Future energy improved sustainable and clean options for our planet 2020 trevor m letcher

Page 1

Future Energy: Improved, Sustainable and Clean Options for Our Planet 2020

Visit to download the full and correct content document: https://ebookmass.com/product/future-energy-improved-sustainable-and-clean-option s-for-our-planet-2020-trevor-m-letcher/

FutureEnergy

Thispageintentionallyleftblank

FutureEnergy Improved,Sustainableand CleanOptionsforourPlanet ThirdEdition

UniversityofKwazulu-Natal Durban,Kwazulunatal,SouthAfrica

LaurelHouse,StrattonontheFosse UnitedKingdom

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2020ElsevierLtd.Allrightsreserved.

Chapter “NuclearFission” isareprintfromsecondedition.

Chapter “NuclearFusion” issubjecttocrowncopyright.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-08-102886-5

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionEditor: MarisaLaFleur

EditorialProjectManager: SaraPianavilla

ProductionProjectManager: DivyaKrishnaKumar

CoverDesigner: ChristianJ.Bilbow

TypesetbyTNQTechnologies

Tomygrandchildren,AmyandFinnTaylor

Thispageintentionallyleftblank

Contents
Prefacexxvii Part1Introduction
ClimateChange3 TrevorM.Letcher 1.1Introduction3 1.2Whyisitimportanttoconsiderourfutureenergyoptions?4 1.3Atmosphericpollutionandclimatechange7 1.4Whatareouroptionsforelectricitygeneration?10 1.5Whatareouroptionsfortransportfuel?11 1.6Thermodynamicsandsustainableenergy12 1.7Theenergysituationintheworldtoday13 1.8Howcanwereducethestrangleholdoffossilfuels?14 References15 Part2FossilFuels(EnergySources) 2.Coal:Past,Present,andFutureSustainableUse21 DeepakPudasainee,VinojKurianandRajenderGupta 2.1Introduction21 2.2Coalclassificationandcharacterization25 2.3Issueswithcoalutilization28 2.4Cleancoaltechnologies32 2.5Sustainablecoaluseandfuturedirections43 vii
ListofContributorsxxi
1.IntroductionWithaFocusonAtmosphericCarbonDioxideand
2.6Summary45 References46 3.UnconventionalOil:Oilsands49 ArnodeKlerk 3.1Introduction49 3.2Occurrenceofoilsandsdeposits51 3.3Physicalandchemicalpropertiesofoilsandsbitumen51 3.4Bitumenproductionfromoilsands54 3.5Bitumentransportbypipeline57 3.6Bitumenupgradingandrefining59 3.7Bitumenupgraderfacilities60 3.8Environmentalfootprintofoilsandsproduction62 3.9Futureofoilsands63 References64 4.ShaleGas,TightOil,ShaleOilandHydraulicFracturing67 JeremyBoakandRobertKleinberg 4.1Introduction67 4.2Hydrocarbonsinlow-permeability(tight)rocks68 4.3Unconventionaloilandgas72 4.4Oilshale82 4.5Conclusions88 References89 5.CoalbedMethane:Reserves,Production,andFutureOutlook97 MariaMastalerzandAgnieszkaDrobniak 5.1Introduction97 5.2Propertiesandoriginofcoalbedmethane97 5.3Coalbedmethaneavailabilityandproduction99 viiiContents
5.4Drillingandextractiontechniques103 5.5EnvironmentalissuesofCBMextraction104 5.6Futureoutlook105 References107 6.NaturalGasHydrates:StatusofPotentialasanEnergy Resource111 RayBoswell,SteveHancock,KojiYamamoto,TimothyCollett, MahendraPratapandSung-RockLee 6.1Introduction111 6.2Gashydrateoccurrencetypes114 6.3Gashydrateresourcevolumes114 6.4Gashydrateexploration117 6.5Gashydratereservoircharacterization117 6.6Gashydrategeologicsystems118 6.7Gashydrateproductiontechnology119 6.8Gashydrateproductionchallenges122 6.9Conclusions125 References126 Part3NuclearPower(EnergySources) 7.NuclearFission135 MatthewGill,FrancisLivensandAidenPeakman 7.1Introduction135 7.2Nuclearreactortechnology138 7.3Managingirradiatedfuel142 7.4Thoriumasanalternativefuel146 7.5Practicalitiesofnuclearenergy147 7.6Conclusions148 References149 Contentsix
8.SmallModularNuclearReactors151 GiorgioLocatelliandBenitoMignacca 8.1Introduction151 8.2EconomicsandfinancingofSMRs152 8.3Externalfactors161 8.4WhyhasnobodybuiltSMRsinthelasttwodecades? Andthewayforward164 References166 Part4TransportEnergy(EnergySources) 9.BiofuelsforTransport173 LuizAugustoHortaNogueira,Gla´uciaMendesSouza, Luı´sAugustoBarbosaCortezandCarlosHenriquedeBritoCruz 9.1Introduction173 9.2Biofuelscurrentandprospectivestatus175 9.3Biofueluseintransport:possibilitiesandconstraints176 9.4Biofuelsproduction:contextandadvancesinsugarcane bioenergy184 9.5Sustainabilitychallenges:conceptsandachievements187 9.6Theethicalprinciplesofbiofuels191 9.7Finalremarksandconclusions192 References193 10.TransportFuel:Biomass-,Coal-,Gas-andWaste-to-Liquids Processes199 ArnodeKlerk 10.1Introduction199 10.2Overviewofalternativecarbonfeed-to-liquid(XTL) processes200 xContents
10.3Directliquefaction203 10.4Indirectliquefaction210 10.5Environmentalfootprintofliquefaction220 10.6Futureenergy222 References223 11.TheElectricVehicleRevolution227 PaulNieuwenhuis,LianaCipciganandHasanBerkemSonder 11.1Introduction227 11.2Batteryelectricvehicles228 11.3Hybridelectricvehicles229 11.4Disruptionoftheautomotivesystem230 11.5CurrentEVmarket231 11.6Urbanelectricvehicles233 11.7Ruralelectricvehicles234 11.8Disruptionoftheenergysystem236 11.9HowEVsimpactonthegeneratingsystem236 11.10HowEVsimpactonthedistributionsystem238 11.11Smartgridsolutionsandnewbusinessmodels240 11.12Conclusions240 References241 Part5EnergyStorage 12.TheUseofBatteriesinStoringElectricity247 MatthiasVetter,StephanLuxandJohannesWullner 12.1Introduction247 12.2Basicsoflithium-ionbatteries248 12.3Developmentoflithium-ionbatterysystems249 12.4Batterymanagementsystems253 Contentsxi
12.5Systemintegration255 12.6Keyfactorsaffectingbankabilityandinsurability ofPVbatterystorageprojects258 12.7Conclusions260 References260 13.TheUseofFlowBatteriesinStoringElectricity forNationalGrids263 ChristianDoetschandAstridPohlig 13.1Introductionandhistoricdevelopment263 13.2Characteristicsofflowbatteries265 13.3Costandlevelizedcostofstorage266 13.4Applicationsandmarkets269 13.5Currentprojectsandlatestplans271 13.6Redoxflowbatterysuppliers273 References276 14.Compressed-AirEnergyStorage279 MarkDoonerandJihongWang 14.1Introduction279 14.2CAESattributesandpowergridoperation280 14.3TypesofCAESsystem286 14.4CAESthermodynamicandexergyanalysis294 14.5Globalstoragecapacity304 14.6Futuredirectionandchallenges306 References308 xiiContents
15.HydroelectricPower315 A ˚ nundKillingtveit 15.1Introduction315 15.2Hydropowerresources318 15.3Technology319 15.4Sustainabilityissues322 15.5Costissues326 15.6Integrationintothebroaderenergysystem327 15.7Futuredeployment329 References330 16.WindEnergy331 GeorgiosNikitas,SubhamoyBhattacharyaandNathanVimalan 16.1Renewablesinthecontextoflimitingairpollution andclimatechange331 16.2Windamongtherenewables335 16.3Offshorewindpower337 16.4Economicsofoffshorewindfarms342 16.5Futuredirectionontheuseofoffshorewind346 References353 17.TidalCurrentEnergy:OriginsandChallenges357 AlanOwen 17.1Introduction357 17.2Tidalcurrentdrivers358 17.3Devices366 17.4Anchorsandfixings368 17.5Biofouling372 Contentsxiii
Part6Renewables(EnergySources)
17.6Conclusions373 References373 Recommendedreading374 18.Photovoltaics,IncludingNewTechnologies(ThinFilm) andaDiscussiononModuleEfficiency375 VitezslavBenda 18.1Introduction375 18.2Solarenergy375 18.3Photovoltaiccellsandmodules382 18.4Photovoltaicsystems401 18.5Economyissues410 References411 19.ConcentratingSolarPower413 RobertPitz-Paal 19.1Introduction conceptandbasiccharacteristics413 19.2Stateoftheart416 19.3Costandmarket424 References428 20.GeothermalEnergy431 RosalindArcher 20.1Geothermalenergyresources431 20.2Exploration434 20.3Drillingandtesting435 20.4Electricityproductionfromgeothermalresources436 20.5Geothermalreservoirmanagement438 20.6Directuseapplications439 20.7Geothermalenergyandtheenvironment440 xivContents
20.8Geothermalenergyandcommunities441 20.9Thefutureofgeothermalenergy442 References444 Furtherreading445 21.EnergyFromBiomass447 YulinHu,AmarjeetBassiandChunbao(Charles)Xu 21.1Introductionofbiomass447 21.2Productionofconventionalbiofuelsviabioconversions448 21.3Productionofadvancedbiofuels454 21.4Productionofthird-generationbiofuelsfromalgae459 21.5Utilizationofbiomassforheatandpowergeneration462 21.6Conclusionsandfutureperspectives463 Acknowledgment464 References465 Part7NewPossibleEnergyOptions 22.Hydrogen:AnEnergyCarrier475 MaryHelenMcCayandShahinShafiee 22.1Introduction475 22.2Hydrogen475 22.3Basicelementsneededforhydrogenutilization478 22.4Currentstatus485 References490 Websites492 23.FuelCells:EnergyConversionTechnology495 JohannesLindorfer,DanielCenkRosenfeldandHansBo¨hm 23.1Introduction495 23.2Technologicaloverview496 23.3Application500 Contentsxv
23.4Environmentalimpactanalysis505 23.5Technoeconomicreview509 23.6Challenges513 Acknowledgments514 References514 24.SpaceSolar519 PaulJaffe 24.1Overviewandmotivation519 24.2Perspective520 24.3Selectedconcepts522 24.4Keytechnologies529 24.5Performancemetrics534 24.6Outlook536 Acknowledgments538 References538 25.NuclearFusion543 RichardKembleton 25.1Whatisnuclearfusion?543 25.2Desirablecharacteristicsoffusionpower545 25.3Whyfusionpowerisdifficult547 25.4Approachestofusionreactors552 25.5Economicsoffusionenergy554 25.6Statusofcurrentresearchandprospectsfor fusionenergy556 References558 xviContents
26.SyntheticFuelDevelopment561 HeatherD.WillauerandDennisR.Hardy 26.1Syntheticliquidfuel beginningsfromfossil fuels(1910 55)561 26.2Presentsyntheticliquidfuelprocesses(1955 2011)562 26.3Globalenergyproductionfromfossilfuel563 26.4Syntheticfuelbeginningsfromnon fossilfuelresources566 26.5Olefinsynthesisfromcarbondioxide568 26.6Carbonmonoxidesynthesisfromcarbondioxide569 26.7Carboncaptureforsyntheticfuelproduction574 26.8Thefuture576 Acknowledgments577 References577 Part8EnvironmentalandRelatedIssues 27.EnergyandtheEnvironment583 DanielA.Vallero 27.1Energyformsandsources583 27.2Energylifecycles585 27.3Upstreamcomponent586 27.4Fuelcyclestage601 27.5Operationstage607 27.6Downstreamcomponent608 References608 28.SustainableEnergyandEnergyEfficientTechnologies611 AndyFord,AaronGillichandPegahMirzania 28.1Introduction611 28.2Theexistingstockofbuildingsandtheirenergyuse612 Contentsxvii
28.3Energyuseinbuildingsandattemptstoreduceit613 28.4Energyefficiencyinbuildings615 28.5Distributedenergyanditsimpactondemand616 28.6Futureofbusinessmodelsintheenergytransition617 28.7Anoverviewoflocalsupplymodelsavailablethrough partnershipwithanenergysupplier618 28.8Demandsideresponse(DSR)618 28.9BENthe“BalancedEnergyNetwork”casestudy620 28.10Localself-supplymodel integrationofrenewable energygenerationwithbatterystorage621 28.11IntegratingsolarPVwithelectricitystorage toprovidepeakshavingandDSRservices622 28.12Changebysector623 28.13Electrificationversushydrogen624 28.14Smart-gridsandmultipleenergyvectors625 28.15Futureenergyprofessionals626 28.16Conclusion627 References628 Furtherreading630 Part9TheCurrentSituationandtheTransition totheFuture 29.TheLifeCycleAssessmentofVariousEnergyTechnologies633 NawshadHaque 29.1Introduction633 29.2Energy636 29.3ExampleofLCAcasesinthecontextofenergy637 29.4DiscussionandinterpretationofLCAbasedresults641 29.5Otherenvironmentalimpactindicators641 xviiiContents
29.6Endpointenvironmentalimpactindicators642 29.7LCAofrenewableenergy642 29.8LCAofnuclearenergy644 29.9Thefuture645 29.10Sourceofadditionalinformation646 Acknowledgments646 References646 Furtherreading647 30.IntegrationofHighPenetrationsofIntermittent RenewableGenerationinFutureElectricityNetworks UsingStorage649 DavidGreenwood,SaraWalker,NealWade,StalinMunoz-Vaca, AndrewCrosslandandCharalamposPatsios 30.1Thelow-carbontransitionofelectricitynetworks649 30.2ManagingintermittencyofPVthroughstorage650 30.3Energystoragetechnologies652 30.4Powerconversionandcontrolsystems659 References664 Furtherreading668 31.CarbonCaptureandStorage669 KarlW.Bandilla 31.1Introduction669 31.2Capture671 31.3Transport677 31.4Storage681 31.5Conclusion687 References688 Contentsxix
32.EnergyTransitionTowardParisTargetsinChina693 KejunJiang 32.1Background693 32.2Methodology694 32.3Scenariosetting697 32.4Scenarioresults700 32.5Conclusion708 References708 Furtherreading709 33.MetalsandElementsNeededtoSupportFutureEnergy Systems711 GavinM.Mudd 33.1Introductionandbackground711 33.2Renewableenergytechnologiesandtheirmaterial requirements712 33.3Globalminingandmetalsproduction715 33.4Summaryandconclusions723 References724 34.AGlobalOverviewofFutureEnergy727 ChristianBreyer 34.1Fundamentalrequirementsforenergysystemsin21st century727 34.2Scenariosofmajorinternationalinstitutions729 34.3Scenariosfor100%renewableenergy732 34.4Majortechnologiesforfutureenergy737 34.5Researchgapsforafutureenergysystem741 34.6Conclusions742 References743 Index757 xxContents

ListofContributors

RosalindArcher GeothermalInstitute/DepartmentofEngineeringScience, UniversityofAuckland,Auckland,NewZealand;email:r.archer@auckland.ac.nz

KarlW.Bandilla DepartmentofCivilandEnvironmentalEngineering,Princeton University,Princeton,NJ,UnitedStates;email:bandilla@princeton.edu

AmarjeetBassi DepartmentofChemicalandBiochemicalEngineering,University ofWesternOntario,London,ON,Canada

VitezslavBenda CzechTechnicalUniversityinPrague,FacultyofElectrical Engineering,Prague,Czechia;email:benda@fel.cvut.cz

HasanBerkemSonder CardiffUniversity,Cardiff,UnitedKingdom

SubhamoyBhattacharya SurreyAdvancedGeotechnicalEngineering(SAGE) Laboratory,UniversityofSurrey,Guildford,UnitedKingdom;email: S.Bhattacharya@surrey.ac.uk

JeremyBoak Retired,OklahomaGeologicalSurvey,MewbourneCollegeofEarth andEnergy,UniversityofOklahoma,Norman,OK,UnitedStates;email: jeremyboak@comcast.net

HansBöhm EnergyInstituteattheJohannesKeplerUniversityLinz,Linz,Austria RayBoswell NationalEnergyTechnologyLaboratory,Pittsburgh,PA,UnitedStates; email:ray.boswell@netl.doe.gov

ChristianBreyer DepartmentofElectricalEngineering,LUTUniversity, Lappeenranta,Finland;email:christian.breyer@lut. fi

CarlosHenriquedeBritoCruz SãoPauloResearchFoundation(FAPESP),São Paulo,SP,Brazil;PhysicsInstitute,UniversityofCampinas(UNICAMP),Campinas,SP, Brazil;email:brito@fapesp.br

LianaCipcigan CardiffUniversity,Cardiff,UnitedKingdom

xxi

TimothyCollett UnitedStatesGeologicalSurvey,Denver,CO,UnitedStates

LuísAugustoBarbosaCortez CenterforEnergyPlanning,Universityof Campinas(UNICAMP),Campinas,SP,Brazil

AndrewCrossland AdvanceFurtherEnergyLtd,RetfordandInfratec,Wellington, NewZealand

ArnodeKlerk DepartmentofChemicalandMaterialsEngineering,Universityof Alberta,Edmonton,AB,Canada;email:deklerk@ualberta.ca

ChristianDoetsch Fraunhofer-InstitutfürUmwelt,Sicherheits-undEnergietechnik UMSICHT,Oberhausen,Germany;email:christian.doetsch@umsicht.fraunhofer.de

MarkDooner UniversityofWarwick,Coventry,UnitedKingdom;email: mark.dooner@estoolbox.org

AgnieszkaDrobniak IndianaGeologicalandWaterSurvey,IndianaUniversity, Bloomington,IN,UnitedStates

AndyFord SchooloftheBuiltEnvironmentandArchitecture,LondonSouthBank University,London,UnitedKingdom;email:andy.ford@lsbu.ac.uk

MatthewGill DaltonNuclearInstitute,ManchesterUniversity,Manchester,United Kingdom

AaronGillich SchooloftheBuiltEnvironmentandArchitecture,LondonSouth BankUniversity,London,UnitedKingdom

DavidGreenwood SchoolofEngineering,NewcastleUniversity,Newcastle-upon Tyne,UnitedKingdom

RajenderGupta DepartmentofChemicalandMaterialsEngineering,Universityof Alberta,Edmonton,AB,Canada;email:rajender.gupta@ualberta.ca

SteveHancock XtremeWellEngineeringInc.,Calgary,Canada

NawshadHaque CSIROEnergy,Clayton,VIC,Australia;email: Nawshad.Haque@csiro.au

DennisR.Hardy NOVAResearchInc.,Alexandria,VA,UnitedStates

xxiiListofContributors

YulinHu DepartmentofChemicalandBiochemicalEngineering,Universityof WesternOntario,London,ON,Canada

PaulJaffe UnitedStatesNavalResearchLaboratory,Washington,DC,UnitedStates; email:paul.jaffe@nrl.navy.mil

KejunJiang EnergySystemAnalysisResearchCenter,EnergyResearchInstitute, Beijing,China;email:kjiang@eri.org.cn

RichardKembleton EUROfusion,Garching,Germany;email: Richard.kemp@ukaea.uk

ÅnundKillingtveit DepartmentofCivilandEnvironmentalEngineering, NorwegianUniversityofScienceandTechnology,Trondheim,Norway;email: aanundk@outlook.com

RobertKleinberg ColumbiaUniversityCenteronGlobalEnergyPolicy,NewYork, NY,UnitedStates;BostonUniversityInstituteforSustainableEnergy,Boston,MA, UnitedStates

VinojKurian DepartmentofChemicalandMaterialsEngineering,Universityof Alberta,Edmonton,AB,Canada

Sung-RockLee KIGAM,Seoul,SouthKorea

TrevorM.Letcher DepartmentofChemistry,UniversityofKwaZulu-Natal, Durban,KwaZulu-Natal,SouthAfrica;LaurelHouse,StrattonontheFosse,United Kingdom;email:trevor@letcher.eclipse.co.uk

JohannesLindorfer EnergyInstituteattheJohannesKeplerUniversityLinz,Linz, Austria;email:lindorfer@energieinstitut-linz.at

FrancisLivens DaltonNuclearInstitute,ManchesterUniversity,Manchester,United Kingdom

GiorgioLocatelli UniversityofLeeds,SchoolofCivilEngineering,Leeds,Yorkshire, UnitedKingdom;email:g.locatelli@leeds.ac.uk

StephanLux FraunhoferInstituteforSolarEnergySystemsISE,Departmentof ElectricalEnergyStorage,Freiburg,Germany

MariaMastalerz IndianaGeologicalandWaterSurvey,IndianaUniversity, Bloomington,IN,UnitedStates;email:mmastale@indiana.edu

ListofContributorsxxiii

MaryHelenMcCay NationalCentreforHydrogenResearch,FloridaInstituteof Technology,Melbourne,FL,UnitedStates;email:mmccay@ fit.edu

BenitoMignacca UniversityofLeeds,SchoolofCivilEngineering,Leeds,Yorkshire, UnitedKingdom

PegahMirzania SchooloftheBuiltEnvironmentandArchitecture,LondonSouth BankUniversity,London,UnitedKingdom

GavinM.Mudd EnvironmentalEngineering,SchoolofEngineering,RMIT University,Melbourne,VIC,Australia;email:gavin.mudd@rmit.edu.au

StalinMunoz-Vaca SchoolofEngineering,NewcastleUniversity,Newcastle-upon Tyne,UnitedKingdom

PaulNieuwenhuis CardiffUniversity,Cardiff,UnitedKingdom;email: sustainableautoman@gmail.com

GeorgiosNikitas SurreyAdvancedGeotechnicalEngineering(SAGE)Laboratory, UniversityofSurrey,Guildford,UnitedKingdom

LuizAugustoHortaNogueira CenterforEnergyPlanning,Universityof Campinas(UNICAMP),Campinas,SP,Brazil

AlanOwen CentreforAlternativeTechnology,Madrynlleth,PowsWales,United Kingdom;email:alan.owen@cat.org.uk

CharalamposPatsios SchoolofEngineering,NewcastleUniversity,NewcastleuponTyne,UnitedKingdom;haris.patsios@newcastle.ac.uk

AidenPeakman DaltonNuclearInstitute,ManchesterUniversity,Manchester, UnitedKingdom;email:a.peakman@liverpool.ac.uk

RobertPitz-Paal GermanAerospaceCentre(DLR),InstituteofSolarResearch,Köln, Germany;email:Robert.pitz-paal@dlr.de

AstridPohlig Fraunhofer-InstitutfürUmwelt,Sicherheits-undEnergietechnik UMSICHT,Oberhausen,Germany

MahendraPratap DirectorateGeneralofHydrocarbons,Delhi,India

DeepakPudasainee

DepartmentofChemicalandMaterialsEngineering, UniversityofAlberta,Edmonton,AB,Canada

xxivListofContributors

DanielCenkRosenfeld EnergyInstituteattheJohannesKeplerUniversityLinz, Linz,Austria

ShahinShafiee DepartmentofMechanicalEngineering,PrairieViewA&M University,PrairieView,TX,UnitedStates

GláuciaMendesSouza InstituteofChemistry,UniversityofSãoPaulo(USP),SP, Brazil

DanielA.Vallero DepartmentofCivilandEnvironmentalEngineering,Duke University,Durham,NC,UnitedStates;email:dav1@duke.edu

MatthiasVetter FraunhoferInstituteforSolarEnergySystemsISE,Departmentof ElectricalEnergyStorage,Freiburg,Germany;email:matthias.vetter@ise.fraunhofer.de

NathanVimalan SurreyAdvancedGeotechnicalEngineering(SAGE)Laboratory, UniversityofSurrey,Guildford,UnitedKingdom

NealWade SchoolofEngineering,NewcastleUniversity,Newcastle-uponTyne, UnitedKingdom

SaraWalker SchoolofEngineering,NewcastleUniversity,Newcastle-uponTyne, UnitedKingdom

JihongWang UniversityofWarwick,Coventry,UnitedKingdom

HeatherD.Willauer NavalResearchLaboratory,MaterialsScience & Technology Division,Washington,DC,UnitedStates;email:heather.willauer@nrl.navy.mil

JohannesWüllner FraunhoferInstituteforSolarEnergySystemsISE,Department ofElectricalEnergyStorage,Freiburg,Germany

Chunbao(Charles)Xu DepartmentofChemicalandBiochemicalEngineering, UniversityofWesternOntario,London,ON,Canada;email:cxu6@uwo.ca

KojiYamamoto JapanOil,Gas,andMetalsNationalCorporation,Tokyo,Japan

ListofContributorsxxv

Thispageintentionallyleftblank

Preface

Thisthirdeditionof FutureEnergy isaresponsetotheinterestshowninthefirstandsecond editionsandtothenewdevelopmentsinthefield.Eightnewchaptershavebeenintroduced, includingtopicssuchas

•smallnuclearreactors;

•electricvehiclerevolution;

•energystorage,energyfrombiomass;

•solarenergybeamedfromspace;

•life-cycleassessmentofrenewables;

•integrationofintermittentrenewableenergy;

•problemswithmetalsandelementsneededtosupportrenewableenergy;and

•aglobaloverviewoffutureenergy.

Thenewbookisdividedintoninesections:

•Introductionwithafocusoncarbondioxidepollution;

•Fossilfuels(energysources);

•Nuclearpower(energysources);

•Transportenergy(energysources);

•Energystorage;

•Renewableenergy(energysources);

•Newpossibleenergyoptions;

•Sustainabilty;

•Thecurrentsituationandthefuture.

Discussionsontheenergysituationincountriesaroundtheworldhavebeenrestricted toChinaasitisthemostrapidlydevelopingsuperpower,anditproducesmoreenergythan anyothercountryonEarth.Chinaalsoproducesmorecarbondioxidethananyothercountry.

Thebooklooksatalltypesofenergythatmaybeusedinthefuture,includingthe sustainabletypessuchassolar,wind,tidal,andwaveenergy.Fossilfuelinallitsforms,from coal,oil,shaleoil,methanegas,andmethanehydrates,occupiesaprominentplaceinthis bookastheseenergysourceswillbewithusformanydecadesbeforewehaveexpandedand developedrenewableenergyforms,builtnewnuclearfissionplants,orpossiblyeven developednewtypesofenergysuchasnuclearfusionandspacesolarpowerinwhich orbitingsolarpanelscollectenergyfromthesunandbeamitbackdowntoEarthusinglasers ormicrowaves.

Thisbook,likethepreviouseditions,hasbeenproducedinordertoallowthereaderto haveareasonable,logical,andcorrectunderstandingandinsightintoourfutureenergy options.Thefinaldecisionastowhichenergyformshouldbedevelopedinacountryor regionmusttakeintoaccountmanyfactorsincludingsustainability;thegeneralsafetyand

xxvii

healthofthegeneralpublic;theoverallenergyrequirementsofsociety;thegeographical positionofeachregion;andaboveall,thealarmingriseinatmosphericcarbondioxideover thepast50years,whichthreatenstochangetheworld’sfutureclimatethroughglobal warming.

Thefirsteditionofthisbookhaditsoriginsinthecommitteemeetingsofthe InternationalAssociationofChemicalThermodynamics1,anorganizationaffiliatedtothe InternationalUnionofPureandAppliedChemistry(IUPAC2).IUPAC’sadherenceto theInternationalSystemofQuantitiesisreflectedinthebookwiththeuseofSIunits throughout.Flexibilityandaccommodationareensuredforvariousconstituenciesby includingalternatenon-SIunitsthatmaybemorefamiliartospecificareas.Theindexnotationisusedtoremoveanyambiguities,forexample,billionandtrillionarewrittenas109 and1012,respectively.Tofurtherremoveanyambiguities,theconceptofthequantitycalculusisused.Itisbasedontheequation:physicalquantity ¼ number unit.Togivean example:power ¼ 200Wandhence200 ¼ power/W.Thisisofparticularimportanceinthe headingsoftablesandtheaxislabelsofgraphs.Onecanonlyplotanumberonagraph,and theaxislabelreflectsthisreality.

Thisvolumeisuniqueinthegenreofbooksofsimilarorrelatedtitlescurrentlyonsale inthateachchapterof FutureEnergy hasbeenwrittenbyanexpertscientistorengineer, workinginthefield.Authorshavebeenchosenfortheirexpertiseintheirrespectivefieldsand comefromnineteencountries:Austria,Australia,Brazil,Canada,China,CzechRepublic, England,Finland,Germany,Greece,India,Italy,theNetherlands,NewZealand,Norway, Poland,SouthAfrica,theUnitedStates,andWales.

Avitalconcernoffutureenergyoptionsiswhatistobedonewhenitappearsthat politiciansmisunderstandorignoreandcorporationsoverlooktherealitiesoffinitefuel sourcesandourchangingclimate?Thesolutionliesinsoundscientificdataandeducation.As educatorswebelievethatonlyasustainedgrassrootsmovementtoeducatecitizens,politicians,andcorporateleadersoftheworldhasanyhopeofsuccess.Thisbookispartofthat educationprocess.Itpresentsanonpoliticalandunemotionalsetofenergyoptionsfor readerstoconsiderandarriveatsensiblesolutionstotheproblemsfacingtheworldtoday. Wehopethatnotonlystudents,teachers,professors,andresearchersofnewenergybutalso politicians,governmentdecisionmakers,captainsofindustry,corporateleaders,journalists, editors,andallinterestedpeoplewillreadthebook,takeheedofitscontents,andabsorbits underlyingmessage.

Iwishtothankalloftheseventy-oneauthorsandcoauthorsfortheircooperation,help, andespeciallyforwritingtheirchapters.Ithasbeenapleasureworkingwitheachandevery oneofourauthors.Ithankmywife,Valerie,forallthehelpshehasgivenmeovertheselong monthsofputtingthebooktogether.IalsowishtothankthestaffatElsevierfortheirhelpin gettingthisvolumetogether.

TrevorM.Letcher StrattonontheFosse Somerset 31May2019

1www.iactweb.org

2www.iupac.org

xxviiiPreface

Introduction

PART 1

Thispageintentionallyleftblank

IntroductionWithaFocuson AtmosphericCarbonDioxideand ClimateChange

1.1Introduction

Inthisintroductorychapter,welookat

thedrivingforcesbehindtheneedtoconsidernewformsofenergy; theloomingproblemofglobalwarmingandclimatechange; theoptionsforelectricitygenerationandfortransportfuel; theenergysituationtoday;

thermodynamicsandsustainableenergy, whysolarenergyissoveryimportantand thebigquestion:howcanwereducethestrangleholdthatfossilfuelshaveonour economyandlives?

Theenergychoiceswemakewilldependonwherewelive,thesizeofourpopulation, andalsoonthetypesofenergysourcesthatareavailable.Forexample,peopleinIceland willconsiderexpandingtheirrenewablesourcesofgeothermalandwindenergy, whereasthoselivinginSouthAfricawillcertainlyconsidersolarenergy,amongmany otherpossibilities.

Atthesametime,accountshouldbetakenofthepollutingnatureoftheenergy sourceanditisourresponsibilitytoassurethatwhateverenergysourceweutilize,wedo itinanenvironmentallysoundmanner.Andifonecannotsteertotallyawayfromfossil fuels,theresultantcarbondioxideandotherpollutantsshouldbeeithersequesteredand storedorutilizedandnotemittedtotheatmosphere.

1
1 DEPARTMENTOFCHEMISTRY,UNIVERSITY
NATAL,SOUTHAFRICA; 2 LAURELHOUSE,STRATTONONTHEFOSSE,UNITEDKINGDOM
OFKWAZULU-NATAL,DURBAN,KWAZULU-
FutureEnergy. https://doi.org/10.1016/B978-0-08-102886-5.00001-3 3 Copyright © 2020ElsevierLtd.Allrightsreserved.

1.2Whyisitimportanttoconsiderourfutureenergy options?

1.2.1Society’sneeds

Asthepopulationoftheworldincreasesandasdevelopingcountriesadvance,soenergy needsincrease.Theworld’spopulationisincreasing itwas3billion(3 109)in1960,6 billionin2000,7.6billioninJuly2018,andisexpectedtoreachbetween9billionand10 billionby2050.Theannualrateofpopulationgrowthreachedapeakof2.2%a 1(where “a”referstoannum)in1963,butby2018,ithaddeclinedto1.09%a 1 [1].Thepopulationisgrowingatarateof83millionpeopleperannum.

Theexpectedgrowthrateinenergydemandoverthenext20yearsisgreaterthanthe growthrateofthepopulationandthisislargelyduetoincreasedelectricityproduction bydevelopingnations.Theelectricitygenerationisexpectedtoincreasefrom 25.1 1015 Whin2017to29.2 1015 Whin2030,whichisequivalenttoanaverage energyincreaseof1.3%a 1 [2].Thisadditionalenergysupplymustbefoundand preferablyintheformofrenewableenergy.

1.2.2Theneedforasustainable,safe,andnonpollutingenergy source

Thepresentworldelectricalenergygenerationisdominatedbyfossilfuel(see Table1.1), whichunfortunatelyisnotsustainableinthelongterm.Furthermore,thecombustionof fossilfuelisamajorcauseofairpollution.Thepictureisconfusingbecausewearelivingin anagewithanapparentglutoffossilfuel.Coalandconventionalgascontinuetoberelativelyeasytoextract.Unconventionalgashasexperiencedarecentboombecauseofhorizontaldrillingandhydraulicfracturingtechniques.Atthesametime,oilisbecomingmore andmoredifficulttoextractinspiteofnewdrillingtechniques.Somehowthestranglehold mustbebrokenandrenewableenergyisouronlyoption.Evenifwecouldreplacefossilfuel forelectricitygeneration,thereisanotherproblem,andthatistheneedforasustainable, safe,andnonpollutingliquidfuelforairtravel andvehiculartransport.Thisisofparticular concernasthetransportandproductionofoilcancreateseriousenvironmentalproblems, andnamessuchasExxonValdez(1989),TorreyCanyon(1967),NigerDelta(1970 2000), andDeepwaterHorizon(2010)havebecomebywordsforenvironmentaldisaster.

Table1.1 Totalglobalelectricalenergygenerationpercentagesfor2015 [2]

TypeofenergyElectricalenergygeneration/%

Liquid(oil)3.8 Coal 40.2
Nuclear 10.8 Renewables,includinghydroelectric23.0 4FutureEnergy
Naturalgas22.3

Thetotalglobalenergyconsumption(Table1.2)paintsasimilarpicturetotheglobal electricitygenerationwiththedominationoffossilfuel.Furthermore,thespreadof energytypesinvolvedhaschangedlittleoverthepast7years [3]

Withtherecentdevelopmentofshalegasreserves,especiallyintheUnitedStates, therehasbeenashiftinthinkingaboutexploitingfossilfuel.Theargumentisthat burningnaturalgas(largelymethane)isbetterfortheplanetthanburningcoal.Thisis truebecausetheamountofCO2 producedfromburningCH4,perunitenergy(50gMJ 1) islessthanitisforcoal(92gMJ 1)andmoreovercoalburningproducesparticulates. ButburningCH4 stillproducesCO2: CH4 þ 2O2 ¼ CO2 þ 2H2O andcontributestoclimatechange.

Replacingfossilfuelsisgoingtobeamammothtask.Atpresent,energysourcesother thanfossilfuelsmakeuplessthan20%ofglobalenergyconsumption(see Table1.3). Theseincludenuclearfission,hydroelectricity,biomass,andrenewablesources,suchas wind,solar,geothermal.

Replacinggasoline,diesel,andaviationfossilfuelsisgoingtobeaparticularly difficulttask.Therealityisthatwedonotyethaveanalternative,viable,andconvenient energysourcefortransport.Theimportanceoftransportfuelandthemagnitudeofthe problemarehighlightedin Table1.3,whichshowsthatofalltheenergyusedonEarth today,transportmakesup31%.

Attemptsatreplacinggasolineintransportwitharenewablefuelderivedfrom biomass(sugarcaneandcorn)havehadsomesuccessbuttheoverallcontributionhas beenrelativelysmall.In2017,biofuelscontributedonly4%oftheworld’stransportfuel, withtheethanolproductionoftheUnitedStatesandBrazilbeingthemajorcontributors [5].Abrightlightonthehorizonistheveryrecentdevelopmentofbatteriesandelectric motorsforvehiculartransport.However,itwouldonlymakeadifferenceiftheenergyto rechargethebatteriesismadefromrenewableenergy.Itdoesnotsolvetheever-growing needforaviationfuel.

1.2.3Climatechange

Perhapsthemostimportantdrivingforceinfindingnewsustainableenergysourcesis linkedtothespecterofclimatechange.Climatechangeandglobalwarmingare

[3].

Typeofenergy Energyconsumption/% Liquid(oil,petrol,diesel .)33.2 Coal 26.2 Naturalgas 22.3 Nuclear 4.2 Renewables,includinghydroelectric14.0 Chapter1 IntroductionWithaFocusonAtmosphericCarbonDioxide5
Table1.2 Totalglobalenergyconsumptionpercentagesfor2017

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.