Agricultural chemicals and the environment issues and potential solutions 2nd edition bailey

Page 1

Visit to download the full and correct content document: https://textbookfull.com/product/agricultural-chemicals-and-the-environment-issues-an d-potential-solutions-2nd-edition-bailey/

and the Environment
Potential
Agricultural Chemicals
Issues and
Solutions 2nd Edition Bailey

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Society and the Environment Pragmatic Solutions to Ecological Issues Michael S. Carolan

https://textbookfull.com/product/society-and-the-environmentpragmatic-solutions-to-ecological-issues-michael-s-carolan/

Agricultural Marketing and Price Analysis 2018th Edition F. Bailey Norwood

https://textbookfull.com/product/agricultural-marketing-andprice-analysis-2018th-edition-f-bailey-norwood/

Hydraulic Fracturing Chemicals and Fluids Technology 2nd Edition Johannes Fink

https://textbookfull.com/product/hydraulic-fracturing-chemicalsand-fluids-technology-2nd-edition-johannes-fink/

Agricultural Law Current Issues from a Global Perspective 1st Edition Mariagrazia Alabrese

https://textbookfull.com/product/agricultural-law-current-issuesfrom-a-global-perspective-1st-edition-mariagrazia-alabrese/

Ground Water Development Issues and Sustainable Solutions S. P. Sinha Ray

https://textbookfull.com/product/ground-water-development-issuesand-sustainable-solutions-s-p-sinha-ray/

Agricultural Medicine Rural Occupational and Environmental Health Safety and Prevention 2nd Edition Kelley J. Donham

https://textbookfull.com/product/agricultural-medicine-ruraloccupational-and-environmental-health-safety-and-prevention-2ndedition-kelley-j-donham/

Father Daughter Relationships Contemporary Research and Issues

2nd Edition Nielsen

https://textbookfull.com/product/father-daughter-relationshipscontemporary-research-and-issues-2nd-edition-nielsen/

Emerging Chemicals and Human Health Yunhui Zhang

https://textbookfull.com/product/emerging-chemicals-and-humanhealth-yunhui-zhang/

Run Little Wolf 1st Edition G. Bailey [Bailey

https://textbookfull.com/product/run-little-wolf-1st-edition-gbailey-bailey/

Published on 29 September 2016 on

2ndEdition

AgriculturalChemicalsandtheEnvironment
IssuesandPotentialSolutions
doi:10.1039/9781782626916-FP001
http://pubs.rsc.org |

ISSUESINENVIRONMENTALSCIENCEANDTECHNOLOGY

SERIESEDITORS:

ProfessorR.E.Hester,UniversityofYork,UK

ProfessorR.M.Harrison,UniversityofBirmingham,UK

EDITORIALADVISORYBOARD:

ProfessorP.Crutzen,Max-Planck-InstitutfurChemie,Germany, ProfessorS.J.deMora, PlymouthMarineLaboratory,UK, DrG.Eduljee,SITA,UK, ProfessorL.Heathwaite,Lancaster University,UK, ProfessorS.Holgate,UniversityofSouthampton,UK, ProfessorP.K.Hopke, ClarksonUniversity,USA, ProfessorP.Leinster,CranfieldUniversity,UK, ProfessorP.S.Liss, SchoolofEnvironmentalSciences,UniversityofEastAnglia,UK, ProfessorD.Mackay,Trent University,Canada, ProfessorA.Proctor,FoodScienceDepartment,UniversityofArkansas,USA, DrD.Taylor,WCAEnvironmentalLtd,UK.

TITLESINTHESERIES:

1:MininganditsEnvironmentalImpact

2:WasteIncinerationandtheEnvironment

3:WasteTreatmentandDisposal

4:VolatileOrganicCompoundsinthe Atmosphere

5:AgriculturalChemicalsandthe Environment

6:ChlorinatedOrganicMicropollutants

7:ContaminatedLandandits Reclamation

8:AirQualityManagement

9:RiskAssessmentandRiskManagement

10:AirPollutionandHealth

11:EnvironmentalImpactofPower Generation

12:EndocrineDisruptingChemicals

13:ChemistryintheMarineEnvironment

14:CausesandEnvironmentalImplications ofIncreasedUV-BRadiation

15:FoodSafetyandFoodQuality

16:AssessmentandReclamationof ContaminatedLand

17:GlobalEnvironmentalChange

18:EnvironmentalandHealthImpactof SolidWasteManagementActivities

19:SustainabilityandEnvironmentalImpact ofRenewableEnergySources

20:TransportandtheEnvironment

Howtoobtainfuturetitlesonpublication

21:SustainabilityinAgriculture

22:ChemicalsintheEnvironment:Assessing andManagingRisk

23:AlternativestoAnimalTesting

24:Nanotechnology

25:BiodiversityUnderThreat

26:EnvironmentalForensics

Telephone: þ44(0)1223432360,Fax: þ44(0)1223426017,Email:booksales@rsc.org Visitourwebsiteatwww.rsc.org/books Published on 29 September 2016 on

27:ElectronicWasteManagement

28:AirQualityinUrbanEnvironments

29:CarbonCapture

30:EcosystemServices

31:SustainableWater

32:NuclearPowerandtheEnvironment

33:MarinePollutionandHumanHealth

34:EnvironmentalImpactsofModern Agriculture

35:SoilsandFoodSecurity

36:ChemicalAlternativesAssessments

37:WasteasaResource

38:GeoengineeringoftheClimateSystem

39:Fracking

40:StillOnlyOneEarth:Progressinthe40 YearsSincetheFirstUNConferenceon theEnvironment

41:PharmaceuticalsintheEnvironment

42:AirborneParticulateMatter

43:AgriculturalChemicalsandtheEnvironment: IssuesandPotentialSolutions,2ndEdition

Asubscriptionisavailableforthisseries.Thiswillbringdeliveryofeachnewvolumeimmediatelyonpublicationandalsoprovideyouwithonlineaccesstoeachtitle via theInternet.For furtherinformationvisithttp://www.rsc.org/issuesorwritetotheaddressbelow.

Forfurtherinformationpleasecontact: SalesandCustomerCare,RoyalSocietyofChemistry,ThomasGrahamHouse,SciencePark, MiltonRoad,Cambridge,CB40WF,UK

http://pubs.rsc.org | doi:10.1039/9781782626916-FP001 View Online

ISSUESINENVIRONMENTALSCIENCEANDTECHNOLOGY

EDITORS:R.E.HESTERANDR.M.HARRISON

43 AgriculturalChemicalsandthe Environment IssuesandPotentialSolutions 2ndEdition Published
29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP001 View Online
on

29 September

IssuesinEnvironmentalScienceandTechnologyNo.43

PrintISBN:978-1-78262-690-9

PDFeISBN:978-1-78262-691-6

EPUBeISBN:978-1-78262-930-6

ISSN1350-7583

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

r TheRoyalSocietyofChemistry2017

Allrightsreserved

Apartfromfairdealingforthepurposesofresearchfornon-commercialpurposesorfor privatestudy,criticismorreview,aspermittedundertheCopyright,DesignsandPatents Act1988andtheCopyrightandRelatedRightsRegulations2003,thispublicationmaynot bereproduced,storedortransmitted,inanyformorbyanymeans,withouttheprior permissioninwritingofTheRoyalSocietyofChemistryorthecopyrightowner,orinthe caseofreproductioninaccordancewiththetermsoflicencesissuedbytheCopyright LicensingAgencyintheUK,orinaccordancewiththetermsofthelicencesissuedby theappropriateReproductionRightsOrganizationoutsidetheUK.Enquiriesconcerning reproductionoutsidethetermsstatedhereshouldbesenttoTheRoyalSocietyof Chemistryattheaddressprintedonthispage.

TheRSCisnotresponsibleforindividualopinionsexpressedinthiswork.

Theauthorshavesoughttolocateownersofallreproducedmaterialnotintheirown possessionandtrustthatnocopyrightshavebeeninadvertentlyinfringed.

PublishedbyTheRoyalSocietyofChemistry, ThomasGrahamHouse,SciencePark,MiltonRoad, CambridgeCB40WF,UK

RegisteredCharityNumber207890

Forfurtherinformationseeourwebsiteatwww.rsc.org

PrintedintheUnitedKingdombyCPIGroup(UK)Ltd,Croydon,CR04YY,UK

http://pubs.rsc.org | doi:10.1039/9781782626916-FP001 View Online
Published on
2016 on

Preface

Agriculturalproductionisinaperiodofrapidtransformationinvolving anincreaseintheuseofbiotechnology,syntheticchemistry,biological chemicalsandbiopesticides.Thesedisciplinesareintegratedwithimprovementsinapplicationtechnology,digitalfarmingandtheuseofbig data.Whilstofferinguniqueopportunitiestoreducepotentialenvironmentalimpacts,theseadvancesalsoraisenewenvironmentalconcerns.

Thisbookprovidesanoverviewofthechangesoccurringinthe agriculturalindustry,highlightingopportunitiestoaddressimpactsand indicatingpotentialbarrierstoadoptionofnewtechnology.Thiseditionhas beenupdatedtoincludetheverylatestinagriculturaldevelopments,includingorganicfarmingandgeneticallymodifiedcrops.Itwillbeofvalueto studentsandacademicsinagriculturalcolleges,aswellasfarmersand landownersandthoseworkingonagriculturallegislation.

Inthefirstchapter,LauraMcConnellandhercolleaguesfromBayer CropSciencehavereviewedthewaysinwhichagriculturaltechnologiescan beintegratedinordertominimisetheirenvironmentalimpacts.Againsta backgroundofincreasingworldpopulation,growingnumbersofundernourishedpeople,changesinclimatethatimpactonagriculturalproductivity,includingchangesinrainfallpatterns,andtheurgentneedfor increasedyieldsinfoodproduction,theroleoftheagrochemicalindustry andgrowthintheareaofagriculturalbiologicalsisdiscussed.Precision agriculture,enhancedbydigitalfarmingtechnologies,isofincreasingimportanceinraisingproductivitylevelsandimprovingthesustainabilityof cropproduction.Improvedsyntheticpesticideslessentheriskstohumans andwildlifeandemergingtechnologiessuchasgeneticengineeringareof growingsignificance.Landmanagementandregulatorycontrolsalsoare addressedhere.

Agriculturalproductivityisheavilydependentontheapplicationof fertilisernutrientstoland,butinefficientusecancauseenvironmental damage.Chapter2,byRichardMcDowellandhiscolleaguesfrom NewZealandandWales,outlinesourcurrentunderstandingofvitalNandP

IssuesinEnvironmentalScienceandTechnologyNo.43 AgriculturalChemicalsandtheEnvironment:IssuesandPotentialSolutions,2ndEdition

EditedbyR.E.HesterandR.M.Harrison

r TheRoyalSocietyofChemistry2017

PublishedbytheRoyalSocietyofChemistry,www.rsc.org

v Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP005

useefficienciesbycropsandtherangeandcost-effectivenessofstrategiesto mitigatefertiliserlossesthatresultincontaminationoffreshwater.Equally importanttoagriculturalproductivityistheuseofpesticides,including fungicides,insecticides,molluscicidesandplant-growthregulators,herbicides.InadditiontotheirtreatmentinChapter1,thesearegivenspecial attentioninChapter3byStevenBaileyandcolleaguesfromNaturalEngland andHarperAdamsUniversity.Theirwide-rangingtreatmentaddressesin detailthreecurrentissuesofconcern:impactsonterrestrialwildlifeand biodiversity,thedevelopmentofresistance,andcontaminationofwaterby pesticides.

Chapter4isconcernedwithagroecologyandorganicfarmingasapproachestoreducingtheenvironmentalimpactsofagriculturalchemicals. NicLampkinandhiscolleaguesfromtheOrganicResearchCentrein Newbury,UK,describehowtheseapproachescanbeadvantageousforbiodiversity,resourceuseandemissions,butwithpotentialtrade-offsagainst productivityandprofitability.These,however,canbemitigatedthrough theuseofspecialistmarketsfororganicproductsandthroughagrienvironmentalsupportorpaymentforecosystemservices.Thechapter includesinternationalcomparisonsanddetailsthemeasuresneededfor financialviability.Attheotherendofthespectrumofagriculturalpractices, Chapter5dealswiththesubjectofcropbiotechnologyforweedandinsect control.WrittenbyHuwJonesofAberystwythUniversity,thisdescribesthe rapiduptakeandwidespreaduseofGMcropvarietieswithtoleranceto herbicidesandresistancetoinsectpests.However,thisremainsahighly controversialarea,particularlyforfoodcropssuchassoybean,maizeand sugarbeet.GMinsect-resistant(Bt)cotton,ontheotherhand,hasbeen widelyadoptedthroughouttheworld,notonlyshowingresistancetothe traditionalbollwormandbudwormpestsbutalsobeingassociatedwith increasesinbeneficialarthropodpredators,suchasladybirdsandspiders, andadecreaseinaphidpests.TherearemanyregulatoryhurdlestoovercomeforfuturegrowthofGMcropcultivationbutthepressureforincreased agriculturaloutputandefficiencytogetherwiththedevelopmentofnew, highlyspecificgene-editingtechniquesarepowerfuldrivers.

Thefinaltwochaptersinthebookarefocusedontheparticularareasof aquacultureandhorticulture.InChapter6,ColinMoffat,headofscienceat MarineScotland,describesboththebenefitsandhazardsofaquaculturefor foodproduction.Seafoodiswellknownforbeinghighlynutritious;seaweed iswidelyusedinfoodaroundtheworld,butparticularlyinChinaandJapan; freshwaterfishspeciessuchastroutandcarphavebeenpopularthroughout history;shellfishsimilarlyhavebeenfoundtobeapartofthehumandietat leastasfarbackastheBronzeAge.Aquaculture,themanagedproductionof marineorfreshwateranimalsandplants,istheworld’sfastest-growing systemforfoodproduction,currentlyproducingmorethan70million tonnesannually,thebulkofthisinAsia.Thechapterreviewstheuseof chemicalsandpharmaceuticalsinaquacultureforthecontrolofpests, diseaseandparasites,andtheenvironmentalhazardthatthesepresent. vi Preface

Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP005 View Online

Chapter7,writtenbyRosemaryCollieroftheUniversityofWarwickand hercolleaguesfromNIABatEastMalling,isconcernedwiththewiderange ofplantfamiliesencompassedbythetermhorticulture.Theseincludefruit, vegetablesandornamentalsgrowntoprovidecutflowers,pot,gardenor landscapingplants;bothoutdoorandprotectedcropsinglasshousesand polytunnelsarealsoreferenced.Althoughthesecropsoccupyarelatively smallfootprintincomparisonwitharablecropsandgrasslandsupporting livestock,theyoftenrequiremoreintensiveuseoffertilisersandpesticides inordertoachievetheappearanceandqualitycriteriathatdetermine marketvalue.Thechaptersummarisescropproductionmethods,focusing ontheuseofagriculturalchemicalsandpotentialapproachestoreducing theirenvironmentalimpact;casestudiesoncarrotproductionandintegratedpestanddiseasemanagementinappleorchardsareincluded.

Preface vii Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP005 View Online

Published on 29 September 2016 on

http://pubs.rsc.org | doi:10.1039/9781782626916-FP005 View Online

Editorsxiii

ListofContributorsxv

IntegratingTechnologiestoMinimizeEnvironmentalImpacts1

LauraL.McConnell,IainD.KellyandRussellL.Jones

1Introduction1

2DevelopmentsandEmergingTrendsintheCropProtectionIndustry3

3ImprovingtheSustainabilityofCropProduction6

3.1ImprovedPropertiesofSyntheticPesticides7

3.2EmergingTechnologies7

3.3EnhancedApplicationTechnologies10

3.4BetterLandManagement12

4RoleofRegulationinTechnologyDevelopment13 Acknowledgements15 References15

TheEnvironmentalImpactofFertiliserNutrientsonFreshwater20

RichardW.McDowell,PaulJ.A.WithersandTonyJ.vanderWeerden

1Introduction20

2TheRequirementsandUtilisationofNandPbyDifferentCrops21

3TheLoss,ImpactandManagementofFertiliserNandP fromLandtoWater26

3.1TheAvailabilityofNutrientSourcestoLoss26

3.2PathwaysofNutrientLoss29

3.3Attenuation30

3.4ProcessingofNandPinFreshwaters32

3.5StrategiestoMitigateNandPLosses33

IssuesinEnvironmentalScienceandTechnologyNo.43 AgriculturalChemicalsandtheEnvironment:IssuesandPotentialSolutions,2ndEdition

EditedbyR.E.HesterandR.M.Harrison

r TheRoyalSocietyofChemistry2017 PublishedbytheRoyalSocietyofChemistry,www.rsc.org

Contents
ix Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP009

4FutureDirectionsandResearchGaps35 Acknowledgements38 References38 Pesticides45

StevenBailey,JohnP.H.Reade,AlastairBurnandSusanZappala

1Introduction45

2PesticidesandTerrestrialWildlife46 2.1Introduction46

2.2PesticideUseandImpactsonTerrestrialBiodiversity: PastandPresent47

2.3WildlifeProtectionGoalsinPesticideRegulation48

2.4DirectEffects51

2.5IndirectEffects55

2.6PesticidesandProtectedSitesandHabitats57 2.7Conclusion59

3PesticideResistance61

3.1Introduction61

3.2HerbicideResistance61

3.3FungicideResistance63

3.4InsecticideResistance65

3.5ManagingResistance66 4PesticidesinWater67

4.1WhatIstheIssue?67

4.2PesticideMovementtoWater70

4.3RegulatoryControl76

4.4Mitigation78

4.5LookingAhead:DoWeHaveAlltheAnswers?83 Acknowledgements84 References84

AgroecologyandOrganicFarmingasApproachestoReducingthe EnvironmentalImpactsofAgriculturalChemicals94 NicolasH.Lampkin,JoSmithandLaurenceG.Smith

1Introduction95

2WhatareAgroecologyandOrganicFarming?95 2.1Agroecology95

2.2OrganicFarming96 3TypicalPracticesandSystems98

3.1WhatRoleDoesChemistryPlayintheseApproaches?98

3.2RestrictingInputsorRedesigningSystems?100

x Contents Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP009 View Online

4PerformanceofAgroecologicalApproachesRelativeto ConventionalIntensiveSystems101

4.1Biodiversity101

4.2ResourceUseandEmissions102

4.3Productivity105

4.4FinancialViability107

5Conclusions109 Acknowledgements109 References109

CropBiotechnologyforWeedandInsectControl114

HuwD.Jones

1GlobalTrendsofGMCropAdoption114

2HerbicideTolerance118

2.1ADriverforChangingAgronomicPractices118

2.2ConservationTillageAgriculture118

2.3ManagingResistance119

3Pest/DiseaseResistance120

3.1BtGenesandToxins120

3.2ReductioninInsecticideUse121

3.3EvolutionofInsectResistancetoCryToxins122 4WhatDoestheFutureHold?124

4.1RegulatoryHurdlesandAsynchronousApprovals124

4.2WhatistheFutureforCropBiotechnology?125 References126

Aquaculture128

ColinF.Moffat

1Aquaculture–AModernFoodIndustrywithaLongHistory129

1.1OurSeasandOceansasaSourceofFood129

1.2AChangingLandscape131

1.3ALongHistory132

1.4ThePresentDay136 2Challenges137

3TheUseofChemicalsforPest/Disease/ParasiteControl142

3.1TheRequirementtoUsePesticides142

3.2SeaLiceTreatmentsinSalmonAquaculture149

3.3Non-salmonidAquaculture152

3.4Anti-foulingCompounds153

3.5Disinfectants157

Contents xi Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP009 View Online

4PotentialImpactsontheEnvironmentandNon-targetSpecies157

5StrategiestoReduceChemicalUsage163

5.1TestingtheProducts163

5.2ChangestoHusbandry163

5.3MinimisingInfectionPressurebyCooperation BetweenFarmswithinaGeographicallyConnectedArea165

5.4Bioremediation166

5.5UsingNaturalCompoundswhichare EnvironmentallyBenign166

5.6ImprovingtheHost’sResistancetoDisease166

1Introduction176 2Overview178 2.1Fertilisers178 2.2SoilHealth179

2.3Pests,DiseasesandWeeds180

2.4WaterUseandWaterQuality185 3CaseStudies186

3.1CaseStudy1:CarrotProductionintheUK186

3.2CaseStudy2:IntegratedPestandDiseaseManagement (IPDM)inAppleOrchards192

5.7NaturalPredators167 6Conclusions169 Acknowledgements169 References169 Horticulture176
xii Contents Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP009 View Online
4FuturePerspectives209 5Conclusion210 Acknowledgements210 References210 SubjectIndex215

Editors

RonaldE.Hester,BSc,DSc(London),PhD(Cornell), FRSC,CChem

RonaldE.HesterisnowEmeritusProfessorofChemistry intheUniversityofYork.HewasforshortperiodsaresearchfellowinCambridgeandanassistantprofessorat CornellbeforebeingappointedtoalectureshipinchemistryinYorkin1965.HewasafullprofessorinYorkfrom 1983to2001.Hismorethan300publicationsaremainly intheareaofvibrationalspectroscopy,latterlyfocusingon time-resolvedstudiesofphotoreactionintermediatesandonbiomolecular systemsinsolution.Heisactiveinenvironmentalchemistryandisafounder memberandformerchairmanoftheEnvironmentGroupoftheRoyalSociety ofChemistryandeditorof‘IndustryandtheEnvironmentinPerspective’ (RSC,1983)and‘UnderstandingOurEnvironment’(RSC,1986).Asamember oftheCounciloftheUKScienceandEngineeringResearchCounciland severalofitssub-committees,panelsandboards,hehasbeenheavilyinvolved innationalsciencepolicyandadministration.Hewas,from1991to1993,a memberoftheUKDepartmentoftheEnvironmentAdvisoryCommitteeon HazardousSubstancesandfrom1995to2000wasamemberofthePublicationsandInformationBoardoftheRoyalSocietyofChemistry.

RoyM.Harrison,BSc,PhD,DSc(Birmingham),FRSC, CChem,FRMetS,HonMFPH,HonFFOM,HonMCIEH

RoyM.HarrisonisQueenElizabethIIBirminghamCentenaryProfessorofEnvironmentalHealthintheUniversity ofBirmingham.HewaspreviouslyLecturerinEnvironmentalSciencesattheUniversityofLancasterandReader andDirectoroftheInstituteofAerosolScienceatthe UniversityofEssex.Hismorethan400publicationsare mainlyinthe fieldofenvironmentalchemistry,althoughhis currentworkincludesstudiesofhumanhealthimpactsofatmosphericpollutantsaswellasresearchintothechemistryofpollutionphenomena.Heisa pastChairmanoftheEnvironmentGroupoftheRoyalSocietyofChemistry forwhomheedited‘Pollution:Causes,EffectsandControl’(RSC,1983;

xiii Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP013

Published on 29 September 2016 on

FifthEdition2014).Hehasalsoedited‘‘AnIntroductiontoPollution Science’’,RSC,2006and‘‘PrinciplesofEnvironmentalChemistry’’,RSC, 2007.Hehasacloseinterestinscientificandpolicyaspectsofairpollution, havingbeenChairmanoftheDepartmentofEnvironmentQualityof UrbanAirReviewGroupandtheDETRAtmosphericParticlesExpertGroup. HeiscurrentlyamemberoftheDEFRAAirQualityExpertGroup,the DepartmentofHealthCommitteeontheMedicalEffectsofAirPollutants, andCommitteeonToxicity.

xiv
Editors
http://pubs.rsc.org | doi:10.1039/9781782626916-FP013 View Online

on 29

ListofContributors

StevenBailey,NaturalEngland,ParksideCourt,HallParkWay,TelfordTF3 4LR,UK.Email:steven.bailey@naturalengland.org.uk

AlastairBurn,NaturalEngland,SuiteD,UnexHouse,BourgesBoulevard, PeterboroughPE11NG,UK

RosemaryH.Collier,WarwickCropCentre,SchoolofLifeSciences, UniversityofWarwick,Wellesbourne,WarwickCV359EF,UK.Email: rosemary.collier@warwick.ac.uk

JerryV.Cross,NIABEMR,NewRoad,EastMalling,KentME196BJ,UK

HuwD.Jones,InstituteofBiological,Environmental&RuralSciences (IBERS),AberystwythUniversity,Penglais,Aberystwyth,Ceredigion,SY23 3DA,Wales,UK.Email:huw.jones@aber.ac.uk

RussellL.Jones,BayerCropScience,2TWAlexanderDrive,Research TrianglePark,NorthCarolina,27709USA

IainD.Kelly,BayerCropScience,2TWAlexanderDrive,ResearchTriangle Park,NorthCarolina,27709USA

NicolasH.Lampkin,OrganicResearchCentre,ElmFarm,Hamstead Marshall,Newbury,RG200HR,UK.E-mail:nic.l@organicresearchcentre.com

LauraL.McConnell,BayerCropScience,2TWAlexanderDrive,ResearchTriangle Park,NorthCarolina,27709USA.Email:laura.mcconnell@bayer.com

RichardW.McDowell,AgResearch,InvermayAgriculturalCentre,Puddle Alley,PrivateBag50034,Mosgiel9053,NewZealand;Agricultureand LifeSciences,LincolnUniversity,Lincoln7647,NewZealand.Email: richard.mcdowell@agresearch.co.nz

ColinF.Moffat,MarineScotland,MarineLaboratory,375VictoriaRoad, Aberdeen,AB119DB,Scotland,UK.Email:colin.moffat@gov.scot

JohnP.H.Reade,HarperAdamsUniversity,Newport,ShropshireTF108NB,UK

JoSmith,OrganicResearchCentre,ElmFarm,HamsteadMarshall,Newbury, RG200HR,UK

LaurenceG.Smith,OrganicResearchCentre,ElmFarm,Hamstead Marshall,Newbury,RG200HR,UK

TonyJ.vanderWeerden,AgResearch,InvermayAgriculturalCentre,Puddle Alley,PrivateBag50034,Mosgiel9053,NewZealand.

PaulJ.A.Withers,SchoolofEnvironment,NaturalResourcesand Geography,BangorUniversity,DeiniolRoad,BangorLL572UW,UK.

XiangmingXu,NIABEMR,NewRoad,EastMalling,KentME196BJ,UK

SusanZappala,NaturalEngland,ApexCourt,CityLink,NottinghamNG2 4LA,UK

xv Published
2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-FP015
September

Published on 29 September 2016 on

http://pubs.rsc.org | doi:10.1039/9781782626916-FP015 View Online

IntegratingTechnologiestoMinimize EnvironmentalImpacts

LAURAL.MCCONNELL,*IAIND.KELLYANDRUSSELLL.JONES

ABSTRACT

Historically,syntheticagrochemicalshavehadacentralrolein increasingyieldsinagriculturalproduction.Assessmentmethodsand approachestowardsmonitoringandaddressingtheenvironmental impactofthetechnologywererelativelysimple.Agriculturalproduction,however,isinaperiodofrapidtransformation.Researchand Developmentcompaniesaretransformingtheiractivitiestoprovide amoreholisticapproachthatprovidesproducerswithintegrated solutions.Theseapproachesencompassbiotechnology,synthetic chemistry,biologicalsandbiopesticides,alldisciplinesthatareintegratedwithimprovementsinapplicationtechnology,digitalfarming andtheuseofbigdata.Whilethesedevelopmentsmayraisenew questions,theyalsoprovideuniqueopportunitiestoreducepotential environmentalimpacts.Thischapterprovidesanoverviewofthe changesoccurringintheagriculturalindustryandhighlightswaysin whichwemightaddresstheireffects,whilepointingoutsomeofthe barrierstoadoptionofnewtechnologies.

1Introduction

*Correspondingauthor.

In2015,theUnitedNationsadoptedthe2030AgendaforSustainable Developmentand17specificSustainableDevelopmentGoalsasaguidefor IssuesinEnvironmentalScienceandTechnologyNo.43 AgriculturalChemicalsandtheEnvironment:IssuesandPotentialSolutions,2ndEdition EditedbyR.E.HesterandR.M.Harrison r TheRoyalSocietyofChemistry2017

PublishedbytheRoyalSocietyofChemistry,www.rsc.org

1 Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001

2

globaldevelopmentdesignedtoendpoverty,protecttheplanetandensure prosperityforall.1 SustainableDevelopmentGoalnumber2isto‘‘end hunger,toachievefoodsecurityandimprovednutrition,andpromote sustainableagriculture’’by2030.Atpresent,about790millionpeopleare undernourished;2 therefore,achievingthisambitiousgoalwillrequiresignificantandrapidtechnologicalinnovationsinagriculturalproduction systemsacrosstheworld.OtherUNgoals,relatedtosustainablemanagementofwaterandaddressingclimatechangeanditsimpacts,willalso requiremajoradvancesinagriculturaltechnologyinordertoincreasefood productioninasustainablemanner,whilekeepingpacewiththedemands ofanexpandingpopulation.

Thegoalofendinghungerandachievingfoodsecuritybecomesmore challengingconsideringthatthecurrentworldpopulationof7.3billionis projectedtoreach9.7billionby2050and11.2billionby2100.3 Inaddition, globallifeexpectancyisprojectedtoincreasefrom70to77yearsby 2045–2050.Developingcountriesareexpectedtohavethegreatestrateof populationgrowth,andaveragefoodconsumptionindevelopingcountries isprojectedtoincreasefrom2005levelsof2619kcalperson 1 day 1 to 3000kcalby2050.4 Withincreasingconsumption,thereisanincreasein demandforamorediverseandprotein-richdietincludingmeat,milk,eggs andvegetableoils.Currentlyapproximately12%ofthelandsurfaceofthe globeisusedforcropproduction.Recentestimatesindicatethatupto34% oftheworld’slandsurfacecouldbeusedforagriculture,although approximately20%hasbeendeemedmarginalandunsuitableforrainfed agriculture.Therefore,carefulmanagementandprotectionofthemost productiveagriculturallandswillberequired,alongwithnovelapproaches toachievingincreasedproductiononmarginallands.

Climatechangeisexpectedtobringgeographicalchangesinprecipitation patternsandthereforewillaltergrowingconditionsandwateravailabilityin agriculturalproductionregionsbothwithintheUSA5 andacrossthe world.6,7 Plantgrowthofbothcropsandweedspecies,willbeaffectedby increasesincarbondioxideintheatmosphere.8 Whilesomeagricultural regionsmaybenefitfromincreasedyieldsinawarmingclimate,northward expansionofinsectpestsandweedspeciesisalreadybeingobserved.Climatechangewillbringaboutadditionalchallengessuchasageneralincreaseinextremeweathereventswhichcandamagecropsandfood distributionnetworks,agrowingriskoffood-borneillnessesandrising troposphericozoneconcentrations,resultingindamagetocropyields.9,10

Withincreasingpopulationandawarmingclimate,additionalfactorswill alsoinfluencetheglobalavailabilityoffood,possiblyleadingtowater scarcityanddecreasedwaterquality.Approximately70%ofglobalfreshwaterconsumedisusedinagriculture.11 Whiledomesticwastewatercanbe recycled,muchofthewaterusedincropproductioniseitherincorporated intobiomassoristranspired.Asincomesindevelopingcountriesincrease, greaterdemandformeatanddairyproductswillrequiremorewaterfor productioncomparedwithstaplecrops;itisestimatedthatagricultural

Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

productionwillneedtogrowby60%by2050tokeepupwiththisdemand. Increasedproductiononthesamelimitedlandresourceswilllikelyrequirea greaterportionofcroplandunderirrigation,leadingtoincreasedwater scarcityandthepotentialfordecreasedwaterquality.Ifincreasingdemand forfoodcannotbemetwithincreasingyields,thenmoremarginallandswill bepushedintofoodproduction,reducinghabitatsfornativeplantsand animalsalongwithotherecosystemservicesthattheselandscurrently provide.Thischapterseekstosummarizerecentandemergingtrendsinthe cropprotectionindustry,todiscussthechallengesfacingtheindustry,the roleofregulationinnewtechnologydevelopmentandrecommendationson findingawayforwardtowardsincreasedproductionandimprovedsustainabilityinagriculture.

2DevelopmentsandEmergingTrendsintheCrop ProtectionIndustry

Overthelastapproximately70years,yieldincreases,particularlyinthe developedcountries,havebeensignificant.IntheUSA,forexample,soybean yieldshavedoubledandcornyieldshaveincreasedbyafactoroffour, leadingtoincreasesinfarmtotalfactorproductivityof1.47%peryearfrom 1948to2013.12 Muchofthisimprovementwasachievedthroughtheuseof moreefficientandautomatedmachinery,improvedseedvarietiesand agriculturalchemicals,includingfertilizersandpesticidesand,mostsignificantly,herbicides.Increasedyieldshaveloweredthecostofcommodities andhaveresultedinamoreabundantfoodsupply,whilepubliclyand privatelyfundedagriculturalresearchhascontributedtoinnovationsand newtechnologies.

ThepesticideconsumptionindexintheUSAincreasedsteadilyfrom1960to themid-1990sbuthasnowleveledoffandbeguntodecline,whilethetotal farmoutputhascontinuedtoincrease(Figure1).12 Thislevelingoffofpesticideusecoincidedwiththeintroductionofnewgenetictraitsintothemarket, beginningaround1996(Figure2).13 Herbicide-tolerantsoybeansachieved morethan80%adoptioninthemarketplaceby2003;useofherbicide-tolerant cottonincreasedmoreslowlybutexceeded80%by2012.Insecticide-tolerant cotton,orBtcotton,containsthegenefromasoilbacteriumnamed Bacillus thuringiensis, andproducesaproteinthatistoxictocertaininsectpests. Btcottonusehasincreasedto84%ofallacresofcottonplanted,asof2014. Publicinvestmentsinagriculturalresearch,however,haveslowedin recentyearswhileprivatesectorresearchanddevelopmenthasgrown rapidly.14 Continuedinvestmentsfrombothpublicandprivatesourceswill berequiredtoachievetheincreasesinagriculturalproductivityrequiredto meetglobalfooddemand.Withintheprivatesector,thechallengeoffeeding anever-increasingpopulationinaperiodofchangingenvironmental conditionswillbeaccomplishedbyamuchdifferentindustry,underthe scrutinyofacivilsocietywithnear-universalaccesstosmartphone

IntegratingTechnologiestoMinimizeEnvironmentalImpacts 3 Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

Figure1 Comparisonoftrendsinpesticideconsumptionindexandtotalfactor productivityofUSfarmsfrom1948to2013.Pesticideconsumptionindices arerelativetouseinAlabamain1996 ¼ 1.Valuesdisplayedarethesumof consumptionindexfor48states. Sourcedata:Ref.12.

Figure2 AdoptionofgeneticallyengineeredcropsintheUnitedStates,1996to 2015.HT ¼ herbicide-tolerantcrop,Bt ¼ insectresistantcropcontaining thegenefrom Bacillusthuringiensis. Sourcedataandfigureadaptedfromref.13.

technology,informationandcommentaries.Somehaverecentlyproposed thattheglobaleconomyisenteringafourthindustrialrevolution,leadingto extremeautomationandconnectivity.15 AtarecentWorldEconomicForum, anewreportonthe FutureofJobs waspublished,describingchangesinthe economyexpectedby2020:

‘‘WearetodayatthebeginningofaFourthIndustrialRevolution.Developmentsinpreviouslydisjointedfieldssuchasartificialintelligenceand machinelearning,robotics,nanotechnology,3Dprintingandgeneticsand biotechnologyareallbuildingonandamplifyingoneanother.Smart

http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online
Published on 29 September 2016 on

systems—homes,factories,farms,gridsorentirecities—willhelptackle problemsrangingfromsupplychainmanagementtoclimatechange.Concurrenttothistechnologicalrevolutionareasetofbroadersocioeconomic, geopoliticalanddemographicdevelopments,withnearlyequivalentimpactto thetechnologicalfactors.’’16

Theeffectsofthesechangesineconomicforcesarealreadyevidentinthe structureoftheagrochemicalindustryasitentersaperiodoffasterconsolidationandmorediverseacquisition.Intheperiod1998–2002theindustryhadasignificantconsolidationasthetenmajorresearchand developmentcompaniesmergedtocreatesix(Monsanto,Syngenta,Bayer CropScience,Dupont,DowAgroSciencesandBASF),17 eachwithtotalsales ofover h5millionin2014(Figure3).Asthefigureshows,withinthesesix companiestherewasacleardifferentiationinthesizeoftheagrochemicals businesscomparedtotheseedbusiness.MonsantoandDuPonthavegreater than50%oftheirsalesinseedswhileinSyngenta,DowAgroSciencesand BayerCropScience,agrochemicalspredominate.BASFfocusedprimarilyon agrochemicals.

Thelastfiveyearshaveseenconsiderableacquisitionsandpenetrationby themajoragrochemicalcompaniesintotheareaofagriculturalbiologicals. In2012alone,BayeracquiredAgraQuest,Inc.,Monsantoannouncedits BioDirect t technologyplatform,BASFacquiredBeckerUnderwood,Inc., andSyngentaacquiredPasteuriaBioscience,Inc.aseachofthesecompanies strengthenedtheirpositioninthispromisingnewareaofagricultural technology.Definitionsoftheterm‘‘biologicals’’varybutgenerally

Figure3 Estimatedtotalsalesofagrochemicalsandseedsin2014formajorcrop protectioncompanies(millioneuros)excludingnon-agriculturalbusiness. EstimatesbasedoncompanypublicationsandBayerCropScienceinternal marketresearch.

IntegratingTechnologiestoMinimizeEnvironmentalImpacts 5 Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

encompassmicrobials,plantextractsorotherorganicmaterial,andbeneficialinsectsthatcanbeusedtocontrolpestsanddiseasesorstimulatecrop efficiency.Thevariationindefinitionofthemarketmakesitssizedifficultto measurebutoneestimateputthemarketatapproximately$3billion,which includedbiopesticidesatanestimated$2billionandbiostimulantsaround $1billion,withthepotentialforcontinuingdouble-digitgrowththroughout thedecade.18

Anotheremergingarearelatedtotheincreaseinglobalconnectivitythat hasseenacquisitionbythemajoragrochemicalcompaniesisprecision agriculture,enhancedbydigitalfarmingtechnologies.Themostnotableof thesewastheacquisitionofTheClimateCorporationbyMonsantoin2013. Thispurchasesignaledtheimportancethatreadyaccesstoreal-timefield datawillhavetothegrowerofthefuture.Advancedanalytics,synthesizing localconditionsincludingsoiltype,weatherpatterns,cropvarietiesand patternsofdiseaseoutbreaksandinsectinfestationwillallbeamongstthe decision-makingtoolsavailabletogrowersintheireffortstomaximize productivity.Approachestodataaccess,dataownershipanddatasecuritywill beanintegralpartoftheimplementationandsuccessofthesedevelopments, andequipmentmanufacturersareakeylinkinthisdigitaldevelopment.Selfdriving,highlycomputerizedplanters,sprayersandharvestersareeither availablenoworindevelopment,withtheabilitytorespondinreal-timeto satellite,droneandground-basedrobots.In2015,Deere&Companyagreedto acquirethePrecisionPlanting,LLCequipmentbusinessfromMonsanto’s ClimateCorporationSubsidiarytoenableexclusive,nearreal-timedata connectivitybetweencertainJohnDeerefarmequipmentandtheClimate FieldViewt platformaspartoftheinnovationalignmentwithinthissectionof theindustry.Inrelatedactivities,BayerCropSciencehasrecentlyacquired proPlant,Inc.,andSyngentahasacquiredAgConnections,LLC.

Majorfactorsthatareimpactingthefutureofthecropprotectionindustry aretheenormouscostofproductdevelopmentandchallengesofincreasing regulatoryhurdles.Thecostofdevelopmentofanewagrochemicalis currentlyestimatedatapproximately$290million,with11yearsfrom discoverytocommercialization,19 whileanewplantbiotechnologytraitcosts approximately$135million,with12to16yearsfromlabtocommercialization.20 Clearly,inafewyearstheappearanceoftheindustrywillbevery differentfromtodayandislikelytobemorefar-reachingthanthedevelopmentsthatoccurredataroundthemillennium.Consolidationwithinthe largeresearchanddevelopmentcompanieswillbeaccompaniedbyventure capitalandnichemarketinvestmentsasnewandpotentiallydisruptive technologiescontinuetoevolve.

3ImprovingtheSustainabilityofCropProduction

Sincetheintroductionofsyntheticchemicalsasakeycontributorinprotectingplantsandincreasingyields,concernshavebeenraisedaboutpotentialenvironmentalimpacts.Assessingandreducingtheseimpactshasbeen 6

Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online
LauraL.McConnell,IainD.KellyandRussellL.Jones

amultidimensionalprocessandthepaceonlyincreasesasagronomycontinuestoencompassnewscientificdisciplinesandtechnology.Someofthese willbeexpandeduponlaterinthisbookbutanoverviewisprovidedhere.

3.1ImprovedPropertiesofSyntheticPesticides

Whilepesticideusehasincreasedovertime,thepropertiesofpesticide productshaveevolvedtominimizetheirriskstohumansandwildlife.Two basictrendsinnewcompoundshaveoccurredoverthepast2to3decades: newcompoundsaredesignedwithmorespecificmodesofaction,which tendtolimiteffectstospecifictaxa,andaremorehighlyactive,facilitating loweruserates.Whilepotentialenvironmentaleffectscanbesimilarfora sensitivespecieswithcompoundswithbroadormorespecificmodesof action,fewerspeciesareatriskfromcompoundswithspecificmodesof action.Intheinsecticidearea,forexample,theuseofthenon-specific acetylcholinesterase(AChE)inhibitors(organophosphatesandcarbamates) was51%in1999.Together,theAChEinhibitorsandthoseinsecticides actingonthevoltage-gatedsodiumchannel(vgSCh),inparticularthepyrethroids,accountedforapprox.70%oftheworldmarket.21 By2012,AChEinhibitorusehaddroppedmuchfurtherto19%,whilepyrethroidshad remainedrelativelyconstantat17%andneonicotinoiduse(introducedinthe 1990s)hadrisento24%tobecomethemajorclassesofinsecticides.22 Both theneonicotinoidandpyrethroidclassesofinsecticideshavemodesofaction whicharehighlytoxictoinsects,buthavelowmammalianandaviantoxicity comparedtoorganophosphateandcarbamateinsecticides.Riskmitigation strategiescan,therefore,bemuchmoretargeted,generallyfocusingon aquaticspeciesforpyrethroidsandpollinatorspeciesforneonicotinoids. Furthermore,use-ratesinthe1980sweretypically1–10kgha 1,whilemany compoundstodayareappliedatrateslessthan1kgha 1 andaverageapplicationratesofsomesulfonylureasareaslowasafewgramsperhectare.23

TheUSDepartmentofAgriculture(USDA),EconomicResearchService conductedanexhaustiveanalysisofpesticideuseon21cropsfrom1960to 2008andexaminedchangesovertimeinenvironmentallyrelevantcharacteristicsofpesticidesonthemarket(Figure4).24 Themostdramatictrend observedwasthedeclineintoxicitytohumans,butdeclinesinaverage annualapplicationrateandpersistencewerealsoobserved.Declinesin pesticideconsumptionhavealsobeenaccompaniedbymajorchangesin applicationtechniques,aswellasstewardshipefforts(e.g. integratedpest management,nutrientmanagementandconservationagriculture)to maintainthesustainabilityofchangingagriculturalprocesses.

3.2EmergingTechnologies

3.2.1GeneticEngineering. ThistechnologyencompassesGenetically ModifiedOrganisms(GMOs)producedbyrecombinantDNAtechniques and,morerecently,techniquessuchasgeneeditingandRNAinterference

IntegratingTechnologiestoMinimizeEnvironmentalImpacts 7 Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

8

Figure4

Averagequalitycharacteristicsofpesticidesappliedtofourmajorcrops, 1968to2008,whereRateisthepoundsofactiveingredientappliedper acreinoneapplicationtimesthenumberofapplicationsperyear;Toxicity isdefinedastheinverseofthewaterqualitythresholdinpartsperbillion, servingasanenvironmentalriskindicatorforhumansfromdrinking water;andPersistenceistheshareofpesticideproductsinusewithsoil half-lifelessthan60days.

Sourcedataandfigureadaptedfromref.24.

(RNAi).AswasmentionedinSection2,theoverallrateofpesticideuse intheUSAhasleveledoffwiththerapidadoptionofGMOcropsinthe late-1990s,whilefarmproductivityhascontinuedtoincrease(Figure1). Initiallyasinglegenewasinserted,producingherbicide-tolerantorinsectresistantplants.Thetechnologyhasbeenveryeffectiveandhasfundamentallychangedfarmingpracticesinmanypartsoftheworld.However, thebroadacceptanceoftheglyphosate-toleranttrait,coupledwithuseof thenon-specificherbicideglyphosate,has,unfortunately,ledtotheevolutionofglyphosate-resistantweedspecies.25 Herbicide-tolerantandinsecticide-resistanttraitscannowbestackedincottonandincorn,and useofthesestackedtraitvarietieshasincreasedovertime.13 Withthese advancedGMOs,insecticideapplicationscanbeminimizedandherbicide applicationsmoretargetedwhenweedpestpressureincreases.Effortsare underwayinacademic,industryandgovernmentscientificcirclestotrack weedresistance26 andtoincreasestewardshipprogramstoeducatefarmersonhowtomanageresistance.27 AdoptionofGMOcropshasalsoledto increasedadoptionofconservationtillagepractices,leadingtobeneficial effectsonsoilandwaterquality.28

Furtheradvancesinthetechnologyarefocusingonoutputtraitswhich, forexample,enhanceyield,conferdroughtresistance,enhancenitrogen-use efficiencyandconferdesirablequalitypropertiesonthecrop.Anearly entryintothisfieldwastheso-called‘‘goldenrice’’engineeredtoproduce

Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

b-carotene,theprecursortovitaminA,aswellasanincreaseddoseof absorbableiron.29,30 Modifiedanimalsinourfoodsupplyarealsobeing approvedbytheUnitedStatesFoodandDrugAdministration(USFDA).For example,theAquAdvantageSalmon,whichgrowstomarketsizemore quicklythannon-geneticallyengineeredsalmon,wasapprovedbythe USFDAin2015.31 Otherpotentialdevelopmentsfromgenomicsinclude improvedfoodsafety(i.e. microbialcontaminationandallergendetection), ediblevaccinesandtherapeuticmonoclonalantibodiesproducedfrom plants.32

Morerecently,targetedtechnologieshavebeendevelopedthathavethe potentialforsite-specificgenemodification.Theseincludesite-directed zinc-fingernucleases(ZFNs)andtranscriptionactivator-like(TAL)-effector nucleases(TALENs).ArecententryintothisfieldisCRISPR-Cas9,whichis showingpromiseasafacilemethodoftargetingspecificgenes.33 AnalternativetechnologyisRNAi,wherebyRNAmoleculesareusedtodownregulate theexpressionofgenes.34 AninterestingaspectofRNAiisthat,whileitcan beincorporatedandexpressedintheplant,itcanbesprayeddirectlyonto theplantasabiological.35 Thepotentialofthisnewareaofresearchis enormousfornumerousindustries.Idealproductswouldbehighlyspecific tocertaininsectpestswhileprotectingbeneficialorganisms.Itisalsobeing envisagedthatRNAicouldbeusedtoincreasethenutritionalvalueofcertaincropsortolimittheaccumulationofallergenicproteins.36

3.2.2AgriculturalBiologicals. Agriculturalbiologicalscoverabroad rangeofproducts.Generallytheyareconsideredtoincludeproducts derivedfromnaturallyoccurringmicroorganisms,plantextractsorother organicmatter,butcanalsoincludemacroorganismssuchasbeneficial insects,mitesandnematodes.37 Theyaretypicallyseparatedintotwo majorcategories:biopesticidesandbiostimulants.Biopesticidesinclude plantextracts,organicacidsandsemiochemicals(e.g. pheromones)and canalsoencompasssuchtermsasnaturalproductchemistryandsecondarymetabolites.Alsoincludedinthisgroupareintactmicrobes(generally bacteriaandfungi,butviruses,protozoansandyeastsalsoarebeinginvestigated).Biologicalproductsgenerallyhavemultiplemodesofaction whichmakethemresilienttoresistancedevelopment.Theyareexcellent toolsinintegratedpestmanagementandareoftenusedinconjunction withconventionalcropprotectionproductstoreduceresidueswhilemaximizingyields.Biostimulantsmodifyplantphysiologytoincreasethevigor ofthecrop.Theyprotectagainstabioticstress;forexampleimprovingroot establishment,facilitatingtheuptakeofnutrients.Relatedtobiostimulantsarethebiofertilizers,suchasnitrogen-fixingbacteria,whichalso increaseplantvigor.

3.2.3OrganicAgriculture. Landincertifiedorganicproductionaccountedforabout1%ofagriculturallandgloballyin2010,theyearfor whichthemostrecentfiguresareavailable.38 Whilethecurrentareaof

IntegratingTechnologiestoMinimizeEnvironmentalImpacts 9 Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

organicproductionislow,thedemandforcertifiedorganicproducehas increasedtomorethan4%offoodsalesintheUSA.39 TheUSDAdefines organicagricultureas‘‘theapplicationofasetofcultural,biological,and mechanicalpracticesthatsupportthecyclingofon-farmresources,promoteecologicalbalance,andconservebiodiversity’’.40 Organicagriculture alsoprovidesfor:‘‘Asalastresort,producersmayworkwiththeirorganic certifiertouseanapprovedpesticide,suchasnaturallyoccurringmicroorganisms,insecticidesnaturallyderivedfromplants,oroneofafewapprovedsyntheticsubstances’’.Clearlythereisapotentiallinkbetween organicagricultureandbiologicals,butnotallbiologicalsarecertifiedorganicundertheUSDANationalOrganicProgram.Theimpactoforganicproductionanditsroleinaddressingenvironmentalimpactwillbedependent onitslevelofadoption.Overallorganicyieldshavebeenshowntobelower thannon-organic,whilepremiumsfororganicproducehavetosomeextent offsetthisfromagrowerperspective.38,41 Thefinaladoptionwill,therefore, beaneconomicbalancebetweenpressureonarableland,yields,andsocietaldemandsasfoodrequirementscontinuetopressurelandresources.

3.2.4WasteReductionStrategies. Afrequentlyoverlookedstrategyinincreasingtheworldfoodsupplyistheadoptionofmethodstoreduce waste.Ithasbeenestimated42 thatroughlyonethirdoffoodproduced forhumanconsumptionislostorwastedglobally,amountingtoabout 1.3billiontonsperyear.Theselossesoccurthroughoutthesupplychain, startingfromtheinitialphasesofcropproductionthroughtoconsumptionbytheconsumer.Thesourceandmagnitudeoflossesvaryby regionandcountry,withmuchmorebeinglostindevelopedcountries thanindevelopingcountries.The percapita figureforfoodwastedbyconsumersinEuropeandNorthAmericaisestimated42 at95–115kgyear 1 , whileinsub-SaharanAfricaandSouth/SoutheastAsiaitisonly6–11kg year 1.Indevelopedcountiesdisposalofediblefoodbytheconsumerisa majorfactor,whileindevelopingcountriesdeficienciesinsupplychain management,infrastructureandaccesstoadvancedagriculturaltechnologiesallcontribute.IntheUnitedStatesalone,estimatesarethat31% (133billionpounds)ofthe430billionpoundsoftheavailablefoodsupply attheretailandconsumerlevelsgoesuneaten(2010values).43 Thishasled toeffortssuchastheDepartmentofAgricultureandtheEnvironmental ProtectionAgencyDeputyannouncing,inlate2015,anationalfoodwaste reductiongoal,callingfora50%reductionby2030,largelythroughfederal government-ledpartnershipswithcharitableorganizations,faith-basedorganizations,theprivatesectorandlocal,stateandtribalgovernments.

3.3EnhancedApplicationTechnologies

3.3.1SprayDriftReductionTechnology. Considerableadvancesinspraydrift-reductiontechnology,suchaslow-driftnozzlesandapplication equipment,havebeenmadeinthelast2–3decades.44 Progresshasalso

Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

beenmadeinthedevelopmentofdrift-reductionagentsandlow-driftformulations;forexample,DowAgroScienceshasintroducedanherbicide product,EnlistDuot,with90%lessdriftthanotherformulationsofthe sameherbicides.Significantprogresshasalsobeenmadeinestablishing guidelinesforstudiestomeasurespraydrift;forexample,ISO 22856:2008,45 andinmodelingspraydriftasafunctionofsprayequipmentandsprayconditions.46 Alloftheseimprovementshavehelpedreducetheamountofmaterialmovingawayfromthefieldandimpactson terrestrialandaquaticnon-targetorganisms.

3.3.2SeedTreatments. Theuseofseedtreatmentshasdramaticallyincreasedinthepast2–3decades.Priortothe1980s,seedtreatmentswere usedprimarilyasdisinfectants.Inthe1980sthe introductionoflow-rate, highlyeffectivesystemicfungicidesprovidedseedlingprotectionfromsoilbornefungi, e.g. triadimenolandmetalaxyl,followedbythesystemicinsecticidesinthe1990s,imidaclopridbeingthefirstwhichprotected againstbothbelow-groundsoilinsectsandearly-seasonabove-ground pests.Anti-nematodeactivityappearedinthe2000swithabermectinand thebiologicaltreatmentVotiVos .

Seedtreatmentsprovideprotectionforyoungplants,withlesspesticide materialthanifappliedasbroadcast,bandedorin-furrowtreatments. Amajoradvantageofseedtreatmentscomparedtobroadcastapplicationsis thatthetreatedseedistypicallylocatedbelowthesoilsurface,significantly reducing runoff lossesofcropprotectionchemicalstonearbyterrestrialor aquaticenvironmentsoutsidethefield.47 Therearenumerousadditional benefitsandusesofthistechnology.Improvementsintheuseofthetechnologycontinuetodevelopandprogresshasbeenmadeinthepastfewyears inproductformulations,applicationequipmentandadditivesthatreduce dustemissionsduringtheplantingoftreatedseed.48

Seedtreatmentshavebeenassociatedrecentlywithpollinatoreffects, althoughthisismoreofafunctionofthespecificproductsused,since similarissuescouldoccurwithalternativeapplicationmethods.Improved methodologiesarebeingdevelopedtoassesstheenvironmentalrisksto pollinatorsingeneral,includingseedtreatment.49 Systemicactivitycanbea positiveforasoil-appliedcompoundsinceithasnoeffectoninsectsthatdo notconsumetheleavesorotherportionsofaplant,leavingmostbeneficial insectsunharmed.50

3.3.3PrecisionAgriculture. Precisionagricultureusesacombinationof geospatialinformationandsensorstooptimizeinputstocropsasafunctionoflocationinthefield.Suchanapproachcanincreaseyieldsbymakingcertainthatareasofthefieldbenefitingfrominputs(nutrientsand cropprotectionproducts)receivethemintherightquantities,whileminimizinginputsbynotapplyingamaximumraterequiredinoneportionof thefieldtotheentirefield.51

IntegratingTechnologiestoMinimizeEnvironmentalImpacts 11 Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

Digitalfarmingutilizeshigh-resolutiongeopositioningsystems(GPS)and geographicinformationsystems(GIS)tocouplereal-timedatacollection technologywithaccuratepositioninformation.Datacollectedfromsensors mountedonsatellitesorunmannedaerialvehiclescanbeusedtogenerate high-resolutionimageryofcropfieldsandtoautomatenutrientandpesticideapplicationsbyfarmers.Suchanapproachofminimizinginputsalso reduceslossofnutrientsandcropprotectionproductsinrunoffandtile drainsmovingtonearbysurfacewaterbodies,therebyreducingpotential effectsonaquaticorganisms.Asmentionedearlier,enormousadvancesin digitalfarmingtechnologyareexpectedoverthenextfewdecades,providing seamlessintegrationwithfarmequipmentandleadingtodecreaseduseof fertilizers,pesticidesandwaterresourceswhilemaximizingyields.

3.4BetterLandManagement

3.4.1NoandLowTillage. Theuseofno-andlow-tillagehasbeen heavilypromotedformanyyearsasawayofreducingtheamountofsoil movingofftilledfieldsduringrainstormsandpreventingimpactson aquaticorganisms.Inordertomaintainaweed-freefield,theweedsremovedbytillagemustbekilledbyherbicides.Thelackoftillagehelps promoteinfiltrationofwater(andnutrientsandcropprotectionchemicals presentinthewater)reducingrunoffaswellassoilerosion.Thispractice wasadoptedforabout40%ofcombinedcorn,soybean,wheat,andcotton intheUSAin2010–11(89millionacresperyear)52 andcontributedtothe healthofsurfacewaterbodiesinthisregion.Globally,adoptionratesof no-tillvarybyregion,withthelargestpercentagesfoundinSouthAmerica at47%,NorthAmericaat38%,AustraliaandNewZealand12%,and muchlowerratesinotherregionsoftheworld.53

3.4.2IncreaseduseofDrainageWaterManagement. Thenumberoffields inwhichtiledrainagehasbeeninstalledcontinuestoincrease.Tiledrains aretypicallyinstalledinfieldswithpoordrainagetoallowaccesstothe fieldbyfarmequipmentandtopreventdamagetocropsbystanding water.Concernsexistregardingtiledrainsasapathwayfornutrientand pesticidemovementtostreams.54 However,drainagewatermanagementis nowaUSDA-NaturalResourcesConservationServicepractice55 thatcanbe usedtoincreaseyieldsbymaintaininghealthysoilmoisturelevelsandto reduceoff-sitemovementofnutrients,pathogenandpesticideresidues. Watercontrolstructuresfunctionlikeundergrounddamsthatallowfarmerstocontrolthewaterlevelinthesoil.Duringmanureapplications,for example,thedrainoutletcanberaisedtominimizedrainageandreduce nutrientandpathogenloading.Duringnon-productionperiods,drainage managementcanbeusedinamannerbeneficialtolocalwildlife.Combinedwithotherconservationmeasurestoreduceerosion,properdrainagemanagementcanimprovewaterqualityandincreaseprotectionof aquatichabitats.

Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

3.4.3VegetativeBufferStrips. Afterthedepressionanddustbowlofthe 1930sintheUnitedStates,vegetativebufferstripswereencouragedasa waytopreventsoilinfieldsmovingintosurfacewaterbodiesandalsoas awayoflimitingmovementofcompoundstightlyboundtothissoil. Later,researchersbegantorealizethatbufferstripscouldalsobeuseful inremovingcompoundslessstronglyboundtosoil.56,57 TheUSDApromotesvegetativebufferstripsasaconservationmeasureforimproving surfacewaterquality,providingfinancialassistancetogrowersfortheir implementation.58 Considerableprogresshasbeenmadeinthepastdecadeinestimatingtheeffectivenessofvegetativebufferstripsinremoving cropprotectionproductsfromrunoffwater.59

3.4.4TreatmentofFurrowIrrigationOutflow. Inaridregions,furrowirrigationissometimesusedtoprovidewatertocrops.Typicallythereisoutflowofwaterfromsuchanirrigationsystem,whichcontainssediments, nutrientsandcropprotectionproducts.Theultimatesolutioniseither storingandreusingthiswaterorswitchingtodripirrigation.However, suchmanagementpracticeshavenotyetbeenadoptedbyallgrowers. Anumberoftechnologieshavebeenadoptedtoreducetheimpactof furrowirrigationoutflowonsurfacewaterbodiesandthesecanbeused individuallyorsometimesincombinationwithothertechnologies.The additionofpolyacrylamide(PAM)canbeusedtominimizelossesofsedimentandcropprotectionproductsboundtosediment.60 Sedimentation basins,oftenincombinationwiththeuseofPAM,canalsobeusedto minimizelossesofsedimentandcropprotectionproductsboundtosediment.61 Vegetativeditchesandconstructedwetlandsreceivingoutflows frommultiplefields62 areothertechniquesusedforremovingsediment andpromotingdegradationofcropprotectionproductsinoutflowsfrom furrow-irrigatedfields.

3.4.5ManagementofUrbanApplications. Recentworkwithpyrethroids hasshownthatswitchingfrombroadcastapplicationstospotorcrack andcreviceapplicationsonimpervioussurfaces,suchasdrivewaysor garagedoorswithadirectpathwaytostreetdrains,candramaticallyreducemovementofcropprotectionproductsappliedinurban/suburban settingstourbanstreams.63 Formulationscanbeoptimizedtoreducerunofflossesofcropprotectionproductsinurban/suburbanenvironments, butthiseffectislessthanthatobtainedfromswitchingfrombroadcastto spotorcrackandcreviceapplications.64

4RoleofRegulationinTechnologyDevelopment

Clearlythechallengesbeingfacedinincreasingglobalproductionina sustainablemannerwillbedependentoninnovativeapproaches,integrating multipletechnologiestominimizeenvironmentalimpactwhileavoiding failuretocontrolpests,diseasesandweedsduetoresistancedevelopment.

IntegratingTechnologiestoMinimizeEnvironmentalImpacts 13 Published on 29 September 2016 on http://pubs.rsc.org | doi:10.1039/9781782626916-00001 View Online

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.