LINEAR EQUATIONS OF HIGHER ORDER
SECTION3.1
INTRODUCTION: SECOND-ORDER LINEAR EQUATIONS
Inthissectionthecentralideasofthetheoryoflineardifferentialequationsareintroducedand illustratedconcretelyinthecontextof second-order equations.Thesekeyconceptsincludesuperpositionofsolutions(Theorem1),existenceanduniquenessofsolutions(Theorem2),linear independence,theWronskian(Theorem3),andgeneralsolutions(Theorem4).Thisdiscussion ofsecond-orderequationsservesaspreparationforthetreatmentof nthorderlinearequationsin Section3.2.Althoughtheconceptsinthissectionmayseemsomewhatabstracttostudents,the problemssetisquitetangibleandlargelycomputational.
IneachofProblems1–16theverificationthat1 y and2 y satisfythegivendifferentialequationis aroutinematter.AsinExample2,wethenimposethegiveninitialconditionsonthegeneral solution1122
Copyright©2015PearsonEducation,Inc.
167
CHAPTER3
y cycy
c and2 c 1. Impositionoftheinitialconditions 00 y , 05 y onthegeneralsolution 12 x x yxcece yieldsthetwoequations120 cc ,125 cc withsolution15 2 c , 2 5 2 c .Hencethedesiredparticularsolutionis 5 2 x x y xee 2. Impositionoftheinitialconditions 01 y , 015 y onthegeneralsolution 33 12 x x yxcece yieldsthetwoequations121 cc ,123315 cc ,withsolution 12c ,23 c .Hencethedesiredparticularsolutionis 3323 x x yxee . 3. Impositionoftheinitialconditions 03 y , 08 y onthegeneralsolution 12 cos2sin2 yxcxcx yieldsthetwoequations13 c ,228 c withsolution13 c , 24c .Hencethedesiredparticularsolutionis 3cos24sin2 yxxx . 4. Impositionoftheinitialconditions 010 y , 010 y onthegeneralsolution 12 cos5sin5 yxcxcx yieldsthetwoequations110 c ,2510 c withsolution 13c ,24 c .Hencethedesiredparticularsolutionis 10cos52sin5 yxxx Differential Equations Computing and Modeling and Differential Equations and Boundary Value Visit TestBankDeal.com to get complete for all chapters
.Thisyieldstwolinearequationsthatdeterminethevaluesoftheconstants1
168 INTRODUCTION:SECOND-ORDERLINEAREQUATIONS Copyright©2015PearsonEducation,Inc. 5. Impositionoftheinitialconditions 01 y , 00 y onthegeneralsolution 2 12 x x yxcece yieldsthetwoequations121 cc ,1220cc withsolution 12c ,21 c .Hencethedesiredparticularsolutionis 22 x x yxee . 6. Impositionoftheinitialconditions 07 y , 01 y onthegeneralsolution 23 12 x x yxcece yieldsthetwoequations127 cc ,12231 cc withsolution 14c ,23 c .Hencethedesiredparticularsolutionis 2343 x x yxee 7. Impositionoftheinitialconditions 02 y , 08 y onthegeneralsolution 12 x yxcce yieldsthetwoequations122 cc ,28 c withsolution16 c , 28c .Hencethedesiredparticularsolutionis 68 x yxe . 8. Impositionoftheinitialconditions 04 y , 02 y onthegeneralsolution 3 ()12 x y xcce yieldsthetwoequations124 cc ,232 c withsolution114 3 c , 2 2 3 c .Hencethedesiredparticularsolutionis 13 142 3 x y xe . 9. Impositionoftheinitialconditions 02 y , 01 y onthegeneralsolution 12 x x yxcecxe yieldsthetwoequations12 c ,121 cc withsolution 12c 21c .Hencethedesiredparticularsolutionis 2 x x yxexe . 10. Impositionoftheinitialconditions 03 y , 013 y onthegeneralsoution 55 12 x x yxcecxe yieldsthetwoequations13 c ,12513 cc withsolution13 c , 22c .Hencethedesiredparticularsolutionis 5532 x x yxexe . 11. Impositionoftheinitialconditions(0)0 y , 05 y onthegeneralsolution 12cossin xx yxcexcex yieldsthetwoequations10 c ,125 cc withsolution 10c ,25 c .Hencethedesiredparticularsolutionis 5sin x yxex 12. Impositionoftheinitialconditions 02 y , 00 y onthegeneralsolution 33 12cos2sin2 xx yxcexcex yieldsthetwoequations12 c ,12325 cc with solution12 c ,23 c .Hencethedesiredparticularsolutionis 32cos23sin2 x yxexx .
Section3.1 169 Copyright©2015PearsonEducation,Inc. 13. Impositionoftheinitialconditions 13 y , 11 y onthegeneralsolution 2 12 yxcxcx yieldsthetwoequations123 cc ,1221cc withsolution15 c , 22c .Hencethedesiredparticularsolutionis 522yxxx . 14. Impositionoftheinitialconditions 210 y , 215 y onthegeneralsolution 23 12 yxcxcx yieldsthetwoequations2 1 410 8 c c , 2 1 3 415 16 c c withsolution 13c ,216 c .Hencethedesiredparticularsolutionis 2 3 16 3 yxx x . 15. Impositionoftheinitialconditions 17 y , 12 y onthegeneralsolution 12ln yxcxcxx yieldsthetwoequations17 c ,122 cc withsolution17 c , 25c .Hencethedesiredparticularsolutionis 75ln yxxxx . 16. Impositionoftheinitialconditions 12 y , 13 y onthegeneralsolution 12 coslnsinln yxcxcx yieldsthetwoequations12 c ,23 c .Hencethedesiredparticularsolutionis 2cosln3sinln yxxx 17. If c y x ,then 2 2 222 1 0 cc cc yy xxx unlesseither0 c or1 c . 18. If3 y cx ,then3244 666 yycxcxcxx unless21 c 19. If1yx ,then 2 321232 210 424 xxx yyyx . 20. Linearlydependent,because 22 cossin f xxxgx . 21. Linearlyindependent,because32 x xx if0 x ,whereas32 x xx if0 x 22. Linearlyindependent,because 11 x cx wouldrequirethat1 c with0 x ,but 0 c with1 x .Thusthereisnosuchconstant c. 23. Linearlyindependent,because f xgx if0 x ,whereas f xgx if0 x . 24. Linearlydependent,because 2 gxfx .
25. sin x f xex and cos x gxex arelinearlyindependent,because f xkgx wouldimplythatsincos x kx ,whereassin x andcos x arelinearlyindependent,as notedinExample3.
26. Toseethat f x and gx arelinearlyindependent,assumethat
,and thensubstituteboth0 x and
27. Theoperatornotationusedelsewhereinthischapterisconvenienthere.Let Ly denote y pyqy
28. If
with1 x .
(b) For0 x , 12,0Wyy because21 y y .For0 x , 33 1222 ,0 33 xx Wyy xx
because21 y y .At0 x ,2 y hasleft-andright-handderivativesbothequaltozero, sothat 12 00 ,0 00 Wyy onceagain.Thus 12 , Wyy isidenticallyzero.
Thefactthat 12,0Wyy everywheredoesnotcontradictTheorem3,becausewhenthe givenequationiswrittenintherequiredform,namely2 33 0 yyy xx ,thecoefficientfunctions 3 px x and 2 3 qx x arenotcontinuousat0 x .
31. 12,2 Wyyx vanishesat0 x ,whereasif1 y and2 y were(linearlyindependent) solutionsofanequation0 ypyqy with p and q bothcontinuousonanopeninterval I containing0 x ,thenTheorem3wouldimplythat0 W on I.
32. (a) Because1212 Wyyyy ,wehave
Copyright©2015PearsonEducation,Inc.
170
INTRODUCTION:SECOND-ORDERLINEAREQUATIONS
2
f xcgx
x
.Then 0 c Ly and p Lyf ,so0 cp Lyyff .
,then 12sincos yxcxcx ,sotheinitialconditions 001yy yield12 c ,21 c .Hence 12cossin yxxx . 29.
2
to
4 px x and 2 6 qx x arenotcontinuousat0 x . 30. (a) 3 1y x and3 2 yx arelinearlyindependentbecause33 x cx wouldrequirethat 1 c with1 x ,but1 c
12 1cossin yxcxcx
Thereisnocontradiction,becauseifthegivendifferentialequationisdividedby
x
gettheforminEquation(8)inthetext,thentheresultingfunctions
(c) Becausetheexponentialfactorisneverzero.
InProblems33–42wegivethecharacteristicequation,itsroots,andthecorrespondinggeneral solution.
Section3.1 171 Copyright©2015PearsonEducation,Inc. 12 dW AAyy dx 121212 yyyyyy 1221 122211 1212 12,, yAyyAy y ByCyyByCy Byyyy BWyy andthus dW A xBxWx dx . (b) Thedifferentialequationfor Wx foundin a canberewrittenas 0 Bx dW Wx dxAx ,since Ax isneverzero.Wecansolvethisequationasalinear first-orderequation:Multiplyingbytheintegratingfactor exp Bx x dx Ax gives expexp0 BxBxBx dW dxdxWx AxdxAxAx , or exp0 Bx d dxWx dxAx , or exp Bx dxWxK Ax , where K isaconstant.Finallywefind exp Bx WKdx Ax ,asdesired.
33. 2320rr ;1,2 r ; 2 12 x x y xcece 34. 22150rr ;3,5 r ; 53 12 x x y xcece 35. 250rr ;0,5 r ; 5 12 x y xcce
InProblems43–48wefirstwriteandsimplifytheequationwiththeindicatedcharacteristic roots,andthenwritethecorrespondingdifferentialequation.
Copyright©2015PearsonEducation,Inc.
172
INTRODUCTION:SECOND-ORDERLINEAREQUATIONS
36. 2 230 rr ; 3 0, 2 r ; 32 12 x yxcce 37. 2 210 rr ; 1 1, 2 r ; 2 12 x x y xcece 38. 2 4830 rr ; 13 , 22 r ; 232 12 x x yxcece 39. 2 4410 rr ; 1 2 r (repeated); 2 12 x y xccxe 40. 2 91240 rr ; 2 3 r (repeated); 23 12 x y xccxe 41. 2 67200 rr ; 45 , 32 r ; 4352 12 x x y xcece 42. 2 35120 rr ; 43 , 75 r ; 4735 12 x x y xcece
43. 2 010100rrrr ;100 yy 44. 2 10101000rrr ; 1000 y y 45. 2 1010201000rrrr ;201000 yyy 46. 2 1010011010000rrrr ; 11010000yyy 47. 2 000rrr ;0 y 48. 2 1212210rrrr ; 20yyy 49. Thesolutioncurvewith 01 y , 06 y is 872 x x yxee .Wefindthat 0 yx when7 ln 4 x ,sothat 4 7 x e and216 49 x e .Itfollowsthat716 ln 47 y ,
Section3.1 173 Copyright©2015PearsonEducation,Inc. sothehighpointonthecurveis716ln,(0.56,2.29) 47 ,whichlooksconsistentwith Fig.3.1.6. 50. Thetwosolutioncurvessatisfying 0 ya and 0 yb ,aswellas 01 y ,aregivenby 2 2 211 211. x x x x y aeae y bebe Subtraction,followedbydivisionby ab ,gives2 2 x x ee ,soitfollowsthat ln2 x .Nowsubstitutionineitherformulagives2 y ,sothecommonpointofintersectionis ln2,2 51. (a) Thesubstitutionlnvx gives 1 dydydvdy y dxdvdxxdv . Thenanotherdifferentiationusingthechainandproductrulesgives 2 2 2 2 2 222 1 11 11 11 dy y dx ddy dxdx ddy dxxdv dyddy xdvxdxdv dyddydv x dvxdvdvdx dydy x dvxdv Substitutionoftheseexpressionsfor y and y intoEq.(21)inthetextthenyieldsimmediatelythedesiredEq.(23): 2 20dydy abacy dvdv .
12 1212 121212 rr rvrvrr vv y xcececececxcx
(b) Iftheroots1 r and2 r ofthecharacteristicequationofEq.(23)arerealanddistinct, thenageneralsolutionoftheoriginalEulerequationis
SECTION3.2
GENERAL SOLUTIONS OF LINEAR EQUATIONS
StudentsshouldcheckeachofTheorems1through4inthissectiontoseethat,inthecase2 n , itreducestothecorrespondingtheoreminSection3.1.Similarly,thecomputationalproblems forthissectionlargelyparallelthosefortheprevioussection.BytheendofSection3.2students shouldunderstandthat,althoughwedonotprovetheexistence-uniquenesstheoremnow,itprovidesthebasisforeverythingwedowithlineardifferentialequations.
ThelinearcombinationslistedinProblems1–6werediscovered“byinspection”—thatis,bytrial anderror.
174 INTRODUCTION:SECOND-ORDERLINEAREQUATIONS Copyright©2015PearsonEducation,Inc. 52. Thesubstitutionlnvx yieldstheconvertedequation 2 20 dy y dv ,whosecharacteristic equation210 r hasroots11 r and21 r .Because v ex ,thecorrespondinggeneralsolutionis2 121 vv c ycececx x 53. Thesubstitutionlnvx yieldstheconvertedequation 2 2120dydy y dvdv ,whosecharacteristicequation2120 rr hasroots14 r and23 r .Because v ex ,thecorrespondinggeneralsolutionis4343 1212 vv y cececxcx 54. Thesubstitutionlnvx yieldstheconvertedequation 2 2 4430 dydy y dvdv ,whose characteristicequation24430 rr hasroots13 2 r and21 2 r .Because v ex , thecorrespondinggeneralsolutionis3/2/23/21/2 1212 vv y cececxcx 55. Thesubstitutionlnvx yieldstheconvertedequation 2 20 dy dv ,whosecharacteristic equation20 r hasrepeatedroots12,0rr .Becauselnvx ,thecorrespondinggeneral solutionis1212ln y ccvccx . 56. Thesubstitutionlnvx yieldstheconvertedequation 2 2440dydy y dvdv ,whosecharacteristicequation2440 rr hasroots12,2rr .Because v ex ,thecorresponding generalsolutionis 222 1212ln vv y cecvexccv .
1. 5822 231580 23 xxxx
forall x.
2. 22 45523110150 xx forall x
3. 100sin00 x xe forall x. 4. 221717 1172sin3cos0 23 xx
forall x,because22sincos1 xx .
5. 2 11734cos17cos20 xx forall x,because22cos1cos2 x x .
eee Weeee eee
23 236 23 232 49
xxx x xxx xxx
22
714 x Wxexx
x
Copyright©2015PearsonEducation,Inc.
Section3.2 175
isneverzero. 9.
cossin x
Wexxe
isneverzero. 10.
isnonzerofor0
6. 11cosh1sinh0 x exx ,because cosh1 2 x x x ee and 11.
1 sinh 2 x x x ee . 7. 12 0122 002 x Wxe
xx Wx isnonzeroeverywhere. isnonzeroif0
8. 12.
x .
32
x
2222 2cosln2sinln2 Wxxxx isnonzerofor0 x .
IneachofProblems13-20wefirstformthegeneralsolution
112233 y xcyxcyxcyx ,thencalculate y x and y x ,andfinallyimposethe giveninitialconditionstodeterminethevaluesofthecoefficients123 ,, ccc .
176
Copyright©2015PearsonEducation,Inc. 13. Impositionoftheinitialconditions 01 y , 02 y , 00 y onthegeneralsolution 2 123 x xx y xcecece yieldsthethreeequations 1231231231,22,40ccccccccc , withsolution14 3 c ,20 c ,3 1 3 c .Hencethedesiredparticularsolutionisgivenby 12 4 3 x x yxee 14. Impositionoftheinitialconditions 00 y , 00 y , 03 y onthegeneralsolution 23 123 x xx y xcecece yieldsthethreeequations 123123123 1,232,490ccccccccc , withsolution13 2 c ,23 c ,3 3 2 c .Hencethedesiredparticularsolutionisgivenby 2333 3 22 x xx y xeee 15. Impositionoftheinitialconditions 02 y , 00 y , 00 y onthegeneralsolution 2 123 x xx y xcecxecxe yieldsthethreeequations 1121232,0,220cccccc , withsolution12 c ,22 c ,31 c .Hencethedesiredparticularsolutionisgivenby 222 x yxxxe 16. Impositionoftheinitialconditions 01 y , 04 y , 00 y onthegeneralsolution 22 123 x xx y xcececxe yieldsthethreeequations 121231231,24,440cccccccc withsolution112 c ,213 c ,310 c .Hencethedesiredparticularsolutionisgiven by 22121310 x xx y xeexe . 17. Impositionoftheinitialconditions 03 y , 01 y , 02 y onthegeneralsolution 123cos3sin3 y xccxcx yieldsthethreeequations 13323,31,92cccc
GENERALSOLUTIONSOFLINEAREQUATIONS
1122 cpp y xyxyxcyxcyxyx , thencalculate y x ,andfinallyimposethegiveninitialconditionstodeterminethevaluesof thecoefficients1 c and2 c .
21. Impositionoftheinitialconditions 02 y , 02 y onthegeneralsolution
12cossin3 y xcxcxx yieldsthetwoequations12 c ,232 c withsolution
12c ,25 c .Hencethedesiredparticularsolutionisgivenby
2cos5sin3 y xxxx
Section3.2 177 Copyright©2015PearsonEducation,Inc. withsolution129 9 c ,2 2 9 c ,3 1 3 c .Hencethedesiredparticularsolutionisgiven by 2921cos3sin3 993 yxxx . 18. Impositionoftheinitialconditions 01 y , 00 y , 00 y onthegeneralsolution 123cossin x y xeccxcx yieldsthethreeequations 12123131,0,20ccccccc withsolution12 c ,21 c ,31 c .Hencethedesiredparticularsolutionisgivenby 2cossin x y xexx . 19. Impositionoftheinitialconditions 16 y , 114 y , 122 y onthegeneralsolution 23 123 y xcxcxcx yieldsthethreeequations 123123236,2314,2622cccccccc , withsolution11 c ,22 c ,33 c .Hencethedesiredparticularsolutionisgivenby 2323 y xxxx . 20. Impositionoftheinitialconditions 11 y , 15 y , 111 y onthegeneralsolution 22 123ln y xcxcxcxx yieldsthethreeequations 12123231,25,6511ccccccc , withsolution12 c ,21 c ,31 c .Hencethedesiredparticularsolutionisgivenby 22 2ln y xxxxx . IneachofProblems21-24wefirstformthegeneralsolution
GENERALSOLUTIONSOFLINEAREQUATIONS
22. Impositionoftheinitialconditions 00 y , 010 y onthegeneralsolution
22 123 xx yxcece yieldsthetwoequations1230 cc ,122210 cc withsolution14 c ,21 c .Hencethedesiredparticularsolutionisgivenby
22 43 xx yxee
23. Impositionoftheinitialconditions 03 y , 011 y onthegeneralsolution
3 122 xx yxcece yieldsthetwoequations1223 cc ,12311cc withsolution11 c ,24 c .Hencethedesiredparticularsolutionisgivenby
3 42xx yxee .
24. Impositionoftheinitialconditions 04 y , 08 y onthegeneralsolution
12coscos1 xx y xcexcexx yieldsthetwoequations114 c ,1218 cc withsolution13 c ,24 c .Hencethedesiredparticularsolutionisgivenby
Copyright©2015PearsonEducation,Inc.
178
3cos4sin1 x y xexxx . 25. 1212 LyLyyLyLyfg 26. (a) 12y and23 y x (b) 1223 y yyx 27. Theequations 2 12323310,20,20ccxcxccxc (thelattertwoobtainedbysuccessivedifferentiationofthefirstone)evidentlyimplythat 1230 ccc . 28. Ifwedifferentiatetheequation20120 n n ccxcxcx repeatedly, n timesinsuccession,theresultisthesystem 2 012 1 12 1 0 20 (1)!!0 !0 n n n n nn n ccxcxcx ccxncx ncncx nc of1 n equationsinthe1 n coefficients012,,,, n cccc .Thelastequationimpliesthat 0 n c ,whereupontheprecedingequationgives10 n c ,andsoforth.Thusitfollows thatallofthecoefficientsmustvanish.
Section3.2 179 Copyright©2015PearsonEducation,Inc. 29. If010 rxrxnrx n cecxecxe ,thendivisionby rx e yields010 n n ccxcx ,so theresultofProblem28applies. 30. Whentheequation2220 xyxyy isrewritteninstandardform 2 22 0 yyy xx , weseethatthecoefficientfunctions1 2 p x and 22 2 px x arenotcontinuousat 0 x .ThusthehypothesesofTheorem3arenotsatisfied. 31. (a) Substitutionof x a inthedifferentialequationgives y apyaqa (b) If 01 y and 00 y ,thentheequation250 yyy impliesthat 020505yyy . 32. Letthefunctions12,,, n y yy bechosenasindicated.Thenevaluationat x a ofthe 1st k derivativeoftheequation11220 cycycynn yields0 ck .Thus 120 n ccc ,sothefunctionsarelinearlyindependent. 33. Thisfollowsfromthefactthat 222 111 abcbacbca abc whena,b,andcaredistinct,whichcanbeverifiedbyexpandingbothsidesoftheequation. 34. 121 ,,,exp n ni i WfffVrx ,andneither V nor exp1 n i i rx vanishes. 36. If1 y vy ,thensubstitutionofthederivatives11 y vyvy ,111 2 y vyvyvy inthe differentialequation0 ypyqy gives 111111 20vyvyvypvyvyqvy , or 11111120vypyqyvyvypvy . Butthetermswithinbracketsvanishbecause1 y isasolution,andthisleavestheequation 11120yvypyv .
tionandsimplify,wegetthe
180 GENERALSOLUTIONSOFLINEAREQUATIONS Copyright©2015PearsonEducation,Inc. Wecansolvethisbyseparatingvariablesandintegrating:1 1 2 vy p vy leadsto 1 ln2lnln vypxdxC , or 2 1 pxdx C vxe y , or 2 1 pxdx e vxCdxK y . With1 C and0 K thisgivesthesecondsolution 212 1 pxdx e y xyxdx y 37. Whenwesubstitute3 y vx inthegivendifferentialequationandsimplify,wegetthe separableequation0 xvv ,whichwewriteas1 v vx .Integratinggives lnlnlnvxA ,andthensolvingfor v leadsto A v x ,orfinally ln vxAxB With1 A and0 B weget ln vxx ,andthus 3 2ln y xxx . 38. Whenwesubstitute3 y vx
xvv ,whichwewriteas7 v vx .Integratinggives ln7lnlnvxA ,andthensolvingfor v leadsto7 A v x ,orfinally 66 A vxB x .With6 A and0 B weget 6 1 vx x ,andhence 23 1 yx x . 39. Whenwesubstitute2 x y ve inthegivendifferentialequa
allygetthesimpleequation0 v ,withgeneralsolution vxAxB .With1 A and0 B weget vxx ,andhence 2 2 x y xxe 40. Whenwesubstitute y vx inthegivendifferentialequa
separableequation0 vv ,whichwewriteas1 v v .Integratinggives
inthegivendifferentialequa
separableequation70
tionandsimplify,weeventu-
tionandsimplify,wegetthe
Section3.2 181 Copyright©2015PearsonEducation,Inc. lnlnvxA ,andthensolvingfor v leadsto x vAe ,orfinally x vxAeB . With1 A and0 B weget x vxe ,andhence 2 x y xxe 41. Whenwesubstitute x y ve inthegivendifferentialequationandsimplify,wegetthe separableequation 10 xvxv ,whichwewriteas1 1 11 vx vxx .Integratinggives lnln1ln vxxA ,andthensolvingfor v leadsto 1 x vAxe ,orfinally 12xx vxAxedxAxeB .With1 A and0 B weget 2 x vxxe ,andhence 22 y xx . 42. Whenwesubstitute y vx inthegivendifferentialequationandsimplify,wegetthe separableequation 212 x xvv ,whichwewriteas 2 2211 111 v vxxx xx Integratinggives ln2lnln1ln1ln vxxxA , andthensolvingfor v leadsto 2 22 11 1 Ax vA xx ,orfinally 1 vxAxB x .With1 A and0 B weget 1 vxx x ,andhence 2 21yxx 43. Whenwesubstitute y vx inthegivendifferentialequationandsimplify,wegetthe separableequation 22 124 x xvxv ,whichwewriteusingthemethodofpartial fractionsas 2 2 24211 111 vx vxxx xx . Integratinggives ln2lnln1ln1ln vxxxA , andthensolvingfor v leadsto 222 111 12121 A vA x xx xx , orfinally
SECTION3.3
HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS
Thisisapurelycomputationalsectiondevotedtothesinglemostwidelyapplicabletypeofhigherorderdifferentialequations—linearoneswithconstantcoefficients.InProblems1–20,we firstwritethecharacteristicequationandlistitsroots,thengivethecorrespondinggeneralsolutionofthegivendifferentialequation.Explanatorycommentsareincludedonlywhenthesolutionofthecharacteristicequationisnotroutine.
182 GENERALSOLUTIONSOFLINEAREQUATIONS Copyright©2015PearsonEducation,Inc. 111 ln1ln1 22 vxAxxB x . With1 A and0 B weget 111 ln1ln1 22 vxxx x ,andhence 2 1ln1 21 x x yx x 44. Whenwesubstitute1/2cos y vxx inthegivendifferentialequationandsimplify,we eventuallygettheseparableequation cos2sin x vxv ,whichwewriteas 2sin cos vx vx .Integratinggives 2 ln2lncoslnlnsecln vxAxA , andthensolvingfor v leadsto2 sec vAx ,orfinally tan vxAxB .With1 A and0 B weget tan vxx ,andhence 1/21/2 2tancossin yxxxxxx
1. 24220 rrr ;2,2 r ; 22 12 x x y xcece 2. 2 23230 rrrr ; 3 0,2 r ; 32 12 x y xcce 3. 2310520 rrrr ;5,2 r ; 25 12 x x y xcece 4. 2 2732130 rrrr ; 1 2,3 r ; 23 12 x x y xcece 5. 226930rrr ;3 r (repeated); 33 12 x x y xcecxe 6. 2550rr ; 55 2 r ; 5555 22 12 x x yxcece
Section3.3 183 Copyright©2015PearsonEducation,Inc. 7. 22 4129230 rrr ; 3 2 r (repeated); 3232 12 x x y xcecxe 8. 26130rr ; 616 32 2 ri ; 3 12 cos2sin2 x y xecxcx 9. 28250rr ; 836 43 2 ri ; 4 12 cos3sin3 x y xecxcx 10. 433 53530 rrrr ; 3 0,0,0, 5 r ; 235 1234 x yxccxcxce 11. 4322281640rrrrr ;0,0,4,4 r ; 44 1234 x x y xccxcecxe 12. 43233310rrrrrr ;0,1,1,1 r ; 2 1234 x xx y xccecxecxe 13. 322 9124320 rrrrr ; 22 0,, 33 r ; 2323 123 x x yxccecxe 14. 422234140rrrr ;1,1,2 ri ; 1234cos2sin2 xx y xcececxcx 15. 422222 48164220 rrrrr ;2,2,2,2 r ; 2222 1234 x xxx y xcecxececxe 16. 4222188190rrr ;3,3 rii ; 1234cos3sin3 yxccxxccxx 17. 4222 611421340 rrrr ; 2 , 23 ii r ; 1234 22cossincossin 2233 x xxx yxcccc 18. 42216440rrr ;2,2,2 ri ; 22 1234cos2sin2 xx yxcececxcx 19. Factoringbygroupinggives 32222 111110rrrrrrrr ; 1,1,1 r ; 123 x xx y xcececxe
184 HOMOGENEOUSEQUATIONSWITHCONSTANTCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 20. 43222 232110rrrrrr ; 1313 , 22 ii ; 22 1234 33cossin 22 xx y xeccxxeccxx 21. Impositionoftheinitialconditions 07 y , 011 y onthegeneralsolution 3 12 x x y xcece yieldsthetwoequations127 cc ,12311cc withsolution 15c ,22 c .Hencethedesiredparticularsolutionis 523 x x y xee 22. Impositionoftheinitialconditions 03 y , 04 y onthegeneralsolution 3 12 cossin 33 x x x yxecc yieldsthetwoequations13 c , 124 33 cc with solution13 c ,253 c .Hencethedesiredparticularsolutionis 33cos53sin 33 x x x yxe 23. Impositionoftheinitialconditions 03 y , 01 y onthegeneralsolution 3 12 cos4sin4 x y xecxcx yieldsthetwoequations13 c ,12341 cc withsolution13 c ,22 c .Hencethedesiredparticularsolutionis 33cos42sin4 x y xexx . 24. Impositionoftheinitialconditions 01 y , 01 y , 03 y onthegeneralsolution 22 123 x x y xccece yieldsthethreeequations 33 123221,21,43 24 cc ccccc , withsolution17 2 c ,2 1 2 c ,34 c .Hencethedesiredparticularsolutionis 7122 4 22 x x y xee . 25. Impositionoftheinitialconditions 01 y , 00 y , 01 y onthegeneralsolution 23 123 x yxccxce yieldsthethreeequations 33 132 24 1,0,1 39 cc ccc ,
Section3.3 185 Copyright©2015PearsonEducation,Inc. withsolution113 4 c ,2 3 2 c ,3 9 4 c .Hencethedesiredparticularsolutionis 133923 424 x yxxe . 26. Impositionoftheinitialconditions 01 y , 01 y , 03 y onthegeneralsolution 55 123 x x y xccecxe yieldsthethreeequations 1223233,54,25105cccccc , withsolution124 5 c ,2 9 5 c ,35 c .Hencethedesiredparticularsolutionis 24955 5 55 x x yxexe . 27. Firstwespottheroot1 r .Thenlongdivisionofthepolynomial3234rr by1 r yieldsthequadraticfactor 22 442rrr ,withroots2,2 r .Hencethegeneralsolutionis 22 123 x xx y xcececxe . 28. Firstwespottheroot2 r .Thenlongdivisionofthepolynomial32252 rrr by thefactor2 r yieldsthequadraticfactor 2 231211 rrrr ,withroots 1 1, 2 r .Hencethegeneralsolutionis 22 123 x xx y xcecece 29. Firstwespottheroot3 r .Thenlongdivisionofthepolynomial327 r by3 r yieldsthequadraticfactor239 rr ,withroots333 22 ri .Hencethegeneralsolutionis 332 123 3333cossin 22 xx y xceecxcx . 30. Firstwespottheroot1 r .Thenlongdivisionofthepolynomial43236 rrrr by1 r yieldsthecubicfactor32236
cos3sin3
xcececxcx .
rrr
.Nextwespottheroot2 r ,andanotherlongdivisionyieldsthequadraticfactor23 r ,withroots3 ri .Hencethegeneralsolutionis 2 1234
xx y
31. Thecharacteristicequation323480rrr hastheevidentroot1 r ,andlongdivisionthenyieldsthequadraticfactor 224824rrr
,correspondingtothecomplexconjugateroots22i .Hencethegeneralsolutionis
2 123cos2sin2 xx y xceecxcx
.
32. Thecharacteristicequation4323520rrrr hastheroot2 r ,asisreadily foundbytrialanderror,andlongdivisionthenyieldsthefactorization
3 210rr .Thusweobtainthegeneralsolution 22 1234 x x y xceccxcxe .
33. Knowingthat3 x y e isonesolution,wedividethecharacteristicpolynomial 32354rr by3 r andgetthequadraticfactor
2261839rrr .Hencethe generalsolutionis
33 123cos3sin3 xx y xceecxcx
34. Knowingthat23 x y e isonesolution,wedividethecharacteristicpolynomial 32 32128 rrr by32 r andgetthequadraticfactor24 r .Hencethegeneralsolutionis
23 123cos2sin2 x y xcecxcx .
35. Thefactthatcos2 y x isonesolutiontellsusthat24 r isafactorofthecharacteristic polynomial4326525204 rrrr .Thenlongdivisionyieldsthequadraticfactor
2 6513121 rrrr
23 1234cos2sin2 xx y xcececxcx
36. Thefactthatsin x y ex isonesolutiontellsusthat 22 1122rrr isafactor ofthecharacteristicpolynomial32911414 rrr
factor97 r .Hencethegeneralsolutionis
2 x y xABxCxDe
Copyright©2015PearsonEducation,Inc.
186
HOMOGENEOUSEQUATIONSWITHCONSTANTCOEFFICIENTS
.
,withroots11
.
, 23 r
.Hencethegeneralsolutionis
.Thenlongdivisionyieldsthelinear
,sothegeneralsolutionis
.Impositionofthegiveninitialconditionsyieldstheequations 18,12,213,7 ADBDCDD withsolution11 A ,5 B ,3 C ,7 D .Hencethedesiredparticularsolutionis 2 11537 x yxxxe .
Giventhat5 r isonecharacteristicroot,wedivide5 r intothecharacteristicpolynomial325100500rrr andgettheremainingfactor2100 r .Thusthegeneralsolutionis 5cos10sin10 x yxAeBxCx .Impositionofthegiveninitialconditions yieldstheequations 0,51010,25100250ABACAB ,
79 123cossin xx y xceecxcx 37. Thecharacteristicequationis 43310 rrrr
38.
43. (a) Givenacomplexnumber zxiy wedefine r tobe22 x y and tobethe uniqueanglesatisfyingcos x
(c) Because3 2234 i ie ,thesquarerootsof223 i are 26 i e .Likewise,because 223423 i ie
Section3.3 187 Copyright©2015PearsonEducation,Inc. withsolution2 A ,2 B ,0 C .Hencethedesiredparticularsolutionis 5 22cos10 x yxex . 39. Thecharacteristicpolynomialis 332 26128rrrr , sothedifferentialequation is61280 yyyy . 40. Thecharacteristicpolynomialis 232 24248rrrrr ,sothedifferential equationis2480 yyyy . 41. Thecharacteristicpolynomialis 2244416rrr , sothedifferentialequationis (4)160yy 42. Thecharacteristicpolynomialis 3 26424124864rrrr
1248640yyyy
, sothedifferential equationis(6)(4)
y r ,and .ThenEuler’sformula gives cossin i xy reririxiyz rr .
i e ;22 i e ; 332 i ie ; 124 i ie
13223 i ie
r
,sin
(b) 440
;
,thesquarerootsof223 i
23 i e 44.
24213
ii x
(b) 2 224324 ,3 22 ii x iii 45.
3 1212cossincos3sin3 ixix yxcececxixcxix 46. Thecharacteristicpolynomialis 2623 rirriri ,sothegeneralsolutionis
are
(a)
,2 22
iii
ThecharacteristicpolynomialisthequadraticpolynomialofProblem44(b).Hencethe generalsolutionis
188 HOMOGENEOUSEQUATIONSWITHCONSTANTCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 32 1212cos3sin3cos2sin2 ixix yxcececxixcxix . 47. Thecharacteristicrootsare 22313rii ,sothegeneralsolutionis 1313 1212cos3sin3cos3sin3 ixix xx y xcececexixcexix . 48. Thegeneralsolutionis x xx y xAeBeCe ,where13 2 i and 13 2 i .Impositionofthegiveninitialconditionsyieldstheequations 22 17 0 0 ABC ABC ABC thatwesolvefor1 3 ABC .Thusthedesiredparticularsolutionisgivenby 1132132 3 ixix x yxeee ,which(usingEuler’srelation)reducestothegiven real-valuedsolution. 49. WeadoptthesamestrategyaswasusedinProblem48.Thegeneralsolutionis 2cossin xx yxAeBeCxDx .Impositionofthegiveninitialconditionsyields theequations 0 20 40 830 ABC ABD ABC ABD thatwesolvefor2 A ,5 B ,3 C ,and9 D .Thus 2 253cos9sin xx yxeexx . 50. If0 x ,thenthedifferentialequationis0 yy ,withgeneralsolution cossin y AxBx .Butif0 x ,thenitis0 yy ,withgeneralsolution coshsinh yCxDx .Tosatisfytheinitialconditions 101y , 100y wechoose 1 AC and0 BD .Buttosatisfytheinitialconditions 200 y , 201 y we choose0 AC and1 B D .Thecorrespondingsolutionsaredefinedby 1 cos,0 cosh,0; xx yx xx and 2 sin,0 sinh,0 xx yx xx .
Section3.3 189 Copyright©2015PearsonEducation,Inc. Examinationofleft-andright-handderivativesat0 x showsnotonlythat 1 yx and 2 yx aredifferentiableat0 x ,butthat1 y and2 y areinfactcontinuousthere. 51. InthesolutionofProblem51inSection3.1weshowedthatthesubstitutionlnvx gives1dydy y dxxdv and 22 2222 11 dydydy y dxxdvxdv .Afurtherdifferentiationusingthechainrulegives 323 333233 231 dydydydy y dxxdvxdvxdv . Substitutionoftheseexpressionsfor y , y ,and y intothethird-orderEulerequation 320axybxycxydy ,togetherwithcollectionofcoefficients,yieldsthedesired constant-coefficientequation 32 32320dydydy abacbady dvdvdv . InProblems52through58welistfirstthetransformedconstant-coefficientequation,thenits
vx and v ex . 52. 2 290dy y dv ; 290 r ; 3 ri ; 1212 cos3sin3cos3lnsin3ln yxcvcvcxcx 53. 2 26250dydy y dvdv ; 26250rr ; 34 ri ; 33 1212 cos4sin4cos4lnsin4ln v y xecvcvxcxcx 54. 32 3230dydy dvdv ; 3230rr ; 0,0,3 r ; 33 123123 ln v yxccvceccxcx 55. 32 32440dydydy dvdvdv ; 32440rrr ; 0,2,2 r ; 222 123123ln vv yxccecvecxccx
characteristicequationandroots,andfinallythecorrespondinggeneralsolutionwithln
SECTION3.4
MECHANICAL VIBRATIONS
Inthissectionwediscussfourtypesoffreemotionofamassonaspring—undamped,underdamped,criticallydamped,andoverdamped.However,theundampedandunderdampedcases—inwhichactualoscillationsoccur—areemphasizedbecausetheyareboththemostinterestingandthemostimportantcasesforapplications.
190 HOMOGENEOUSEQUATIONSWITHCONSTANTCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 56. 3 30dy dv ; 30 r ; 0,0,0 r ; 22 123123lnln y xccvcvccxcx 57. 32 32550dydydy dvdvdv ; 32440rrr ; 0,33 r ; 3333333 123123 vv yxccecvecxcxcx 58. 32 32330dydydy y dvdvdv ; 323310rrr ; 1,1,1 r ; 212 123123lnln vvv yxcecvecvexccxcx
1. Frequency:0 1612radsecHz 4 k m ;period: 0 22 sec 2 P 2. Frequency0 4848radsecHz 0.75 k m ;period: 0 22 sec 84 P 3. Thespringconstantis1575Nm 0.20m N k .Thesolutionof3750 xx with 00 x and 010 x is 2sin5 x tt .Thustheamplitudeis2m,thefrequency is0752.55radsecHz 3 k m ,andtheperiodis2sec 5 4. (a) With1kg 4 m and9N0.25m=36Nm k ,wefindthat012radsec .Thesolutionof1440 xx with 01 x and 05 x is
5. Thegravitationalaccelerationatdistance R fromthecenteroftheearthis2GM g R .AccordingtoEquation(6)inthetext,the(circular)frequency ofa(linearized)pendulum
6. Ifthependulumintheclockexecutes n cyclesperday(86400sec)atParis,thenitsperiodis186400sec p n .Attheequatoriallocationittakes24hr2min40sec86560sec
forthesamenumberofcycles,soitsperiodthereis186560sec p n .Nowlet 13956miR betheEarth’s“radius”atParis,and2 R its“radius”attheequator.Then substitutionintheequation11 22
p R p R ofProblem5(with12 LL )yields23963.33mi R .
Thusthis(rathersimplistic)calculationgives7.33miasthethicknessoftheEarth’s equatorialbulge.
7. Theperiodequation
3960100.103960100px yields 1.9795mi10.450ft x forthealtitudeofthemountain.
8. Let n bethenumberofcyclesrequiredforacorrectclockwithunknownpendulum length1 L andperiod1 p toregister24hrs86400sec ,so186400 np .Thegivenclock withlength230in L andperiod2 p loses10min600sec perday,so287000 np .
9. Designating x t asinthesuggestion,weseethatthemassissubjecttoarestorative force S Fkx togetherwiththeforceofgravity Wmg .Wealsoassumethatthe massissubjecttoadampingforce R Fcx .ApplyingNewton’slawthengives
Section3.4 191
51312513 cos12sin12cos12sin2cos12 1212131312 xttttt , where152tan5.8884rad 12 (b) 13
12 C
0.5236sec 12 T
Copyright©2015PearsonEducation,Inc.
1.0833m
and 2
isgivenby
gGM LRL ,soitsperiodis22 L pR GM .
2 2
ThentheformulaofProblem5yields111
Lpnp Lpnp
2 1
L
222 86400 87000
,so
86400 3029.59in 87000
Thusthebuoyundergoessimpleharmonicmotionaboutanequilibriumof e x h .Further,withthegivennumericalvaluesof ,h,andg,theamplitudeofoscillationis
11. ThedifferentialequationfromProblem10mustbemodifiedtoreflectthefactthatthe weightdensityofwateris362.4lbft(asopposedto31gcminthecgssystem).Thus theweightofwaterdisplacedbythebuoyisgivenby2 62.4 rx .Moreover,themass andweightofthebuoyaregiventobe3.125slugsand100lb,respectively.Applying
192 MECHANICALVIBRATIONS Copyright©2015PearsonEducation,Inc. mxkxmgcx ,or mxcxkxmg .Finally,substituting0 y xs ,sothat 0 x ys andthus x y and x y ,yields 0 mycykysmg ,or 0mycykymgks ,whichisEquation(5)with F t assumingtheconstantvalue 0mgks . 10. Themassofthebuoyisgivenby2mrh ,andthenetdownwardforceonthebuoyis 22 Frhgrgx .(Notethatthedepth x t istakentobepositive.)Therefore Newton’ssecondlaw maF gives 222 rhxrhgrgx , whichsimplifiesto g x xg h . Thecomplementaryfunctionforthisequationis 1020 cossin c x tctct ,where 0 g h .Aparticularsolutionisgivenby p x tA ,where A isaconstant,andsub-
.Thusthegeneralsolutionof
1020 cossin cp x txtxtctcth . Applyingtheinitialconditions 000xx gives1ch and20 c .Alltold,the
cos0 x thth .
100cm h andtheperiodis 0 22 22.01sec h p g g h .
stitutingintothedifferentialequationshowsthat Ah
thedifferentialequationis
motionofthebuoyisgivenby
maF thengives2 3.12510062.4 x rx ,or 62.4232 3.125 xrx .Thefrequency oftheoscillationsofthebuoyistherefore0 2 ,where062.43.125 r .Sincethefre-
(d) Theorbitalvelocityvofsuchasatellitemustbesuchthatthecentrifugalforce
onthesatellitejustoffsetstheweight mg ofthesatelliteatthesurfaceoftheearth.Thus
c.Thisisnota
t thesatelliteisdirectlyovertheholeintheearth atthetopofFigure3.4.13,andthatitsorbitproceedsinaclockwisedirection.Wefound inpart c thatthedistance r oftheparticlefromthecenteroftheearthis
Thekeyobservationisthat0 t istheangledrawnclockwisefromtheverticaltotheradiusvectorofthesatelliteattimet;thus,thedistance rt issimplytheverticalcomponentofthesatellite’sposition.Itfollowsthat rt completesonecyclethroughtheearth (andback)inthesamelengthoftimerequiredforthesatellitetocompleteoneorbit aroundtheearth.
Section3.4 193 Copyright©2015PearsonEducation,Inc. quencyofthebuoy’smotionisobservedtobe4cycles0.4cyclessec 10sec ,wecanequate thetwotoconcludethat162.40.4 23.125 r ,whichgives 3.125 0.80.3173ft3.8in 62.4 r 12. (a) Substitutionof 3 r r M M R in2r r GMm F r yields3 r GMm Fr R . (b) Because3GMg R R ,theequation r mrF yieldsthedifferentialequation 0 g rr R (c) Thesolutionofthisequationwith 0 rR and 00 r is cos0 rtRt ,where 0 g R .Hence,with2 32.2ftsec g and39605280ft R ,wefindthattheperiod oftheparticlessimpleharmonicmotionis 0 225063.10sec84.38min R p g
2 mv R
2 mv mg R ,whichimpliesthat 244 32.2ftsec39605280ft2.594710ftsec1.769110mihr vgR . Becausethecircumferenceoftheearthis2 R
,theperiodofthesatellite’sorbitis 2 2 R R g gR ,whichisequaltotheperiodoftheparticlefoundinpart
coincidence.Imaginethatattime0
cos0 rtRt .
194 MECHANICALVIBRATIONS Copyright©2015PearsonEducation,Inc. (e) Theparticlepassesthroughthecenteroftheearthwhen 0 cos0rtRt ,thatis, when02 t ,or 20 t .Atthistimethespeedoftheparticleis 4 0000 0 sinsin1.769110mihr 2 g rtRtRRgR R (f) Inpart d wefoundtheorbitalvelocitytobe vgR ,inagreementwithpart e Againthisisnotaconcidence.Theverticalcomponentofthesatellite’svelocityvector t v atanygiventimetisequaltothespeed rt oftheparticleatthattime.Atthe momentwhentheparticlepassesthroughthecenterofearth,thesatelliteistravelling straightdownward,andhence t v isvertical.Thereforetheorbitalvelocityvofthe satellite,whichisthemagnitudeof t v ,isequaltothespeedoftheparticleatthismoment. 13. (a) Thecharacteristicequation 2 109252210 rrrr hasroots 21 , 52 r Whenweimposetheinitialconditions 00 x , 05 x onthegeneralsolution 252 12 tt x tcece wegettheparticularsolution 50252 xteett . (b) Thederivative 2252510 25205540 tttt t xeeee when 5 10ln2.23144 4 t .Hencethemass’sfarthestdistancetotherightisgivenby 5512 10ln4.096 4125 x . 14. (a) Thecharacteristicequation 2 22 251022651150 rrr hasroots 1151 3 55 i ri .Whenweimposetheinitialconditions 020 x , 041 x on thegeneralsolution 5cos3sin3 t x teAtBt weget20 A ,15 B .Thecorrespondingparticularsolutionisgivenby 55 20cos315sin325cos3tt xettet t , where13tan0.6435 4 . (b) Thustheoscillationsare“bounded”bythecurves5 25 t x e ,andthepseudoperiod ofoscillationis2 3 T (because3 ).
InProblems15-21thegraphofthedampedmotion x t ,thatis,withthedashpotattached,is shownasasolidline;thegraphofthecorrespondingundampedmotion
Copyright©2015PearsonEducation,Inc.
Section3.4 195
ut isdashed.
With damping: Thecharacteristicequation2 1 340 2 rr hasroots2,4 r .When weimposetheinitialconditions 02 x , 00 x onthegeneralsolution 24 12 tt x tcece wegettheparticularsolution 2442tt x tee thatdescribes overdampedmotion. Without damping: Thecharacteristicequation2 1 40 2 r hasroots22 ri .When weimposetheinitialconditions 02 x , 00 x onthegeneralsolution cos22sin22 utAtBt wegettheparticularsolution 2cos22 utt 0 1 2 3 −2 0 2 t x Problem 15 0 1 2 −2 0 2 t x Problem 16 16. With damping: Thecharacteristicequation2330630 rr hasroots3,7 r Whenweimposetheinitialconditions 02 x , 02 x onthegeneralsolution 37 12 tt x tcece wegettheparticularsolution 3742tt x tee thatdescribes overdampedmotion. Without damping: Thecharacteristicequation23630 r hasroots21 ri . Whenweimposetheinitialconditions 02 x , 02 x onthegeneralsolution cos21sin21 utAtBt wegettheparticularsolution 222 2cos21sin212cos210.2149 2121 utttt
15.
196 MECHANICALVIBRATIONS Copyright©2015PearsonEducation,Inc. 17. With damping: Thecharacteristicequation28160 rr hasroots4,4 r .When weimposetheinitialconditions 05 x , 010 x onthegeneralsolution 4 12 t x tccte wegettheparticularsolution 4 521 t xtet thatdescribescriticallydampedmotion. Without damping: Thecharacteristicequation2160 r hasroots4 ri .Whenwe imposetheinitialconditions 05 x , 010 x onthegeneralsolution cos4sin4 utAtBt wegettheparticularsolution 55 5cos4sin45cos45.8195 22 utttt . 0 1 2 −5 0 5 t x Problem 17 0 1 2 −1 1 t x Problem 18 18. With damping: Thecharacteristicequation2212500 rr hasroots34 ri . Whenweimposetheinitialconditions 00 x , 08 x onthegeneralsolution 3cos4sin4 t x teAtBt wegettheparticularsolution 3332sin42cos4 2 tt xtetet thatdescribesunderdampedmotion. Without damping: Thecharacteristicequation22500 r hasroots5 ri .When weimposetheinitialconditions 00 x , 08 x onthegeneralsolution cos5sin5 utAtBt wegettheparticularsolution 883 sin5cos5 552 uttt
Section3.4 197 Copyright©2015PearsonEducation,Inc. 19. Thecharacteristicequation24201690 rr hasroots56 2 ri .Whenweimpose theinitialconditions 04 x , 016 x onthegeneralsolution 52cos6sin6 t x teAtBt wegettheparticularsolution 5252 131 4cos6sin6313cos60.8254 33 tt xtettet thatdescribesunderdampedmotion. Without damping: Thecharacteristicequation241690 r hasroots13 2 ri .When weimposetheinitialconditions 04 x , 016 x onthegeneralsolution 1313cossin 22 utAtBt wegettheparticularsolution 133213413 4cossin233cos0.5517 2132132 tt utt . 0 1 2 −4 4 t x Problem 19 0 1 2 −5 5 t x Problem 20 20. With damping: Thecharacteristicequation2216400 rr hasroots42 ri Whenweimposetheinitialconditions 05 x , 04 x onthegeneralsolution 4cos2sin2 t x teAtBt wegettheparticularsolution 44 5cos212sin213cos21.1760 tt xtettet thatdescribesunderdampedmotion.
198 MECHANICALVIBRATIONS
Without damping: Thecharacteristicequation22400 r hasroots25 ri .When weimposetheinitialconditions 05 x , 04 x onthegeneralsolution cos25sin25 utAtBt wegettheparticularsolution 2129 5cos25sin25cos250.1770 55 utttt 21. With damping: Thecharacteristicequation2101250 rr hasroots510 ri Whenweimposetheinitialconditions 06 x , 050 x onthegeneralsolution 5cos10sin10 t x teAtBt wegettheparticularsolution 55 6cos108sin1010cos100.9273
xtettet thatdescribesunderdampedmotion.
hasroots55
weimposetheinitialconditions 06 x ,
onthegeneralsolution cos55sin55 utAtBt wegettheparticularsolution 6cos5525sin55214cos550.6405utttt 0 1 −6 6 t x Problem 21 22. (a) With120.375slug 32 m ,3lb-secft c ,and24lbft k ,thedifferentialequation isequivalentto3241920 xxx .Thecharacteristicequation23241920 rr hasroots443 ri .Whenweimposetheinitialconditions 01 x , 00 x on
Copyright©2015PearsonEducation,Inc.
tt
Without damping: Thecharacteristicequation21250 r
ri .When
050 x
Section3.4 199 Copyright©2015PearsonEducation,Inc. thegeneralsolution 4cos43sin43 t x teAtBt wegettheparticularsolution 4 4 4 1 cos43sin43 3 231cos43sin43 322 2 cos43. 36 t t t xtett ett et (b) Thetime-varyingamplitudeis21.15ft 3 ,thefrequencyis436.93radsec ,and thephaseangleis6 . 23. (a) With100slug m weget100 k .Butwearegiventhat 80cyclesmin21min60sec83 , andequatingthetwovaluesyields7018lbft k (b) With1782cyclessec 60 ,Equation(21)inthetextyields 372.31lbftsec c Hence1.8615 2 c p m .Finally0.01 pt e gives2.47sec t 30. Intheunderdampedcasewehave 11cossin pt x teAtBt and 111111 cossinsincosptpt x tpeAtBteAtBt . Theconditions 00 x x , 00 x v yieldtheequations0 Ax and10 pABv , whence00 1 vpx B . 31. Thebinomialseries 23112 11 2!3! xxxx
33. If 11x xt and 22x xt aretwosuccessivelocalmaxima,then12112
200 MECHANICALVIBRATIONS Copyright©2015PearsonEducation,Inc. convergesif1 x .(See,forinstance,Section10.8ofEdwardsandPenney,Calculus: EarlyTranscendentals,7thedition,Pearson,2008.)With1 2 and 2 4 c x mk inEq. (22)ofSection3.4inthedifferentialequationstext,thebinomialseriesgives 22242 22 100 222111. 4481288 kckckccc p mmmmkmmkmkmk 32. If cos1 pt xtCet ,then 111 cossin0 ptpt xtpCetCet yields 1 1 tan p t .Becausethetangentfunctionisperiodicwithperiod and thelocalmaximaandminimaof x t
adistanceof 1 2 .
tt ,and so 1 111 cos pt xCet and 22 21211 coscos ptpt xCetCet .Hence 112 2 ptt x e x andtherefore 1 12 21 2 ln x p ptt x . 34. With10.34 t and21.17 t wefirstusetheequation12112 tt fromProblem33 tocalculate127.57radsec 0.83 .Next,with16.73 x and21.46 x ,theresultof Problem33yields16.73ln1.84 0.831.46 p .ThenEquation(16)inthissectiongives 100 221.8411.51lb-secft 32 cmp ,andfinallyEquation(22)yields 222 41189.68lbft 4 mc k m . 35. Thecharacteristicequation2210 rr hasroots1,1 r .Whenweimposetheinitialconditions 00 x , 10 x onthegeneralsolution 12 t x tccte wegetthe particularsolution 1 t x tte . 36. Thecharacteristicequation 2221100 n rr hasroots110 n r .Whenwe imposetheinitialconditions 00 x , 10 x onthegeneralsolution
areinterlaced,successivemaximaareseparatedby
SECTION3.5
NONHOMOGENEOUS EQUATIONS AND UNDETERMINED COEFFICIENTS
Themethodofundeterminedcoefficientsisbasedon“educatedguessing”.Ifwecanguesscorrectlythe form ofaparticularsolutionofanonhomogeneouslinearequationwithconstantcoefficients,thenwecandeterminetheparticularsolutionexplicitlybysubstitutioninthegivendifferentialequation.ItispointedoutattheendofSection3.5thatthissimpleapproachisnotalwayssuccessful—inwhichcasethemethodofvariationofparametersisavailableifacomplementaryfunctionisknown.However,undeterminedcoefficients does turnouttoworkwellwith asurprisinglylargenumberofthenonhomogeneouslineardifferentialequationsthatariseinelementaryscientificapplications.
Section3.4 201 Copyright©2015PearsonEducation,Inc. 12 exp110exp110 nn x tctct wegettheequations 12120,1101101 nn cccc withsolution1125nn c , 1 225nn c .Thisgivestheparticularsolution 2 exp10exp10 1010sinh10 2 nn ntntn tt x teet 37. Thecharacteristicequation 2221100 n rr hasroots110 n ri .Whenwe imposetheinitialconditions 00 x , 10 x onthegeneralsolution cos10sin10 tnn x teAtBt wegettheequations10 c ,12101 n cc withsolution10 c ,210 n c .Thisgives theparticularsolution 310sin10ntn x tet . 38. Thisfollowsfrom 2 sinh10 limlim10sinh10lim 10 n ntntt n nnn t x tettete t and 3 sin10 limlim10sin10lim 10 n ntntt n nnn t x tettete t , usingthefactthat 00 sinsinh limlim0 (byL’Hôpital’srule,forinstance).
IneachofProblems1-20wegivefirsttheformofthetrialsolutiontrial y ,thentheequationsin thecoefficientswegetwhenwesubstitutetrial y intothedifferentialequationandcollectlike terms,andfinallytheresultingparticularsolution
Copyright©2015PearsonEducation,Inc.
202 NONHOMOGENEOUSEQUATIONSANDUNDETERMINEDCOEFFICIENTS
p y 1. 3 trial x yAe ;251 A ; 13 25 x p ye . 2. trial y ABx ;24 AB ,23 B ; 1 56 4 p yx . 3. trialcos3sin3 y AxBx ;1530 AB ,3152 AB ; 15cos3sin3 3939 p y xx . 4. trial x x yAeBxe ;9120 AB ,93 B , 41 93 x x p yexe 5. Firstwesubstitute1cos2 2 x for2 sin x ontheright-handsideofthedifferentialequation,leadingtotrialcos2sin2 y ABxCx ,andthen 11 ,32,230 22 ABCBC ; 131cos2sin2 22613 p yxx 6. 2 trial yABxCx ;7440 ABC ,780 BC ,71 C ; 4812 343497 p yxx 7. Firstwesubstitute 2 x x ee forsinh x ontheright-handsideofthedifferentialequatio, leadingtotrial x x y AeBe ; 1 3 2 A , 1 3 2 B ; 111sinh 663 xx p y eex .(Note thataccordingtoRule1inthetext,wecouldalsohavestartedwith trialcoshsinh y AxBx .) 8. Firstwenotethat 22 cosh2 2 x x ee x ispartofthecomplementaryfunction 22 c12 x x ycece ,leadingto 22 trial x x yxAeBe ; 1 8 A , 1 8 B ;
Section3.5 203 Copyright©2015PearsonEducation,Inc. 22 111 sinh2 884 xx p y xeexx .(AsanextensionofRule2inthetext,wecouldalsohavestartedwith trialcosh2sinh2 yxAxBx .)
Firstwenotethat
ispartofthecomplementaryfunction3 12 x x c y cece .Then trial x yAxBCxe ,andthen 3142081 ABCC ; 111 3168 x p y xxe .
Firstwenotetheduplicationwiththecomplementaryfunction12cos3sin3 c y cxcx . Then trialcos3sin3 yxAxBx ;62 B ;63 A ; 111 cos3sin32sin33cos3 326 p y xxxxxxx 11. Firstwenotetheduplicationwiththecomplementaryfunction 123cos2sin2 c y ccxcx .Then trial yxABx ;41 A ,83 B ; 131232 488 p y xxxx . 12. Firstwenotetheduplicationwiththecomplementaryfunction123cossin c y ccxcx . Then trialcossin yAxxBxCx ;2 A ,20 B ,21 C ; 1 2sin 2 p y xxx 13. trialcossin x yeAxBx ;740 AB ,471 AB ; 1 7sin4cos 65 x p yexx 14. Firstwenotetheduplicationwiththecomplementaryfunction 1234 x x c yccxeccxe .Then 2 trial x yxABxe ;8240 AB ,241 B ; 223 111 3 82424 x xx p y xxexexe 15. Thisissomethingofatrickproblem.Wecannotsolvethecharacteristicequation 54510rr tofindthecomplementaryfunction,butwecanseethatthecomplementaryfunctioncontainsnoconstantterm(why?).Hencewecantaketrial y A ,leading immediatelytotheparticularsolution17 p y
9.
x e
10.
18. Firstwenotetheduplicationwiththecomplementaryfunction 22
19. Firstwenotetheduplicationwiththepart12ccx ofthecomplementaryfunction(which correspondstothefactor2 r ofthecharacteristicpolynomial).Then
20. Firstwenotethatthecharacteristicpolynomial3rr hasthezero1 r correspondingto theduplicatingpart x e ofthecomplementaryfunction.Then:trial x y AxBe ;
InProblems21-30welistfirstthecomplementaryfunction yc ,thentheinitiallyproposedtrial functioni y ,andfinallytheactualtrialfunction p y ,inwhichduplicationwiththecomplementaryfunctionhasbeeneliminated.
21. c12cossin x yecxcx ;
204 NONHOMOGENEOUSEQUATIONSANDUNDETERMINEDCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 16. 23
; 95,18620,18120,182 ABCDCDD ; 23332351211 4569 98127981 x xxx p y xxeexexe
Firstwenotetheduplicationwiththecomplementaryfunction12cossin c y cxcx . Then trialcossin yxABxxCDxx ; 2204122140 BCDADB ; 1112 cossinsincos 444 p y xxxxxxxx
trial x y ABCxDxe
17.
1234
.Then 2 trial x x yxAexBCxe ; 61,12380,241 ABCC ; 222211911 24196 614424144 x xxxx p y xexxexexexe
x xxx c ycececece
22 trial yxABxCx ; 4121,12480,243 ABBCC ; 22234 5111 104 4288 p y xxxxxx .
7 A ;31 B ; 1 7 3 x p y xe
icossin
yeAxBx ; cossin x p yxeAxBx
x
22. 2 12345 x x c y ccxcxcece ; 2 i x y ABxCxDe ; 32 x p yxABxCxxDe
23. 12 cos2sin2 c y cxcx ; icos2sin2 yABxxCDxx ; cos2sin2 p yxABxxCDxx
24. 34 123 x x c yccece ; 3 i x yABxCDxe ; 3 x p yxABxxCDxe
25. 2 12 x x c ycece ;
2 i x x yABxeCDxe ;
2 x x p yxABxexCDxe
26.
3 12 cos2sin2 x c yecxcx ;
33 icos2sin2 xx yABxexCDxex ;
33 cos2sin2 xx p yxABxexCDxex
27. 1234 cossincos2sin2 c ycxcxcxcx ;
icossincos2sin2 yAxBxCxDx ;
cossincos2sin2 p y xAxBxCxDx
28. 1234cos3sin3 c yccxcxcx ;
22 icos3sin3y ABxCxxDExFxx ;
22 cos3sin3 p y xABxCxxDExFxx
29. 222 12345 x xx c yccxcxecece
InProblems31-40welistfirstthecomplementaryfunction yc ,thetrialsolutiontr y forthe methodofundeterminedcoefficients,andthecorrespondinggeneralsolutiong
, where
Copyright©2015PearsonEducation,Inc.
Section3.5 205
; 22 i x yABxeCeDexx ; 322 p x yxABxexCexDexx 30. 1234 x x c yccxeccxe ; 22 icossin p y yABxCxxDExFxx
yyycp
p
yx .
y resultsfromdeterminingthecoefficientsintr y soastosatisfythegivennonhomogeneousdifferentialequation.Thenwelistthelinearequationsobtainedbyimposingthegiven initialconditions,andfinallytheresultingparticularsolution
206 NONHOMOGENEOUSEQUATIONSANDUNDETERMINEDCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 31. 12 cos2sin2 c y cxcx ;tr y ABx ;g12cos2sin2 2 x ycxcx ;11 c ,2 1 22 2 c ; ()cos2(3/4)sin2/2 yxxxx 32. 2 12 x x c ycece ;tr x yAe ; 2 g12 1 6 x xx ycecee ;12 1 0 6 cc , 12 1 23 6 cc ; 2 581 236 x xx y xeee 33. 12 cos3sin3 c y cxcx ;trcos2sin2 y AxBx ;g12 1 cos3sin3sin2 5 ycxcxx ; 11c ,2 2 30 5 c , 21 cos3sin3sin2 155 y xxxx 34. 12cossin c y cxcx ; trcossin yxAxBx ;g12 1 cossinsin 2 y cxcxxx ; 11c ,21 c , 1 cossinsin 2 yxxxxx 35. 12cossin x c yecxcx ;tr y ABx ; g12cossin1 2 x x yecxcx ;113 c , 12 1 0 2 cc ; 5 2cossin1 22 x x yxexx 36. 22 1234 x x c y ccxcece ; 22 tr yxABxCx 24 22 g12341648 xx x x yccxcece 1342343434 1 1,221,441,881 8 cccccccccc 222439531111 32464641648 xx y xxeexx 37. 123 x x c yccecxe ; 2 tr x yxAxBCxe 23 g123 11 26 x xxx y ccecxexxexe 1223230,10,211cccccc 2311 443 26 x y xxexxx
Section3.5 207 Copyright©2015PearsonEducation,Inc. 38. 12cossin x c yecxcx ;trcos3sin3 y AxBx g12 67 cossincos3sin3 8585 x yecxcxxx 112 621 2,0 18585 ccc 17619767cossincos3sin3 85858585 x y xexxxx 39. 123 x c y ccxce ; 2 tr x yxABxxCe 23 g12326 x x xx y ccxcexe 132331,10,31ccccc 123181834 6 x y xxxxxe 40. 1234tr cossin; xx c ycececxcxyA g1234cossin5 xx ycececxcx 123124123124 50,0,0,0 cccccccccccc 1 5510cos20 4 xx yxeex 41. Thetrialsolution2345 tr yABxCxDxExFx leadstotheequations 226240 226241200 2312600 24200 250 28 ABCDE BCDEF CDEF DEF EF F thatarereadilysolvedbyback-substitution.Theresultingparticularsolutionis 23452554503020104 yxxxxxx . 42. Thecharacteristicequation43220 rrrr hasroots1,2 r ,and i ,sothe complementaryfunctionis2c1234cossin xx y cececxcx .Wefindthatthecoefficientssatisfytheequations
43. (a) ApplyingEuler’sformulagives 33223 cos3sin3cossincos3cossin3cossinsin x ixxixxixxxxix
323 cos3cos1cos4cos3cos x xxxx
44 coscoscos3 x xx .Theformulafor3 sin x isderived similarlybyequatingimaginarypartsinthefirstequationabove.
(b) Uponsubstitutingthetrialsolutioncossincos3sin3 p yAxBxCxDx
208 NONHOMOGENEOUSEQUATIONSANDUNDETERMINEDCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 123 124 123 124 2550 4500 4600 81200 ccc ccc ccc ccc . Solutionofthissystemgivesfinallytheparticularsolutioncp
,wherep y
particularsolutionofProblem41and 2 c 1035210cos390sin xx yeexx .
. Whenweequaterealpartswegettheequation
y yy
isthe
andreadilysolvefor331
inthe
y yxx ,wefindthat 11 ,0,,0 420 ABCD . Theresultinggeneralsolutionis 12 11 cos2sin2coscos3 420 yxcxcxxx . 44. Weusetheidentity11 22 sinsin3cos2cos4 x xxx ,andhencesubstitutethetrialsolutioncos2sin2cos4sin4 p y AxBxCxDx inthedifferentialequation 11 22cos2cos4 y yyxx .Wefindthat 31152 ,,, 2613482241 ABCD . Theresultinggeneralsolutionis 2 12 3311 cossin3cos22sin215cos44sin4 2226482 x y xecxcxxxxx . 45. Wesubstitute 2 42111 sin1cos212cos2cos234cos2cos4 448 x xxxxx
differentialequation31 44 4coscos3
eindependentsolutions1 y and2 y oftheassociatedhomogeneous equation,theirWronskian
Section3.5 209 Copyright©2015PearsonEducation,Inc. ontheright-handsideofthedifferentialequation,andthensubstitutethetrialsolution cos2sin2cos4sin4 p y AxBxCxDxE . Wefindthat 111 ,0,,0, 105624 ABCDE Theresultinggeneralsolutionis 12 111 cos3sin3cos2cos4 241056 ycxcxxx 46. Bytheformulafor3 cos x inProblem43,thedifferentialequationcanbewrittenas 31 coscos3 44 yyxxxx . Thecomplementarysolutionis12cossin c y cxcx ,sowesubstitutethetrialsolution cossincos3sin3 p yxABxxCDxxEFxxGHxx Wefindthat 3313 ,0,,0,,,0 161632128 ABCDEFGH . Hencethegeneralsolutionisgivenby12 c y yyy ,where 2 1 1 3cos3sin 16 yxxxx and 2 1 3sin34cos3 128 yxxx InProblems47–49welistth
WWyy ,thecoefficientfunctions 2 1 yxfx uxdx Wx and 1 2 yxfx uxdx Wx intheparticularsolution1122 p y uyuy ofEq.(32)inthetext,andfinally p y itself. 47. 2 1 x ye ,2 x ye , 3 x We , 3 1 4 3 x ue , 2 22 x ue , 2 3 x p ye 48. 2 1 x ye , 4 2 x ye , 62 x We ,12 x u , 6 2 1 12 x ue , 12 61 12 x p yxe 49. 2 1 x y e , 2 2 x y xe , 4 x We , 2 1 ux ,22ux , 22 x p yxe
12 ,