

Not For Sale
© 2013 Brooks/Cole, Cengage Learning
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.
For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706
For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions
Further permissions questions can be emailed to permissionrequest@cengage.com
ISBN-13: 978-1-133-60229-3
ISBN-10: 1-133-60229-0
Brooks/Cole 20 Channel Center Street Boston, MA 02210 USA
Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/global
Cengage Learning products are represented in Canada by Nelson Education, Ltd.
To learn more about Brooks/Cole, visit www.cengage.com/brookscole
Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com
NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.
READ IMPORTANT LICENSE INFORMATION
Dear Professor or Other Supplement Recipient:
Cengage Learning has provided you with this product (the “Supplement”) for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the “Course”), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.
Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute
any portion of the Supplement to any third party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.
All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an “as is” basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State’s conflict of law rules.
Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.
Not For Sale
INTRODUCTIONTO DIFFERENTIALEQUATIONS 1
INTRODUCTIONTODIFFERENTIALEQUATIONS
1.1 DefinitionsandTerminology
1. Secondorder;linear
1.1 DefinitionsandTerminology
2. Thirdorder;nonlinearbecauseof(dy/dx)4
3. Fourthorder;linear
4. Secondorder;nonlinearbecauseofcos(r + u)
5.
6. Secondorder;nonlinearbecauseof R2
7. Thirdorder;linear
8. Secondorder;nonlinearbecauseof˙x2
9.
CHAPTER1 INTRODUCTIONTODIFFERENTIALEQUATIONS
Not For Sale
15. Thedomainofthefunction,foundbysolving x +2 ≥ 0,is[ 2, ∞).From y =1+2(x +2) 1/2 wehave
Anintervalofdefinitionforthesolutionofthedifferentialequationis( 2, ∞)because y is notdefinedat x = 2.
16. Sincetan x isnotdefinedfor x = π/2+ nπ, n aninteger,thedomainof y =5tan5x is {x 5x = π/2+ nπ} or {x x = π/10+ nπ/5}.From
17.
Anintervalofdefinitionforthesolutionofthedifferentialequationis( π/10,π/10).Another intervalis(π/10, 3π/10),andsoon.
Anintervalofdefinitionforthesolutionofthedifferentialequationis( 2, 2).Otherintervals are(−∞, 2)and(2, ∞).
18. Thefunctionis y =1/√1 sin x ,whosedomainisobtainedfrom1 sin x =0orsin x =1. Thus,thedomainis
Anintervalofdefinitionforthesolutionofthedifferentialequationis(π/2, 5π/2).Another intervalis(5π/2, 9π/2)andsoon.
19. Writingln(2X 1) ln(X 1)= t anddifferentiatingimplicitlyweobtain
Exponentiatingbothsidesoftheimplicitsolutionweobtain
Solving et 2=0weget t =ln2.Thus,thesolutionisdefinedon(−∞, ln2)oron(ln2, ∞). Thegraphofthesolutiondefinedon(−∞, ln2)isdashed,andthegraphofthesolutiondefined on(ln2, ∞)issolid.
20. Implicitlydifferentiatingthesolution,weobtain
CHAPTER1 INTRODUCTIONTODIFFERENTIALEQUATIONS
Not For Sale
26. Thefunction y(x)isnotcontinuousat x =0sincelim
27. From y = emx weobtain y = memx.Then y +2y =0implies
29.
2 emx 5memx +6emx =(m 2)(m 3)emx =0
Since emx > 0forall x, m =2and m =3.Thus y = e2x and y = e3x aresolutions.
30. From y = emx weobtain y = memx and y = m2emx.Then2y +7y 4y =0implies 2m 2 emx +7memx 4emx =(2m 1)(m +4)emx =0
Since emx > 0forall x, m = 1 2 and m = 4.Thus y = ex/2 and y = e 4x aresolutions.
31. From y = x
32.
InProblems 33–36 wesubstitute y = c intothedifferentialequationsanduse y =0 and y =0.
33. Solving5c =10weseethat y =2isaconstantsolution.
34. Solving c2 +2c 3=(c +3)(c 1)=0weseethat y = 3and y =1areconstantsolutions.
35. Since1/(c 1)=0hasnosolutions,thedifferentialequationhasnoconstantsolutions.
36. Solving6c =10weseethat y =5/3isaconstantsolution.
From
CHAPTER1 INTRODUCTIONTODIFFERENTIALEQUATIONS
Not For Sale
DiscussionProblems
39. (y )2 +1=0hasnorealsolutionsbecause(y )2 +1ispositiveforallfunctions y = φ(x).
40. Theonlysolutionof(y )2 + y2 =0is y =0,since,if y =0, y2 > 0and(y )2 + y2 ≥ y2 > 0.
41. Thefirstderivativeof f (x)= ex is ex.Thefirstderivativeof f (x)= ekx is f (x)= kekx.The differentialequationsare y = y and y = ky,respectively.
42. Anyfunctionoftheform y = cex or y = ce x isitsownsecondderivative.Thecorresponding differentialequationis y y =0.Functionsoftheform y = c sin x or y = c cos x havesecond derivativesthatarethenegativesofthemselves.Thedifferentialequationis y + y =0.
43. Wefirstnotethat 1 y2 = 1 sin2 x = √cos2 x = | cos x|.Thispromptsustoconsider valuesof x forwhichcos x< 0,suchas x = π.Inthiscase
Thus, y =sin x willonlybeasolutionof y = 1 y2 whencos x> 0.Anintervalofdefinition isthen( π/2,π/2).Otherintervalsare(3π/2, 5π/2),(7π/2, 9π/2),andsoon.
44. Sincethefirstandsecondderivativesofsin t andcos t involvesin t andcos t,itisplausiblethat alinearcombinationofthesefunctions, A sin t + B cos t,couldbeasolutionofthedifferential equation.Using y = A cos t B sin t and y = A sin t B cos t andsubstitutingintothe differentialequationweget y +2y +4y = A sin t B cos t +2A cos t 2B sin t +4A sin t +4B cos t =(3A 2B)sin t +(2A +3B)cos t =5sin t.
Thus3A 2B =5and2A +3B =0.Solvingthesesimultaneousequationswefind A = 15 13 and B = 10 13 .Aparticularsolutionis y = 15 13 sin t 10 13 cos t.
45. Onesolutionisgivenbytheupperportionofthegraphwithdomainapproximately(0, 2 6). Theothersolutionisgivenbythelowerportionofthegraph,alsowithdomainapproximately (0, 2.6).
46. Onesolution,withdomainapproximately(−∞, 1.6)istheportionofthegraphinthesecond quadranttogetherwiththelowerpartofthegraphinthefirstquadrant.Asecondsolution, withdomainapproximately(0, 1 6)istheupperpartofthegraphinthefirstquadrant.The thirdsolution,withdomain(0, ∞),isthepartofthegraphinthefourthquadrant.
59,theestimatesofthedomainsinProblem46wereclose.
50. Todetermineifasolutioncurvepassesthrough(0, 3)welet t =0and P =3intheequation
passesthroughthepoint(0, 3).Similarly,letting t =0and P =1intheequationforthe one-parameterfamilyofsolutionsgives1= c1/(1+ c1)or c1 =1+ c1.Sincethisequationhas nosolution,nosolutioncurvepassesthrough(0, 1).
51. Forthefirst-orderdifferentialequationintegrate f (x).Forthesecond-orderdifferentialequationintegratetwice.Inthelattercaseweget y = ( f (x)dx)dx + c1x + c2
52. Solvingfor y usingthequadraticformulaweobtainthetwodifferentialequations y = 1 x 2+2 1+3x6 and y = 1 x 2 2 1+3x6 , sothedifferentialequationcannotbeputintheform dy/dx = f (x,y).
53. Thedifferentialequation yy xy =0hasnormalform dy/dx = x.Thesearenotequivalent because y =0isasolutionofthefirstdifferentialequationbutnotasolutionofthesecond.
Not For Sale
55. (a) Since e x2 ispositiveforallvaluesof x, dy/dx> 0forall x,andasolution, y(x),ofthe differentialequationmustbeincreasingonanyinterval.
(b)
dy dx approaches0as x approaches −∞ and ∞,thesolutioncurvehashorizontalasymptotestotheleftandto theright.
(c) Totestconcavityweconsiderthesecondderivative
Sincethesecondderivativeispositivefor x< 0andnegativefor x> 0,thesolutioncurve isconcaveupon(−∞, 0)andconcavedownon(0, ∞).x
56. (a) Thederivativeofaconstantsolution y = c is0,sosolving5 c =0weseethat c =5and so y =5isaconstantsolution.
(b) Asolutionisincreasingwhere dy/dx =5 y> 0or y< 5.Asolutionisdecreasingwhere dy/dx =5 y< 0or y> 5.
57. (a) Thederivativeofaconstantsolutionis0,sosolving y(a by)=0weseethat y =0and y = a/b areconstantsolutions.
(b) Asolutionisincreasingwhere dy/dx = y(a by)= by(a/b y) > 0or0 <y<a/b.A solutionisdecreasingwhere dy/dx = by(a/b y) < 0or y< 0or y>a/b.
(c) Usingimplicitdifferentiationwecompute
58. (a) If y = c isaconstantsolutionthen y =0,but c2 +4isnever0foranyrealvalueof c
(b) Since y = y2 +4 > 0forall x whereasolution y = φ(x)isdefined,anysolutionmust beincreasingonanyintervalonwhichitisdefined.Thusitcannothaveanyrelative extrema.
(c) Usingimplicitdifferentiationwecompute d2y/dx2 =2yy =2y(y2 +4).Setting d2y/dx2 = 0weseethat y =0correspondstotheonlypossiblepointofinflection.Since d2y/dx2 < 0 for y< 0and d2y/dx2 > 0for y> 0,thereisapointofinflectionwhere y =0.
Theoutputwillshow y(x)= e5xx cos2x,whichverifiesthatthecorrectfunctionwasentered, and0,whichverifiesthatthisfunctionisasolutionofthedifferentialequation.
Not For Sale
60. In Mathematica use Clear[y]
y[x ]:=20Cos[5Log[x]]/x-3Sin[5Log[x]]/x y[x]
x ∧ 3y [x]+2x ∧ 2y [x]+20xy [x]-78y[x]//Simplify
Theoutputwillshow y(x)= 20cos(5ln x) x 3sin(5ln x) x ,whichverifiesthatthecorrect functionwasentered,and0,whichverifiesthatthisfunctionisasolutionofthedifferential equation.
1.2 Initial-ValueProblems
1.2 Initial-ValueProblems
1.
2.
3. Letting x =2andsolving1/3=1/(4+ c)weget c = 1.Thesolutionis y =1/(x2 1).This solutionisdefinedontheinterval(1, ∞).
4. Letting x = 2andsolving1/2=1/(4+ c)weget c = 2.Thesolutionis y =1/(x2 2). Thissolutionisdefinedontheinterval(−∞, √2).
5. Letting x =0andsolving1=1/c weget c =1.Thesolutionis y =1/(x2 +1).Thissolution isdefinedontheinterval(−∞, ∞).
6. Letting x =1/2andsolving 4=1/(1/4+ c)weget c = 1/2.Thesolutionis y = 1/(x2 1/2)=2/(2x2 1).Thissolutionisdefinedontheinterval( 1/√2 , 1/√2).
InProblems 7–10 weuse x = c1 cos t + c2 sin t and x = c1 sin t + c2 cos t toobtainasystemoftwo equationsinthetwounknowns c1 and c2
7. Fromtheinitialconditionsweobtainthesystem c1 = 1 c2 =8.
Thesolutionoftheinitial-valueproblemis x = cos t +8sin t
CHAPTER1 INTRODUCTIONTODIFFERENTIALEQUATIONS
Not For Sale
13. Fromtheinitialconditionsweobtain
e 1 c1 + ec2 =5
e 1 c1 ec2 = 5
Solving,wefind c1 =0and c2 =5e 1.Thesolutionoftheinitial-valueproblemis
y =5e 1 e x =5e 1 x .
14. Fromtheinitialconditionsweobtain
c1 + c2 =0
c1 c2 =0
Solving,wefind c1 = c2 =0.Thesolutionoftheinitial-valueproblemis y =0.
15. Twosolutionsare y =0and y = x3
16. Twosolutionsare y =0and y = x2 . A lso,anyconstantmultipleof x2 isasolution.
17. For f (x,y)= y2/3 wehaveThus,thedifferentialequationwillhaveauniquesolutioninany rectangularregionoftheplanewhere y =0.
18. For f (x,y)= √xy wehave ∂f/∂y = 1 2 x/y .Thus,thedifferentialequationwillhaveaunique solutioninanyregionwhere x> 0and y> 0orwhere x< 0and y< 0.
19. For f (x,y)= y x wehave ∂f ∂y = 1 x .Thus,thedifferentialequationwillhaveauniquesolution inanyregionwhere x> 0orwhere x< 0.
20. For f (x,y)= x + y wehave ∂f ∂y =1.Thus,thedifferentialequationwillhaveauniquesolution intheentireplane.
21. For f (x,y)= x2/(4 y2)wehave ∂f/∂y =2x2y/(4 y2)2.Thusthedifferentialequationwill haveauniquesolutioninanyregionwhere y< 2, 2 <y< 2,or y> 2.
22. For f (x,y)= x2 1+ y3 wehave ∂f ∂y = 3x2y2 (1+ y3)2 .Thus,thedifferentialequationwillhavea uniquesolutioninanyregionwhere y = 1.
23. For f (x,y)= y2 x2 + y2 wehave ∂f ∂y = 2x2y (x2 + y2)2 .Thus,thedifferentialequationwillhavea uniquesolutioninanyregionnotcontaining(0, 0).
24. For f (x,y)=(y + x)/(y x)wehave ∂f/∂y = 2x/(y x)2.Thusthedifferentialequation willhaveauniquesolutioninanyregionwhere y<x orwhere y>x.
InProblems 25
28 weidentify f (x,y)= y2 9 and ∂f/∂y = y/ y2 9.Weseethat f and ∂f/∂y arebothcontinuousintheregionsoftheplanedeterminedby y< 3 and y> 3 withno restrictionson x
25. Since4 > 3,(1, 4)isintheregiondefinedby y> 3andthedifferentialequationhasaunique solutionthrough(1, 4).
26. Since(5, 3)isnotineitheroftheregionsdefinedby y< 3or y> 3,thereisnoguaranteeof auniquesolutionthrough(5, 3).
27. Since(2, 3)isnotineitheroftheregionsdefinedby y< 3or y> 3,thereisnoguarantee ofauniquesolutionthrough(2, 3).
28. Since( 1, 1)isnotineitheroftheregionsdefinedby y< 3or y> 3,thereisnoguarantee ofauniquesolutionthrough( 1, 1).
29. (a) Aone-parameterfamilyofsolutionsis y = cx.Since y = c, xy = xc = y and y(0)= c · 0=0.
(b) Writingtheequationintheform y = y/x,weseethat R cannotcontainanypointonthe y-axis.Thus,anyrectangularregiondisjointfromthe y-axisandcontaining(x0,y0)will determineanintervalaround x0 andauniquesolutionthrough(x0,y0).Since x0 =0in part(a),wearenotguaranteedauniquesolutionthrough(0, 0).
(c) Thepiecewise-definedfunctionwhichsatisfies y(0)=0isnotasolutionsinceitisnot differentiableat x =0.
30. (a) Since d dx tan(x + c)=sec2(x + c)=1+tan2(x + c),weseethat y =tan(x + c)satisfies thedifferentialequation.
(b) Solving y(0)=tan c =0weobtain c =0and y =tan x.Sincetan x isdiscontinuousat x = ±π/2,thesolutionisnotdefinedon( 2, 2)becauseitcontains ±π/2.
(c) Thelargestintervalonwhichthesolutioncanexistis( π/2,π/2).
31. (a) Since d dx 1 x + c = 1 (x + c)2 = y 2,weseethat y = 1 x + c isasolutionofthedifferential equation.
(b) Solving y(0)= 1/c =1weobtain c = 1and y =1/(1 x).Solving y(0)= 1/c = 1 weobtain c =1and y = 1/(1+ x).Beingsuretoinclude x =0,weseethattheinterval ofexistenceof y =1/(1 x)is(−∞, 1),whiletheintervalofexistenceof y = 1/(1+ x) is( 1, ∞).
(c) Byinspectionweseethat y =0isasolutionon(−∞, ∞).
CHAPTER1 INTRODUCTIONTODIFFERENTIALEQUATIONS
Not For Sale
32. (a) Applying y(1)=1to y = 1/(x + c)gives
33.
(c) No,theyarenotthesamesolution.Theinterval I ofdefinitionforthesolutioninpart(a) is(−∞, 2);whereastheinterval I ofdefinitionforthesolutioninpart(b)is(2, ∞).See thefigure.
(b) Solving3x2 y2 =3for y weget
(c) Only y = φ3(x)satisfies y( 2)=3.
34. (a) Setting x =2and y = 4in3x2 y2 = c weget 12 16= 4= c,sotheexplicitsolutionis
= 3x2 +4 , −∞ <x< ∞.
(b) Setting c =0wehave y = √3x and y = √3x,both definedon(−∞, ∞)andbothpassingthroughthe origin.
weconsiderthepointsonthegraphswith x-coordinates x0 = 1, x0 =0,and x0 =1.Theslopesofthetangentlinesatthesepointsarecomparedwiththeslopesgivenby y (x0) in (a) through (f)
InProblems 35–38
35. Thegraphsatisfiestheconditionsin(b)and(f).
36. Thegraphsatisfiestheconditionsin(e).
37. Thegraphsatisfiestheconditionsin(c)and(d).
38. Thegraphsatisfiestheconditionsin(a).
InProblems 39-44 y = c1 cos2x + c2 sin2x isatwoparameterfamilyofsolutionsofthesecondorderdifferentialequation y +4y =0.Insomeoftheproblemswewillusethefactthat y = 2c1 sin2x +2c2 cos2x
39. Fromtheboundaryconditions y(0)=0and y π 4 =3weobtain
(0)= c1 =0
Thus, c1 =0, c2 =3,andthesolutionoftheboundary-valueproblemis y =3sin2x
40. Fromtheboundaryconditions y(0)=0and y(π)=0weobtain y(0)= c1 =0
(π)= c1 =0.
Thus, c1 =0, c2 isunrestricted,andthesolutionoftheboundary-valueproblemis y = c2 sin2x, where c2 isanyrealnumber.
41. Fromtheboundaryconditions y (0)=0and y π 6 =0weobtain
42. Fromtheboundaryconditions y(0)=1and y (π)=5weobtain
=5. Thus, c1 =1, c2 = 5 2 ,andthesolutionoftheboundary-valueproblemis y =cos2x + 5 2 sin2x 43. Fromtheboundaryconditions y(0)=0and y(π)=2weobtain
Since0 = 1,thisisnotpossibleandthereisnosolution.
CHAPTER1 INTRODUCTIONTODIFFERENTIALEQUATIONS
Not For Sale
DiscussionProblems
45. Integrating y =8e2x +6x weobtain
At x =1the y-coordinateofthepointoftangencyis y = 1+5=4.Thisgivestheinitial condition y(1)=4.Theslopeofthetangentlineat x =1is y (1)= 1.Fromtheinitial conditionsweobtain
47. When x =0and y = 1 2 , y = 1,sotheonlyplausiblesolutioncurveistheonewithnegative slopeat(0, 1 2 ),ortheredcurve.
48. Ifthesolutionistangenttothe x-axisat(x0, 0),then y =0when x = x0 and y =0. Substitutingthesevaluesinto y +2y =3x 6weget0+0=3x0 6or x0 =2.
49. Thetheoremguaranteesaunique (meaningsingle) solutionthroughanypoint.Thus,there cannotbetwodistinctsolutionsthroughanypoint.
50. When y = 1 16 x
, y =
(2)= 1 16 (16)=1.When
and y(2)= 1 16 (16)=1.Thetwodifferentsolutionsarethesameontheinterval(0, ∞),which isallthatisrequiredbyTheorem1 2 1.
51. At t =0, dP/dt =0.15P (0)+20=0.15(100)+20=35.Thus,thepopulationisincreasingat arateof3,500individualsperyear.Ifthepopulationis500attime t = T then
Thus,atthistime,thepopulationisincreasingatarateof9,500individualsperyear.