The cahn hilliard equation recent advances and applications first edition alain miranville

Page 1

Visit to download the full and correct content document: https://textbookfull.com/product/the-cahn-hilliard-equation-recent-advances-and-appli cations-first-edition-alain-miranville/

Cahn Hilliard Equation Recent Advances and Applications First
The
Edition Alain Miranville

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Recent Advances in Applications of Computational and Fuzzy Mathematics Snehashish Chakraverty

https://textbookfull.com/product/recent-advances-in-applicationsof-computational-and-fuzzy-mathematics-snehashish-chakraverty/

Recent Advances in Intelligent Assistive Technologies Paradigms and Applications Hariton Costin

https://textbookfull.com/product/recent-advances-in-intelligentassistive-technologies-paradigms-and-applications-hariton-costin/

Uncertainty Management with Fuzzy and Rough Sets Recent Advances and Applications Rafael Bello

https://textbookfull.com/product/uncertainty-management-withfuzzy-and-rough-sets-recent-advances-and-applications-rafaelbello/

Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications 2nd Edition Sergey Vyazovkin

https://textbookfull.com/product/handbook-of-thermal-analysisand-calorimetry-recent-advances-techniques-and-applications-2ndedition-sergey-vyazovkin/

Recent Advances in Applications of Name Reactions in Multicomponent Reactions 1st Edition Majid M. Heravi

https://textbookfull.com/product/recent-advances-in-applicationsof-name-reactions-in-multicomponent-reactions-1st-edition-majidm-heravi/

Recent Advances in Intelligent Manufacturing Shilong Wang

https://textbookfull.com/product/recent-advances-in-intelligentmanufacturing-shilong-wang/

Recent Advances in Thin Films Sushil Kumar

https://textbookfull.com/product/recent-advances-in-thin-filmssushil-kumar/

Recent Advances in Operator Theory and Operator Algebras 1st Edition Bercovici

https://textbookfull.com/product/recent-advances-in-operatortheory-and-operator-algebras-1st-edition-bercovici/

Recent Advances in Celestial and Space Mechanics 1st Edition Bernard Bonnard

https://textbookfull.com/product/recent-advances-in-celestialand-space-mechanics-1st-edition-bernard-bonnard/

The Cahn–Hilliard Equation

Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS

A series of lectures on topics of current research interest in applied mathematics under the direction of the Conference Board of the Mathematical Sciences, supported by the National Science Foundation and published by SIAM.

Garrett Birkhoff, The Numerical Solution of Elliptic Equations

D. V. Lindley, Bayesian Statistics, A Review

R. S. Varga, Functional Analysis and Approximation Theory in Numerical Analysis

R. R. Bahadur, Some Limit Theorems in Statistics

Patrick Billingsley, Weak Convergence of Measures: Applications in Probability

J. L. Lions, Some Aspects of the Optimal Control of Distributed Parameter Systems

Roger Penrose, Techniques of Differential Topology in Relativity

Herman Chernoff, Sequential Analysis and Optimal Design

J. Durbin, Distribution Theory for Tests Based on the Sample Distribution Function

Sol I. Rubinow, Mathematical Problems in the Biological Sciences

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves

I. J. Schoenberg, Cardinal Spline Interpolation

Ivan Singer, The Theory of Best Approximation and Functional Analysis

Werner C. Rheinboldt, Methods of Solving Systems of Nonlinear Equations

Hans F. Weinberger, Variational Methods for Eigenvalue Approximation

R. Tyrrell Rockafellar, Conjugate Duality and Optimization

Sir James Lighthill, Mathematical Biofluiddynamics

Gerard Salton, Theory of Indexing

Cathleen S. Morawetz, Notes on Time Decay and Scattering for Some Hyperbolic Problems

F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics

Richard Askey, Orthogonal Polynomials and Special Functions

L. E. Payne, Improperly Posed Problems in Partial Differential Equations

S. Rosen, Lectures on the Measurement and Evaluation of the Performance of Computing Systems

Herbert B. Keller, Numerical Solution of Two Point Boundary Value Problems

J. P. LaSalle, The Stability of Dynamical Systems

D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications

Peter J. Huber, Robust Statistical Procedures

Herbert Solomon, Geometric Probability

Fred S. Roberts, Graph Theory and Its Applications to Problems of Society

Juris Hartmanis, Feasible Computations and Provable Complexity Properties

Zohar Manna, Lectures on the Logic of Computer Programming

Ellis L. Johnson, Integer Programming: Facets, Subadditivity, and Duality for Group and Semi-group Problems

Shmuel Winograd, Arithmetic Complexity of Computations

J. F. C. Kingman, Mathematics of Genetic Diversity

Morton E. Gurtin, Topics in Finite Elasticity

Thomas G. Kurtz, Approximation of Population Processes

Jerrold E. Marsden, Lectures on Geometric Methods in Mathematical Physics

Bradley Efron, The Jackknife, the Bootstrap, and Other Resampling Plans

M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis

D. H. Sattinger, Branching in the Presence of Symmetry

R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis

Miklós Csörg, Quantile Processes with Statistical Applications

J. D. Buckmaster and G. S. S. Ludford, Lectures on Mathematical Combustion

R. E. Tarjan, Data Structures and Network Algorithms

Paul Waltman, Competition Models in Population Biology

S. R. S. Varadhan, Large Deviations and Applications

Kiyosi Itô, Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces

Alan C. Newell, Solitons in Mathematics and Physics

Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Pranab Kumar Sen, Theory and Applications of Sequential Nonparametrics

László Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity

E. W. Cheney, Multivariate Approximation Theory: Selected Topics

Joel Spencer, Ten Lectures on the Probabilistic Method

Paul C. Fife, Dynamics of Internal Layers and Diffusive Interfaces

Charles K. Chui, Multivariate Splines

Herbert S. Wilf, Combinatorial Algorithms: An Update

Henry C. Tuckwell, Stochastic Processes in the Neurosciences

Frank H. Clarke, Methods of Dynamic and Nonsmooth Optimization

Robert B. Gardner, The Method of Equivalence and Its Applications

Grace Wahba, Spline Models for Observational Data

Richard S. Varga, Scientific Computation on Mathematical Problems and Conjectures

Ingrid Daubechies, Ten Lectures on Wavelets

Stephen F. McCormick, Multilevel Projection Methods for Partial Differential Equations

Harald Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods

Joel Spencer, Ten Lectures on the Probabilistic Method, Second Edition

Charles A. Micchelli, Mathematical Aspects of Geometric Modeling

Roger Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, Second Edition

Glenn Shafer, Probabilistic Expert Systems

Peter J. Huber, Robust Statistical Procedures, Second Edition

J. Michael Steele, Probability Theory and Combinatorial Optimization

Werner C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, Second Edition

J. M. Cushing, An Introduction to Structured Population Dynamics

Tai-Ping Liu, Hyperbolic and Viscous Conservation Laws

Michael Renardy, Mathematical Analysis of Viscoelastic Flows

Gérard Cornuéjols, Combinatorial Optimization: Packing and Covering

Irena Lasiecka, Mathematical Control Theory of Coupled PDEs

J. K. Shaw, Mathematical Principles of Optical Fiber Communications

Zhangxin Chen, Reservoir Simulation: Mathematical Techniques in Oil Recovery

Athanassios S. Fokas, A Unified Approach to Boundary Value Problems

Margaret Cheney and Brett Borden, Fundamentals of Radar Imaging

Fioralba Cakoni, David Colton, and Peter Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering

Adrian Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis

Wei-Ming Ni, The Mathematics of Diffusion

Arnulf Jentzen and Peter E Kloeden, Taylor Approximations for Stochastic Partial Differential Equations

Fred Brauer and Carlos Castillo-Chavez, Mathematical Models for Communicable Diseases

Peter Kuchment, The Radon Transform and Medical Imaging

Roland Glowinski, Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems

Bengt Fornberg and Natasha Flyer, A Primer on Radial Basis Functions with Applications to the Geosciences

Fioralba Cakoni, David Colton, and Houssem Haddar, Inverse Scattering Theory and Transmission Eigenvalues

Mike Steel, Phylogeny: Discrete and Random Processes in Evolution

Peter Constantin, Analysis of Hydrodynamic Models

Donald G. Saari, Mathematics Motivated by the Social and Behavioral Sciences

Yuji Kodama, Solitons in Two-Dimensional Shallow Water

Douglas N. Arnold, Finite Element Exterior Calculus

Qiang Du, Nonlocal Modeling, Analysis, and Computation

Alain Miranville, The Cahn–Hilliard Equation: Recent Advances and Applications

Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
Downloaded 03/03/24 to 223.99.168.195 .

Université de Poitiers

Poitiers, France

The Cahn–Hilliard Equation

Recent Advances and Applications

FOR INDUSTRIAL AND APPLIED MATHEMATICS PHILADELPHIA Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
SOCIETY

Copyright © 2019 by the Society for Industrial and Applied Mathematics 10 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA.

Publications Director Kivmars H. Bowling

Executive Editor Elizabeth Greenspan

Acquisitions Editor Paula Callaghan

Developmental Editor Mellisa Pascale

Managing Editor Kelly Thomas

Production Editor Lisa Briggeman

Copy Editor Julia Cochrane

Production Manager Donna Witzleben

Production Coordinator Cally A. Shrader

Compositor Cheryl Hufnagle

Graphic Designer Doug Smock

Library of Congress Cataloging-in-Publication Data

Names: Miranville, Alain, author.

Title: The Cahn–Hilliard equation : recent advances and applications / Alain Miranville (Université de Poitiers, Poitiers, France).

Description: Philadelphia : Society for Industrial and Applied Mathematics, [2019] | Series: CBMS-NSF regional conference series ; 95 | Includes bibliographical references and index. | Summary: "This book discusses classical results, as well as recent advances, on the Cahn–Hilliard equation and some of its variants"-- Provided by publisher.

Identifiers: LCCN 2019022863 (print) | LCCN 2019022864 (ebook) | ISBN 9781611975918 (paperback) | ISBN 9781611975925 (ebook)

Subjects: LCSH: Liquid-liquid interfaces. | Phase transformations (Statistical physics) | Fluid dynamics. | Mathematical physics. Classification: LCC QD509.L54 M57 2019 (print) | LCC QD509.L54 (ebook) | DDC 530.15/525--dc23

LC record available at https://lccn.loc.gov/2019022863

LC ebook record available at https://lccn.loc.gov/2019022864 is a registered trademark.

Downloaded 03/03/24 to 223.99.168.195
Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
.

In loving memory of Artémios Ventoúris Roússos (Demis Roussos). Your songs have accompanied me all my life, also when doing mathematics. You will never be forgotten, Demis.

Pour traverser le miroir Je ne veux que ton regard Pour mon voyage sans retour Mourir auprès de mon amour Et m’endormir sur ton sourire*

*Excerpt from “Mourir auprès de mon amour” (French re-title of “Because”). Interpreted by Demis Roussos. Music by Evángelos Odysséas Papathanassíou (Vangelis).

Lyrics by Alec R. Constandinos and Richelle Dassin. Arrangement by Patrick Loiseau.

Rights for exploitation of the artist’s name and image granted by Emily and Cyril Roussos.

Photo Credit: Roula Revi (courtesy of Emily and Cyril Roussos).

Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
Downloaded 03/03/24 to 223.99.168.195 .

2.2Aubin–Lionscompactnessresults....................23

2.3Someusefulinequalities.........................23

2.4Asymptoticbehaviorofdissipativesystems:Globalattractors.....27

3TheCahn–Hilliardequationwithregularnonlinearterms35

3.1Existenceanduniquenessofweaksolutions..............35

3.2Regularityofthesolutions........................41

4TheCahn–Hilliardequationwithlogarithmicnonlinearterms61 4.1Settingoftheproblem..........................61

4.2Aprioriestimates............................66

4.3Existenceanduniquenessofsolutions.................68

4.4Regularityandseparationfromthepurestates.............70

4.5Furtherreadingandcomments.....................77

5TheCahn–Hilliardequationwithdynamicboundaryconditions81

6TheCahn–Hilliard–Oonoequation107

6.1Thecubicnonlinearterm........................108

6.2Logarithmicnonlinearterms.......................113

6.3Furtherreadingandcomments.....................121

7TheCahn–Hilliardequationinimageinpainting127

7.1Thecubicnonlinearterm........................128

Contents ListofFiguresxi Prefacexiii 1Introduction1 2Preliminarymaterials13
2.1Linearoperators.............................13
3.3Existenceoffinite-dimensionalglobalattractors............43 3.4Animprovedregularityresult......................47 3.5Furtherreadingandcomments.....................52
5.1Linearoperators.............................82 5.2Functionalsettingoftheproblem....................86 5.3Existenceanduniquenessofsolutions.................87 5.4Furtherreadingandcomments.....................91
ix Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

7.2Logarithmicnonlinearterms.......................141 7.3Furtherreadingandcomments.....................150

8TheCahn–Hilliardequationwithaproliferationterm155

8.1Thecubicnonlinearterm........................156

8.2Logarithmicnonlinearterms.......................164 8.3Furtherreadingandcomments.....................172

9OthervariantsoftheCahn–Hilliardequation175

9.1Cahn–Hilliardmodelsbasedonamicroforcebalance.........175

9.2HyperbolicrelaxationoftheCahn–Hilliardequation..........181

9.3Cahn–Hilliard–Navier–Stokesequations................183

x Contents
Bibliography185 Index215 Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ListofFigures

1.1Comparisonbetweenregularandlogarithmicpotentials..........2

5.1Isovaluesofthesolution u,attime t =20,when g(s)= s 0.8.....104

5.2Isovaluesofthesolution u,attime t =20,when g(s)= s 1 5.....104

5.3Isovaluesofthesolution u,attime t =0 72,when g(s)= s 3.....104

5.4Isovaluesoftheinitialcondition.......................105

5.5Isovaluesofthesolution u,attime t =20,when g(s)= s 0.8.....105

5.6Isovaluesofthesolution u,attime t =0.46,when g(s)= s 3.....105

7.1Topleft:Largeinpaintingregioningray.Topright:Finalinpainting, f (s)= 2ln(3)s +ln 1+s 1 s .Bottom:Finalinpainting, f (s)=4s3 6s2 +2s...................................153

7.2Left:Inpaintingregioningreen,randominitialdatum.Right:Final inpainting..................................153

7.3(i)Left:Damagedimage(256 × 256 pixels)with 45%ofpixelsmissing. Middle:Realpartofthesolution.Right:Usingtheinformationofthe imageoutside D givenintheinpaintingresult.(ii)Left:Damagedimage with 55%ofpixelsmissing.Middle:Realpartofthesolution.Right: Usingtheinformationoftheimageoutside D givenintheinpainting result.(iii)Left:Damagedimagewith 75%ofpixelsmissing.Middle: Realpartofthesolution.Right:Usingtheinformationoftheimage outside D givenintheinpaintingresult...................154

8.1Top:Blow-up, u0 ∈ [0, 1] and u0 =0 069.Bottom: u − u tendsto zero.....................................163

8.2Tumorgrowth, g(s)=46(s +1) 280(s 1)2(s +1)2.........173

xi Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
Downloaded 03/03/24 to 223.99.168.195 .

Preface

Thisbookdiscussesclassicalresults,aswellasrecentdevelopments,relatedtotheCahn–Hilliardequation.ItisbasedonthelecturesthatIgaveattheCBMS-NSFConferenceon thesametopiconMay20–24,2019,atMontgomeryBellStateParkInnandConference Center,Burns,Tennessee,andsponsoredbytheUniversityofMemphis.

TheCahn–HilliardEquation:RecentAdvancesandApplications isintendedforgraduatestudentsandresearchersinappliedmathematicswhoareinterestedinphaseseparation modelsaswellastheirgeneralizationsandapplicationstootherfields.Itshouldalsobeof interesttomaterialsscientists.

OnefascinatingfeatureoftheCahn–Hilliardequation(anditsvariants)isthat,besides materialsscience,forwhichitwasfirstproposed,itappearsinmanydifferentareas,such asastronomy,biology,ecology,andimageprocessing,tonamejustafew.Itisthusappropriatetowriteabookdevotedtothisverypopularandcelebratedequation.

ThebookfocusesonthemathematicalanalysisofCahn–Hilliardmodels,withanemphasisonthethermodynamicallyrelevantlogarithmicnonlinearterms.Itisorganizedas follows.

Chapter1introducestheequation,aswellasseveralofitsimportantvariantsandgeneralizations.Chapter2containsusefulpreliminarymaterials.Then,Chapters3and4 addressthemathematicalanalysisoftheCahn–Hilliardequationforregularandlogarithmicnonlinearterms,respectively.Chapter5isdevotedtodynamicboundaryconditions whichtakeintoaccounttheinteractionswiththewallsinconfinedsystems.Theremaining chaptersdiscussvariantsoftheCahn–Hilliardequation:theCahn–Hilliard–Oonoequation,proposedtoaccountforlong-rangeinteractions,inChapter6;Cahn–Hilliardmodels forimageinpaintinginChapter7;andmodelsforbiologicalandmedicalapplicationsin Chapter8.ThefinalchapterbrieflypresentsmodelsproposedbyMortonE.Gurtin,thehyperbolicCahn–Hilliardequation,andtheCahn–Hilliard–Navier–Stokesequations.Most chaptersendwithasectiondevotedtocommentsandopenproblems.

Acknowledgments

IstartedtoworkontheCahn–Hilliardequationin1997,whenJean-MichelRakotoson,to whomIamgrateful,suggestedthatIaddressthemodelsproposedbyMortonE.Gurtinin mywork.

MygratitudealsogoestoRogerTemamforhisconstantsupport,inspiration,and friendship.Bytheway,Rogerwasthefirst,togetherwithhiscollaborators,toprovethe existenceoffinite-dimensionalglobalattractorsfortheCahn–Hilliardequation.

Iwouldliketothankallmycollaboratorsovertheyears;specialthanksareduetoLaurenceCherfils,MonicaConti,StefaniaGatti,AndreaGiorgini,GisèleGoldstein,Maurizio Grasselli,VittorinoPata,RamonQuintanilla,ElisabettaRocca,GiulioSchimperna,and SergeyZelik,notonlyfortheirresearchpartnerships,butalsofortheirfriendship.

xiii Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

IwouldalsoliketothankmyPhDstudents.Ithasalwaysbeenapleasureinteracting withthemandIlearnedalotthankstotheirquestions.

Beingthefamilyofamathematicianis,Irealize,somewhatterrible.Thankyousovery muchforyourpatience,understanding,andlove.Iwouldliketosaythatthingswillbe better,butIdonotwanttolietoyou.MerciàClairepoursonsoutiensansfailleetàJulie dontjesuissifier.

IalsothankJocelyneAttabfordevisingaveryniceposterfortheconference,Emily andCyrilRoussosfortheirkindsupport,andPierreVikianforhelpingmecontactEmily andCyril.

PartsofthisbookwerewrittenwhileIwasenjoyingthehospitalityofXiamenUniversityasInvitedChairProfessor,FudanUniversityinShanghaiasSeniorFudanFellow,and HenanNormalUniversityinXinxiang.Iwouldliketothanktheseinstitutionsfortheir warmhospitalityandgeneroussupport.SpecialthanksgotoJieShenandChuanjuXu, aswellasClaude-MichelBrauner,ShuminGuo,WenZhang(nowatEastChinaUniversityofTechnologyinNanchang),XiaolanZhou,andHongyiZhuatXiamenUniversity; XiaomingWang(nowatSUSTechinShenzhen)andHaoWuatFudanUniversity;and XinguangYangandLuLiatHenanNormalUniversity.

Finally,Iwouldliketothanktheorganizersoftheconference,GisèleGoldstein,Jerry Goldstein,andRogerTemam,andacknowledgesupportfromtheConferenceBoardof theMathematicalSciences(CBMS),theNationalScienceFoundation(NSF),andtheUniversityofMemphis.ManythanksalsotoDavidBressoud,Director,CBMS,andLisa Briggeman,PaulaCallaghan,CherylHufnagle,KathleenLeBlanc,andMellisaPascaleat SIAM.

Poitiers,Shanghai,Xiamen,andXinxiang,2018–2019

xiv Preface
Downloaded 03/03/24 to 223.99.168.195 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Chapter1 Introduction

TheCahn–Hilliardsystem

isusuallyrewritten,equivalently,asthefourth-order-in-spaceparabolicequation

whichispreciselytheequationknownastheCahn–Hilliardequation.Itwasproposed byJ.W.Cahn1 andJ.E.Hilliardin1958(see[81]).Theseequationsplayanessential roleinmaterialsscienceanddescribeimportantqualitativefeaturesoftwo-phasesystemsrelatedtophaseseparationprocesses,assumingisotropyandaconstanttemperature.Thiscanbeobserved,e.g.,whenabinaryalloy(e.g.,aluminum/zinc(see[467]) oriron/chromium(see[364,365,366]))iscooleddownsufficiently.Wethenobservea partialnucleation(i.e.,theappearanceofnuclidesinthematerial)oratotalnucleation, knownasspinodaldecomposition:theinitiallyhomogeneousmaterialquicklybecomes inhomogeneous,resultinginaveryfinelydispersedmicrostructure.Inasecondstage, whichoccursataslowertimescale,thesemicrostructurescoarsen(hencetheterm“coarsening”).See,e.g.,YouTube,https://www.youtube.com/watch?v=wWXS52OFo7w,foran animation.Suchphenomenaplayanessentialroleinthemechanicalpropertiesofthematerial,e.g.,strength,hardness,fracture,toughness,andductility.Wereferthereaderto, e.g.,[79,81,328,333,357,358,415,417]formoredetails.

Here, u istheorderparameter(wewillconsiderarescaleddensityofatomsorconcentrationofoneofthematerial’scomponentswhichtakesvaluesbetween 1 and 1,withthe values 1 and 1 correspondingtothepurestates.2 Thedensityofthesecondcomponentis u,meaningthatthetotaldensityisaconservedquantity3)and µ isthechemicalpotential (moreprecisely,thedifferenceinchemicalpotentialsbetweenthetwocomponents).Furthermore, f isthederivativeofadouble-wellpotential F .Athermodynamicallyrelevant

1JohnWernerCahn(January9,1928–March14,2016)playedamajorroleinmaterialsscience.

2Theorderparametervariescontinuouslythroughthe(diffuse)interfaceseparatingthepurestates,from 1 to 1

3If uA and uB denotethedensitiesofthetwocomponents,then,beforerescaling,wehave uA + uB =1 Replacing u by 2u 1,weobtain,afterrescaling, uA + uB =0.

∂u ∂t = κ∆µ,κ> 0,µ = α∆u + f (u),α> 0, (1.1)
∂u ∂t + ακ∆2 u κ∆f (u)=0, (1.2)
1 Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Figure1.1. Comparisonbetweenregularandlogarithmicpotentials.CourtesyofShuiranPeng.

potential F isthefollowinglogarithmicfunction,whichfollowsfromamean-fieldmodel:

i.e.,

althoughthisfunctionisveryoftenapproximatedbyregularones,typically, F (s)= 1 4 (s2 1)2 (seeFigure1.1foracomparisonbetweenthetwopotentials),i.e., f (s)= s3 s; moregenerally,wecantake F (s)= 1 4 (s2 β2)2 , β ∈ R.Thelogarithmictermsin(1.3) correspondtotheentropyofmixing,and θ and θc areproportionaltotheabsolutetemperature(assumedconstantduringtheprocess)andacriticaltemperature,respectively;the condition θ<θc ensuresthat F hasadouble-wellformandthatphaseseparationcan occur.Alsonotethatthepolynomialapproximationisreasonablewhenthequenchisshallow,i.e.,whentheabsolutetemperatureisclosetothecriticaltemperature.Finally, κ is themobilityand α isrelatedtothesurfacetensionattheinterface.

Fromaphenomenologicalpointofview,theCahn–Hilliardsystemcanbederivedas follows.

Weconsiderthefollowing(total)freeenergy,calledtheGinzburg–Landaufreeenergy:

where Ω ⊂ Rn , n =1, 2,or 3,isthedomainoccupiedbythematerial.Thegradienttermin (1.5)isproposedin[81]tomodelthesurfaceenergyoftheinterface(i.e.,capillarity;note thatsuchgradientsgobacktoJ.D.vanderWaals[472]); F isalsocalledthehomogeneous freeenergy.

Wethenhavethemassbalance

where h isthemassflux,whichisrelatedtothechemicalpotential µ bythefollowing (postulated)constitutiveequationresemblingFick’slaw:

2Chapter1.Introduction s -1.5-1-0.500.511.5 F(s) -0.2 -0.1 0 0.1 0.2 0.3 0.4 PolynomialPotential LogarithmicPotential
F (s
θc 2 (1 s 2)+ θ 2 (1 s)ln 1 s 2 +(1+ s)ln 1+ s 2 ,s ∈ ( 1, 1), (1.3) 0 <θ<θc,
f
s
θcs + θ 2 ln 1+ s 1 s ,
)=
(
)=
(1.4)
ΨΩ(u, ∇u)= Ω α 2 |∇u|2 + F (u) dx, (1.5)
∂u ∂t = divh, (1.6)
h = κ∇µ. (1.7) Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Theusualdefinitionofthechemicalpotentialisthatitisthederivativeofthefreeenergy withrespecttotheorderparameter.Here,thisdefinitionisincompatiblewiththepresence of ∇u inthefreeenergy.Instead, µ isdefinedasavariationalderivativeofthefreeenergy withrespectto u,whichyields(assumingproperboundaryconditions)

theCahn–Hilliardsystemthenfollows.Thisvariationalderivativecanbe(formally)seen bywritingthat,forasmallvariation,

where · denotestheusualEuclideanscalarproduct.Assumingcompatibleboundaryconditionsandintegratingbyparts,thisyields

fromwhichthedefinitionfollows.

TheCahn–Hilliardsystem,inaboundedandregulardomain Ω,isusuallyassociated withNeumannboundaryconditions,namely

meaningthatthereisnomassfluxattheboundary(notethat

whichisanaturalvariationalboundarycondition(by“natural,”wemeanthatwecan writeaconvenientvariational/weakformulationinviewofthemathematicalanalysisof theproblem;thisboundaryconditionalsoyieldsthattheinterfaceisorthogonaltothe boundary).Here, Γ= ∂Ω and ν istheunitouternormaltotheboundary.Inparticular,it followsfromthefirstboundaryconditionthatwehavetheconservationofmass,i.e.,ofthe spatialaverageoftheorderparameter,obtainedby(formally)integratingthefirstequation of(1.1)over Ω,

Ifwehaveinmindthefourth-order-in-spaceCahn–Hilliardequation,wecanrewritethese boundaryconditions,equivalently,as

Wecanalsoconsiderperiodicboundaryconditions(inwhichcase Ω=Πn i=1(0,Li), Li > 0, i =1,...,n);inthiscase,westillhavetheconservationofmass.Notethat wegenerallydonotconsiderDirichletboundaryconditions,preciselybecausetheydonot yieldtheconservationofmass,althoughsuchboundaryconditionscertainlysimplifythe mathematicalanalysis.

Now,thequestionofhowthephaseseparationprocess(i.e.,thespinodaldecomposition)isinfluencedbythepresenceofwallshasgainedmuchattention(see[202,203,317]

Chapter1.Introduction3
µ = α∆u + f (u); (1.8)
δΨΩ = Ω (α∇u ·∇δu + f (u)δu) dx,
δΨΩ = Ω ( α∆u + f (u))δudx,
∂µ ∂ν =0onΓ, (1.9)
h ν = κ ∂µ ∂ν ),and ∂u ∂ν =0onΓ, (1.10)
u(t) ≡ 1 Vol(Ω) Ω u(x,t) dx = u(0) ∀t ≥ 0. (1.11)
∂u ∂ν = ∂∆u ∂ν =0onΓ. (1.12)
Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

andthereferencestherein).Thisproblemisstudiedmainlyforpolymermixtures(although itshouldalsobeimportantforothersystems,suchasbinarymetallicalloys):fromatechnologicalpointofview,binarypolymermixturesareparticularlyinteresting,sincethe structuresoccurringduringthephaseseparationprocessmaybefrozenbyarapidquench intotheglassystate;microstructuresatsurfacesonverysmalllengthscalescanbeproducedinthisway.

Wealsorecallthattheusualvariationalboundarycondition ∂u ∂ν =0 yieldsthatthe interfaceisorthogonaltotheboundary,meaningthatthecontactline,whentheinterface betweenthetwocomponentsmeetsthewalls,isstatic,whichisnotreasonableinmany situations.Thisisthecase,e.g.,formixturesoftwoimmisciblefluids:inthiscase,the contactangleshouldbedynamic,duetothemovementsofthefluids.Thiscanalsobe thecaseinthecontextofbinaryalloys,meaningthatweneedtodefinedynamicboundary conditionsfortheCahn–Hilliardequation.

Inthiscase,weagainwritethatthereisnomassfluxattheboundary(i.e.,that(1.9)still holds).Then,toobtainthesecondboundarycondition,followingthephenomenological derivationoftheCahn–Hilliardsystem,weconsider,inadditiontotheusualGinzburg–Landaufreeenergyandassumingshort-rangeinteractionswiththewalls,asurfacefree energyoftheform

where ∇Γ isthesurfacegradientand G isasurfacepotential.Thus,thetotalfreeenergy ofthesystemreads

Writingfinallythatthesystemtendstominimizetheexcesssurfaceenergy,weareledto postulatetheboundarycondition

i.e.,thereisarelaxationdynamicsontheboundary.Thisboundaryconditionisusually referredtoasadynamicboundaryconditioninthesensethatthekinetics,i.e., ∂u ∂t ,appears explicitly.Here, ∆Γ istheLaplace–Beltramioperator, g = G ,and d> 0 issomerelaxationparameter.Furthermore,intheoriginalderivation,wehave G(s

s, where aΓ > 0 accountsforamodificationoftheeffectiveinteractionbetweenthecomponentsatthewallsand bΓ characterizesthepossiblepreferentialattraction(orrepulsion)of oneofthecomponentsbythewalls(when bΓ vanishes,thereisnopreferentialattraction). Wenotethatitfollowsfromtheboundaryconditionsthat,formally,

where · X denotesthenormontheBanachspace X,i.e.,thetotalfreeenergydecreases; inthecaseoftheclassicalNeumannboundaryconditions,wehave

Wealsoreferthereaderto[37,204]forotherphysicalderivationsofthedynamicboundary condition,obtainedbytakingthecontinuumlimitoflatticemodelswithinadirectmeanfieldapproximationandbyapplyingadensityfunctionaltheory,respectively;to[432]for

4Chapter1.Introduction
ΨΓ(u, ∇Γu)= Γ αΓ 2 |∇Γu|2 + G(u) dΣ,αΓ > 0, (1.13)
Ψ=ΨΩ +ΨΓ. (1.14)
1 d ∂u ∂t αΓ∆Γu + g(u)+ α ∂u ∂ν =0onΓ; (1.15)
)= 1 2 aΓs2 bΓ
dΨ dt = 1 κ ∂u ∂t 2 H 1(Ω) 1 d ∂u ∂t 2 L2(Γ) ≤ 0,
dΨΩ dt = 1 κ ∂u ∂t 2 H 1(Ω) ≤ 0.
Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

thederivationofdynamicboundaryconditionsinthecontextoftwo-phasefluidflows;and to[442,447]foranapproachbasedonconcentratedcapacity.

Actually,itwouldseemmorereasonable,inthecaseofnonpermeablewalls,towrite theconservationofmassbothinthebulk Ω andontheboundary Γ,i.e.,

Indeed,duetotheinteractionswiththewalls,weshouldexpectsomemassontheboundary.Weassumethatthefirstequationof(1.1)stillholds.Then,writingthat

where ∂ isthevariationalderivativementionedabove(notethat,intheoriginalderivation, wehave µ = ∂uΨΩ),weobtainthesecondequationof(1.1),togetherwiththeboundary condition

Wenownotethat,owingtothefirstequationof(1.1),theabovemassconservationreads

Aclassofboundaryconditionstoensurethismassconservationreads

Wecanthusseethat,when βΓ > 0,wealsohaveaCahn–Hilliard-typesystemonthe boundary.Notethatitfollowsfromtheabovethat

actually,inthecaseoftheusualNeumannboundaryconditions,wealsohave

Similardynamicboundaryconditions,inthecaseofsemipermeablewalls,areconsidered in[215,216,227].Furthermore,in[349],basedonanenergeticvariationalapproachand Onsager’sprincipleofmaximumenergydissipation,thesedynamicboundaryconditions arerecovered,togetherwiththeno-mass-fluxcondition(1.9);inthiscase,wehavemass conservationinthebulkandontheboundary,separately.

TheCahn–Hilliardsystem/equationisnowquitewellunderstood,atleastfromamathematicalpointofview.Inparticular,wehaveafairlycompletepictureasfarastheexistence,theuniqueness,andtheregularityofsolutionsandtheasymptoticbehaviorofthe associateddynamicalsystemareconcerned.Wereferthereaderto(amongahugeliterature),e.g.,[5,42,72,110,116,121,124,138,151,160,177,179,183,185,188,215, 216,227,242,250,251,257,316,331,340,349,352,355,383,399,400,404,410,411, 413,414,415,417,430,433,440,465,489,505].Asfarastheasymptoticbehaviorofthe systemisconcerned,wehave,inparticular,theexistenceoffinite-dimensionalattractors. Suchsetsgiveinformationontheglobal/allpossibledynamicsofthesystem.Furthermore, thefinitedimensionalitymeans,veryroughlyspeaking,that,eventhoughtheinitialphase

Chapter1.Introduction5
d dt Ω udx + Γ udΣ =0
µ = ∂uΨ,
µ = αΓ∆Γu + g(u)+ α ∂u ∂ν onΓ
Γ ∂u ∂t + κ ∂µ ∂ν dΣ=0
∂u ∂t = βΓ∆Γµ κ ∂µ ∂ν onΓ,βΓ ≥ 0.
dΨ dt = κ ∇µ 2 L2(Ω)n βΓ ∇Γµ 2 L2(Γ)n ≤ 0;
dΨΩ dt = κ ∇µ 2 L2(Ω)n ≤ 0
Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

spaceisinfinitedimensional,thelimitdynamicscanbedescribedbyafinitenumberof parameters.Werefertheinterestedreaderto,e.g.,[22,125,169,402,465]formoredetailsanddiscussionsonthis.Wealsohavetheconvergenceofsingletrajectoriestosteady states.

Wehavesofarassumedthatthemobility κ isapositiveconstant.Actually, κ isoften expectedtodependontheorderparameterandtodegenerateatthesingularpointsof f in thecaseofalogarithmicnonlinearterm(see[80,183,184,234,497];seealso[502]fora discussioninthecontextofimmisciblebinaryfluids).Note,however,thatthisessentially restrictsthediffusionprocesstotheinterfacialregionandisobserved,typically,inphysical situationsinwhichthemovementsofatomsareconfinedtothisregion(see[434]).Inthis case,thefirstequationof(1.1)reads

where,typically, κ(s)=1 s2.Inparticular,theexistenceofsolutionstotheCahn–Hilliardequationwithdegeneratemobilitiesandlogarithmicnonlinearitiesisprovedin [183];notethat,uptonow,onlytheexistenceofweaksolutionsisknown,andnothing else.Theasymptoticbehaviorand,moreprecisely,theexistenceofattractorsoftheCahn–Hilliardequationwithnonconstantandnondegeneratingmobilitiesarestudiedin[448, 451].

WecanalsonotethatthegradienttermintheGinzburg–Landaufreeenergy(1.5)accountsforthefactthatshort-rangeinteractionsbetweenthematerial’scomponentsare assumed.Actually,thistermisobtainedbyapproximatinganonlocaltermwhichalso accountsforlong-rangeinteractions(see[81]).Followingstochasticarguments,G.GiacominandJ.L.Lebowitzin[248,249]derivedtheCahn–Hilliardequation,withanonlocal term,byconsideringalatticegaswithlong-rangeKacpotentials(i.e.,theinteractionenergybetweentwoparticlesat x and y (x, y ∈ Zn)isgivenby γnK(γ|x y|), γ> 0 being senttozeroand K beingasmoothfunction).Inthiscase,the(total)freeenergyreads

where Tn isthe n-dimensionaltorus.Furthermore,rewritingthetotalfreeenergyinthe form

where k1(x)= Tn K(|x y|) dy,wecan,byexpandingthelasttermandkeepingonly sometermsintheexpansion,recovertheGinzburg–Landaufreeenergy(thisisreasonable whenthescaleonwhichthefreeenergyvariesislargecomparedwith γ 1;themacroscopicevolutionisobservedhereonthespatialscale γ 1 andtimescale γ 2);seealso [362].Suchmodelsarestudied,e.g.,in[3,31,214,217,218,219,223,304](seealso [104,162,277,278,279,341,494]forthenumericalanalysisandsimulations).

Now,itisinterestingtonotethattheCahn–Hilliardequationandsomeofitsvariantsarealsorelevantinphenomenaotherthanphaseseparationinbinaryalloys.We canmention,forinstance,dealloying(thiscanbeobservedincorrosionprocesses;see [190]);populationdynamics(see[129]);tumorgrowth(see[21,318]);bacterialfilms (see[326]);thinfilms(see[420,468]);chemistry(see[473]);imageprocessing(see [35,36,90,105,161]);astronomy,withtheringsofSaturn(see[471]);andecology(for

6Chapter1.Introduction
∂u ∂t =div(κ(u)∇µ),
ΨΩ(u)= Tn f (u(x))+ u(x) Tn K(|x y|)(1 u(y)) dy dx, (1.16)
ΨΩ(u)= Tn f (u(x))+ k1(x)u(x)(1 u(x))+ 1 2 Tn K(|x y|)|u(x) u(y)|2 dy dx,
Downloaded
subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php
09/12/19 to 128.83.63.20. Redistribution

Chapter1.Introduction7

instance,theclusteringofmusselscanbeperfectlywelldescribedbytheCahn–Hilliard equation(see[351];seealsoYouTube,https://www.youtube.com/watch?v=u-mEjfBaYks andhttps://www.youtube.com/watch?v=OYcXZ7Ho4o8,forrealandsimulatedmussel clustering,respectively);ofcourse,inthiscase,thetimescaleismuchlarger,typically weeksormonths).

Inparticular,severalsuchphenomenacanbemodeledbythegeneralizedCahn–Hilliard equation

(here, α and κ donotnecessarilyhavethesamephysicalmeaningasintheoriginalCahn–Hilliardequation).Theabovegeneralequationcontains,inparticular,thefollowingmodels.

(i)MixedAllen–Cahn/Cahn–Hilliardsystem. Inthiscase,weconsiderthesystemof equations

whichcanberewritten,equivalently,as

andisindeedoftheform(1.17).Inparticular,withouttheterm

D∆µ inthefirstequation,wehavetheAllen–Cahnequation(whichdescribestheorderingofatomsduringthe phaseseparationprocess;see[13]),and,withouttheterm µ,wehavetheCahn–Hilliard equation.Theseequationsareproposedtoaccountformicroscopicmechanismssuchas surfacediffusionandadsorption/desorption,i.e.,adhesionofatomstoasurface/release ofasubstancefromorthroughasurface(see[310,312,313,363])andarestudiedin [300,301,302,303,311].

(ii)Cahn–Hilliard–Oono4 equation(see[372,418,474]). Inthiscase,

x,s)= g(s)= βs,β> 0.

Thisfunctionisproposedin[418]toaccountforlong-range(i.e.,nonlocal)interactions inphaseseparationandalsotosimplifynumericalsimulations,becausewedonothaveto accountfortheconservationofmass,althoughitseemsthatthisequationisnotconsidered insimulations.

Actually,itcanbesurprisingthatnonlocalinteractionscanbedescribedbysucha simplelinearterm.Thiscanbeseenbynotingthatweconsiderherethefreeenergy

wherethefunction g describesthelong-rangeinteractions.Inparticular,inOono’smodel andinthreespacedimensions,wetake

Thelong-rangeinteractionsarerepulsivewhen u(y) and u(x) havethesamesignandthus favortheformationofinterfaces(see[474]andthereferencestherein).Finally,asinthe 4AbetternamewouldbetheCahn–Hilliard–Oono–Puriequation;wewill,however,keepthecustomaryone.

∂u ∂t + ακ∆2 u κ∆f (u)+ g(x,u)=0,α,κ> 0 (1.17)
∂u ∂t = ε 2D∆µ µ,D,ε> 0,µ = ∆u + f (u) ε2 ,
∂u ∂t + ε 2D∆2 u ∆(Df (u)+ u)+ f (u) ε2 =0
ε
2
g
(
ΨΩ = Ω α 2 |∇u|2 + F (u)+ Ω u(y)k(x,y)u(x) dy dx, (1.18)
k(x,y)= β 4π|x y| (1.19)
Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

derivationoftheclassicalCahn–Hilliardequation,wehave

whichyieldstheCahn–Hilliard–Oonoequation,notingthat

y| istheGreenfunction associatedwiththeLaplaceoperator.Indeed,consideringagainasmallvariation,wehave

|

sothat

NotingthattheLaplaciancorrespondstothe x-variable,weseethat

Finally,bydefinitionofGreen’sfunctionanddenotingby di theDiracmassatzero(thisis ofcourseformal,sincetheDiracmassisnotafunction),wehave

whichyields

fromwhichtheCahn–Hilliard–Oonoequationfollows(with β replacedby κβ).This modelwillbeaddressedinChapter6(seealso[372,383]).

Avariantofthismodel,proposedin[123]tomodelmicrophaseseparationofdiblock copolymers,consistsoftaking

where u0 istheinitialcondition.Inthiscase,wehavetheconservationofmass;efficient simulationsareperformedin[20,102].ThisvariantoftheCahn–Hilliard–Oonoequation canalsobecoupledwiththeincompressibleNavier–Stokesequationstomodelachemicallyreactingbinaryfluid(see[296,297];seealso[59]forthemathematicalanalysis). (iii)Proliferationterm. Inthiscase,

Thisfunctionisproposedin[318]inviewofbiologicalapplicationsand,moreprecisely, tomodelwoundhealingandtumorgrowth(inonespacedimension;inthiscase,wecan thinkofapropagationfront)andtheclusteringofmalignantbraintumorcells(intwospace dimensions);seealso[473]forotherquadraticfunctionswithchemicalapplicationsand [21]forotherpolynomialswithbiologicalapplications.Thismodelwillbeaddressedin Chapter8(seealso[117,385]).

8Chapter1.Introduction
∂u ∂t = κ∆∂uΨΩ, (1.20)
1 4π
δΨΩ = Ω α∇u ·∇δu + f (u)δu + Ω k(x,y)u(y)δu(x) dy dx = Ω α∆u + f (u)+ Ω k(x,y)u(y) dy δu(x) dx
∂uΨΩ = α∆u + f (u)+ Ω k(x,y)u(y) dy.
x
∆∂uΨΩ = α∆2 u +∆f (u)+ Ω ∆k(x,y)u(y) dy.
Ω ∆(
β Ω di(x y)u(y) dy = βu(x),
∂uΨΩ = α∆u + f (u) βu,
k(x,y))u(y) dy =
g(x,s
g(s)= β s 1 Vol(Ω) Ω u0(x) dx ,β> 0,
)=
g
g(s)=
s 1),λ> 0
(x,s)=
λs(
Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

to

(iv)Fidelityterm. Inthiscase,

, where χ denotestheindicatorfunction,andweconsidertheequation

Writteninthisway, ε correspondstotheinterfacethickness.Thisfunction g isproposedin [35,36]inviewofapplicationstobinaryimageinpainting(i.e.,blackandwhiteimages). Here, h isagiven(damaged)imageand D istheinpainting(i.e.,damaged)region.Furthermore,thefidelityterm g(x,u) isaddedtokeepthesolution u closetotheimageoutside theinpaintingregion.Theideainthismodelistosolvetheequationuptosteadystateto obtainaninpainted(i.e.,restored)version u(x) of h(x).Thismodelwillbeaddressedin Chapter7(seealso[36,105,106]).

Thegeneralizedequation(1.17)isstudiedin[373,381](seealso[195])undervery generalassumptionsontheadditionalterm g,whenassociatedwithDirichletboundary conditions.Inthiscase,weessentiallyrecovertheresults(well-posedness,regularity,and existenceoffinite-dimensionalattractors)knownfortheoriginalCahn–Hilliardequation. ThecaseofNeumannboundaryconditionsismuchmoreinvolvedbecausewenolonger havetheconservationofmass,i.e.,ofthespatialaverageoftheorderparameter,when comparedwiththeoriginalCahn–HilliardequationwithNeumannboundaryconditions (see[105,106,117,195,196,241,385]).

AnothervariantoftheCahn–Hilliardequationisconcernedwithhigher-orderCahn–Hilliardmodels.Moreprecisely,G.CaginalpandE.Esenturkrecentlyproposedin[78] (seealso[98])higher-orderphase-fieldmodelstoaccountforanisotropicinterfaces(see also[327,464,484]forotherapproaches,which,however,donotprovideanexplicitway tocomputetheanisotropy).Moreprecisely,theseauthorsproposethefollowingmodified freeenergy,inwhichweomitthetemperature:

where(weconsiderherethecase n =3),for k =(k1,k2,k3) ∈ (N ∪{0

and,for k =(0, 0, 0),

(weagreethat D(0,0,0)v = v).Thecorrespondinghigher-orderCahn–Hilliardequation thenreads

For M =1 (anisotropicCahn–Hilliardequation),wehaveanequationoftheform

Chapter1.Introduction9
g
x,s
λ0χΩ\D(x)(s h(x)),λ0 > 0,D ⊂ Ω,h ∈ L2(Ω)
∂u ∂t + ε∆2 u 1 ε ∆f (u)+ g(x,u)=0,ε> 0.
(
)=
ΨHOGL = Ω   1 2 M i=1 |k|=i ak|Dk u|2 + F (u)  dx,M ∈ N,ak > 0, |k| = M, (1.21)
})3 , |k| = k1 + k2 + k3
Dk = ∂|k| ∂xk1 1 ∂xk2 2 ∂xk3 3
∂u ∂t ∆ M i=1 ( 1)i |k|=i akD2k u ∆f (u)=0. (1.22)
∂u ∂t +∆ 3 i=1 ai ∂2u ∂x2 i ∆f (u)=0, Downloaded 09/12/19 to 128.83.63.20. Redistribution subject
SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

and,for M =2 (sixth-orderanisotropicCahn–Hilliardequation),wehaveanequationof theform

Westudyin[113,367]thecorrespondinghigher-orderisotropicmodel,namely

and,in[114],theanisotropichigher-ordermodel(1.22)(there,numericalsimulationsare alsoperformedtoillustratetheeffectsofthehigher-ordertermsandoftheanisotropy).Furthermore,thesemodelscontainsixth-orderCahn–Hilliardmodels.Wenotethatthereisa stronginterestinthestudyofsixth-orderCahn–Hilliardequations.Suchequationsarisein situationssuchas,e.g.,stronganisotropyeffectsinphaseseparationprocesses(see[470]), atomisticmodelsofcrystalgrowth(see[189,228]),thedescriptionofgrowingcrystalline surfaceswithsmallslopeswhichundergofaceting(see[447]),oil-water-surfactantmixtures(see[260,261]),andmixturesofpolymermolecules(see[150]).Wereferthereader to[95,269,273,274,276,293,329,330,359,360,372,377,379,380,382,425,426, 449,450,475,476,488]forthemathematicalandnumericalanalysisofsuchmodels.

Wecanalsonotethatthevariant(1.17)canberelevantinthecontextofhigher-order models(wecanmention,forinstance,anisotropiceffectsintumorgrowth).Wereferthe readerto[115]fortheanalysisandnumericalsimulationsofsuchmodels.

WefinallymentionseveralotherimportantgeneralizationsandvariantsoftheCahn–Hilliardequation.

ThefirstoneconsistsofstudyingsystemsofCahn–Hilliardequationstodescribephase separationinmulticomponentalloys(see[68,124,141,184,185,193,234,235,236, 395]).NotethattheCahn–Hilliardequationcanberewritten,equivalently,asasystemof two(Cahn–Hilliard)equations.Letusindeeddenoteby A and B thetwocomponentsand consider,withobviousnotation,thefreeenergy

Then,theCahn–Hilliardsystem(1.1)isequivalent,againwithobviousnotationandnoting that f isanoddfunctioninbothcasesofinterest,to

Furthermore,wecanseethat

10Chapter1.Introduction
∂u ∂t ∆ 3 i,j=1 aij ∂4u ∂x2 i ∂x2 j +∆ 3 i=1 bi ∂2u ∂x2 i ∆f (u)=0
∂u ∂t ∆P ( ∆)u ∆f (u)=0, (1.23) where P (s)= M i=1 ais i ,aM > 0,M ≥ 1,s ∈ R,
ΨΩ(uA, ∇uA,uB , ∇uB )= 1 2 Ω α 2 |∇uA|2 + α 2 |∇uB |2 + F (uA)+ F (uB ) dx.
∂uA ∂t = κ∆µA,µA = 1 2 ( α∆uA + f (uA))(= ∂uA ΨΩ), ∂uB ∂t = κ∆µB ,µB = 1 2 ( α∆uB + f (uB ))(= ∂uB ΨΩ), uA + uB =0,µA + µB =0
µA µB = α∆uA + f (uA). Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

WealsomentionthestochasticCahn–Hilliardequation(alsocalledtheCahn–Hilliard–Cookequation),whichtakesintoaccountthermalfluctuations(see[40,41,44,45,86,89, 145,147,152,153,178,213,262,263,281,446]).

Then,animportantgeneralizationoftheCahn–HilliardequationistheviscousCahn–Hilliardequation,

proposedbyA.Novick-Cohenin[414]toaccountforviscosityeffectsinthephaseseparationofpolymer/polymersystems(seealso[23,88,126,187]).TheviscousCahn–Hilliardequationcanalsobeseenasaparticularcaseofthegeneralizationsproposedby M.Gurtinin[284](which,inparticular,alsoaccountforanisotropy)andwhicharebased onamicroforcebalance,i.e.,anewbalancelawforinteractionsatamicroscopiclevel(see [52,53,55,112,174,175,256,267,369,370,371,386,391,396,403,437,438,439,485] forthemathematicalanalysis);wealsoreferthereadertoyetanotherapproachproposed byP.Podio-Guidugliin[429]andstudiedin,e.g.,[131,132,133,134,139].

AnotherimportantgeneralizationoftheCahn–Hilliardequationisthehyperbolicrelaxationoftheequation,

proposedin[229,230,231,232,334]tomodeltheearlystagesofspinodaldecomposition incertainglasses(seealso[54,244,245,270,271,272,445]forthemathematicalanalysis and[443,444]forthehyperbolicrelaxationoftheCahn–Hilliard–Oonoequationinthe wholespace).Actually,thehyperbolicrelaxationoftheequationisaparticularcaseof moregeneralmemoryrelaxations(foranexponentiallydecreasingmemorykernel),which arestudied,e.g.,in[140,142,144,246,247](seealso[431]).

WealsomentiontheconvectiveCahn–Hilliardequation

whichdescribesthedynamicsofdrivensystems,suchasfacetingofgrowingthermodynamicallyunstablecrystalsurfaces(see[170,171,172,258,346,482]forthemathematical analysis).

Itisimportanttonotethat,inrealisticphysicalsystems,quenchesareusuallycarried outoverafiniteperiodoftime,sothatphaseseparationcanbeginbeforethefinalquenchingisreached.ItisthusimportanttoconsidernonisothermalCahn–Hilliardmodels.Such modelsarederivedandstudiedin[14,15,225,226,394,457].

TheCahn–HilliardequationcanbecoupledwiththeAllen–Cahnequation(see[416]). Thisproblemisstudied,e.g.,in[39,149,348,392,393,416,492,503].

Itcanalsobecoupledwiththeequationsforelasticityorviscoelasticitytoaccountfor mechanicaleffects(see,e.g.,[19,38,46,47,87,157,235,236,237,369,370,421,422, 423,424,436]).

WealsomentionthecouplingoftheCahn–HilliardequationwiththeNavier–Stokes equationsinthecontextoftwo-phase(multiphase)flows(see,e.g.,[2,4,59,61,62,63,64, 66,82,85,111,119,127,208,209,220,221,224,255,285,292,305,320,323,325,332, 347,354,397,499,504])andsomerelatedmodels,suchastheCahn–Hilliard–Hele-Shaw andCahn–Hilliard–Brinkmanequations(see,e.g.,[58,143,154,155,156,201,252,254, 289,480,481,486,498]).Relatedmodelscanalsobeusedtomodeltumorgrowth(see, e.g.,[130,135,136,137,148,168,210,239,240,308,353]).

Chapter1.Introduction11
β∆ ∂u ∂t + ∂u ∂t + ακ∆2 u κ∆f (u)=0,β> 0,
β ∂2u ∂t2 + ∂u ∂t + ακ∆2 u κ∆f (u)=0,β> 0,
∂u ∂t + ακ∆2 u + u ·∇u κ∆f (u)=0,
Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Finally,wereferthereaderto,e.g.,[1,10,11,17,18,23,24,26,27,28,29,30,43, 56,63,64,65,66,67,69,70,83,84,94,96,97,100,101,118,120,122,146,158,159, 180,181,182,186,194,197,198,199,200,210,211,212,243,259,264,265,268,282, 283,286,287,288,291,298,299,306,307,314,315,317,319,320,321,322,323,324, 325,335,336,337,338,339,342,343,344,350,356,361,368,406,407,408,434,441, 454,455,461,462,469,477,478,479,483,487,490,491,493,495,496,506,507] forthenumericalanalysisandsimulationsoftheCahn–Hilliardequation(andseveralof itsgeneralizations).Notethat,assuggestedin[182],itisingeneralpreferabletobuild numericalschemesfortheCahn–Hilliardsystem(1.1)ratherthantheequivalentfourthorder-in-spaceCahn–Hilliardequation.Thishastheadvantageofsplittingthefourth-order equationintoasystemoftwosecond-orderequationswhichareeasiertodealwith.Note thatwenowhaveverynicesimulations,alsointhreespacedimensions.

Somewordsonthenotation

Wedenoteby · theusualnormon L2(Ω) and L2(Ω)n (withassociatedscalarproduct ((· , ·))).Moregenerally,asalreadymentioned, · X denotesthenormontheBanach space X;italsodenotesthenormon X n

Throughoutthisbook,letterssuchas c, c , c ,etc.,denoteconstantswhichmaychange fromlinetoline,oreveninthesameline.Similarly,thesameletter Q denotesmonotone increasing(withrespecttoeachargument)functionswhichmaychangefromlinetoline, oreveninthesameline.

Somefinalwords

Wedonotpretend,anddonoteventry,tobeexhaustiveinwhatfollows;itsufficesto typeCahnonMathSciNettounderstandthatthisissimplyimpossible.Forinstance,we willnotdiscussfurtherthenonlocalCahn–Hilliardequation.Itistheauthor’spreference toconcentrateonthelocalCahn–Hilliardequation.Wenotethat,eventhoughitsderivationisphenomenological,itissimpleandrelativelyeasytoimplementnumerically,giving verygoodresults.Thiscanexplainitspopularity(e.g.,amongengineers)anditsusein somanydifferentcontexts.Bycomparison,thenonlocalCahn–Hilliardequationhasa solidphysicalbackgroundbutismuchmoreinvolvedtoimplementnumerically.Actually,thenonlocalCahn–Hilliardequationcertainlydeservesitsownbook,andwedonot underestimateitsimportance.

12Chapter1.Introduction
Downloaded 09/12/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Chapter2

Preliminarymaterials

Inthischapter,wegivepreliminarymaterials(linearoperators,compactnessresults,inequalities,globalattractors)whichwillbeusefulinthesucceedingchapters.Inwhat follows, Ω isaboundedandregular(asregularasneeded)domainof Rn , n =1, 2,or 3

2.1 Linearoperators

Werefertheinterestedreaderto[465]forfurtherdevelopmentsonlinearoperators.

Weconsiderthespaces L2(Ω) and H 1(Ω),which,endowedwiththeirusualscalar productsandassociatednorms,areHilbertspaces.

Ofcourse, (u,v) → ((∇u, ∇v)) isnotascalarproducton H 1(Ω),asitisnotcoercive. Toovercomethis,weset u = 1 Vol(Ω) Ω udx,u ∈ L1(Ω), u = 1 Vol(Ω) u, 1 ,u ∈ H 1(Ω), where H 1(Ω) isthetopologicaldualof H 1(Ω), H 1(Ω)= H 1(Ω) ,and ·, · denotes thedualitypairingbetween H 1(Ω) and H 1(Ω).

Wethenset H = ˙ L2(Ω)= {u ∈ L2(Ω), u =0}, V = ˙ H 1(Ω)= H 1(Ω) ∩ H.

ThesespacesarealsoHilbertspaceswhenendowedwiththeinducedscalarproducts. Furthermore, (( , ))V =((∇·, ∇·)) isascalarproducton V ,withassociatednorm · V , whichisequivalenttotheusual H 1(Ω)-norm(owingtothePoincaré–Wirtingerinequality; seebelow).

Let V bethetopologicaldualof V .Then,weknowfromRiesz’srepresentationtheoremthat, ∀l ∈ V ,thereexistsaunique u ∈ V suchthat ((u,v))V = l,v ∀v ∈ V ,where ·, · alsodenotesthedualitypairingbetween V and V

Identifying H withitstopologicaldual H ,wehavetheHilberttriplet V ⊂ H ≡ H ⊂ V ,withdense,continuous,andcompactembeddings.Furthermore,if u and v arein H and V ,respectively,then u,v =((u,v)).Wenotethatwedonotidentify L2(Ω) with

13 Downloaded 09/11/19
128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php
to

14Chapter2.Preliminarymaterials

itsdualandonlywrite H 1(Ω) ⊂ L2(Ω) and L2(Ω) ⊂ H 1(Ω),withdense,continuous, andcompactembeddings.However,if u ∈ H = H ,thenitcanbeextendedtoalinear andcontinuousformon L2(Ω),withthesamenorm u ,bysetting u,v L2(Ω) ,L2(Ω) = ((u,v)) ∀v ∈ L2(Ω),sothat u ∈ H 1(Ω) and u, 1 H 1(Ω),H 1(Ω) =((u, 1))=0.We canalsoprovethat

V = {u ∈ H 1(Ω), u =0}.

Thischaracterizationisnotstraightforward,however;itfollowsforinstancefromthecharacterizationofthespace H 1(Ω) (see,e.g.,[6]).Alsonotethatif u ∈ V ,thenitfollows fromtheHahn–Banachtheoremthatitcanbeextendedtoalinearandcontinuousformon H 1(Ω) withthesamenorm,sothat u ∈ H 1(Ω)

Remark2.1. Theabovecharacterizationcanalsobeprovedasfollows.Let u ∈ V .Then, thereexistsasequence (uk)k∈N in H and,thus,in V and H 1(Ω) (seeabove)suchthat uk → u in V as k → +∞.Furthermore,for v ∈ H 1(Ω), uk,v H 1(Ω),H 1(Ω) =((uk,v))=((uk,v − v ))= uk,v − v V ,V

Therefore, uk,v H 1(Ω),H 1(Ω) → u,v − v V ,V as k → +∞.Let l : H 1(Ω) → R bedefinedas l(v)= u,v − v V ,V ,v ∈ H 1(Ω).

Wenotethat

|l(v)|≤ u V v − v H 1(Ω) ≤ c v H 1(Ω),v ∈ H 1(Ω),

whichyieldsthat l ∈ H 1(Ω) and uk → l in H 1(Ω) as k → +∞.Notingfinallythat l coincideswith u on V and l, 1 H 1(Ω),H 1(Ω) =0,weindeedhave u =0 (calling u this extension).Conversely,let l ∈{u ∈ H 1(Ω), u =0}.Then,notingthat sup v∈V, v H1(Ω)=1

l(v) ≤ sup v∈H 1(Ω), v H1(Ω)=1 l(v), wededucethat l ∈ V .Furthermore,since l =0,wehave

l(v)= l(v − v )= l,v − v V ,V ∀v ∈ H 1(Ω).

Wecanthendefinethelinearoperator A : V → V as Au,v =((u,v))V ∀u,v ∈ V.

Thisoperatorisanisomorphismfrom V onto V . Wenowset

D(A)= A 1(H)= {u ∈ V,Au ∈ H} = {u ∈ H 1(Ω), ∆u ∈ L2(Ω)}

andcallitthedomainof A.Notethat,indeed,if ((u,v))V =((f,v)) ∀v ∈ V andfor f ∈ H,then

((∇u, ∇v))=((f,v)) ∀v ∈ H 1(Ω)

(itsufficestoreplace v by v − v ).Taking v ∈D(Ω) ≡C∞ c (Ω),itiseasytoseethat ∆u = f inthesenseofdistributionsandthusin L2(Ω). Downloaded 09/11/19 to 128.83.63.20. Redistribution

SIAM license
see http://www.siam.org/journals/ojsa.php
subject to
or copyright;

Next,since u ∈ H 1(Ω) and ∆u ∈ L2(Ω),thetrace ∂u ∂ν canbedefinedin H 1 2 (Γ),and ageneralizedformofGreen’sformulaisvalidforevery v ∈ H 1(Ω) (see[466];seealso [465,ChapterII,Example2.5]),yielding

((∆u,v))= ∂u

,v H 1 2 (Γ),H 1 2 (Γ) +((∇u, ∇v)) ∀ v ∈ H 1(Ω).

Wethusdeducethat ∂u ∂ν ,v H 1 2 (Γ),H 1 2 (Γ) =0 ∀ v ∈ H 1(Ω),

sothat

=0onΓ (in H 1 2 (Γ)).Thus,itfollowsfromclassicalellipticregularityresults(see[7,8,9])that u ∈ H 2(Ω).Finally, D(A)= u ∈ H 2(Ω) ∩ V,

Remark2.2. Moregenerally,if f ∈ H m(Ω), m ≥ 0,then u ∈ H m+2(Ω)

2.1.1 Spectralpropertiesoftheoperator A

First,notethat A isself-adjoint(since ((· , ·))V issymmetric).Furthermore,since V ⊂ H iscompact,then A 1 : H → H iscompact(andself-adjoint).Indeed, A 1 : H → D(A) iscontinuous,sothat A 1 : H → V isalsocontinuous(notethatitfollowsfrom theregularitymentionedabovethattheembedding D(A) ⊂ V iscontinuous),andwe concludeowingtothecompactembedding V ⊂ H

Wethusconcludethat A 1 iscompact,self-adjoint,andpositive(asanoperatoron H). Therefore,thereexistsanorthonormalbasis (wj ), j ∈ N,of H formedofeigenvectorsof A 1: A 1 wj = µj wj ,µj → 0as

Since wj = 1 µj A 1wj ∈ D(A),then Awj = λj wj ,λj = 1 µj , and wj , λj areeigenvectors/eigenvaluesof A,where 0 <λ1 ≤ λ2 ≤···, λj → +∞ as j → +∞ (notethat Awj ,wj = λj wj 2 > 0).Furthermore,the wj ’sareorthogonalin V for (( , ))V .Indeed,if j = k,then

((wj ,wk))V = Awj ,wk = λj ((wj ,wk))=0

However,thisfamilyisnotorthonormal,since Awj ,wj =((wj ,wj ))V = λj wj 2 = λj .

2.1.Linearoperators15
∂ν
∂ν
∆u
∂ν
∂u ∂ν
∂u
=0onΓ , and Au = f , u ∈ D(A) and f ∈ H,isequivalentto
= f inΩ, ∂u
=0onΓ
j →
+
,µj > 0
Downloaded 09/11/19
Redistribution subject
SIAM license or copyright; see http://www.siam.org/journals/ojsa.php
to 128.83.63.20.
to

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.