

Timp.

 

  

Vlas.

 

 

Vlns. II

 

 

               

fp

f

p leggiero

Vlns. II

unis.

 

                      p

Vlas.

Vcs.

  unis.

Dbs.

cresc.

 

         

  

 

  

pizz.

        f

 

 

mf

 

 

 



 

f

 





cresc.

cresc.

 

 

 

         f

mf

f

f

 

p

 

 

 

 

 

 

   p

 

   

      

        

 

  p

  

 

    

  

 


9

   78

    f

Ob.

 

Hns.

f

Timp.

fp

  

Solo Vc.

Vlns. I

  

f



 

 





   cresc.

  

  

 

unis.

   

 



 

 



f

 

    

with poise

      

mf

f

     

cresc.

  

ff

  

  

          

       (sim.)

mp

mp pizz. (non div.)

 

(sim.)

          

mp

 

 

       

 

  

 

 

p

poco cresc.

mf

  

                       

 

Solo Vc.

 

               

Vlas.

      

  

   

  

  

 

 

  

Vcs.

 

   

   

           

 

    

   

   

 

   

  

 f

       

                                       mf

cresc.

p

Vlns. II

      

 

 mf

a2



poco cresc.

f

  

           

      83

Dbs.

f

  

  

mf

 

cresc.

  



                  

f

cresc.

 

f

mf

arco

mp



f

cresc.

f

cresc.

Vlns. I



            

         

Vcs.

Timp.

 

f

(non div.)

cresc.

Hns.

 

mp

  

Vlas.

Ob.

 

                        

Vlns. II

 

cresc.

Dbs.

 

 

  

  

 

11

  

p

(non div.)

  

  p

p

  

      

f

cresc.

                      

mf

 

  

 

cresc.

    

cresc.

mf

cresc.

 

  

cresc.



 

f

 

mf

f

f


12

   87

Ob.

Hns.

 con sord.     

p con sord.

 Timp.   p

       

 

mf

f

    

 

  

Vlns. I

 

 

Vlns. II

div.

 

Vlas.

  

Vcs.

mf

  

  

  

  

  

  

  

  

   

  

   

mf

mf

 

cresc.

 

  

  

 cresc.

dim.

pizz.

   

f

pizz.

  

pizz.

   f

f arco

 

 

   f

f div.

  





 





 

mf unis. arco

mf

f

  



  



   

   

pizz.

f

 

 

 



fp



 

    unis.

 

    

mp

   

           

div.

                  

with expression

   p

   

  

unis.

 

unis.

 

div.

                             

p

 

mp



div.





 

 





arco

pp

mf

unis. arco

    p

pp

    

pp

arco

  

mf

      

unis. arco

div.

       

f

         

div.

    

Vcs.

 

fp

     

Vlas.

 

Vlns. II

mf

Dbs.

f

fp



Solo Vc.

Vlns. I

10

 

cresc.

  

   

cresc.

 

Timp.

mf

  

91

Hns.

f

                                 

cresc.

mf

Ob.

 

                                   div.

f

 

         

 



         cresc.

mp

Dbs.



cresc.

p

Solo Vc.

pp

pp


13

  97

Ob.

Timp.

 

   

  

Vcs.







 

 unis.





div.



 

 

 

cresc.

 



dim.

 

            

     

 











p





  p









div.



 



mf

p

cresc.

cresc.

 



non div.

 





dim.

       

  

p

cresc.





   



mf

poco cresc.

  

mf

      

div.

 

 

     

dim.

cresc.

 

Vlas.

    

mf

       

 

mf

Vlns. II

Dbs.

 

Solo Vc.

Vlns. I

mf

   Hns.

1.

p





 

unis.

 















  



div.

  



 

unis.

mf

unis.





11

  103

Ob.

   Hns.

Timp.



 

 



 

 

mp

mp

 





 





cresc.

( f)

  

 





               



 

div.

  

 

p

 

Vlas.

  



 

 

 

  

 

 



unis.

cresc.

 

   

Vcs.

Dbs.



 







div.

 

  

mf

   p

poco cresc.

 

mf

poco cresc.

Vlns. II

 

cresc.

                                      

  

 

mf

Solo Vc.

Vlns. I

 

unis.





   

cresc.

cresc.

 


14

  

   

   

   

  



107

 

 

 



 

 

 

 

  



 



 



p

Ob.

 

mp

 

 

 





 



p



  p

Hns.



Timp.

Solo Vc.

mp

 



 

  p

                                                                 poco dim.

Vlns. I

Vlns. II

    

    

  

   



 



 



 



  

 

p

dim.



 



 



 



 

 

mp

Vlas.

mp

  

mp Div.

  

     

mp

Dbs.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





dim.

 



dim.

 

dim.

p

Div.

 

Vcs.

 

    p

dim.

 

   

 

  

 

 

 

 

   

 

 

 

 

mp Div.

mp

 

  dim.

   

 

p

p





p

dim.

  dim.

p

p


15

12

 











 

111

Ob.

 

       

(muted)

   

f Hns.

mf

          Timp.  (wooden end of sticks)

mp

Solo Vc.



open

p



                    

  

f Vlns. I



 

dim.

Gli altri

 

Vlns. II





pp



  



  







 

 

  











  

        









  

      

 







   

    



pp Vlas.



pp

 

senza vib.

 

 

 

 

 

 

  

  

 

 

pp Vcs.

senza vib.



pp

non div. senza vib.

  

pp

Dbs.

senza vib.

pp

   

f



pp



                                            

Solo

 

  

p

mf

mp

  



 

          

 


16

13

  116





     mf

Ob.







   

mf

  

 

    

   

 

 dim.

f

   

   

f

Hns.

  

  

Timp.

  

 

dim.

 

 



    



                                            

Solo Vc.

   

                  Solo

  

  

 

  



dim.

  



 

Vlns. II

  











  

    

   

 

 

 

p

dim.

       

  



 

 fp

                      

 







 

           

       

 

  

 

p

p

 



  

   





   





























pizz.

mp

 

 

 



(norm.)



mp

Vcs.

 

 



  

  

  

 

(norm.)

mp

    



mp Vlas.

 p

Dbs.

 

 





mf

Vlns. I Gli altri

pizz.

 p


17

   121

Ob.



mf

 

     Hns.

Timp.

  

mf

 mute out

 

mf

    

Vlas.

Vcs.

  

(unis.)

mf

    





 

p











cresc. (unis.)

cresc. (unis.)

 









  

cresc.

Tutti

 

 

  

 

 

     

 

mp





















leggiero

 

  

p

p

  

  

p

mf

p

p

mf

p

  

mf



mf

     

mf



      

       

                                        

mf

 

f

cresc.

open

Gli altri

Vlns. II

fp

 Solo  Vlns. I

                 

Solo Vc.

Dbs.

 

mp

mf











pp

pp

     



   

mfp

p

pp arco

pp

mf

   125

Ob.

Hns.

Timp.

   

Solo Vc.

Vlns. I

                 pp

   

cresc.

dim.

  

Vlns. II

dim.

         

Vlas.

 

      mf

  

 

  

mfp div. senza vib.

Dbs.

 

 

mf

unis. pizz.

       mf

unis. pizz.

        mf

      mf

dim.

             

mp

pizz.

dim.

 

   

mfp

Vcs.

  

 div. senza vib.

dim.

      

       

     

 

p

p

p

mf

dim.


14

18

  130

Ob.

Hns.

Timp.

    

Solo Vc.

Vlns. I

 

           

     

     

ff molto marc. a2

normal sticks (hard)

ff molto marc.

  

      

p

arco non div.

arco non div.

Dbs.

 

   

    

   

       

f

    

    

pizz.

    

arco





pizz.



   

   mf   

ff

Vlas.

    

                  

 non div.

                         

a2

       

f

       

Vcs.

       

ff

Vlns. II

 

       

 

arco non div.

ff



         

ff

Div. (snap pizz.)

p

            

ff

arco non div.

arco non div.

            

         

 

 

 



ff

          

 

       

 



 

       

molto dim.

       

arco

       

         

molto dim.

pizz.

arco

      

         

pizz.

          

arco

pizz.

         

         

            

arco

pizz.

         

         

ff

arco

   



molto dim.

       

 

molto dim.

ff

   136

Ob.

Hns.

Timp.

   

Solo Vc.

Vlns. II





  

  

 

   p

 

 

 

 

 

 

 

 

 

 

(p)

X

 

X

 

X

  

X

 

(in tempo)

 

(p)

 

 

(p)

  

(p)

  

  

Vcs.

 



 

mp

 

Vlas.

Dbs.

   

pp

   

pizz.

 f

X

 

X

 

X

 

X

 

X

 

X

 

poco accel.



 



 ff

 


arco poco sul pont.

normale pizz.

       

Solo Vc.

3

p

3

arco (sul A) (not too fast)

 

 

mf

n. a.



                     

 

      

 

19

  

rall.

dim.

(sul D)

p



15 TOCCATA - SCHERZO Fast and rhythmic

    141

Ob.

Hns.

Timp.

(q = 160)

       

    

Solo Vc.









pp

Vlns. I

div.                                                                            p marc. e stacc.

 

 

Vcs.

 

Dbs.

 

Vlns. II

Vlas.

poco a poco cresc.

div.

 

f

                                       p marc. e stacc.

 

          

poco a poco cresc.

p marc. e stacc.

 

f

                          

 

poco a poco cresc. div.

                         

 

f

mp marc. e stacc.

f

poco a poco cresc.



     147

Ob.

   Hns.

Timp.

  

 

   

 

Solo Vc.

Vlns. I

16











 

 

sfp

   

2.

 p

 

               

sfp

sfp

f

mf

 

ff

p

                    

ff

Vcs.

Dbs.

                  



ff

 

f molto marcato

ff

Vlas.

                                                 f

 

sfp

    

                       

Vlns. II

sfp







  

½ pizz. ½ arco

mf ½ pizz. ½ arco

     mf

  

       

 

              

     

      

unis.

   

   

   

   

   

  

  

mf marc. e stacc.

p

p


20

  154

Ob.

  





Vlns. I

Vlns. II

Vlas.

Vcs.

Dbs.











 

f marc. e stacc.

 





f marc. e stacc.

cresc.

cresc.

 









  







 

 

 

        

  



        

pizz.

  

   

   

   

   

cresc.

  

       

   

cresc.

cresc.

   

cresc.

 

 

sf pizz.

   

  

sf

   

Vlns. II

Vlas.

Vcs.

Dbs.

 



   

 

  

 

 

 

  

 

sff

sf

   sff

 

fp cresc.

  

  

  

  

  

  

  

  

f

f

    

17





      



 Timp. 

Vlns. I



   

Solo Vc.

  159

Hns.

 

  

Ob.

sf



       

f

 



f



cresc.

  



f

 Timp.  Solo Vc.











p

  Hns.



              

 





 

  



 

  



f marc.

      

f marc.

f

                

sfp

f

 

sfp

f

       

                   



                            

                

cresc.

                               

arco div.

mp

        

cresc.

    

arco div.

 tutti arco

fp tutti arco

fp

mp

       

p cresc.

f

f                               p cresc.

cresc.

mf

f

                      mf



f

  p

   

div.

      

mf marc. e stacc.

         mf marc. e stacc.


21

 



165

Ob.

 

   Hns.

f

fp

 

  Timp.  

f

Vlns. I

     

f

  

p

 

  

p

   

unis.

p

 

         

          mf

     

     

f

     



   

mf

          



  

p

pp

 

 

 

poco

 

 

poco

pp (non div.)

 

 

  

 

 



p

 



      

  

 

   



 



 

 

 

 

 

 

 











 



 

p



legato, expressively

  

 

          

 



unis.

 

mf

 

  

 

 

f



       



 

      

mf

  

 

     



 

unis.

fp

 

 

Vcs.

          

  

fp

  

Vlas.

 

p

Vlns. II

Dbs.

 

 

  



fp

Solo Vc.

  





( q + q + q. + q )

     

          

      







   

         

     













170

Ob.

18

   

                         Hns.

Timp.

Solo Vc.

Vlns. I

Vlns. II

Vlas.

                             

mf

Dbs.



  



  



 

 

 

    pp

pp

Vcs.

 

 

 

      

 

   











                         







   







  

 

 



p cresc.

 

ff molto marc.





( f)

  

p cresc.



 

 

  



  

 

  

( f)

cresc.

                    cresc.



     

( f)

div. pizz.

 

        

sf

pizz.

   

sf



 

    sf

sf

unis.

                  f

(sim.) pizz.

  mf

   

    

  

 


19

22

  

  

176

Ob.

    Hns.

Timp.

Solo Vc.

Vlns. I

Vlns. II

Vlas.

Vcs.

Dbs.

  



mf

       

mf



   

 





 



  





  

 









                             







 



         

       

    sf



   

    sf

               

mf marc. e stacc.

   

 

  

 

 

  



    



183

p

     Hns.

Timp.

Solo Vc.

Vlns. I

  

mp

  

   

 

 





 



(non div.)

  

p arco (non div.)

  







Vlas.

               

Vcs.

Dbs.

   

            



    

pp

    

  









 



  

    div.



   

  





        

            

mf

 

            



 

  







mf

  

div.

    p

     p unis.

p



     

 



 



muted

f

 

   

   

 

 

f

f

  





 

 

 

f marcato



 



  

   

  

pp

  

   

  

pp

 

pp

   pp

  





 



pp

   

dim.



   

         



mf

p

dim.

muted

p

dim.

mf

           

                

mp non div.

 

p arco div. (actual sounds)

   



mf

       

p



mp

Vlns. II



20

   

p



            

mf

  

          

mf marc. e stacc.

unis. arco



mp

div.

 

               



      

  

  

   

mf

mf



  



Ob.

mf

 



  

 

 



  







f

f

 


23

 



               

190

Ob.

Hns.

   

   

                  

    

  

  

  

  

  

 

 

  

 

 

  

 

muted

     f

Timp.

     

Solo Vc.

 

 

  

   

 

 

 

 

 

Vlns. II

Vlas.

Vcs.

   

  

  

  

  

  

  

 

   

  

  

  

  

  

  

 

Vlns. I

Dbs.

 

  



194

Ob.

    Hns.

Timp.

senza vib.

      f

 

ffp

ff

                             

Solo Vc.

  

 

 

 



 

 

fp senza vib.

f

f

 

    

    

fp



 ff

 ff

 ffp

     

     



 

ffp



   ffp

ff

     

p

        

     

 

  

ff

    





Vlns. II





Vlas.





Vcs.

 

Dbs.

 

 

 

 

 

 

   p

   p









f

                     

 

Vlns. I

 ff

mf

mp

       

   









cresc.

cresc.

   

  

ff

  

ff


24

21

   199

      



f

f



cresc.

Ob.

   

  

 

f

ff

ffp

  

 

f

     ff

  

  

  

  



     

ff

cresc.

open



cresc.

      ff

Hns.

                     f

Timp.

ff

 

open

f



          

cresc.

 

f

               

  

 



               

Solo Vc.

 

ff

             cresc.



ff





ff





 



    

    

    

    

ff

 

        p

       

p

  Vlns. II

           

f

cresc.

   mp

           

ff

 

 

 

ff

 

 

 

 

   

   









                                              

non div.

f

cresc.

 

ff

Div.

            

f

ff

non div.                                        mf cresc.

Vlas.

                               

non div.

mp cresc.

f

ff

Div.

non div.                                                            mf cresc.

f

ff

                                                         non div.

ff

f

Vcs.

Div.

non div.

                                    f

Dbs.

f

cresc.

Div.

Vlns. I

           

ff

                                        f

ff


25

A little faster, with energy

22

  

(q. = 112)

  

  

 

  

 

   

  

206

Ob.

 f

Hns.

Timp.

Solo Vc.

 

 f

f

               



   

f

   

                    

  

 

 

 

 

 

 

  

  

 

 

 

  

 

 

Vlns. I

Vlns. II

Vlas.

f marc.

Vcs.

Dbs.

f marc.

f marc.


26

  219

23

 

senza vib.

mf

dim.













 

 

 

pp

Ob.



 

senza vib.

mf

 

 

f

dim.

  

mf

pp

pp

dim.

Hns.

Timp.



 

 

f

 

 

mf

  

 

  pp

dim.

f

    

  

Solo Vc.

 

 

       

           





  

  

  p

dim.

leggiero

 

  

   p

  gliss.  

poco a poco sul pont.



dim.

  gliss.

Vlns. I

  

 

 

 

 

   p

 

 

 





  

 

 

 

 

 



 

 





p

p

poco a poco sul pont.

  gliss.  

 

dim.

poco a poco sul pont.

 



gliss.

 

 gliss.

dim.

  gliss.

 

dim.

  gliss.



 gliss.

Vlns. II

p

Vlas.

  

p

 

 

f

 

Vcs.

 

 

 

f

Dbs.

 

f

 

 

    p

 

 

gliss.

poco a poco sul pont. gliss.

dim.

poco a poco sul pont.

  

 

 

 

 

 



p

 

 

 

 

 

 

 

 

 

  

div.       

    

    

    

      mp

 

poco a poco sul pont.

gliss.



  gliss.

dim.

 

poco a poco sul pont. gliss.



 gliss.

dim.



poco a poco sul pont. gliss.



  gliss.

dim.


27

24

 



 



 

234

  

  







  

 

   

 

mp

mp

Ob.

  

 mp

 





mp

Hns.

Timp.

                          poco sul pont.

Solo Vc.

pont.  sul     Vlns. I

pp

 

 

 

 

  

 

 

 

 

sul pont.

   pp

 

 

 

mfpp

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mfp

  

mfpp

 

 

 

 

 

 

 

 

mfp

 

mfpp

  

 

   

 

 

 

 

  

mfp

  

mfpp

 

 

 

 

 

 

 

  

 

 

 

 

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

pp

sul pont.

pp

 

mfpp

  

sul pont.

 

   

   

   

mfp

sul pont.



   

mfp

pp

Vlns. II

                                           

Vlas. sul pont.

pp

sul pont.

pp

Vcs.

sul pont.

pp

Dbs.

mfp

mfpp

mfp

mfpp

  

  

  

mfp

mfpp


28

  248

Ob.

Hns.

Timp.













dim.





 



 

    

 

 

cresc.

  

norm.

  

cresc.

  

norm.

unis.

    p cresc. unis.

     p cresc.

cresc.

     

a2

 

f

    f

    f

   

 

  

f

    f

 

  

  

   

  

    

f

  

f

  

 

  

      

      

f

  

          

   

  

 

f

 

  

 

  

cresc.

  

 

  

norm.

cresc.

  

Dbs.

  

norm.

Vcs.

cresc.

  

Vlas.

 

norm.

Vlns. II

pp

f

norm.

Vlns. I

pp

dim.

 

Solo Vc.

25

  

f

           

pizz.

  

f

  

f

  260

Ob.

Hns.

  

 Timp.  

Solo Vc.

Vlns. I

 

 f

 f



f

     

     

                 

 



 

 

Vlas.

Vcs.

Dbs.

         

   f

  

           

        

  

                   

 

f

unis.

        

unis. Vlns. II

           

  

unis.

cresc.

  

mf

   

  

 

f    f



cresc.







 





f

  

  

f

   

  

cresc.





 





div.







arco



 f






29

26

272        

Ob.

ff

                   ff

Hns.

Timp.

     

Solo Vc.

Vlns. I

f

  

Vlns. II

 

Vlas.

 

Vcs.

 

 

 

 

  

 

 

 



    

     

 







                       



p

pp

fp

Dbs.



mp molto legato

    

 

                     p

dim.

       







pp

27

 



280

Ob.

  Hns.



 Timp. 

    

Vlns. II

Vlas.

Vcs.

Dbs.

 

 







 



 

 

 

 



 

mp legato

mp legato

p

mp staccato

  

 



  mp

dim.

Vlns. I

                            

  

Solo Vc.

             pp

  

 

  



  

  

 



   

 

             



pp



                  unis.

molto dim.

mp

 

















                       

pp

p








30 288   

Ob.

  

Hns.

 



 Timp. 

Vlns. I

  



Vcs.



 



Vlas.



 



 

 

Vlns. II



  

Solo Vc.

 

   







  

 

p

 

Vlns. I

  

 

 

Dbs.

 

  

   

 

     

   

        





mp

dim.

  

     

mp



                



dim.

mp





dim.



dim.

 















pp

 

  



 



              mp

 

 

  mf

 

 



   

 

 

  

  

   

p

  

 

   

  

   

 

 

 

 





        

          



  

div.

mf marc.

    div.



pp

dim.

   

pp



dim.

div.



pp

pp

p

  mf

       



 pp



    

  

Vcs.

p

28

      

Vlas.





  

Vlns. II

 

pp



Solo Vc.

 

pp

296

Timp.



p

 

 

 

                       

  

Hns.

 

p

Ob.

 

                       

p

Dbs.



 

 



 

pp







 

 



p

  

 

  

                     p


29

  304

Ob.

Hns.

Timp.

 

 

Vlas.

Vcs.

Dbs.

                          mp



 

  

   

  

   

  

  

 

 

 

 

Vlns. II



 

  

Solo Vc.

Vlns. I

31



  dim.

pp

dim.









 

   

 

 



 

dim.

unis.

pp

div.              

mf

dim.

      

mf

 

 

 

 

p

 

pp

 

 



 

 

    



unis.

  

 

 

 

 











              







mf



div.

 

pp

mf marc.



pp

pp

         p

   312

Ob.

Hns.

Timp.

  mp

 

 

Solo Vc.

Vlns. I

a2

   p

Vcs.

Dbs.





 



 

Vlas.

 

a2

  mp

   

Vlns. II

 





  

 

  

   

 

 

 



 



 

 



 

  

 



  

  p

      p

              

  



 



 





 



 





 

 



  

 

 

 







  

   

 

 

   

   

  

 

 

 

  

  

   

 

  

 

   

 

                     pp





p

 dim.

  

 

      

   

     



pp

            p


32

     320

Ob.

Hns.

Timp.



   

 

    

Solo Vc.

mp

  

Dbs.



    



pp

    

                          mf

p

dim.

 



pp









pp







  

mf

 

              





 

 





   





più dim.













più dim.

pp







mf



 



pp





più dim.

mf







    



  

 pp

mf

 



  





   

p

    



  

Vcs.

pp



Vlas.

    

pp









Vlns. II







 

  

   Vlns. I

dim.







mf



pp

più dim.

 

 

 



 



p



pp

 









più dim.



   



pp

30

    328

Ob.

Hns.

Timp.

Solo Vc.

Vlns. I

         

  

                                                   mf







dim.

dim.

Vlns. II

 

Vlas.

 

Vcs.

 

Dbs.

































   
































33

 

 

 

 

 

344

Ob.

Hns.

Timp.

 

Solo Vc.

Vlns. I







 

 

Vlas.

 Vcs.

 

 

 

 



























                                      poco a poco cresc. p marc. e stacc.                           

   



(Div.)

   



 

Tempo I (q = 160)

    

pp

 

Vlns. II

Dbs.



31

         poco a poco cresc.







 

p



Div.



p poco a poco cresc. unis.

   

mp

                

     

cresc.

mp

cresc.

 

mf

 



354

Ob.

  Hns.



Solo Vc.

Vlns. I

                  (div.)

Vlns. II

fp

Dbs.

   f

 

 

  

 

    

   

   

 

  

 

  

ff

 

 

   







f

ff

f

f

ff

f

ff

   



    



               

                    

        

f

ff

                       

 

ff

ff

 

 

 

f

  

  

 

 

 

unis.

                    p           

p

unis. pizz.

                           

f

mf

ff

ff

f

  

ff

                         

         

mf cresc.

fp

(div.)

cresc.

 

fp

 

f

Vcs.

 



fp

         

Vlas.

 Timp. 

32

pizz.

f

f

 



arco

  



arco

  

 


34

    360

 

 

 

 

ff Ob.

   ff

    ff Hns.



Timp.

Solo Vc.

  ff

 

 

  

 

p

f

    

 

 

    

 

  

   

 

 

  

f

    f

    

      

        

      

Vlns. I

                                                f

                                                     

                                         

p

f

               

Vlns. II Div.

   

Vlas. Div.

p

f

               

                                   

         

                                 

         

f

f

                                 

p

p

f Vcs. Div.

 

                                    f

Dbs.

                               f

  f

 

   p

 

  

 


35

    364

 

 

 

 

 

 

 









Ob.

       





f

  

  

 





 





fp

Hns.

  

Timp.

Solo Vc.

 

 



f

fp

 



              



f

                                          f

   



   



 





p

ff

Vlns. I

 

                                      

f

p

ff

   

        

   

         

                                    

                                    

 

f

Vlns. II

f

       

        

 

p

ff

 

p

ff

f

ff

p

 

Vlas.

                                      f

ff

p

 

  

 



 

 



mfp

mfp

                                            f

Vcs.

ff

Dbs.

mf marc. e stacc.

                                                      f



                              f

ff

 

ff

mf marc. e stacc.

          mf marc. e stacc.







p

p

p


36

33

   368

Ob.

Hns.

  

     f

 

Solo Vc.

  

f



mp

Vlns. I

 

Vlns. II

  

 

 

p

(unis.)

         

Vcs.

   

372

Ob.

Hns.

Timp.

       

  

   

   

  

p

 

Vlns. II

  

Vlas.

 

Dbs.

 

 

 

 

 

  

 

  

 

  

dim.

  

dim.

  

 

  



  

  

   

 





    

  

 

dim.

  



   



G G

 

  unis.                 

   (div.)

 

mp

 



           



           









    mf    













 

mf

mf

  

mf

 



  

 

 



                      



 



 





 



   





 

  

p

 

unis.

p

    

dim. (non div.)

   pizz.

dim.





       

(div.)

  

dim.

 

p

               (div.)

 

p

dim.

dim.

      

( f)

 

pp

  

    



 

 dim.

  



 

 

  

     

(non div.)

Vcs.

 

                    

 

                 

p

 

(div)

p 1 Desk

 

1 Desk

Vlns. I

  

  

non div.

 

  

ff

     

Solo Vc.

pp

p

          

   

 

mfp

mf

p

mf

Dbs.

  p

(unis.)

 

(div.)

Vlas.

(unis.)

mp

  

più legato

                      

  

fp

 

mf



mf

fp

  

    

  Timp.  

p



mp

 

mp

 (unis.)  

    

 

mp

arco   mp

   

   

   

    

 



 



 

 

 


37

   378



34



           

mf

p

dim.

Ob.

  

  







   

          



 

mf



mf

dim.

 



p

 



        

 

       

mf

pp

dim.

Hns.

   

 

   

p

Timp.

   

 

mf





  sul D    p

 

 

  

   

 

  

pp

Vlns. II



 

         

 

  

   

pp

  

 

 

 

  

 



 

    

  

 pizz.

 

(non div.)

 

pp



   

 

 

 

mf

 

 

 

 





      

 



 

pp

  



 



  

 

  

 

            p



 



 



                



 

 

 

  

 

  

pp

 

Div.

 

      

p

f

 

     

mf

f

 

          p

p



pp

     

 

pp

              

Div.

dim.



 

p

dim.

   

                     p

      

mp

arco



dim.

mp

 

pp



dim.

mp

 

pp

           



  



mf

pp

  

mp

 

Vlas.

           

 

pp

 

dim.

Tutti

  

p

Dbs.

 

Tutti

    

sul G

Vcs.

 

f

(1 desk div.)

 

 

f

p

Vlns. I

  

               

Solo Vc.

 

  mf


38

  385



 

 

 

f

mf

Ob.





 

 

 

  



f

   

         



 

mf

f Hns.

            Timp.  

 

Solo Vc.

  

         



 

 

 

 

 

 

  

 

 

  

 

        

    

p

  

 

  

  

                                                    

Vlns. I

p

                                        f



sul pont.

f

  

mf

f

f

 

         

       

          f

     

            

sul pont.

p

      

p

         

Vlns. II

     

           

        f

                

                                  

      

p

          

f

Vcs.

Dbs.

      

  

  

        

f

  f

           

p

Vlas.

 

      

f

 

 

     



          

p

 

 

  

  

  

  

  p



 



p


39

  389



 



 

         

35 



       

           



     

           



     

           



     





ff

ff

Ob.



 

ff

mf

  





ff

ff

ff

Hns.



ff

mf

        Timp.      

   

Solo Vc.

 

  

 

    

Vlns. I

  mf

   





 

                   

norm.

p

mf

 

          

                  

p



  f





   

                  

pizz.

sff

                  

  

pizz.

sff

ff marc. e stacc.

f

  

ff marc. e stacc.

f

norm.

                

    

f

cresc.

 



ff

                

sff

              

   

pizz.               

   

   

pizz.

ff marc. e stacc.

p

Vlns. II

               



sff

ff marc. e stacc.

p

 

pizz.



sff

ff marc. e stacc. Vlas.

 



pizz.               

   sff

ff marc. e stacc.







cresc.





f

            

ff marc. e stacc.

Vcs.







cresc.





f

             (sul D & A)

ff marc. e stacc.

                     non div.

Dbs.







cresc.

 f



ff


40

396            

ff



    

    



Ob.

            

            

     

ffp

     

ff



     

ffp

     

ff

Hns.

Timp.

           

   

Solo Vc.

   Vlns. I

       

f

 

 







    



 

 



 

 



    

                  

       

       

                                          

           



           

            

                                     

      

                          

      



ff arco

       

f

non div.

ff

     

 



Vlns. II

   

 



f

 

 



ff

                         

 

            

arco

      

ff

arco

 

           



f



   

ffp

           

arco

               f

                  

non div.

ff non div.

arco

f

ff

Vlas.

 

     



non div.

                                          arco

f

ff

non div.

                                       f

ff

Vcs.



non div.

f

Dbs.



f

ff

ff


41

36   

  

  

404

  





     p

fp

Ob.

 











  p

fp

 





















  p

fp Hns.

  

Timp.

 



fp













                     cresc.

ffp

Solo Vc.



ff

Vlns. I

 

 

 

 

 

 

 

  

 

 

  

 

 

 



f

 

 

   

 

 

 

f

 

 

 





f

Vcs.

   fp

    



  

   f

  

   

f

fp





           fp





p

  p



  p







 

fp





p









     p













     p

fp















  p

fp























     p























     p

fp

Dbs.

  

 

fp

f

Vlas.

fp

f

Vlns. II

p

f

                                                          

    

div.

     fp

























    p


42

37 Faster (q. = 126)

molto accel. 418                

               

ff

cresc.

Ob.

           

             

cresc.

                ff

cresc.

                ff

Hns.

              

cresc.

ff

  Timp.   

  

p cresc.

Solo Vc.

  

ff

ff

  

           

  

                                    

 

 

 

                                   

 

 

 

                                    

 

 

 

                                    

 

 

 

   

                                     

 

 

 

   

                                     

 

 

 

   

                                     

 

 

 

    

                                     

 

 

 

   

                                    

 

 

 

cresc.

cresc.

cresc.

cresc.

cresc.

cresc.

cresc.

Dbs.

 

cresc.

Vcs.

 

Vlas.

 

(solo)

 

cresc.

Vlns. II

  

 

                                   

  Vlns. I

               

cresc.

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ffp cresc.

ffp cresc.

ffp cresc.

ffp cresc.

ffp cresc.

ffp cresc.

ffp cresc.

ffp cresc.

ffp cresc.

ffp cresc.

   

ff

   

ff

    ff

   

ff

ff

ff

ff

ff

ff

     ff


43

  429

Ob.

Hns.

Timp.

 

    

 

Solo Vc.

  

 Vlns. II

Vlas.

Vcs.

Dbs.

Gli altri

 

  

  

 

  

 

 

1st desk only

Vlns. I

 

con sord. unis.



pp

 

 

con sord. (div.)

pp

 

 

 

 

pp







con sord. (div.)

pp



con sord. (div.)

 

 

con sord. (div.)

 

pp

 

 





 

38

 

X

 



X

 



440

Ob.

Hns.

 

 Timp. 

X

X

Solo Vc.

(in tempo) quasi cadenza



          

( ff )

   

         f

 



TO TUBULAR BELLS

      

mf

dim. a niente

 

ca. 5"

 

senza sord. (div.)

 

1st desk only

X

Gli altri

Vlns. I

 Vlns. II

Vlas.

Vcs.

Dbs.

X

pp

  

 

X

  



X

  



X X

    

 


44

SONG

39

Tempo primo q = 54 Quite slowly - peacefully

    441

Ob.

Hns.

Tub. B.

Solo Vc.



   



 



mp muted

   

mp



   

  

 

 





mp



p molto legato

  



mp

 

 

 

  

 

 

   

 

 

 

 

 

pp div.

 

 

 

 

 

pp

 

     mp

    

mp





        



 



 3

   



mf



 

 

   









   

 

  

 

mp

  

     





 

 

 

 

3

  

 

p



 

mf

   

 



 



 



  

mf

  

p

p

  

3

  



3



 

3



p

mf

 

 

  

p

   

mp

        



 

1.

3

 

  

 

   

p

 

     

Vlns. I

 

  

 

p



  

 

 

 

449

Dbs.



     



 

     

Vcs.

  

 

 

    

Vlas.

 

 

Vlns. II

 

pp

Solo Vc.

  

pp

Tub. B.

pp Gli altri

Vcs.

mp

simply, but with feeling

      

Vlas.

mp

 

Vlns. II

Hns.

   

pp

Ob.

Vlns. I

  muted    

1st desk only

Dbs.

            

  



  

 

mf

 

 

 mp



pp

 

mp

dim.

 

mp

 

mutes off

 

 

dim.

 



mf

  



   

 


 

Ob.

   Hns.

Tub. B.

Solo Vc.

  





(sul A)

pp

  

pp

 

   

461

Hns.

Tub. B.

mutes off

pp

mutes off

 

  

Vlns. I

 

Dbs.

mp

3

3

 

3

 



  

  

3

 

 

   

 

3

   

   

 

3



 



p

      3

 

 

p

  p





3

  

 

poco

  

  

 

  

 

3

3

  

3

 

3

3

 







mf



 

   3

 



cresc.

 cresc.

 

poco

 

 

    

 

3

        3

 

   

 

 

   3



  

mf

3

3

   

        

3

 

mf



3



 

 



p





  

 

3

cresc.

(Tutti)

3

 

mp

  

 



mf

Vcs.

 

   

cresc.



 

Vlas.

mp

 

 

mutes off

    

 

Vlns. II

mp

pp molto legato

3

p

pp molto legato



                                                     

p

    

Solo Vc.



   

Ob.

p

pp

 



  

                      

pp non div. (open str.)

mp

p

    



sul G gliss.

Vcs.

mp

  

mutes off



 

  

p

Vlns. I

Vlas.

    

Vlns. II

molto legato

p



45

A little faster q = 60

 

mp

pp

Dbs.

  

1. (solo)

456

40

 

p

poco

 

 

    

  3

        3

 

   

 

 

   3

poco

 

 

    

  3

    


46

41

 

Moving forward q = 66

466

  







mf

Ob.

  

 

mf

 

open

 mf

 pp

p



 

 pp

Hns.



open





mf

Tub. B.

  





pp

p



 

pp

 p

mf

Solo Vc.

 

 

ff

  



    

 

6

f

    

7                    



5

    

 

5

5

p marc. ma sost.

poco dim.

Vlns. I



     

     

5

5

5

p marc. ma sost.

 

  

mp

 

 

 

 

 

 

 

 

pp

 

  

poco dim.

 

   

    

 

  

 

 

   

    

 

 

 

 

 

 



 

Vlns. II

   mp

 

 

5

 

5

    

 

Vlas.

 

 

Vcs.





5

mf marc. ma sost.

Dbs.

 

5

   



    p

unis.

 

f

pp

5

   

p

5



5

 

mf marc. ma sost.

    

pp

5

    

 





5

5

5

    

 

5

 

     5

   

    

  

5

5


47

471   

     

5

     

  

     

5



5

fp

   

5

f marc. ma sost.



    

5

f marc. ma sost.

Ob.

  

     

5

5

5

     

     fp

mf marc.

p Hns.

 

  



p

Tub. B.

 

  

 





Vlns. I

   

mf marc.

               



              



p

5

cresc.

5

cresc.

                     7

7



p

  

  

                p

  

5

f

   

  

mp

Solo Vc.



 



f

poco dim.



 



f

poco dim.







f

cresc.

5

poco dim.

Vlns. II

 

p

 

 

                       5

 

fp

cresc.

                       



5

( mf )

                   p



f

cresc.

( mf ) Vlas.



             

cresc.

fp

  

mf

cresc.

 

p

                  p

 

 

p

Dbs.

 

  p

poco dim.

poco dim.

cresc.

 

mf

 

p

 

 



 

 

 

 

 

  

         

  

        

Vcs.



poco dim.





 

  

       

 

  

   

f

 f (non div.)

(non div.)

              

              

pp

pp

poco cresc.

poco cresc.

 

 

   

   


48

  

     

474

Ob.



p

     

5

    

5

     

5

5

cresc.

  

5

5

     

p



 















mf

5

     

mf

     

5

5

cresc.

      p

42

    

 mf

cresc.

Hns.

        5

5

p

Tub. B.

   

5

     



     

cresc.

mf





 mf

mp

   

Solo Vc.

 

 

 

 

 

 

  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

pp

Vlns. I

pp

pp Vlns. II

  Vlas.

 

pp







p







p

 





f







p

Dbs.

   p

                         

                                                  

p

f

  

 

p

Vcs.

 

 

                        



   

 

 

 

cresc.

 

 

cresc.

 

   

 

fpp

 

fpp


49

 

  477



 





f Ob.

 



 f

 

 



 

 



     ff

Hns.

Tub. B.

Solo Vc.

  

 

    ff

  

 

 



ff

 





3 3                               

marcato

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vlns. I

Vlns. II

 

         

Vlas.

 

       

  Dbs.

 

p

p

p

 

p

p

                 p

                 

 

       

                

 

   

p

p

cresc.

cresc.

 

                

cresc.

 

 

       

Vcs.



 

 

 



 

 

 

 

 

 

 

 

cresc.

 

cresc.

 

cresc.

  cresc.

  cresc.

   

cresc.

cresc.


50

Still moving forward q = 72

479    



    

 

5

    

5

 

5

5

mf marc. Ob.

  

     

 

 

5

     

5

5





 

ffp

 

Solo Vc.



Vlas.

Vcs.

   

  

 

 

 



Dbs.

 

   





 

f

 f

 

   

  

 

cresc.

( f)

  

 

( f)

fpp

mf

f



 

 

 

 

 

 

 

 

 

mf 5

f

f

  f

  

pp

  

 

 





pp



5

 



 

 

 

  

 

 



 

5

    

pp

 

 

 

 

cresc.

 

 





cresc.





 

 

 

  

cresc.

pp

  ( f)

 

mf

 ( f)

5

5

     5

    



5

5

 5

 

5

     

5

5

mf



5

 

5

       f

     

5

     

f

 



5

   

 

cresc.

fpp

      

 

ff sostenuto

f

 

   

f

 

 

  

   

  

  

f

 

  

p cresc.

 

    

ffp

  

Vlns. I

Vlns. II

 



p cresc.

Hns.

  

5

mf marc.

  

Tub. B.









 cresc.

 

 







( f)

 

( f)

 ( f)



 

 ( f)


51

  482

     

 

 

pp

 

     

 

 

     

 

 

pp

 

  

     

 

 



p o c o a p o c o c r e s c.

  





pp

p o c o a p o c o c r e s c.





 

f possibile!



 

f possibile!

p o c o a p o c o c r e s c.

Ob.

LUNGA

  

 

f possibile!

Hns.

 

  

Solo Vc.

 

p o c o a p o c o c r e s c.

pp

Tub. B.



f possibile!

LUNGA

(l.v.)

ff

 

LUNGA

possibile

 

                                                                pp marc.

Vlns. I

 



 

       pp div.

p o c o a p o c o c r e s c.

pp marc.

pp

Vlns. II

 

 

 





    

 

div.





  

p o c o a p o c o c r e s c.





p o c o a p o c o c r e s c.











     

 









  

 



  

 

f possibile!

 

f possibile!

               

 

 

  



                









 

 

f possibile!



 

f possibile!

  p o c o a p o c o c r e s c.



                       

p o c o a p o c o c r e s c.

 

f





f possibile!

                 

Dbs.

   

             

pp

                    

pp

Vcs.



p o c o a p o c o c r e s c.

pp

 

f possibile!

p o c o a p o c o c r e s c.

pp Vlas.

f possibile!

p o c o a p o c o c r e s c.

                                                           

 

 

 

f



 

      



 

f possibile!

 

 f

 

 f

  

 

f possibile!

  

f possibile!

 

Gregson A SONG FOR CHRIS  

Soloist and Orchestra; Novello; musicsalesclassical.com; 35696

Read more
Read more
Similar to
Popular now
Just for you