Full download ebook at ebookgate.com
SustainableNuclearPowerSustainableWorld 1stEditionGalenJ.Suppes
https://ebookgate.com/product/sustainable-nuclearpower-sustainable-world-1st-edition-galen-jsuppes/
Download more ebook from https://ebookgate.com
More products digital (pdf, epub, mobi) instant download maybe you interests ...
The Sustainable World 1st Edition C. A. Brebbia
https://ebookgate.com/product/the-sustainable-world-1st-editionc-a-brebbia/
State of the World Towards a Sustainable Global Economy Ideas and Opportunities for Sustainable Economies 2007 Worldwatch Institute
https://ebookgate.com/product/state-of-the-world-towards-asustainable-global-economy-ideas-and-opportunities-forsustainable-economies-2007-worldwatch-institute/
Towards Sustainable Management of the Boreal Forest P. J. Burton
https://ebookgate.com/product/towards-sustainable-management-ofthe-boreal-forest-p-j-burton/
Sustainable Luxury Paul Mcgillick
https://ebookgate.com/product/sustainable-luxury-paul-mcgillick/
Sustainable Building Adaptation Innovations in Decision making 1st Edition Sara J. Wilkinson
https://ebookgate.com/product/sustainable-building-adaptationinnovations-in-decision-making-1st-edition-sara-j-wilkinson/
Sustainable Agriculture 1st Edition Carol Hand
https://ebookgate.com/product/sustainable-agriculture-1stedition-carol-hand/
Sustainable Retail Refrigeration 1st Edition Evans
https://ebookgate.com/product/sustainable-retailrefrigeration-1st-edition-evans/
Leading the Sustainable Organization Development Implementation and Assessement 1st Edition Timothy J. Galpin
https://ebookgate.com/product/leading-the-sustainableorganization-development-implementation-and-assessement-1stedition-timothy-j-galpin/
Sustainable Agroecosystem Management Integrating Ecology Economics and Society 1st Edition Patrick J. Bohlen
https://ebookgate.com/product/sustainable-agroecosystemmanagement-integrating-ecology-economics-and-society-1st-editionpatrick-j-bohlen/
SustainableNuclear Power Thispageintentionallyleftblank
Sustainable NuclearPower Editors GalenJ.Suppes TrumanS.Storvick AMSTERDAM
AcademicPressisanimprintofElsevier
ElsevierAcademicPress
30CorporateDrive,Suite400,Burlington,MA01803,USA 525BStreet,Suite1900,SanDiego,California92101-4495,USA 84Theobald’sRoad,LondonWC1X8RR,UK
Thisbookisprintedonacid-freepaper.
Copyright©2007,ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopy,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.
PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRights DepartmentinOxford,UK:phone:(+44)1865843830,fax:(+44)1865853333, E-mail:permissions@elsevier.co.uk.Youmayalsocompleteyourrequeston-line viatheElsevierhomepage(http://elsevier.com),byselecting“CustomerSupport” andthen“ObtainingPermissions.”
LibraryofCongressCataloging-in-PublicationData Applicationsubmitted
BritishLibraryCataloguinginPublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN13:978-0-12-370602-7
ISBN10:0-12-370602-5
ForallinformationonallElsevierAcademicPresspublications visitourWebsiteatwww.books.elsevier.com
PrintedintheUnitedStatesofAmerica 07080910987654321
Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org
4EmergingFuelTechnologiesandPoliciesImpacting
ListofFigures 1-1Thelegacyof30yearsofcommercialnuclearpower intheUnitedStates,including30yearsoffission productsthatareoflittlevalueandsufficient stockpiledfissionablefueltocontinuetoproduce electricalpoweratthesamerateforanother4,350 years.7
2-1Typicalcompositionofoil.20
2-2Year2000oilflowinquadrillionBtu.22
2-3RecentU.S.oilprices.23
2-4U.S.importsofpetroleum.23
2-5Worldoilreservesbyregion.EstimatesofCanadian reservesby OilandGasJournal in2003aremuch higherthaninpreviousyears.Mostlikelythey includeeasilyrecoveredoilsands.24
2-6U.S.energyconsumptionbysource.24
2-7EstimateofU.S.energyreserves.25
3-1SummaryofworldandU.S.fuelreservesinBtus.34
3-2Impactofatomicmassnumberonpermanenceof atoms.Hishydrogen,Heishelium,Liislithium,C iscarbon,Oisoxygen,Fisfluorine,Arisargon,Feis iron,Kriskrypton,Snistin,Gdisgadolinium,Puis plutonium,Biisbismuth,andUisuranium.44
3-3Thehistoryofenergy.47
3-4Escalatingchainreactionsuchasinanuclearbomb.52
3-5Controlledsteady-statechainnuclearfissionsuchas inanuclearreactor.53
3-6Approximateinventoryofcommercialspentnuclear fuelandfissionableisotopeshavingweapons potential(Pu-239andU-235).Thesolidlinesarefor continuedoperationwithoutreprocessing,andthe dashedlinesareforreprocessing(startingin2005)to meettheneedsofcurrentnuclearcapacity.56
4-1Alternativebenchmarktechnologies.81
4-2Summaryoftaxbreakdownon$28barrelof syntheticcrude.90
4-3Summaryofpricecontributionsonagallonof gasolineon$2.01pergallonofunleadedregular gasoline.95
4-4Summaryofelectricalpower-generatingcapacityby fuelsourcesforelectricalpowergenerationinthe U.S.(1999).102
4-5Carbondioxideemissionsbysector.115
5-1OnEarth,mostenergycomesfromthesunand ultimatelybecomesheat.Thisisafascinatingstory oftrialanderrorwiththesuccessfulinventions providingthemanydevicesweuseeveryday.120
5-2Illustrationofhowpistonsperformwork.126
5-3Condensingsteamusedtomoveapiston.131
5-4Useofhigh-andlow-pressuresteamtopowera piston.132
5-5Abasicsteamturbinepowercycle.138
5-6Aboilingwaterreactor(BWR)andsteampower cycle.140
5-7Apressurizedwaterreactor(PWR)andsteampower cycle.141
6-1Crudeoilfractionsandmarketdemands.163
6-2Summaryofenergylossesinuseoffuelfor automobiletravel.EffectivenessandImpact ofCorporateAverageFuelEconomy(CAF ´ E) Standards.177
6-3Averagefueleconomyofmotorvehicles.178
7-1Asimplegenerator.190
7-2Ageneratorwitharmaturerotatinginsidemagnetic field.190
7-3Atransformer.194
7-4Increasesinthermalefficiencyelectricalpower generationduringpastcentury.197
8-1Aheatpumpoperatinginheatingandcooling modes.212
8-2Impactofspaceheatingonbaseloadforelectrical powergeneration.214
8-3Exampleof24-hourelectricitydemandduringJuly forFortJacksoninSouthCarolina.214
8-4ExamplePCMdeviceandtankforactiveclimate control.216
9-1EnergyconsumptionintheUnitedStates. Distributionbyenergysourceonlyincludessources contributingmorethan2%oftheenergyineach category.224
9-2Toptechnologiesforprovidingbeneficialimpact toCalifornia’seconomywhilereducingfuel consumption.Beneficialimpactisreportedin projected2001dollarsforthetimeperiodfrom2002 to2030.226
9-3SimplifiedpresentationsofparallelandseriesHEV designs.227
9-4ComparisonofPHEVandBEVdesigns.ThePHEV hasanengineandsmallerbatterypack.TheBEV doesnothaveabackupengine.228
9-5Comparisonofnetpresentcostforoperating aconventionalvehicle(CV),hybridelectric vehicle(HEV),plug-inHEVwitha20-milerange (PHEV-20),andabatteryelectricvehicle(BEV)with 200-milerange.Presentvaluesarebasedona7-year lifecycle,$1.75pergallongasoline,and6 c/kWh electricity.229
9-6AcityBEV.ThecityBEVisacompactvehiclethat hasamaximumrangeof60miles.Itisaniche marketvehiclethatcanmeettheneedsof“some” commuterneeds.231
9-7Milestraveledwithtypicalautomobileeachday andimpliedabilityforPHEVstodisplaceuseof petroleum.231
9-8Fuelcelltechnologiesandtheirapplications.236
9-9Ratiosofcostsforheatingwithfuelversusheating withelectricalheatpump.RatiosbasedonCOPof 2.0andheaterefficiencyof90%.Shadedregions showwhereheatpumpismorecosteffective.239
9-10Dependenceofatypicalheatpumpperformanceon outsidetemperature.241
9-11Comparisonofheatpumpusingairheatsinkto groundsourceunit.243
10-1Aneutron-inducedfissionofU-235.251
10-2ExcerptfromtheChartoftheNuclides.254
10-3Presentationformatforstableisotopesinchartof nuclides.255
10-4Presentationformatforunstableisotopesinchartof nuclides.256
10-5Skeletonofcompletechartofnuclidesillustrating stablenuclei.256
10-6EnergyleveldiagramforNickel-60.258
10-7DecaytracksforfertilecollisionswithTh-232and U-238.263
10-8Plotofbindingenergiesasfunctionofmass number.Highervaluesreflectmorestable compounds.Thevaluesarethebindingenergyper nucleireleaseofenergyiffreeprotons,neutrons, andelectronscombinetoformthemoststable nucleiforthatatomicnumber.264
10-9Typicalneutronabsorptioncrosssectionvs. neutronenergy.268
10-10Laboratoryfusion.275
11-1Massbalanceforreprocessing.Massismassof heavymetalandfissionproductsofheavymetal.285
11-2Massbalanceofonce-throughfueluseaspracticed intheU.S.Thefissionproductsarethe“waste.” Theyearsindicatetheyearsofavailableenergyif usedatthesamerateasusedinonce-through burns.BothFranceandEnglandhaveimmobilized theconcentratedfissionproductsinglassfor long-termstorage.286
11-3Recoveryofunusedfuelisthefirstphaseoffuel reprocessing.Casingsarephysicallyseparated astheinitialstepinfuturenuclearwaste management—separationofstructuralmetalsin thebundlesandrecoveryoffissionablefuel.287
11-4Schematicofoverallprocesstominimize hazardouswastefromnuclearpower.Themasses intonsrepresenttotalestimatedU.S.inventory fromcommercialreactorsin2007—about50,000 tons.Thevolumesarebasedonuranium density—theactualfissionproductvolumes wouldbeabouttwicethevaluesindicated.288
11-5Fulluseuraniumprovidingcenturiesofenergy. Thoriumisalsoafertilefuelthatcanbeusedin thisclosedcycle.290
11-6ConversionofU-238toPu-239.293
11-7BlockflowdiagramofPUREXreprocessingof spentnuclearfuel.300
11-8UREXblockflowdiagram.303
11-9Pyropartitioningprocesstorecoverheavymetals.308
11-10Impactofadvancednuclearfuelreprocessing.315
12-1Steamcycleoperatingat33%thermalefficiency.321
12-2Evolutionofthermalefficiencyinasteamcycle. Higher-temperaturesteamturbineoperationwaskey.322
12-3Stagedexpansion.323
12-4Accuracyofempiricalmodelforpowercycle thermalefficiency.324
12-5Steamreheatinpowercycle.326
12-6Comparisonofefficiencyprojectionsofdifferent models.TheJouleandmodifiedJoulemodels assumeafeedtemperatureof313K.326
12-7Projectedthermalefficienciesasafunctionof maximumsteamtemperatureandalow temperatureof313K.327
12-8Boiler,superheater,andsteamreheatina pulverizedcoalpowerplant.328
12-9Boilingwaterreactor(BWR).329
12-10Pressurizedwaterreactor(PWR).330
12-11Supercriticalwater-cooledreactor.333
12-12Veryhigh-temperaturereactor.334
12-13Gas-cooledfastreactor.336
12-14Sodium-cooledfastreactor.337
12-15Lead-cooledfastreactor.338
12-16Moltensaltreactor.339
12-17Levelofriskasthelevelofmaterialsdevelopment complexityincreases.347
13-1DistributionofenergyconsumptionintheU.S.by sectorswithelectricityseparatedasitsownsector.373
13-2Energyreservesavailableasadirectandindirect resultof30yearsofoperationofnuclearpower plantsintheUnitedStates.Themassisall commercial-heavymetalfor30yearsofoperation. Theyearsaretheperiodapowerplantcould continuetooperateusingtheuraniumthatwas minedtoprovidethefirst30yearsofoperation.374
13-3Spentnuclearfuelstoredon-siteatanuclear powerplantifreprocessingstartedin2007.375
13-4Extrapolationofrecentratesofspentfuel accumulationfromU.S.commercialfacilities. Basedontherateofgenerationbetween1990and 2002,30yearsofstoredspentnuclearfuelwillbe reachedin2007.378
13-5Uranium/plutoniuminits“sustainable”phase.380
Thispageintentionallyleftblank
Preface After30yearsofcommercialU.S.nuclearpowerproduction,there issufficientfissionablefuelstoredatpowerplantstomeetall electricalpowerneedsforthenext150years.Forthe31states thathavethesereserves,thisnuclearfuelisthemostaccessible andinexpensivenewenergysourceineachofthosestates.This bookisaboutsustainablenuclearenergyandwhatprovennuclear fissiontechnologythesereservescandeliver.
Inadditiontothefissionablefuelstoredatpowerplants,an additional630yearsoffissionabledepleteduraniumisstoredat otherlocations.Combined,thesereservescanmeetallelectrical powerneeds,aswellasthevastmajorityoftransportation,residential,andcommercial(building)energyneedsforthenext400 years.Proventechnologycandeliverthisenergywhiledisintegratingthewasteintoharmlesselements—theresponsibilityofnot leavingalegacyofnuclearwasteisimplicitandattainable.
Whilethetechnologyisproven,avisionisneededtoidentify pathstocommercializationthatareeconomicallysustainable.It isthisvisionanddiscussionsofselectempoweringtechnologies thatmakethisbookunique.
Ourpurposeforwritingthisbookistohelpyou,ourreader, betterunderstandenergysources,howenergyisusedtomeet transportationandresidenceneeds,andhownuclearpowerisone (ifnottheonly)meanstoprovideabundantandsustainablepower totheworld.
Thebook’scontentsaredesignedtoincrementallybuildupon thescienceandengineeringfoundationsofthoseengineersand scientistswhodonothaveabackgroundinnuclearscienceor engineering.Itishopedthatthisbookwillhelpempowerengineers andscientiststomaketheneededadvances.
Thesustainabilitythatnuclearfissioncanbringincludesmore thanelectricalpower.Nuclearpowercanbringsustainabilityand extendedprosperitythroughapplicationsimpactingtransportation
andspaceheatingusinggridelectricityasaconduit.Thisextended topichasbeenthetopicofmultiplereportstoCongressandCongressionalResearchServicereports.Wherepossible,thesereports arecitedanddirectlyquoted.
Thetextisdesignedtobeunderstandableandusefultointerestedcitizensandlegislators.Theywillultimatelyempowerthe governmenttochangepoliciesandallownuclearfissiontobesafer, moreavailable,andfreeofwaste-handlingissues.
OrganizationoftheBook Thechaptersofthisbookareintendedtobeself-contained.This resultsinduplicationoftopics,butitshouldbeeasiertoread whereyouhavespecialinterest.
Chapters1,2,and3coverthehistoryofenergy,thereserves, andsomeoftherenewableresourcesavailabletous.Energy’shistoryonearthstartswiththesunlightthathelpedformwoodand livingorganisms.Woodandlivingorganismsaretherawmaterialsstoredbynatureandtransformedbygeologicalprocesses overmillionsofyearstogiveuscoal,petroleum,andnaturalgas. Woodwarmedthecradleofcivilization.Coalwasprobablyfirst used2,000yearsago,and,morerecently,itpoweredtheindustrial revolution,startinginabout1700.Liquidfueliseasiesttouse inenginesandservedtopowerthemodernautomobile.Thefirst fixed-wingaircraftflewusingthissameliquidfueljustafter1900. Liquidpetroleumfuelsmadethe20thcenturythepetroleumage, withthemidcenturyadditionofnaturalgaspipelinedistribution.
Chapter4evaluatesalternativeenergysourcesandtechnologies.Wedependexclusivelyonpetroleumfuelsfortransportation, andanyinterruptionofoursupplyofimportedpetroleumcan becomeaninstanteconomicandsocialproblem.Coalisthemain sourceoffuelforelectricpowerproduction.Here,thecompetition fromotherenergysourceskeepsthepriceofelectricityfairlystable.Knownandemergingtechnologiescanstabilizeenergyprices andcreatesecurityfromunemploymentandmilitaryconflict.
Thestoryofenergythroughthe19thand20thcenturiesconcentratesontheworkproducedbyhotgasesexpandinginengines (machinesdesignedtodowork).Thescienceandtechnologyof thedevelopmentofthesemachinesaresummarizedinChapter5. Chapters6,7,and8describethetechnologiesthatprovidetransportation,electricity,andtheequipmentweusetoheatandcool ourhomesandworkplaces.
Priortothesun’sradiationtouchingEarth,atomicenergywas shapingtheuniverse.Mantappedintothepowerofnuclearenergy neartheendofWorldWarIIwithtwothunderousexplosions overJapan.Twocitycenterswereleveledandthousandsofpeople evaporated.
Thisunfriendlyintroductiontonuclearenergyhasproduced theattitudeamongmanythateverythingnuclearshouldbe banned.Eventhenamenuclearmagneticresonanceimaging(an importantmedicaldiagnostictool)hadtobechangedtocalm patientanxiety.Attitudewithstanding,nature’snuclearenergy touchesusintheformofthesun’sradiationandgeothermal heateveryday.Andwhenconfrontedwithdepletingoilandcoal reserves,wecannotignorethehugeenergyreservesavailable throughnuclearenergy.
Today,thereareover100nuclearpowerplantsintheUnited Statesproducing18%to20%oftheelectricityweuseeveryday. Afewpoundsof“nuclearfuel”canreplacethousandsoftonsof dieselorcoalfuel,allowasubmarinetocruiseunderwaterfor monthsinsteadofhours,andprovideelectricalpowerwithoutthe airpollutionassociatedwithburningcoal,petroleum,andvegetation.
Thesourceofthisnuclearenergygoesbacktothetimewhen atomswereformed,longbeforeoursolarsystemexisted.Allofthe atomsthatwefindinthegases,liquids,andsolidsonEarthwere assembledinandamongthestarsfromtheparticlesandenergy thatmakeupoursunandtherestoftheMilkyWaygalaxy.The historyofenergystarts—andends—withnuclearenergy.
Chapters1through8provideacasefornuclearpower’sabilitytosubstantiallyaccommodateelectrical,transportation,and residentialpowerneeds.Nuclearprocessesareputintheiraccuratecontextasnaturalprocessesthatarevitaltoearth’secosystem,includingthewarmthofthesun’sradiationandthenuclear fission’sroleinmaintainingearth’smoltencoreandcreatinga habitableecosphere.
Chapter9isontheuseofelectricalpowergridastheconduitthroughwhichnuclearpowercandelivernotonlyelectrical energyneeds,butalsotheenergytosustaintransportationand spaceheatingforhomesandbusinesses.Technologieslikeplug-in hybridelectricvehiclesandheatpumpsempowernuclearenergy toeliminatetheimportofbothpetroleumandnaturalgas.
Chapters10through13focusonthenuclearscience,reprocessingspentnuclearfueltoeliminatewaste,andeconomics.
Chapter10examinesatomicprocesses.Anunderstandingof theseprocessesallowsnuclearpowertobeharnessed.Animproved
understandingandcommitmentallowtransmutationofwastesto allbuteliminatewasteintheimmediatefutureand,witharealisticoutlook,tofullyeliminatewasteissuesbeforetheybecome aburdenonsociety.Theburdenwillbeonthepowerproducers;itwillbelimitedandsustainable.Chapter11describesthe technologyandapproachestoeliminatingnuclearwaste.
Nuclearprocessesprovidethesourcesofheatusedtopower theheatengineknownasthepowercycle.Thereareunique aspectsofthepowerplantwithwhichmostengineersarenot familiar.
Heattransferinnuclearprocessesismorecomplex.Inadditiontoconvective,conductive,andradiativeheattransfer,the impactofneutronswithmoleculesoftheworkingfluidareableto directlyheattheworkingfluid.Heattransferinnuclearprocesses iscoveredinChapter11.
Chapter12completesthegeneraldesigndetailsofthemany nuclearpowerplantoptions.Theplantdesignultimatelyprovides passiveandhighsafety.Properplantdesignscangreatlyincrease theamountofenergyproducedrelativetothewastegenerated.
Alltoooften,textsontheintroductionoftechnologyfail toevaluatethetechnicalbarrierstocommercializationalongside nontechnicalbarriers.Fornuclearpowertoprovideasustainable solutiontotoday’senergyneeds,itmustbecommercializedina sustainablemanner.Thistranslatestoovercomingboththetechnicalandnontechnicalbarrierstocommercialization.Chapter13 identifiesandprioritizesthebarrierstocommercializingthenext generationofcleaner,safer,andmoreefficientnuclearpower plants.AcomparisontothosebarriersimpactingthecommercializationofalternativeliquidfuelsintheUnitedStatesrevealssome commonbarriers,but,ingeneral,thebarriersareverydifferent.In bothcasesnationalpoliciespresentthegreatestbarriers,andthere isanopportunityforourleaderstosetthecourseforovercoming thesebarriers.
Acknowledgments Discussionswithcolleaguesledustowriteaboutthestrong interactionbetweenscienceandtechnology,economicsandlegislation,inourmodernsociety.Wethankthehundredsofstudents whohavebeenpatientwithourpresentationsandtaughtusthat theKISS(KeepItSimple,Stupid)theoryofteachingreallyworks.
Preface xix
Complexsolutionsarebestformulatedbyansweringaseriesof well-statedsimplequestions.
ThehospitalityoftheChemicalEngineeringDepartment showntoaprofessorinretirement(TSS)servedasaninspiration andmadethisbookpossible.
ThecompanionWebsitecontaininggovernmentreports,additionalexercises,casestudies,andteachingtoolsprovidedbythe authorstocomplimentthetextcanbefoundathttp://books. elsevier.com/companions/0125468075.
Thispageintentionallyleftblank
AcademicPress
SustainableWorldSeries
SeriesEditor RichardC.Dorf
UniversityofCalifornia,Davis
The SustainableWorld seriesconcentratesonbooksthatdeal withthephysicalandbiologicalbasisoftheworldeconomyand ourdependenceonthetools,devices,andsystemsusedtocontrol,developandexploitnature.Engineeringisthekeyelementin developingandimplementingthetechnologiesnecessarytoplan forasustainableworldeconomy.Iftheindustrializationofthe worldistocontinueasapositiveforce,thecreationandapplicationofenvironmentallyfriendlytechnologiesshouldbeoneofthe highestprioritiesfortechnologicalinnovationinthepresentand future.
Thisseriesincludestitlesonallaspectsofthetechnology, planning,economics,andsocialimpactofsustainabletechnologies.Pleasecontacttheeditororthepublisherifyouareinterested inmoreinformationonthetitlesinthisnewseries,orifyouare interestedincontributingtotheseries.
Currentpublishedtitles:
Technology,HumansandSociety:TowardsaSustainableWorld, editedbyRichardC.Dorf,500pages,ISBN:0122210905,published 2001
WindPowerinView:EnergyLandscapesinaCrowdedWorld, editedbyMartinJ.Pasqualetti,PaulGipe,RobertW.Righter, 234pages,ISBN:0125463340,published2002
CoalEnergySystems byBruceG.Miller,526pages,ISBN: 0124974511,published2004
HydrogenandFuelCells byBentSørensen,400pages,ISBN: 0126552819,published2005
CHAPTER1 Introduction EnergyinToday’sWorld Theremarkableimprovementinthestandardoflivinginthe UnitedStatesduringthe20thcenturyisunprecedentedinworld history.Analmosttotaltransformationfromanagrariantoan urbansocietyoccurredduringthisperiod.Workoncedoneby peopleandanimalsisnowperformedbymachinespoweredby petroleumorelectricity.Boththequalityanddurationoflifehave improved.
Petroleumfuelsalteredthewaywegrowanddistributefood, wherewelive,thelocationandconfigurationofmanufacturing, andeventhewayweentertainourselves.Airtravelmakesitpossibletoreachanypointintheworldinlessthanaday.
Anabundant,reliablesourceofelectricityrevolutionizedthe factoryandmultipliedworkerproductivity.Electricityinthe homeallowedforrefrigeration,lighting,indoorclimatecontrol, andcompletehomeentertainmentcenters.
Thecreativeandinventiveuseofenergyisthefoundationof modernsociety.Withtheemergenceofthe21stcentury,weare challengedtoimprovethisfoundationwhilefacedwithchallenges likeglobalwarming,importingover$200billionincrudeoileach year,overrelianceonnaturalgasresources,andamomentumof establishedinfrastructurethatresistsneededchanges.Howwe respondtothesechallengeswilldramaticallyimpactourfuture.
Attheonsetofthe21stcentury,theUnitedStateshasabundantandavailableenergy,butinsufficientfossilfuelreserves existfortherestoftheworldtoimitateU.S.consumption. Also,anoverrelianceonimportedpetroleumandnaturalgasmay quicklyclimaxwitheconomicturmoilasnationspositionthemselvesfortheselimitedresources.Athemeofsustainableenergy
emerges—energytechnologyoptionsthatcanbepracticedworldwidethroughthe21stcenturyandbeyond.Withinthethemeof worldwidesustainability,thepetroleumoptionsoonwanes,as petroleumcannotevenprovidepresenttransportationfuelneeds withoutfrequentpricefluctuations.
Coalisoftencitedasoffering600yearsofreserves,butmostof thosereservesareofsuchlowqualitythattheyarenotconsidered recoverable.IftheUnitedStatesweretousedomesticrecoverable coalreservestomeetallU.S.energyneeds,thecoalwouldbe depletedin90years.Ifcoalweretoreplacepetroleumandnatural gasonaworldscale,thereserveswouldbedepletedinafew decades.Today,ready-to-useuraniumfuelcostsabout$0.62per deliveredMBtuofheat(assumptionsonU-235contentand3.4% fuelburnup)ascomparedtocoalat$1.29.Thepriceofcoalis stable,butonadecadetimescaleitwillbegintoincrease.Onthe otherhand,ifnewreactortechnologiesweretoincreasetheburn ofuraniumfrom3.4%to34%,thepriceofnewuraniumfuelcould decreaseto$0.062perdeliveredMBtu(assumingsamefuelrod composition).Nuclearaloneemergesasaprovensourcecapableof providingabundantenergytotheworldthroughthe21stcentury andbeyond.
Thisnarrativeiswrittentoprovideanintroductiontosustainableenergyscienceandtechnologythatmayhelpengineers,scientists,andpolicymakersbettermeetthechallengesofproviding anabundantsupplyofsustainableenergy.Anoverviewofenergy optionsprovidesacasefornuclearpower,andareviewoftransportationenergyoptionsshowshowabundantelectricalpowercan alsoprovidesustainableandabundantenergyfortransportation. Wewillexaminecurrentnucleartechnologiesandapproachesto nuclearpowerthatallowtreatmentofnuclearwasteforsafe,longtermstorage.
Thestorystartswiththeconceptofenergyandhowallforms ofenergyhaveacommonorigin.Thesecommonfeaturesinclude anoriginintheenergyoftheatom.Allenergyonearthoriginated fromatomicenergy.Throughtheyears,energyhasdegradedand hasbeenstored,andwehavelearnedtouseit.
EnergyonPlanetEarth Thesun’slightwasyesterday’satomicenergy.Theenergystored inwoodandvegetableoilswasyesterday’ssunlight.Yesterday’s woodandvegetableoilsaretoday’scoalandcrudeoil.Yesterday’s
coalandcrudeoilaretoday’snaturalgas.Anexaminationofthese naturalenergystockpilesandtheirhistoryprovidesabasisfor subsequentsectionsontechnologiesthatusetheseenergyreserves. Chapters2and3describehowenergyreserveswereformedand thequantityofthesereserves.
Natureusedtimetotransformsunlighttowood,oil,coal, petroleum,andnaturalgas.Today,mancantransformthese reservesinamatterofhours.Relativelysimpleprocessesfor convertingpetroleumintogasolinehaveevolvedintotechnologiesthatallowcoaltobetakenapartandputbacktogether atthemolecularlevel.Fuelcellscanconvertthechemical energyofhydrogenormethanedirectlytoelectricitywithout combustion.
Understandingtheadvantagesanddisadvantagesofnature’s variousenergyreservesrequiresanunderstandingofenginesand powercycles.Thetextongasolineenginesexplainshowthese machineswork.Likewise,processesforconvertingcoalintoelectricitythattookcenturiestodevelopcanbequicklyexplained.
Atthestartofthe20thcentury,suitableliquidfuelswere rare,andthepropermatchofafuelwithanenginewasanart. Today,wecanmovevehiclesorproduceelectricityfromenergy originatinginpetroleum,coal,naturalgas,wood,corn,trash,sunlight,geothermalheat,wind,oratomicenergy.Eachcanbeused differently.Naturalgas,forexample,canbeuseddirectlyinsparkignitionengines,convertedtogasolinefuel,convertedtodiesel fuel,convertedtohydrogenfuel,orusedtoproduceelectricity.The countriesthathaveactivelyadvancedthesetechnologiesnowhave thehigheststandardsofliving(seebox,“InstrumentsofChange”).
Withthesemultipleenergysourcesandhundredsofwaysto usethem,isthereonehomemadetechnology-readyalternativeto replacepetroleum?Isatleastonealternativecostcompetitivewith morethan$200billioninthecrudeoilthatweimporteachyear?If wewereabletomakethisonetransformation,manyofourinternationalproblemsandfluctuationsintheeconomywouldbereplaced withincreasednationalsecurityandamorerobusteconomy.
InstrumentsofChange Ittookmancenturiestodevelopthemetalsusedfortoday’s energymachines.Atthestartofthe20thcentury,withthe materials(primarilysteel)inplace,high-performancemachines weredevelopedinamatterofyears.Havingtherightmaterials
availablewasnecessaryfortheadvances,butitalonewasnot sufficient.
Oneofthebiggestdifferencesbetweenthetimeperiod beforeandaftertheyear1900wastherolegovernmentsplayed infosteringtechnicaldevelopment.Largelystartingwiththe aircraftandmotorizedvehiclesofWorldWarI,federalappropriationstoimprovemilitarycapabilityhavedrivenprogress inthemachinesforenergyconversion.Governmentsprovided thefundinganddedicationtofullydevelopmachinestohelp meetnationalobjectivessuchaswinningawar.Thebenefits extendedfarbeyondthewar.
Thesteamturbinedesignedtopowerwarshipsintheearly 1900sproducedimprovedturbinesfordomesticelectricpower production.GasturbinesusedtodriveaircompressorsinmilitaryjetsattheendofWorldWarIIwereusedincommercialjets afterthewar.Theearly1940sManhattanProjectproducedthe atomicbomb,andabouttenyearslater,thesamenuclearscienceproducedthefirstnuclearreactorthatreplacedthediesel engineinsubmarines.
Takingconceptsoutofthelaboratoryandintopublicuse typicallycomeswithahighpricetag.Todaywebenefittremendouslyfromthedevelopmentsundertakenbygovernmentsin the20thcentury.First-worldgovernmentsrecognizetheneed forbasicresearch.Supportforbasicresearchisessentialto maintaintheirleadershipstatus.
Oneofthegreatestchallengesofcapitalisminthe21st centuryistocontinueworld-impactingtechnologieswithout themotivationofworldconflicttotakethetechnologiesforward.Inwhatcouldbereferredtoasasocialexperimentof thelate20thcentury,governmentshavereliedmoreonmajor companiestodeveloptechnology.Majorcorporationsseldom assumethecostoflong-termresearch.Progresshasslowedin manyareas.Thissocialexperimentappearstobefailing.
WhatAretheRightQuestions? Theprocessforunlockingthepotentialoftechnologystartswith askingtherightquestions.Bothhistoryandsciencehaveastoryto tell.In1940,Germanywasconvertingcoalintothehighest-quality dieselandjetfuel,anditwasabletosustainthisindustry(aside fromalliedbombing)usingcoalthatwasconsiderablymorecostly
thanthevast,richreservesoftoday’sWyomingcoal.Wyoming hasvastsuppliesofcoalin40-foot-thickseamsjustfeetbelowthe surface.Itcouldbeharvestedforafewdollarsatonasquicklyas itcanbeloadedintotrucks.
Syntheticfuelproduction,asanalternativetocrudeoil,was sustainableinGermanyin1940.Whyisitnotsustainabletoday withcheapercoal,60yearsofscientificandtechnologicaladvance, andpipelinedistributionthatdoesnotrelyoncostlypetroleum tankershipmentfromtheothersideoftheworld?Originally,the Germansyntheticfuelprocesswasdesignedtoproducerefinery feedstock.Canthesyntheticfuelindustryleapfrogthecompetition byproducingafuelthatcanbedirectlyusedinengines?Ifthe refinerycouldbebypassed,thecostadvantagesofsyntheticfuels areadvancedoverpetroleumalternativesatcurrentprices.
SouthAfricansyntheticfuel(knownasFischer-Tropsch)facilitieswereabletosustainproductionofsyntheticoilfromcoal whileincompetitionwithworldcrudeoilpricesat$10perbarrel inthelate1990s.Canadiansyncrudefacilitiesarereportedtobe producingpetroleumfromoilsandsat$20perbarrel.Theoilsand reservesareaboutthesamesizeasworldreservesofpetroleum. Today,Canadianoilsandsareusedinsteadofimportedoil—the technologyissustainableandprofitable.
WhyhaveSouthAfricaandCanadabeenabletoincubate theseindustriesduringthepastfewdecades,whiletheUnited Statesfailedandistothisdaywithoutasignificantsyntheticfuel industrytoreplacecrudeoilimportsthatexceed$200billionper year?Lackofcompetitivetechnologyisnotatfault.
Repeatedly,U.S.votershavegiventhemandatetofostercostcompetitivealternativestoimportedpetroleum.DoU.S.policies fosterthedevelopmentofreplacementsforpetroleum,ordoU.S. policieslockincompetitiveadvantagesforpetroleumoveralternatives?Whenyougetpastthehypeoffuelcells,ethanol,and biodiesel,acomparisonofU.S.taxpoliciesonimportedcrudeoil relativetodomesticfuelproductionrevealspracticesthatfavor crudeoilimports.Theseandsimilarpoliciesaretheeconomic killersofthetechnologythatcaneliminatetheneedtoimport fuelsandcreatethousandsofqualityU.S.jobs.
Inthearenaofalternativefuels,boththeliquidfueldistributioninfrastructureandtherefineryinfrastructurearecontrolledby corporationswithavestedinterestingasolineanddiesel.Because ofthisandotherbarrierstocommercializationintheUnited States,themostlikelyoptionstosucceedarethosethatdonotrely onanewfueldistributioninfrastructure.Thesetwooptionsare
electricalpowerandnaturalgas,and,ofthese,naturalgasimports arerapidlyrising.
Naturalgasprovidesalimitedadvantageoverpetroleum,and recentlythepriceofnaturalgasperunitofenergyhasexceededthe priceofgasoline.Electricalpowerprovidesadomesticalternative thatdoesnotrelyonanewfueldistributioninfrastructure—a relianceondiverseindigenousenergysuppliescreatesstabilityin pricesandreliabilityinsupply.Electricityistheoneoptionthat cansubstantiallyreplacepetroleumasatransportationfuel.Ofthe optionstoproduceelectricalpower,nuclearstandsoutduetoits abundance,anditsfuelsupplyprovideselectricalpowerwithout thegenerationofgreenhousegases.
Theutilityofelectricalpowerisextendedtoautomobileswith “plug-in”hybridelectricvehicles(PHEVs).PHEVsareabletouse electricalpowerandreplaceallimportedoilwithoutproducing airpollution.UseofPHEVscouldreachcostparitywithconventionalgasolinevehiclesinamatterofmonthsifdevelopmentand productionofthetechnologyweremadeanationalpriority.Ina decadeofevolutiontheaverageconsumercouldsave$1,000to $2,000overthelifeofavehicleusingthesetechnologiesrather thanconventionalgasolineengines.
Havingmissedtheentrypositionsontechnologieslike Fischer-TropschfuelsandCanadiantarsands,isPHEVtechnology nowanopportunity?IfPHEVtechnologyistherightopportunity attherighttime,isitalsothelastrealopportunitybeforeother nationschallengeU.S.economicmight?
ThroughPHEVtechnology,sustainableelectricalpowergenerationhasfar-reachingconsequencesbeyondthecontinuation ofabundantandreliableelectricalpower.Sustainableelectrical powergenerationisthekeytosustainabletransportationandan endtorelianceonimportedpetroleum.Thisnarrativepresentsa casefornuclearpowertomeetthisopportunity.
Ofalltheenergytechnologies,nuclearenergyisprobablythe mostmisunderstood.Nuclearenergycanbeproducedsafely,and weunderstandthetechnologywellenoughtominimizetherisk ofeventheworst-caseaccident.However,thehandlingofnuclear wasteisathorninthesideofthenuclearindustry.
Fromthefundamentalperspective,theissueofnuclearwaste isratherironic.Onequestionisobvious:Canthereallynasty, fissionproductsinspentnuclearfuelbeseparatedfromthebulk ofthewaste—thebulkbeingconsiderablymorebenignandquite valuable?Theanswerissurprising.
SustainableNuclearPower Figure1-1summarizesthelegacyof30yearsofnuclearpowerproductionintheUnitedStates.Whilemuchattentionhasbeenpaid totheradioactivewastegeneratedbycommercialnuclearpower, thefactisthat30yearsoffissionproductsfromalltheU.S.facilitieswouldoccupyavolumelessthanthesizeofasmallhouse. Ontheotherhand,theinventoryofstockpiledfissionablematerial intheformofspentfuelanddepleteduraniumcouldcontinueto supply18%oftheelectricalpowertotheUnitedStatesforthe next4,350years.Thisfuelinventoryisamostvaluableresource andrepresentsmaterialthathasalreadybeenmined,processed, andstoredintheUnitedStates.
Reprocessingspentnuclearfuelemergesasthekeytosustainable,abundant,andcheapelectricity.Reprocessingisremoving thereallynastyfissionproductsinspentnuclearfuel thebulk beingconsiderablymorebenignandvaluable.Theremovalofthe fissionproductsiseasier(itschemistry)thanconcentratingthe
Fission Products 30 Years (Expended)
850 Years
Fissionable Spent Fuel Rods
Fissionable Depleted Uranium 3,500 Years
1,800 metric tons is the fission product content of the spent fuel stored at U.S. nuclear power plants. This is 93 cubic meters (uranium density)—about one-third the size of a small house. Most of this is stable and nonhazardous.
50,000 metric tons of unused uranium in spent fuel stored as waste fuel at U.S. nuclear power plants. If power plants continue to burn fuel at same rate, this is an 850-year supply of fuel.
200,000–280,000 metric tons depleted uranium (at refiner or with military) that can also be used as nuclear fuel (assuming same rate of fuel use). Years are 3,500 to 4,800 for years.
FIGURE1-1.Thelegacyof30yearsofcommercialnuclearpowerinthe UnitedStates,including30yearsoffissionproductsthatareoflittle valueandsufficientstockpiledfissionablefueltocontinuetoproduce electricalpoweratthesamerateforanother4,350years.
fissionableuraniumisotope(isotopeenrichment)usedtoconvert naturaluraniumintofuel-gradeuranium.Theenergyinventory summarizedbyFigure1-1isavailablethroughchemicalreprocessingofspentnuclearfuelanduseinGenerationIVnuclear reactors.Thetechnologiescanactuallydestroythenuclearwaste generatedbythefirstgeneration(GenerationII)ofcommercial nuclearreactors.Thiselectricalpowercanbegeneratedwithlittle tonogreenhousegaseswhilereducingthequantityofspentfuel storedatthepowerplantfacility.Fissionproductsmakeup3.4% ofspentfuel,andonly0.3%to0.5%ofthatrepresentslong-term radioactivewaste.
Technologiesareavailablethatallownuclearpowertomeet everyaspectofsustainability.Theabundanceofuraniumthat hasalreadybeenminedwillproduceenergymuchlongerthan scientistscanreasonablyprojectnewenergydemandsorsources. Thetechnologiesthatenableelectricitytomeetthedemands oftransportationandheatingmarketsarecoveredinChapters7,8, and9.InChapter10thekeyconceptsbehindnuclearscienceare introduced.ReprocessingtechnologyiscoveredinChapter11,and nuclearreactortechnologyiscoveredinChapter12.Finally,in Chapter13,theeconomicsofcurrentgenerationandGenerationIV nuclearpowerproductionarecoveredwiththegoalofidentifying keytechnologiesthatwilldeliverthepotentialofnuclearpower.
Another random document with no related content on Scribd:
The Project Gutenberg eBook of Legendoja
This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
Title: Legendoja
Author: Toivo Tarvas
Release date: March 13, 2024 [eBook #73162]
Language: Finnish
Original publication: Helsinki: Otava, 1908
Credits: Juhani Kärkkäinen and Tapio Riikonen *** START OF THE PROJECT GUTENBERG EBOOK LEGENDOJA ***
Kirj.
Toivo Tarvas
Helsingissä, Kustannusosakeyhtiö Otava, 1908.
SISÄLLYS: I. Ehtoolliskalkki. Risti. Pitkä-Piena. Scala santa. Verikivi.
II. Sydämenusko. Lintujen laulu. Galileanpuu.
III. Kehto. Punaiset helmet. Rakkauden lahja. Lummekukka.
Veripellon hinta.
Orjantappuraruusu.
IV. Zemzem'in jousi.
Allâh'in hämähäkki.
Kuoleman kuvastin.
V. Pyhä Ganges.
I.
EHTOOLLISKALKKI.
— No, astu vaan, älä pelkää, siinä sen pitäisi olla alttarilla, mutta varo, ettet vaan puhalla öljylamppua sammuksiin tuossa ristin alla, silloin Se suuttuu! — —
— Astu itse, en minä uskalla, se niin lepattaa, jos sattuis sammumaan! —
— Mikä, elämäkö? —
— En minä elämää tarkoittanut, vaan tuota lamppua! —
— Eikä sammu, älä turhia — — -muista, että tuo tuolla on puhdasta kultaa, se on tuotu Roomista asti! — Ka, tuossa se nyt seisoo, se on — — täynnä viiniä! — — Älä nyt, vasta sakaristossa, siellä on turvallisempaa, ei tässä, no, no — — ei muuten, mutta, jos sattuisi liinalle läikkymään! —
— Risto, sinä olet pelkuri, etpäs silloin pelännyt kun me sen Muonion emännän hengen — — —
— Älä nyt semmoisia, tule nyt vaan —, sanoi Aslak ja hiipi varpaillaan sakaristoon jättäen oven auki perässään tulevalle Ristolle.
— Kiesus Maaria, oikein mua alkoi pelottaa, ja kun nuo polvetkin niin yhtäkkiä alkoivat kelata edestakaisin —, puhui Risto tullen sakaristoon ja asetti korkeajalkaisen, kultaisen kalkin pienelle pöydälle.
— Risto, otas tulta, että nähtäs —, sanoi Aslak.
— Mitäs turhia, juodaan tyhjäksi ja sitten matkalle, kas näin —, hän otti pitkän siemauksen maljasta ja ojensi sen Aslakille, joka vapisevin käsin tarttui siihen.
— Ooh, se onkin suuri, syvä kuin kaivo!
— On! —
— Otan vieläkin, se lämmittää! —
— Joo! —
— Tyhjänä sitä on huokeampi kulettaa! —
— Joo, kun pää on täynnä! —
— Kiesus, mitä — —, kulkuset kilisevät, joko ne nyt meitä — — —
— Omathan kulkuset ne! —
— Aslak, viimeinen tippa olkoon sinun! –
He hiipivät ulos sakaristosta omaan rekeensä. Risto tarttui ohjaksiin, ja Aslak piteli tyhjää maljaa käsissään.
— Se on raskas! —
— Joo, kyllä se synnit kuittaa, kun sen papille annamme, niin ihan se ilostuu ja unohtaa, että me sen Muonion emännän — — — Jokohan se unohtaa! —
— Joo, ja lukeekin pitkät luvut syntiemme yli, sillä ei sen kirkolla ole toista näin komiaa!
— Mutta, jos se kysyy! —
— No, tietysti me sen Roomista tilasimme, Turun kautta!
— Ei se usko! —
— Joo, tämä on puhdasta kultaa, kulta saa uskovaiseksi! —
Tiellä oli lunta ohuelti, ja reenjalakset iskivät toisinaan kiviin niin, että valkea välähteli.
— Risto, etkö kuullut — —?
— Mitä? —
— Kuinka se kohisee — — —
— Metsäkö? —
— Jaa, ehkä se olikin metsä! — He ajoivat matalamäntyiselle palolle, jossa oli miltei kuin aukealla, tuuli lakaisi kuivaa lunta, ja maa oli paikoin paljaana.
— Risto, kuuletko kuinka se kihisee — —?
— Viini päässäkö? —
— Jaa, taitaa ollakin viini! Risto sivalsi ruoskalla hevosta, se tempasi itsensä kiivaampaan juoksuun, ja jalakset löivät säkeniä, tuuli ulvoi, ja lumi lenteli pyrynä.
— Huu, tunnetko kuinka sen henkäys on kylmä? — — —
— Tuulenko poskellasi? —
— Jaa, ehkä se onkin tuuli! He tulivat kiivaasti ajaen järviahdetta sileälle jäälle, jota pitkin ohuet luminietokset kiiloina liukuivat, kuu näkyi taivaan laella ja kuvasi ajajista heikon varjon jäälle.
— Kiesus armahda, nyt se tulee, pauhulla se tulee — —
— Mikä tulee? —
— Kiesus armahda — — — kuolema! — — — Samassa jää risahti ja kovasti paukahdellen murtui heidän allansa, he suistuivat aaltoilevaan avantoon, jossa teräväsärmäiset jääsirpaleet solisten soittivat kuoleman kylmää laulua. Hetken ponnisteltuaan vaipui hevonen raskasrautaisen reen painamana. Aslak piteli kiinni kultamaljasta ja yritti kiivetä jään päälle, mutta aina reuna murtui;