Differential equations computing and modeling and differential equations and boundary value problems

Page 1

Differential Equations Computing and Modeling and Differential Equations and Boundary Value Problems Computing and Modeling 5th Edition Edwards Solutions Manual Visit to Download in Full: https://testbankdeal.com/download/differential-equations-co mputing-and-modeling-and-differential-equations-and-boundary-value-problems-com puting-and-modeling-5th-edition-edwards-solutions-manual/

LINEAR EQUATIONS OF HIGHER ORDER

SECTION3.1

INTRODUCTION: SECOND-ORDER LINEAR EQUATIONS

Inthissectionthecentralideasofthetheoryoflineardifferentialequationsareintroducedand illustratedconcretelyinthecontextof second-order equations.Thesekeyconceptsincludesuperpositionofsolutions(Theorem1),existenceanduniquenessofsolutions(Theorem2),linear independence,theWronskian(Theorem3),andgeneralsolutions(Theorem4).Thisdiscussion ofsecond-orderequationsservesaspreparationforthetreatmentof nthorderlinearequationsin Section3.2.Althoughtheconceptsinthissectionmayseemsomewhatabstracttostudents,the problemssetisquitetangibleandlargelycomputational.

IneachofProblems1–16theverificationthat1 y and2 y satisfythegivendifferentialequationis aroutinematter.AsinExample2,wethenimposethegiveninitialconditionsonthegeneral solution1122

Copyright©2015PearsonEducation,Inc.

167
CHAPTER3
y cycy
c and2 c 1. Impositionoftheinitialconditions 00 y  , 05 y   onthegeneralsolution  12 x x yxcece  yieldsthetwoequations120 cc ,125 cc withsolution15 2 c  , 2 5 2 c  .Hencethedesiredparticularsolutionis   5 2 x x y xee  2. Impositionoftheinitialconditions 01 y  , 015 y   onthegeneralsolution  33 12 x x yxcece  yieldsthetwoequations121 cc ,123315 cc ,withsolution 12c  ,23 c  .Hencethedesiredparticularsolutionis  3323 x x yxee  . 3. Impositionoftheinitialconditions 03 y  , 08 y   onthegeneralsolution  12 cos2sin2 yxcxcx  yieldsthetwoequations13 c  ,228 c  withsolution13 c  , 24c  .Hencethedesiredparticularsolutionis  3cos24sin2 yxxx  . 4. Impositionoftheinitialconditions 010 y  , 010 y   onthegeneralsolution  12 cos5sin5 yxcxcx  yieldsthetwoequations110 c  ,2510 c  withsolution 13c  ,24 c  .Hencethedesiredparticularsolutionis  10cos52sin5 yxxx  Differential Equations Computing and Modeling and Differential Equations and Boundary Value Visit TestBankDeal.com to get complete for all chapters
.Thisyieldstwolinearequationsthatdeterminethevaluesoftheconstants1
168 INTRODUCTION:SECOND-ORDERLINEAREQUATIONS Copyright©2015PearsonEducation,Inc. 5. Impositionoftheinitialconditions 01 y  , 00 y   onthegeneralsolution  2 12 x x yxcece  yieldsthetwoequations121 cc ,1220cc withsolution 12c  ,21 c  .Hencethedesiredparticularsolutionis  22 x x yxee  . 6. Impositionoftheinitialconditions 07 y  , 01 y   onthegeneralsolution  23 12 x x yxcece  yieldsthetwoequations127 cc ,12231 cc withsolution 14c  ,23 c  .Hencethedesiredparticularsolutionis  2343 x x yxee  7. Impositionoftheinitialconditions 02 y  , 08 y   onthegeneralsolution  12 x yxcce  yieldsthetwoequations122 cc ,28 c  withsolution16 c  , 28c  .Hencethedesiredparticularsolutionis  68 x yxe  . 8. Impositionoftheinitialconditions 04 y  , 02 y   onthegeneralsolution 3 ()12 x y xcce  yieldsthetwoequations124 cc ,232 c  withsolution114 3 c  , 2 2 3 c  .Hencethedesiredparticularsolutionis  13 142 3 x y xe  . 9. Impositionoftheinitialconditions 02 y  , 01 y   onthegeneralsolution  12 x x yxcecxe  yieldsthetwoequations12 c  ,121 cc  withsolution 12c  21c  .Hencethedesiredparticularsolutionis  2 x x yxexe  . 10. Impositionoftheinitialconditions 03 y  , 013 y   onthegeneralsoution  55 12 x x yxcecxe  yieldsthetwoequations13 c  ,12513 cc withsolution13 c  , 22c  .Hencethedesiredparticularsolutionis  5532 x x yxexe  . 11. Impositionoftheinitialconditions(0)0 y  , 05 y   onthegeneralsolution  12cossin xx yxcexcex  yieldsthetwoequations10 c  ,125 cc withsolution 10c  ,25 c  .Hencethedesiredparticularsolutionis  5sin x yxex  12. Impositionoftheinitialconditions 02 y  , 00 y   onthegeneralsolution  33 12cos2sin2 xx yxcexcex  yieldsthetwoequations12 c  ,12325 cc  with solution12 c  ,23 c  .Hencethedesiredparticularsolutionis  32cos23sin2 x yxexx  .
Section3.1 169 Copyright©2015PearsonEducation,Inc. 13. Impositionoftheinitialconditions 13 y  , 11 y   onthegeneralsolution  2 12 yxcxcx  yieldsthetwoequations123 cc ,1221cc withsolution15 c  , 22c  .Hencethedesiredparticularsolutionis  522yxxx  . 14. Impositionoftheinitialconditions 210 y  , 215 y   onthegeneralsolution  23 12 yxcxcx  yieldsthetwoequations2 1 410 8 c c  , 2 1 3 415 16 c c  withsolution 13c  ,216 c  .Hencethedesiredparticularsolutionis  2 3 16 3 yxx x  . 15. Impositionoftheinitialconditions 17 y  , 12 y   onthegeneralsolution  12ln yxcxcxx  yieldsthetwoequations17 c  ,122 cc withsolution17 c  , 25c  .Hencethedesiredparticularsolutionis  75ln yxxxx  . 16. Impositionoftheinitialconditions 12 y  , 13 y   onthegeneralsolution  12 coslnsinln yxcxcx  yieldsthetwoequations12 c  ,23 c  .Hencethedesiredparticularsolutionis  2cosln3sinln yxxx  17. If c y x  ,then  2 2 222 1 0 cc cc yy xxx   unlesseither0 c  or1 c  . 18. If3 y cx  ,then3244 666 yycxcxcxx   unless21 c  19. If1yx  ,then   2 321232 210 424 xxx yyyx     . 20. Linearlydependent,because    22 cossin f xxxgx   . 21. Linearlyindependent,because32 x xx  if0 x  ,whereas32 x xx  if0 x  22. Linearlyindependent,because 11 x cx wouldrequirethat1 c  with0 x  ,but 0 c  with1 x  .Thusthereisnosuchconstant c. 23. Linearlyindependent,because  f xgx  if0 x  ,whereas  f xgx  if0 x  . 24. Linearlydependent,because  2 gxfx  .

25.  sin x f xex  and  cos x gxex  arelinearlyindependent,because  f xkgx  wouldimplythatsincos x kx  ,whereassin x andcos x arelinearlyindependent,as notedinExample3.

26. Toseethat  f x and gx arelinearlyindependent,assumethat

 ,and thensubstituteboth0 x  and

27. Theoperatornotationusedelsewhereinthischapterisconvenienthere.Let   Ly denote y pyqy

28. If

with1 x  .

(b) For0 x  ,  12,0Wyy  because21 y y  .For0 x  ,  33 1222 ,0 33 xx Wyy xx 

because21 y y  .At0 x  ,2 y hasleft-andright-handderivativesbothequaltozero, sothat  12 00 ,0 00 Wyy  onceagain.Thus  12 , Wyy isidenticallyzero.

Thefactthat  12,0Wyy  everywheredoesnotcontradictTheorem3,becausewhenthe givenequationiswrittenintherequiredform,namely2 33 0 yyy xx  ,thecoefficientfunctions  3 px x  and  2 3 qx x  arenotcontinuousat0 x  .

31.  12,2 Wyyx  vanishesat0 x  ,whereasif1 y and2 y were(linearlyindependent) solutionsofanequation0 ypyqy  with p and q bothcontinuousonanopeninterval I containing0 x  ,thenTheorem3wouldimplythat0 W  on I.

32. (a) Because1212 Wyyyy   ,wehave

Copyright©2015PearsonEducation,Inc.

170
INTRODUCTION:SECOND-ORDERLINEAREQUATIONS

2
 
f xcgx
x
 .Then   0 c Ly  and p Lyf    ,so0 cp Lyyff  .

 ,then  12sincos yxcxcx   ,sotheinitialconditions  001yy   yield12 c  ,21 c  .Hence  12cossin yxxx  . 29.
2
to
 4 px x  and  2 6 qx x  arenotcontinuousat0 x  . 30. (a) 3 1y x  and3 2 yx  arelinearlyindependentbecause33 x cx  wouldrequirethat 1 c  with1 x  ,but1 c 
12 1cossin yxcxcx
Thereisnocontradiction,becauseifthegivendifferentialequationisdividedby
x
gettheforminEquation(8)inthetext,thentheresultingfunctions

(c) Becausetheexponentialfactorisneverzero.

InProblems33–42wegivethecharacteristicequation,itsroots,andthecorrespondinggeneral solution.

Section3.1 171 Copyright©2015PearsonEducation,Inc. 12 dW AAyy dx   121212 yyyyyy      1221 122211 1212 12,, yAyyAy y ByCyyByCy Byyyy BWyy            andthus   dW A xBxWx dx  . (b) Thedifferentialequationfor Wx foundin a canberewrittenas    0 Bx dW Wx dxAx  ,since Ax isneverzero.Wecansolvethisequationasalinear first-orderequation:Multiplyingbytheintegratingfactor    exp Bx x dx Ax       gives        expexp0 BxBxBx dW dxdxWx AxdxAxAx     , or    exp0 Bx d dxWx dxAx          , or    exp Bx dxWxK Ax      , where K isaconstant.Finallywefind   exp Bx WKdx Ax     ,asdesired.
33. 2320rr ;1,2 r  ;  2 12 x x y xcece  34. 22150rr ;3,5 r  ;  53 12 x x y xcece  35. 250rr ;0,5 r  ;  5 12 x y xcce 

InProblems43–48wefirstwriteandsimplifytheequationwiththeindicatedcharacteristic roots,andthenwritethecorrespondingdifferentialequation.

Copyright©2015PearsonEducation,Inc.

172
INTRODUCTION:SECOND-ORDERLINEAREQUATIONS
36. 2 230 rr ; 3 0, 2 r  ;  32 12 x yxcce  37. 2 210 rr ; 1 1, 2 r  ;  2 12 x x y xcece  38. 2 4830 rr ; 13 , 22 r  ;  232 12 x x yxcece  39. 2 4410 rr ; 1 2 r  (repeated);  2 12 x y xccxe  40. 2 91240 rr ; 2 3 r  (repeated);  23 12 x y xccxe  41. 2 67200 rr ; 45 , 32 r  ;  4352 12 x x y xcece  42. 2 35120 rr ; 43 , 75 r  ;  4735 12 x x y xcece 
43.  2 010100rrrr  ;100 yy 44.  2 10101000rrr  ; 1000 y y   45.  2 1010201000rrrr  ;201000 yyy  46.  2 1010011010000rrrr  ; 11010000yyy  47.  2 000rrr  ;0 y   48.   2 1212210rrrr    ; 20yyy   49. Thesolutioncurvewith 01 y  , 06 y   is  872 x x yxee  .Wefindthat  0 yx   when7 ln 4 x  ,sothat 4 7 x e  and216 49 x e  .Itfollowsthat716 ln 47 y     ,
Section3.1 173 Copyright©2015PearsonEducation,Inc. sothehighpointonthecurveis716ln,(0.56,2.29) 47     ,whichlooksconsistentwith Fig.3.1.6. 50. Thetwosolutioncurvessatisfying  0 ya  and  0 yb  ,aswellas 01 y   ,aregivenby   2 2 211 211. x x x x y aeae y bebe   Subtraction,followedbydivisionby ab ,gives2 2 x x ee  ,soitfollowsthat ln2 x  .Nowsubstitutionineitherformulagives2 y  ,sothecommonpointofintersectionis  ln2,2 51. (a) Thesubstitutionlnvx  gives 1 dydydvdy y dxdvdxxdv   . Thenanotherdifferentiationusingthechainandproductrulesgives 2 2 2 2 2 222 1 11 11 11 dy y dx ddy dxdx ddy dxxdv dyddy xdvxdxdv dyddydv x dvxdvdvdx dydy x dvxdv                   Substitutionoftheseexpressionsfor y  and y  intoEq.(21)inthetextthenyieldsimmediatelythedesiredEq.(23):  2 20dydy abacy dvdv  .
  12 1212 121212 rr rvrvrr vv y xcececececxcx 
(b) Iftheroots1 r and2 r ofthecharacteristicequationofEq.(23)arerealanddistinct, thenageneralsolutionoftheoriginalEulerequationis

SECTION3.2

GENERAL SOLUTIONS OF LINEAR EQUATIONS

StudentsshouldcheckeachofTheorems1through4inthissectiontoseethat,inthecase2 n  , itreducestothecorrespondingtheoreminSection3.1.Similarly,thecomputationalproblems forthissectionlargelyparallelthosefortheprevioussection.BytheendofSection3.2students shouldunderstandthat,althoughwedonotprovetheexistence-uniquenesstheoremnow,itprovidesthebasisforeverythingwedowithlineardifferentialequations.

ThelinearcombinationslistedinProblems1–6werediscovered“byinspection”—thatis,bytrial anderror.

174 INTRODUCTION:SECOND-ORDERLINEAREQUATIONS Copyright©2015PearsonEducation,Inc. 52. Thesubstitutionlnvx  yieldstheconvertedequation 2 20 dy y dv  ,whosecharacteristic equation210 r  hasroots11 r  and21 r  .Because v ex  ,thecorrespondinggeneralsolutionis2 121 vv c ycececx x  53. Thesubstitutionlnvx  yieldstheconvertedequation 2 2120dydy y dvdv  ,whosecharacteristicequation2120 rr hasroots14 r  and23 r  .Because v ex  ,thecorrespondinggeneralsolutionis4343 1212 vv y cececxcx  54. Thesubstitutionlnvx  yieldstheconvertedequation 2 2 4430 dydy y dvdv  ,whose characteristicequation24430 rr hasroots13 2 r  and21 2 r  .Because v ex  , thecorrespondinggeneralsolutionis3/2/23/21/2 1212 vv y cececxcx  55. Thesubstitutionlnvx  yieldstheconvertedequation 2 20 dy dv  ,whosecharacteristic equation20 r  hasrepeatedroots12,0rr  .Becauselnvx  ,thecorrespondinggeneral solutionis1212ln y ccvccx . 56. Thesubstitutionlnvx  yieldstheconvertedequation 2 2440dydy y dvdv  ,whosecharacteristicequation2440 rr hasroots12,2rr  .Because v ex  ,thecorresponding generalsolutionis  222 1212ln vv y cecvexccv  .

1.  5822 231580 23 xxxx  

forall x.

2.  22 45523110150 xx  forall x

3. 100sin00 x xe  forall x. 4. 221717 1172sin3cos0 23 xx 

  forall x,because22sincos1 xx .

5.  2 11734cos17cos20 xx  forall x,because22cos1cos2 x x  .

eee Weeee eee

23 236 23 232 49

xxx x xxx xxx



 22

 714 x Wxexx

x

Copyright©2015PearsonEducation,Inc.

Section3.2 175
 


isneverzero. 9.
cossin x
Wexxe
isneverzero. 10.
isnonzerofor0
6. 11cosh1sinh0 x exx  ,because  cosh1 2 x x x ee and 11.
1 sinh 2 x x x ee . 7. 12 0122 002 x Wxe
xx Wx isnonzeroeverywhere. isnonzeroif0
8. 12.

x  .
32
x 
 2222 2cosln2sinln2 Wxxxx    isnonzerofor0 x  .

IneachofProblems13-20wefirstformthegeneralsolution
112233 y xcyxcyxcyx  ,thencalculate  y x  and  y x  ,andfinallyimposethe giveninitialconditionstodeterminethevaluesofthecoefficients123 ,, ccc .
176
Copyright©2015PearsonEducation,Inc. 13. Impositionoftheinitialconditions 01 y  , 02 y   , 00 y   onthegeneralsolution  2 123 x xx y xcecece  yieldsthethreeequations 1231231231,22,40ccccccccc  , withsolution14 3 c  ,20 c  ,3 1 3 c  .Hencethedesiredparticularsolutionisgivenby  12 4 3 x x yxee  14. Impositionoftheinitialconditions 00 y  , 00 y   , 03 y   onthegeneralsolution  23 123 x xx y xcecece  yieldsthethreeequations 123123123 1,232,490ccccccccc  , withsolution13 2 c  ,23 c  ,3 3 2 c  .Hencethedesiredparticularsolutionisgivenby  2333 3 22 x xx y xeee  15. Impositionoftheinitialconditions 02 y  , 00 y   , 00 y   onthegeneralsolution  2 123 x xx y xcecxecxe  yieldsthethreeequations 1121232,0,220cccccc  , withsolution12 c  ,22 c  ,31 c  .Hencethedesiredparticularsolutionisgivenby   222 x yxxxe  16. Impositionoftheinitialconditions 01 y  , 04 y   , 00 y   onthegeneralsolution  22 123 x xx y xcececxe  yieldsthethreeequations 121231231,24,440cccccccc  withsolution112 c  ,213 c  ,310 c  .Hencethedesiredparticularsolutionisgiven by  22121310 x xx y xeexe  . 17. Impositionoftheinitialconditions 03 y  , 01 y   , 02 y   onthegeneralsolution  123cos3sin3 y xccxcx  yieldsthethreeequations 13323,31,92cccc 
GENERALSOLUTIONSOFLINEAREQUATIONS

1122 cpp y xyxyxcyxcyxyx  , thencalculate  y x  ,andfinallyimposethegiveninitialconditionstodeterminethevaluesof thecoefficients1 c and2 c .

21. Impositionoftheinitialconditions 02 y  , 02 y   onthegeneralsolution

 12cossin3 y xcxcxx  yieldsthetwoequations12 c  ,232 c  withsolution

12c  ,25 c  .Hencethedesiredparticularsolutionisgivenby

 2cos5sin3 y xxxx 

Section3.2 177 Copyright©2015PearsonEducation,Inc. withsolution129 9 c  ,2 2 9 c  ,3 1 3 c  .Hencethedesiredparticularsolutionisgiven by  2921cos3sin3 993 yxxx  . 18. Impositionoftheinitialconditions 01 y  , 00 y   , 00 y   onthegeneralsolution  123cossin x y xeccxcx  yieldsthethreeequations 12123131,0,20ccccccc  withsolution12 c  ,21 c  ,31 c  .Hencethedesiredparticularsolutionisgivenby  2cossin x y xexx  . 19. Impositionoftheinitialconditions 16 y  , 114 y   , 122 y   onthegeneralsolution  23 123 y xcxcxcx  yieldsthethreeequations 123123236,2314,2622cccccccc  , withsolution11 c  ,22 c  ,33 c  .Hencethedesiredparticularsolutionisgivenby  2323 y xxxx  . 20. Impositionoftheinitialconditions 11 y  , 15 y   , 111 y   onthegeneralsolution  22 123ln y xcxcxcxx  yieldsthethreeequations 12123231,25,6511ccccccc  , withsolution12 c  ,21 c  ,31 c  .Hencethedesiredparticularsolutionisgivenby  22 2ln y xxxxx  . IneachofProblems21-24wefirstformthegeneralsolution 

GENERALSOLUTIONSOFLINEAREQUATIONS

22. Impositionoftheinitialconditions 00 y  , 010 y   onthegeneralsolution

 22 123 xx yxcece yieldsthetwoequations1230 cc ,122210 cc withsolution14 c  ,21 c  .Hencethedesiredparticularsolutionisgivenby

 22 43 xx yxee

23. Impositionoftheinitialconditions 03 y  , 011 y   onthegeneralsolution

 3 122 xx yxcece yieldsthetwoequations1223 cc ,12311cc  withsolution11 c  ,24 c  .Hencethedesiredparticularsolutionisgivenby

 3 42xx yxee .

24. Impositionoftheinitialconditions 04 y  , 08 y   onthegeneralsolution

 12coscos1 xx y xcexcexx  yieldsthetwoequations114 c  ,1218 cc withsolution13 c  ,24 c  .Hencethedesiredparticularsolutionisgivenby 

Copyright©2015PearsonEducation,Inc.

178
3cos4sin1 x y xexxx  . 25.   1212 LyLyyLyLyfg  26. (a) 12y  and23 y x  (b) 1223 y yyx 27. Theequations 2 12323310,20,20ccxcxccxc  (thelattertwoobtainedbysuccessivedifferentiationofthefirstone)evidentlyimplythat 1230 ccc . 28. Ifwedifferentiatetheequation20120 n n ccxcxcx  repeatedly, n timesinsuccession,theresultisthesystem 2 012 1 12 1 0 20 (1)!!0 !0 n n n n nn n ccxcxcx ccxncx ncncx nc        of1 n  equationsinthe1 n  coefficients012,,,, n cccc  .Thelastequationimpliesthat 0 n c  ,whereupontheprecedingequationgives10 n c  ,andsoforth.Thusitfollows thatallofthecoefficientsmustvanish.
Section3.2 179 Copyright©2015PearsonEducation,Inc. 29. If010 rxrxnrx n cecxecxe  ,thendivisionby rx e yields010 n n ccxcx  ,so theresultofProblem28applies. 30. Whentheequation2220 xyxyy isrewritteninstandardform 2 22 0 yyy xx     , weseethatthecoefficientfunctions1 2 p x  and  22 2 px x  arenotcontinuousat 0 x  .ThusthehypothesesofTheorem3arenotsatisfied. 31. (a) Substitutionof x a  inthedifferentialequationgives  y apyaqa   (b) If 01 y  and 00 y   ,thentheequation250 yyy   impliesthat  020505yyy  . 32. Letthefunctions12,,, n y yy  bechosenasindicated.Thenevaluationat x a  ofthe 1st k derivativeoftheequation11220 cycycynn yields0 ck  .Thus 120 n ccc ,sothefunctionsarelinearlyindependent. 33. Thisfollowsfromthefactthat  222 111 abcbacbca abc  whena,b,andcaredistinct,whichcanbeverifiedbyexpandingbothsidesoftheequation. 34.  121 ,,,exp n ni i WfffVrx       ,andneither V nor exp1 n i i rx       vanishes. 36. If1 y vy  ,thensubstitutionofthederivatives11 y vyvy   ,111 2 y vyvyvy   inthe differentialequation0 ypyqy  gives       111111 20vyvyvypvyvyqvy   , or   11111120vypyqyvyvypvy   . Butthetermswithinbracketsvanishbecause1 y isasolution,andthisleavestheequation  11120yvypyv   .

tionandsimplify,wegetthe

180 GENERALSOLUTIONSOFLINEAREQUATIONS Copyright©2015PearsonEducation,Inc. Wecansolvethisbyseparatingvariablesandintegrating:1 1 2 vy p vy    leadsto  1 ln2lnln vypxdxC   , or   2 1 pxdx C vxe y    , or   2 1 pxdx e vxCdxK y      . With1 C  and0 K  thisgivesthesecondsolution   212 1 pxdx e y xyxdx y      37. Whenwesubstitute3 y vx  inthegivendifferentialequationandsimplify,wegetthe separableequation0 xvv ,whichwewriteas1 v vx    .Integratinggives lnlnlnvxA   ,andthensolvingfor v  leadsto A v x   ,orfinally  ln vxAxB  With1 A  and0 B  weget  ln vxx  ,andthus  3 2ln y xxx  . 38. Whenwesubstitute3 y vx 
xvv ,whichwewriteas7 v vx    .Integratinggives ln7lnlnvxA   ,andthensolvingfor v  leadsto7 A v x   ,orfinally  66 A vxB x  .With6 A  and0 B  weget  6 1 vx x  ,andhence  23 1 yx x  . 39. Whenwesubstitute2 x y ve  inthegivendifferentialequa
allygetthesimpleequation0 v   ,withgeneralsolution  vxAxB  .With1 A  and0 B  weget  vxx  ,andhence  2 2 x y xxe  40. Whenwesubstitute y vx  inthegivendifferentialequa
separableequation0 vv   ,whichwewriteas1 v v    .Integratinggives
inthegivendifferentialequa
separableequation70
tionandsimplify,weeventu-
tionandsimplify,wegetthe
Section3.2 181 Copyright©2015PearsonEducation,Inc. lnlnvxA   ,andthensolvingfor v  leadsto x vAe   ,orfinally  x vxAeB  . With1 A  and0 B  weget  x vxe  ,andhence  2 x y xxe  41. Whenwesubstitute x y ve  inthegivendifferentialequationandsimplify,wegetthe separableequation 10 xvxv   ,whichwewriteas1 1 11 vx vxx     .Integratinggives  lnln1ln vxxA   ,andthensolvingfor v  leadsto  1 x vAxe   ,orfinally  12xx vxAxedxAxeB   .With1 A  and0 B  weget  2 x vxxe  ,andhence  22 y xx  . 42. Whenwesubstitute y vx  inthegivendifferentialequationandsimplify,wegetthe separableequation 212 x xvv   ,whichwewriteas  2 2211 111 v vxxx xx     Integratinggives  ln2lnln1ln1ln vxxxA   , andthensolvingfor v  leadsto  2 22 11 1 Ax vA xx     ,orfinally  1 vxAxB x     .With1 A  and0 B  weget  1 vxx x  ,andhence  2 21yxx 43. Whenwesubstitute y vx  inthegivendifferentialequationandsimplify,wegetthe separableequation  22 124 x xvxv   ,whichwewriteusingthemethodofpartial fractionsas  2 2 24211 111 vx vxxx xx     . Integratinggives  ln2lnln1ln1ln vxxxA   , andthensolvingfor v  leadsto    222 111 12121 A vA x xx xx          , orfinally

SECTION3.3

HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

Thisisapurelycomputationalsectiondevotedtothesinglemostwidelyapplicabletypeofhigherorderdifferentialequations—linearoneswithconstantcoefficients.InProblems1–20,we firstwritethecharacteristicequationandlistitsroots,thengivethecorrespondinggeneralsolutionofthegivendifferentialequation.Explanatorycommentsareincludedonlywhenthesolutionofthecharacteristicequationisnotroutine.

182 GENERALSOLUTIONSOFLINEAREQUATIONS Copyright©2015PearsonEducation,Inc.    111 ln1ln1 22 vxAxxB x     . With1 A  and0 B  weget    111 ln1ln1 22 vxxx x  ,andhence  2 1ln1 21 x x yx x   44. Whenwesubstitute1/2cos y vxx  inthegivendifferentialequationandsimplify,we eventuallygettheseparableequation  cos2sin x vxv   ,whichwewriteas 2sin cos vx vx    .Integratinggives 2 ln2lncoslnlnsecln vxAxA   , andthensolvingfor v  leadsto2 sec vAx   ,orfinally  tan vxAxB  .With1 A  and0 B  weget  tan vxx  ,andhence  1/21/2 2tancossin yxxxxxx 
1.  24220 rrr ;2,2 r  ;  22 12 x x y xcece  2.  2 23230 rrrr ; 3 0,2 r  ;  32 12 x y xcce  3.  2310520 rrrr ;5,2 r  ;  25 12 x x y xcece  4.  2 2732130 rrrr ; 1 2,3 r  ;  23 12 x x y xcece  5.  226930rrr ;3 r  (repeated);  33 12 x x y xcecxe  6. 2550rr ; 55 2 r   ;  5555 22 12 x x yxcece  
Section3.3 183 Copyright©2015PearsonEducation,Inc. 7.  22 4129230 rrr ; 3 2 r  (repeated);  3232 12 x x y xcecxe  8. 26130rr ; 616 32 2 ri   ;  3 12 cos2sin2 x y xecxcx  9. 28250rr ; 836 43 2 ri   ;  4 12 cos3sin3 x y xecxcx  10.  433 53530 rrrr ; 3 0,0,0, 5 r  ;  235 1234 x yxccxcxce  11.  4322281640rrrrr ;0,0,4,4 r  ;  44 1234 x x y xccxcecxe  12.  43233310rrrrrr ;0,1,1,1 r  ;  2 1234 x xx y xccecxecxe  13.  322 9124320 rrrrr ; 22 0,, 33 r  ;  2323 123 x x yxccecxe  14. 422234140rrrr ;1,1,2 ri  ;  1234cos2sin2 xx y xcececxcx  15.   422222 48164220 rrrrr  ;2,2,2,2 r  ;  2222 1234 x xxx y xcecxececxe  16.  4222188190rrr ;3,3 rii  ;  1234cos3sin3 yxccxxccxx  17. 4222 611421340 rrrr  ; 2 , 23 ii r  ;  1234 22cossincossin 2233 x xxx yxcccc  18. 42216440rrr ;2,2,2 ri  ;  22 1234cos2sin2 xx yxcececxcx  19. Factoringbygroupinggives   32222 111110rrrrrrrr  ; 1,1,1 r  ;  123 x xx y xcececxe 
184 HOMOGENEOUSEQUATIONSWITHCONSTANTCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 20.  43222 232110rrrrrr  ; 1313 , 22 ii ;    22 1234 33cossin 22 xx y xeccxxeccxx    21. Impositionoftheinitialconditions 07 y  , 011 y   onthegeneralsolution  3 12 x x y xcece  yieldsthetwoequations127 cc ,12311cc withsolution 15c  ,22 c  .Hencethedesiredparticularsolutionis  523 x x y xee  22. Impositionoftheinitialconditions 03 y  , 04 y   onthegeneralsolution  3 12 cossin 33 x x x yxecc    yieldsthetwoequations13 c  , 124 33 cc  with solution13 c  ,253 c  .Hencethedesiredparticularsolutionis  33cos53sin 33 x x x yxe    23. Impositionoftheinitialconditions 03 y  , 01 y   onthegeneralsolution  3 12 cos4sin4 x y xecxcx  yieldsthetwoequations13 c  ,12341 cc withsolution13 c  ,22 c  .Hencethedesiredparticularsolutionis  33cos42sin4 x y xexx  . 24. Impositionoftheinitialconditions 01 y  , 01 y   , 03 y   onthegeneralsolution  22 123 x x y xccece  yieldsthethreeequations 33 123221,21,43 24 cc ccccc  , withsolution17 2 c  ,2 1 2 c  ,34 c  .Hencethedesiredparticularsolutionis  7122 4 22 x x y xee  . 25. Impositionoftheinitialconditions 01 y  , 00 y   , 01 y   onthegeneralsolution  23 123 x yxccxce  yieldsthethreeequations 33 132 24 1,0,1 39 cc ccc ,
Section3.3 185 Copyright©2015PearsonEducation,Inc. withsolution113 4 c  ,2 3 2 c  ,3 9 4 c  .Hencethedesiredparticularsolutionis  133923 424 x yxxe  . 26. Impositionoftheinitialconditions 01 y  , 01 y   , 03 y   onthegeneralsolution  55 123 x x y xccecxe  yieldsthethreeequations 1223233,54,25105cccccc  , withsolution124 5 c  ,2 9 5 c  ,35 c  .Hencethedesiredparticularsolutionis  24955 5 55 x x yxexe  . 27. Firstwespottheroot1 r  .Thenlongdivisionofthepolynomial3234rr by1 r yieldsthequadraticfactor  22 442rrr ,withroots2,2 r  .Hencethegeneralsolutionis  22 123 x xx y xcececxe  . 28. Firstwespottheroot2 r  .Thenlongdivisionofthepolynomial32252 rrr by thefactor2 r yieldsthequadraticfactor  2 231211 rrrr  ,withroots 1 1, 2 r  .Hencethegeneralsolutionis  22 123 x xx y xcecece  29. Firstwespottheroot3 r  .Thenlongdivisionofthepolynomial327 r  by3 r  yieldsthequadraticfactor239 rr ,withroots333 22 ri  .Hencethegeneralsolutionis  332 123 3333cossin 22 xx y xceecxcx    . 30. Firstwespottheroot1 r  .Thenlongdivisionofthepolynomial43236 rrrr by1 r  yieldsthecubicfactor32236

cos3sin3
xcececxcx  .



rrr
.Nextwespottheroot2 r  ,andanotherlongdivisionyieldsthequadraticfactor23 r  ,withroots3 ri  .Hencethegeneralsolutionis  2 1234
xx y
31. Thecharacteristicequation323480rrr hastheevidentroot1 r  ,andlongdivisionthenyieldsthequadraticfactor  224824rrr
,correspondingtothecomplexconjugateroots22i  .Hencethegeneralsolutionis
2 123cos2sin2 xx y xceecxcx
.

32. Thecharacteristicequation4323520rrrr hastheroot2 r  ,asisreadily foundbytrialanderror,andlongdivisionthenyieldsthefactorization

3 210rr .Thusweobtainthegeneralsolution   22 1234 x x y xceccxcxe  .

33. Knowingthat3 x y e  isonesolution,wedividethecharacteristicpolynomial 32354rr by3 r andgetthequadraticfactor

2261839rrr .Hencethe generalsolutionis

33 123cos3sin3 xx y xceecxcx 

34. Knowingthat23 x y e  isonesolution,wedividethecharacteristicpolynomial 32 32128 rrr by32 r andgetthequadraticfactor24 r  .Hencethegeneralsolutionis

23 123cos2sin2 x y xcecxcx  .

35. Thefactthatcos2 y x  isonesolutiontellsusthat24 r  isafactorofthecharacteristic polynomial4326525204 rrrr  .Thenlongdivisionyieldsthequadraticfactor

2 6513121 rrrr

23 1234cos2sin2 xx y xcececxcx 

36. Thefactthatsin x y ex  isonesolutiontellsusthat  22 1122rrr  isafactor ofthecharacteristicpolynomial32911414 rrr

factor97 r .Hencethegeneralsolutionis

 2 x y xABxCxDe

Copyright©2015PearsonEducation,Inc.

186
HOMOGENEOUSEQUATIONSWITHCONSTANTCOEFFICIENTS



.


 ,withroots11


.
, 23 r
.Hencethegeneralsolutionis
.Thenlongdivisionyieldsthelinear
 
,sothegeneralsolutionis
 .Impositionofthegiveninitialconditionsyieldstheequations 18,12,213,7 ADBDCDD  withsolution11 A  ,5 B  ,3 C  ,7 D  .Hencethedesiredparticularsolutionis  2 11537 x yxxxe  .
Giventhat5 r  isonecharacteristicroot,wedivide5 r intothecharacteristicpolynomial325100500rrr andgettheremainingfactor2100 r  .Thusthegeneralsolutionis  5cos10sin10 x yxAeBxCx  .Impositionofthegiveninitialconditions yieldstheequations 0,51010,25100250ABACAB  ,
79 123cossin xx y xceecxcx  37. Thecharacteristicequationis  43310 rrrr
38.

43. (a) Givenacomplexnumber zxiy  wedefine r tobe22 x y  and  tobethe uniqueanglesatisfyingcos x

(c) Because3 2234 i ie   ,thesquarerootsof223 i are 26 i e   .Likewise,because 223423 i ie

Section3.3 187 Copyright©2015PearsonEducation,Inc. withsolution2 A  ,2 B  ,0 C  .Hencethedesiredparticularsolutionis  5 22cos10 x yxex  . 39. Thecharacteristicpolynomialis  332 26128rrrr  , sothedifferentialequation is61280 yyyy  . 40. Thecharacteristicpolynomialis  232 24248rrrrr  ,sothedifferential equationis2480 yyyy  . 41. Thecharacteristicpolynomialis 2244416rrr , sothedifferentialequationis (4)160yy 42. Thecharacteristicpolynomialis  3 26424124864rrrr
1248640yyyy  
, sothedifferential equationis(6)(4)
y r   ,and  .ThenEuler’sformula gives  cossin i xy reririxiyz rr       .
i e  ;22 i e   ; 332 i ie   ; 124 i ie  
13223 i ie  
r 
,sin
(b) 440
;
  ,thesquarerootsof223 i 
23 i e   44.
24213
ii x
    (b)  2 224324 ,3 22 ii x iii       45.
 3 1212cossincos3sin3 ixix yxcececxixcxix  46. Thecharacteristicpolynomialis 2623 rirriri  ,sothegeneralsolutionis
are
(a)
,2 22
iii
ThecharacteristicpolynomialisthequadraticpolynomialofProblem44(b).Hencethe generalsolutionis
188 HOMOGENEOUSEQUATIONSWITHCONSTANTCOEFFICIENTS Copyright©2015PearsonEducation,Inc.  32 1212cos3sin3cos2sin2 ixix yxcececxixcxix  . 47. Thecharacteristicrootsare 22313rii  ,sothegeneralsolutionis      1313 1212cos3sin3cos3sin3 ixix xx y xcececexixcexix   . 48. Thegeneralsolutionis  x xx y xAeBeCe  ,where13 2 i    and 13 2 i   .Impositionofthegiveninitialconditionsyieldstheequations 22 17 0 0 ABC ABC ABC      thatwesolvefor1 3 ABC .Thusthedesiredparticularsolutionisgivenby    1132132 3 ixix x yxeee    ,which(usingEuler’srelation)reducestothegiven real-valuedsolution. 49. WeadoptthesamestrategyaswasusedinProblem48.Thegeneralsolutionis  2cossin xx yxAeBeCxDx  .Impositionofthegiveninitialconditionsyields theequations 0 20 40 830 ABC ABD ABC ABD       thatwesolvefor2 A  ,5 B  ,3 C  ,and9 D  .Thus  2 253cos9sin xx yxeexx  . 50. If0 x  ,thenthedifferentialequationis0 yy   ,withgeneralsolution cossin y AxBx .Butif0 x  ,thenitis0 yy   ,withgeneralsolution coshsinh yCxDx  .Tosatisfytheinitialconditions  101y  ,  100y   wechoose 1 AC and0 BD .Buttosatisfytheinitialconditions  200 y  ,  201 y   we choose0 AC and1 B D  .Thecorrespondingsolutionsaredefinedby  1 cos,0 cosh,0; xx yx xx       and  2 sin,0 sinh,0 xx yx xx       .
Section3.3 189 Copyright©2015PearsonEducation,Inc. Examinationofleft-andright-handderivativesat0 x  showsnotonlythat  1 yx and  2 yx aredifferentiableat0 x  ,butthat1 y  and2 y  areinfactcontinuousthere. 51. InthesolutionofProblem51inSection3.1weshowedthatthesubstitutionlnvx  gives1dydy y dxxdv   and 22 2222 11 dydydy y dxxdvxdv   .Afurtherdifferentiationusingthechainrulegives 323 333233 231 dydydydy y dxxdvxdvxdv   . Substitutionoftheseexpressionsfor y  , y  ,and y  intothethird-orderEulerequation 320axybxycxydy  ,togetherwithcollectionofcoefficients,yieldsthedesired constant-coefficientequation   32 32320dydydy abacbady dvdvdv  . InProblems52through58welistfirstthetransformedconstant-coefficientequation,thenits
vx  and v ex  . 52. 2 290dy y dv  ; 290 r  ; 3 ri  ;  1212 cos3sin3cos3lnsin3ln yxcvcvcxcx  53. 2 26250dydy y dvdv  ; 26250rr ; 34 ri  ;  33 1212 cos4sin4cos4lnsin4ln v y xecvcvxcxcx      54. 32 3230dydy dvdv  ; 3230rr ; 0,0,3 r  ;  33 123123 ln v yxccvceccxcx  55. 32 32440dydydy dvdvdv  ; 32440rrr ; 0,2,2 r  ;  222 123123ln vv yxccecvecxccx 
characteristicequationandroots,andfinallythecorrespondinggeneralsolutionwithln

SECTION3.4

MECHANICAL VIBRATIONS

Inthissectionwediscussfourtypesoffreemotionofamassonaspring—undamped,underdamped,criticallydamped,andoverdamped.However,theundampedandunderdampedcases—inwhichactualoscillationsoccur—areemphasizedbecausetheyareboththemostinterestingandthemostimportantcasesforapplications.

190 HOMOGENEOUSEQUATIONSWITHCONSTANTCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 56. 3 30dy dv  ; 30 r  ; 0,0,0 r  ;  22 123123lnln y xccvcvccxcx  57. 32 32550dydydy dvdvdv  ; 32440rrr ; 0,33 r  ;     3333333 123123 vv yxccecvecxcxcx   58. 32 32330dydydy y dvdvdv  ; 323310rrr ; 1,1,1 r  ;  212 123123lnln vvv yxcecvecvexccxcx     
1. Frequency:0 1612radsecHz 4 k m    ;period: 0 22 sec 2 P     2. Frequency0 4848radsecHz 0.75 k m    ;period: 0 22 sec 84 P    3. Thespringconstantis1575Nm 0.20m N k  .Thesolutionof3750 xx   with 00 x  and 010 x   is  2sin5 x tt  .Thustheamplitudeis2m,thefrequency is0752.55radsecHz 3 k m    ,andtheperiodis2sec 5  4. (a) With1kg 4 m  and9N0.25m=36Nm k  ,wefindthat012radsec   .Thesolutionof1440 xx   with 01 x  and 05 x   is

5. Thegravitationalaccelerationatdistance R fromthecenteroftheearthis2GM g R  .AccordingtoEquation(6)inthetext,the(circular)frequency  ofa(linearized)pendulum

6. Ifthependulumintheclockexecutes n cyclesperday(86400sec)atParis,thenitsperiodis186400sec p n  .Attheequatoriallocationittakes24hr2min40sec86560sec 

forthesamenumberofcycles,soitsperiodthereis186560sec p n  .Nowlet 13956miR  betheEarth’s“radius”atParis,and2 R its“radius”attheequator.Then substitutionintheequation11 22

p R p R  ofProblem5(with12 LL  )yields23963.33mi R  .

Thusthis(rathersimplistic)calculationgives7.33miasthethicknessoftheEarth’s equatorialbulge.

7. Theperiodequation

3960100.103960100px  yields 1.9795mi10.450ft x  forthealtitudeofthemountain.

8. Let n bethenumberofcyclesrequiredforacorrectclockwithunknownpendulum length1 L andperiod1 p toregister24hrs86400sec  ,so186400 np  .Thegivenclock withlength230in L  andperiod2 p loses10min600sec  perday,so287000 np  .

9. Designating  x t asinthesuggestion,weseethatthemassissubjecttoarestorative force S Fkx  togetherwiththeforceofgravity Wmg  .Wealsoassumethatthe massissubjecttoadampingforce R Fcx   .ApplyingNewton’slawthengives

Section3.4 191
  51312513 cos12sin12cos12sin2cos12 1212131312 xttttt      , where152tan5.8884rad 12  (b) 13
12 C 
0.5236sec 12 T  
Copyright©2015PearsonEducation,Inc.
1.0833m
and 2
isgivenby
gGM LRL   ,soitsperiodis22 L pR GM     .
2 2

ThentheformulaofProblem5yields111
Lpnp Lpnp 
2 1
L    
222 86400 87000
,so
86400 3029.59in 87000

Thusthebuoyundergoessimpleharmonicmotionaboutanequilibriumof e x h  .Further,withthegivennumericalvaluesof  ,h,andg,theamplitudeofoscillationis

11. ThedifferentialequationfromProblem10mustbemodifiedtoreflectthefactthatthe weightdensityofwateris362.4lbft(asopposedto31gcminthecgssystem).Thus theweightofwaterdisplacedbythebuoyisgivenby2 62.4 rx  .Moreover,themass andweightofthebuoyaregiventobe3.125slugsand100lb,respectively.Applying

192 MECHANICALVIBRATIONS Copyright©2015PearsonEducation,Inc. mxkxmgcx   ,or mxcxkxmg  .Finally,substituting0 y xs ,sothat 0 x ys andthus x y   and x y   ,yields  0 mycykysmg  ,or 0mycykymgks  ,whichisEquation(5)with  F t assumingtheconstantvalue 0mgks . 10. Themassofthebuoyisgivenby2mrh   ,andthenetdownwardforceonthebuoyis 22 Frhgrgx   .(Notethatthedepth  x t istakentobepositive.)Therefore Newton’ssecondlaw maF  gives 222 rhxrhgrgx   , whichsimplifiesto g x xg h   . Thecomplementaryfunctionforthisequationis  1020 cossin c x tctct  ,where 0 g h    .Aparticularsolutionisgivenby  p x tA  ,where A isaconstant,andsub-
  .Thusthegeneralsolutionof
 1020 cossin cp x txtxtctcth  . Applyingtheinitialconditions  000xx   gives1ch  and20 c  .Alltold,the
 cos0 x thth   .
100cm h  andtheperiodis 0 22 22.01sec h p g g h      .
stitutingintothedifferentialequationshowsthat Ah
thedifferentialequationis
motionofthebuoyisgivenby
maF  thengives2 3.12510062.4 x rx   ,or 62.4232 3.125 xrx    .Thefrequency oftheoscillationsofthebuoyistherefore0 2   ,where062.43.125 r    .Sincethefre-

(d) Theorbitalvelocityvofsuchasatellitemustbesuchthatthecentrifugalforce

onthesatellitejustoffsetstheweight mg ofthesatelliteatthesurfaceoftheearth.Thus

c.Thisisnota

t  thesatelliteisdirectlyovertheholeintheearth atthetopofFigure3.4.13,andthatitsorbitproceedsinaclockwisedirection.Wefound inpart c thatthedistance r oftheparticlefromthecenteroftheearthis

Thekeyobservationisthat0 t  istheangledrawnclockwisefromtheverticaltotheradiusvectorofthesatelliteattimet;thus,thedistance rt issimplytheverticalcomponentofthesatellite’sposition.Itfollowsthat rt completesonecyclethroughtheearth (andback)inthesamelengthoftimerequiredforthesatellitetocompleteoneorbit aroundtheearth.

Section3.4 193 Copyright©2015PearsonEducation,Inc. quencyofthebuoy’smotionisobservedtobe4cycles0.4cyclessec 10sec  ,wecanequate thetwotoconcludethat162.40.4 23.125 r    ,whichgives 3.125 0.80.3173ft3.8in 62.4 r   12. (a) Substitutionof 3 r r M M R     in2r r GMm F r  yields3 r GMm Fr R  . (b) Because3GMg R R  ,theequation r mrF   yieldsthedifferentialequation 0 g rr R   (c) Thesolutionofthisequationwith  0 rR  and 00 r   is  cos0 rtRt   ,where 0 g R   .Hence,with2 32.2ftsec g  and39605280ft R  ,wefindthattheperiod oftheparticlessimpleharmonicmotionis 0 225063.10sec84.38min R p g    
2 mv R
2 mv mg R  ,whichimpliesthat 244 32.2ftsec39605280ft2.594710ftsec1.769110mihr vgR . Becausethecircumferenceoftheearthis2 R
,theperiodofthesatellite’sorbitis 2 2 R R g gR    ,whichisequaltotheperiodoftheparticlefoundinpart
coincidence.Imaginethatattime0

cos0 rtRt   .
194 MECHANICALVIBRATIONS Copyright©2015PearsonEducation,Inc. (e) Theparticlepassesthroughthecenteroftheearthwhen  0 cos0rtRt   ,thatis, when02 t    ,or 20 t    .Atthistimethespeedoftheparticleis  4 0000 0 sinsin1.769110mihr 2 g rtRtRRgR R         (f) Inpart d wefoundtheorbitalvelocitytobe vgR  ,inagreementwithpart e Againthisisnotaconcidence.Theverticalcomponentofthesatellite’svelocityvector  t v atanygiventimetisequaltothespeed rt  oftheparticleatthattime.Atthe momentwhentheparticlepassesthroughthecenterofearth,thesatelliteistravelling straightdownward,andhence  t v isvertical.Thereforetheorbitalvelocityvofthe satellite,whichisthemagnitudeof  t v ,isequaltothespeedoftheparticleatthismoment. 13. (a) Thecharacteristicequation  2 109252210 rrrr hasroots 21 , 52 r  Whenweimposetheinitialconditions 00 x  , 05 x   onthegeneralsolution  252 12 tt x tcece  wegettheparticularsolution   50252 xteett  . (b) Thederivative  2252510 25205540 tttt t xeeee   when 5 10ln2.23144 4 t  .Hencethemass’sfarthestdistancetotherightisgivenby 5512 10ln4.096 4125 x     . 14. (a) Thecharacteristicequation  2 22 251022651150 rrr hasroots 1151 3 55 i ri   .Whenweimposetheinitialconditions 020 x  , 041 x   on thegeneralsolution   5cos3sin3 t x teAtBt  weget20 A  ,15 B  .Thecorrespondingparticularsolutionisgivenby    55 20cos315sin325cos3tt xettet t   , where13tan0.6435 4   . (b) Thustheoscillationsare“bounded”bythecurves5 25 t x e  ,andthepseudoperiod ofoscillationis2 3 T   (because3   ).

InProblems15-21thegraphofthedampedmotion  x t ,thatis,withthedashpotattached,is shownasasolidline;thegraphofthecorrespondingundampedmotion

Copyright©2015PearsonEducation,Inc.

Section3.4 195
ut isdashed.
With damping: Thecharacteristicequation2 1 340 2 rr hasroots2,4 r  .When weimposetheinitialconditions 02 x  , 00 x   onthegeneralsolution  24 12 tt x tcece  wegettheparticularsolution  2442tt x tee  thatdescribes overdampedmotion. Without damping: Thecharacteristicequation2 1 40 2 r  hasroots22 ri  .When weimposetheinitialconditions 02 x  , 00 x   onthegeneralsolution   cos22sin22 utAtBt  wegettheparticularsolution  2cos22 utt  0 1 2 3 −2 0 2 t x Problem 15 0 1 2 −2 0 2 t x Problem 16 16. With damping: Thecharacteristicequation2330630 rr hasroots3,7 r  Whenweimposetheinitialconditions 02 x  , 02 x   onthegeneralsolution  37 12 tt x tcece  wegettheparticularsolution  3742tt x tee  thatdescribes overdampedmotion. Without damping: Thecharacteristicequation23630 r  hasroots21 ri  . Whenweimposetheinitialconditions 02 x  , 02 x   onthegeneralsolution   cos21sin21 utAtBt  wegettheparticularsolution     222 2cos21sin212cos210.2149 2121 utttt 
15.
196 MECHANICALVIBRATIONS Copyright©2015PearsonEducation,Inc. 17. With damping: Thecharacteristicequation28160 rr hasroots4,4 r  .When weimposetheinitialconditions 05 x  , 010 x   onthegeneralsolution  4 12 t x tccte  wegettheparticularsolution  4 521 t xtet thatdescribescriticallydampedmotion. Without damping: Thecharacteristicequation2160 r  hasroots4 ri  .Whenwe imposetheinitialconditions 05 x  , 010 x   onthegeneralsolution  cos4sin4 utAtBt  wegettheparticularsolution   55 5cos4sin45cos45.8195 22 utttt  . 0 1 2 −5 0 5 t x Problem 17 0 1 2 −1 1 t x Problem 18 18. With damping: Thecharacteristicequation2212500 rr hasroots34 ri  . Whenweimposetheinitialconditions 00 x  , 08 x   onthegeneralsolution  3cos4sin4 t x teAtBt  wegettheparticularsolution  3332sin42cos4 2 tt xtetet     thatdescribesunderdampedmotion. Without damping: Thecharacteristicequation22500 r  hasroots5 ri  .When weimposetheinitialconditions 00 x  , 08 x   onthegeneralsolution  cos5sin5 utAtBt  wegettheparticularsolution  883 sin5cos5 552 uttt    
Section3.4 197 Copyright©2015PearsonEducation,Inc. 19. Thecharacteristicequation24201690 rr hasroots56 2 ri  .Whenweimpose theinitialconditions 04 x  , 016 x   onthegeneralsolution   52cos6sin6 t x teAtBt  wegettheparticularsolution   5252 131 4cos6sin6313cos60.8254 33 tt xtettet     thatdescribesunderdampedmotion. Without damping: Thecharacteristicequation241690 r  hasroots13 2 ri  .When weimposetheinitialconditions 04 x  , 016 x   onthegeneralsolution  1313cossin 22 utAtBt   wegettheparticularsolution  133213413 4cossin233cos0.5517 2132132 tt utt  . 0 1 2 −4 4 t x Problem 19 0 1 2 −5 5 t x Problem 20 20. With damping: Thecharacteristicequation2216400 rr hasroots42 ri  Whenweimposetheinitialconditions 05 x  , 04 x   onthegeneralsolution  4cos2sin2 t x teAtBt  wegettheparticularsolution  44 5cos212sin213cos21.1760 tt xtettet  thatdescribesunderdampedmotion.
198 MECHANICALVIBRATIONS
Without damping: Thecharacteristicequation22400 r  hasroots25 ri  .When weimposetheinitialconditions 05 x  , 04 x   onthegeneralsolution   cos25sin25 utAtBt  wegettheparticularsolution     2129 5cos25sin25cos250.1770 55 utttt  21. With damping: Thecharacteristicequation2101250 rr hasroots510 ri  Whenweimposetheinitialconditions 06 x  , 050 x   onthegeneralsolution  5cos10sin10 t x teAtBt  wegettheparticularsolution  55 6cos108sin1010cos100.9273
xtettet  thatdescribesunderdampedmotion.
hasroots55
weimposetheinitialconditions 06 x  , 
  onthegeneralsolution   cos55sin55 utAtBt  wegettheparticularsolution     6cos5525sin55214cos550.6405utttt  0 1 −6 6 t x Problem 21 22. (a) With120.375slug 32 m  ,3lb-secft c  ,and24lbft k  ,thedifferentialequation isequivalentto3241920 xxx  .Thecharacteristicequation23241920 rr hasroots443 ri  .Whenweimposetheinitialconditions 01 x  , 00 x   on
Copyright©2015PearsonEducation,Inc.
tt
Without damping: Thecharacteristicequation21250 r 
ri  .When
050 x
Section3.4 199 Copyright©2015PearsonEducation,Inc. thegeneralsolution   4cos43sin43 t x teAtBt      wegettheparticularsolution      4 4 4 1 cos43sin43 3 231cos43sin43 322 2 cos43. 36 t t t xtett ett et              (b) Thetime-varyingamplitudeis21.15ft 3  ,thefrequencyis436.93radsec  ,and thephaseangleis6 . 23. (a) With100slug m  weget100 k   .Butwearegiventhat   80cyclesmin21min60sec83    , andequatingthetwovaluesyields7018lbft k  (b) With1782cyclessec 60  ,Equation(21)inthetextyields 372.31lbftsec c  Hence1.8615 2 c p m  .Finally0.01 pt e  gives2.47sec t  30. Intheunderdampedcasewehave  11cossin pt x teAtBt  and  111111 cossinsincosptpt x tpeAtBteAtBt    . Theconditions 00 x x  , 00 x v   yieldtheequations0 Ax  and10 pABv   , whence00 1 vpx B    . 31. Thebinomialseries    23112 11 2!3! xxxx     

33. If 11x xt  and 22x xt  aretwosuccessivelocalmaxima,then12112

200 MECHANICALVIBRATIONS Copyright©2015PearsonEducation,Inc. convergesif1 x  .(See,forinstance,Section10.8ofEdwardsandPenney,Calculus: EarlyTranscendentals,7thedition,Pearson,2008.)With1 2   and 2 4 c x mk  inEq. (22)ofSection3.4inthedifferentialequationstext,thebinomialseriesgives 22242 22 100 222111. 4481288 kckckccc p mmmmkmmkmkmk      32. If  cos1 pt xtCet ,then  111 cossin0 ptpt xtpCetCet   yields  1 1 tan p t    .Becausethetangentfunctionisperiodicwithperiod  and thelocalmaximaandminimaof  x t
adistanceof 1 2  .
tt   ,and so  1 111 cos pt xCet and 22 21211 coscos ptpt xCetCet  .Hence 112 2 ptt x e x  andtherefore  1 12 21 2 ln x p ptt x       . 34. With10.34 t  and21.17 t  wefirstusetheequation12112 tt   fromProblem33 tocalculate127.57radsec 0.83    .Next,with16.73 x  and21.46 x  ,theresultof Problem33yields16.73ln1.84 0.831.46 p     .ThenEquation(16)inthissectiongives 100 221.8411.51lb-secft 32 cmp ,andfinallyEquation(22)yields 222 41189.68lbft 4 mc k m    . 35. Thecharacteristicequation2210 rr hasroots1,1 r  .Whenweimposetheinitialconditions 00 x  , 10 x   onthegeneralsolution  12 t x tccte  wegetthe particularsolution  1 t x tte  . 36. Thecharacteristicequation 2221100 n rr hasroots110 n r  .Whenwe imposetheinitialconditions 00 x  , 10 x   onthegeneralsolution
areinterlaced,successivemaximaareseparatedby

SECTION3.5

NONHOMOGENEOUS EQUATIONS AND UNDETERMINED COEFFICIENTS

Themethodofundeterminedcoefficientsisbasedon“educatedguessing”.Ifwecanguesscorrectlythe form ofaparticularsolutionofanonhomogeneouslinearequationwithconstantcoefficients,thenwecandeterminetheparticularsolutionexplicitlybysubstitutioninthegivendifferentialequation.ItispointedoutattheendofSection3.5thatthissimpleapproachisnotalwayssuccessful—inwhichcasethemethodofvariationofparametersisavailableifacomplementaryfunctionisknown.However,undeterminedcoefficients does turnouttoworkwellwith asurprisinglylargenumberofthenonhomogeneouslineardifferentialequationsthatariseinelementaryscientificapplications.

Section3.4 201 Copyright©2015PearsonEducation,Inc.  12 exp110exp110 nn x tctct     wegettheequations  12120,1101101 nn cccc  withsolution1125nn c  , 1 225nn c  .Thisgivestheparticularsolution    2 exp10exp10 1010sinh10 2 nn ntntn tt x teet      37. Thecharacteristicequation 2221100 n rr hasroots110 n ri  .Whenwe imposetheinitialconditions 00 x  , 10 x   onthegeneralsolution  cos10sin10 tnn x teAtBt      wegettheequations10 c  ,12101 n cc  withsolution10 c  ,210 n c  .Thisgives theparticularsolution  310sin10ntn x tet  . 38. Thisfollowsfrom    2 sinh10 limlim10sinh10lim 10 n ntntt n nnn t x tettete t   and    3 sin10 limlim10sin10lim 10 n ntntt n nnn t x tettete t   , usingthefactthat 00 sinsinh limlim0     (byL’Hôpital’srule,forinstance).

IneachofProblems1-20wegivefirsttheformofthetrialsolutiontrial y ,thentheequationsin thecoefficientswegetwhenwesubstitutetrial y intothedifferentialequationandcollectlike terms,andfinallytheresultingparticularsolution

Copyright©2015PearsonEducation,Inc.

202 NONHOMOGENEOUSEQUATIONSANDUNDETERMINEDCOEFFICIENTS
p y 1. 3 trial x yAe  ;251 A  ; 13 25 x p ye  . 2. trial y ABx ;24 AB  ,23 B  ;  1 56 4 p yx  . 3. trialcos3sin3 y AxBx ;1530 AB  ,3152 AB ; 15cos3sin3 3939 p y xx . 4. trial x x yAeBxe  ;9120 AB ,93 B  , 41 93 x x p yexe  5. Firstwesubstitute1cos2 2 x for2 sin x ontheright-handsideofthedifferentialequation,leadingtotrialcos2sin2 y ABxCx ,andthen 11 ,32,230 22 ABCBC  ; 131cos2sin2 22613 p yxx  6. 2 trial yABxCx  ;7440 ABC ,780 BC ,71 C  ; 4812 343497 p yxx  7. Firstwesubstitute 2 x x ee forsinh x ontheright-handsideofthedifferentialequatio, leadingtotrial x x y AeBe ; 1 3 2 A  , 1 3 2 B  ; 111sinh 663 xx p y eex .(Note thataccordingtoRule1inthetext,wecouldalsohavestartedwith trialcoshsinh y AxBx .) 8. Firstwenotethat 22 cosh2 2 x x ee x   ispartofthecomplementaryfunction 22 c12 x x ycece  ,leadingto  22 trial x x yxAeBe  ; 1 8 A  , 1 8 B  ;
Section3.5 203 Copyright©2015PearsonEducation,Inc. 22 111 sinh2 884 xx p y xeexx     .(AsanextensionofRule2inthetext,wecouldalsohavestartedwith trialcosh2sinh2 yxAxBx  .)
Firstwenotethat
ispartofthecomplementaryfunction3 12 x x c y cece .Then  trial x yAxBCxe  ,andthen 3142081 ABCC  ; 111 3168 x p y xxe   .
Firstwenotetheduplicationwiththecomplementaryfunction12cos3sin3 c y cxcx . Then trialcos3sin3 yxAxBx  ;62 B  ;63 A  ;  111 cos3sin32sin33cos3 326 p y xxxxxxx     11. Firstwenotetheduplicationwiththecomplementaryfunction 123cos2sin2 c y ccxcx .Then  trial yxABx  ;41 A  ,83 B  ; 131232 488 p y xxxx     . 12. Firstwenotetheduplicationwiththecomplementaryfunction123cossin c y ccxcx . Then trialcossin yAxxBxCx  ;2 A  ,20 B  ,21 C  ; 1 2sin 2 p y xxx 13. trialcossin x yeAxBx  ;740 AB ,471 AB  ;  1 7sin4cos 65 x p yexx  14. Firstwenotetheduplicationwiththecomplementaryfunction  1234 x x c yccxeccxe  .Then  2 trial x yxABxe  ;8240 AB ,241 B  ; 223 111 3 82424 x xx p y xxexexe     15. Thisissomethingofatrickproblem.Wecannotsolvethecharacteristicequation 54510rr tofindthecomplementaryfunction,butwecanseethatthecomplementaryfunctioncontainsnoconstantterm(why?).Hencewecantaketrial y A  ,leading immediatelytotheparticularsolution17 p y 
9.
x e
10.

18. Firstwenotetheduplicationwiththecomplementaryfunction 22

19. Firstwenotetheduplicationwiththepart12ccx  ofthecomplementaryfunction(which correspondstothefactor2 r ofthecharacteristicpolynomial).Then

20. Firstwenotethatthecharacteristicpolynomial3rr hasthezero1 r  correspondingto theduplicatingpart x e ofthecomplementaryfunction.Then:trial x y AxBe ;

InProblems21-30welistfirstthecomplementaryfunction yc ,thentheinitiallyproposedtrial functioni y ,andfinallytheactualtrialfunction p y ,inwhichduplicationwiththecomplementaryfunctionhasbeeneliminated.

21. c12cossin x yecxcx  ;

204 NONHOMOGENEOUSEQUATIONSANDUNDETERMINEDCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 16. 23
; 95,18620,18120,182 ABCDCDD  ;  23332351211 4569 98127981 x xxx p y xxeexexe    
Firstwenotetheduplicationwiththecomplementaryfunction12cossin c y cxcx . Then  trialcossin yxABxxCDxx   ; 2204122140 BCDADB  ; 1112 cossinsincos 444 p y xxxxxxxx    
trial x y ABCxDxe
17.
1234
 .Then  2 trial x x yxAexBCxe  ; 61,12380,241 ABCC  ;  222211911 24196 614424144 x xxxx p y xexxexexexe    
x xxx c ycececece
 22 trial yxABxCx  ; 4121,12480,243 ABBCC  ;  22234 5111 104 4288 p y xxxxxx     .
7 A  ;31 B  ; 1 7 3 x p y xe 
icossin
yeAxBx  ;  cossin x p yxeAxBx 
x

22.  2 12345 x x c y ccxcxcece ;  2 i x y ABxCxDe ;  32 x p yxABxCxxDe 

23. 12 cos2sin2 c y cxcx ;  icos2sin2 yABxxCDxx  ; cos2sin2 p yxABxxCDxx  

24. 34 123 x x c yccece  ;  3 i x yABxCDxe  ;  3 x p yxABxxCDxe 

25. 2 12 x x c ycece  ;

2 i x x yABxeCDxe  ;

2 x x p yxABxexCDxe 

26.

3 12 cos2sin2 x c yecxcx  ;

33 icos2sin2 xx yABxexCDxex  ;

33 cos2sin2 xx p yxABxexCDxex

27.  1234 cossincos2sin2 c ycxcxcxcx  ;

icossincos2sin2 yAxBxCxDx  ;

cossincos2sin2 p y xAxBxCxDx 

28.  1234cos3sin3 c yccxcxcx  ;

22 icos3sin3y ABxCxxDExFxx  ;

22 cos3sin3 p y xABxCxxDExFxx 

29. 222 12345 x xx c yccxcxecece

InProblems31-40welistfirstthecomplementaryfunction yc ,thetrialsolutiontr y forthe methodofundeterminedcoefficients,andthecorrespondinggeneralsolutiong

, where

Copyright©2015PearsonEducation,Inc.

Section3.5 205







 




 ;  22 i x yABxeCeDexx  ;  322 p x yxABxexCexDexx  30.  1234 x x c yccxeccxe  ;  22 icossin p y yABxCxxDExFxx 
yyycp 
p
yx .
y resultsfromdeterminingthecoefficientsintr y soastosatisfythegivennonhomogeneousdifferentialequation.Thenwelistthelinearequationsobtainedbyimposingthegiven initialconditions,andfinallytheresultingparticularsolution
206 NONHOMOGENEOUSEQUATIONSANDUNDETERMINEDCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 31. 12 cos2sin2 c y cxcx ;tr y ABx ;g12cos2sin2 2 x ycxcx  ;11 c  ,2 1 22 2 c  ; ()cos2(3/4)sin2/2 yxxxx  32. 2 12 x x c ycece  ;tr x yAe  ; 2 g12 1 6 x xx ycecee  ;12 1 0 6 cc , 12 1 23 6 cc  ;  2 581 236 x xx y xeee  33. 12 cos3sin3 c y cxcx ;trcos2sin2 y AxBx ;g12 1 cos3sin3sin2 5 ycxcxx  ; 11c  ,2 2 30 5 c  ,  21 cos3sin3sin2 155 y xxxx  34. 12cossin c y cxcx ; trcossin yxAxBx  ;g12 1 cossinsin 2 y cxcxxx  ; 11c  ,21 c  ,  1 cossinsin 2 yxxxxx  35.  12cossin x c yecxcx  ;tr y ABx ; g12cossin1 2 x x yecxcx ;113 c  , 12 1 0 2 cc ;  5 2cossin1 22 x x yxexx     36. 22 1234 x x c y ccxcece ;  22 tr yxABxCx  24 22 g12341648 xx x x yccxcece 1342343434 1 1,221,441,881 8 cccccccccc   222439531111 32464641648 xx y xxeexx  37. 123 x x c yccecxe  ;  2 tr x yxAxBCxe  23 g123 11 26 x xxx y ccecxexxexe  1223230,10,211cccccc   2311 443 26 x y xxexxx  
Section3.5 207 Copyright©2015PearsonEducation,Inc. 38.  12cossin x c yecxcx  ;trcos3sin3 y AxBx g12 67 cossincos3sin3 8585 x yecxcxxx  112 621 2,0 18585 ccc  17619767cossincos3sin3 85858585 x y xexxxx     39. 123 x c y ccxce ;   2 tr x yxABxxCe  23 g12326 x x xx y ccxcexe  132331,10,31ccccc     123181834 6 x y xxxxxe  40. 1234tr cossin; xx c ycececxcxyA  g1234cossin5 xx ycececxcx  123124123124 50,0,0,0 cccccccccccc    1 5510cos20 4 xx yxeex  41. Thetrialsolution2345 tr yABxCxDxExFx  leadstotheequations 226240 226241200 2312600 24200 250 28 ABCDE BCDEF CDEF DEF EF F       thatarereadilysolvedbyback-substitution.Theresultingparticularsolutionis  23452554503020104 yxxxxxx  . 42. Thecharacteristicequation43220 rrrr hasroots1,2 r  ,and i  ,sothe complementaryfunctionis2c1234cossin xx y cececxcx  .Wefindthatthecoefficientssatisfytheequations

43. (a) ApplyingEuler’sformulagives  33223 cos3sin3cossincos3cossin3cossinsin x ixxixxixxxxix

323 cos3cos1cos4cos3cos x xxxx

44 coscoscos3 x xx .Theformulafor3 sin x isderived similarlybyequatingimaginarypartsinthefirstequationabove.

(b) Uponsubstitutingthetrialsolutioncossincos3sin3 p yAxBxCxDx

208 NONHOMOGENEOUSEQUATIONSANDUNDETERMINEDCOEFFICIENTS Copyright©2015PearsonEducation,Inc. 123 124 123 124 2550 4500 4600 81200 ccc ccc ccc ccc     . Solutionofthissystemgivesfinallytheparticularsolutioncp
 ,wherep y
particularsolutionofProblem41and 2 c 1035210cos390sin xx yeexx  .
 . Whenweequaterealpartswegettheequation  

y yy
isthe
andreadilysolvefor331
inthe
y yxx   ,wefindthat 11 ,0,,0 420 ABCD  . Theresultinggeneralsolutionis  12 11 cos2sin2coscos3 420 yxcxcxxx  . 44. Weusetheidentity11 22 sinsin3cos2cos4 x xxx  ,andhencesubstitutethetrialsolutioncos2sin2cos4sin4 p y AxBxCxDx  inthedifferentialequation 11 22cos2cos4 y yyxx .Wefindthat 31152 ,,, 2613482241 ABCD  . Theresultinggeneralsolutionis    2 12 3311 cossin3cos22sin215cos44sin4 2226482 x y xecxcxxxxx     . 45. Wesubstitute    2 42111 sin1cos212cos2cos234cos2cos4 448 x xxxxx

differentialequation31 44 4coscos3

eindependentsolutions1 y and2 y oftheassociatedhomogeneous equation,theirWronskian

Section3.5 209 Copyright©2015PearsonEducation,Inc. ontheright-handsideofthedifferentialequation,andthensubstitutethetrialsolution cos2sin2cos4sin4 p y AxBxCxDxE  . Wefindthat 111 ,0,,0, 105624 ABCDE  Theresultinggeneralsolutionis 12 111 cos3sin3cos2cos4 241056 ycxcxxx  46. Bytheformulafor3 cos x inProblem43,thedifferentialequationcanbewrittenas 31 coscos3 44 yyxxxx   . Thecomplementarysolutionis12cossin c y cxcx ,sowesubstitutethetrialsolution  cossincos3sin3 p yxABxxCDxxEFxxGHxx    Wefindthat 3313 ,0,,0,,,0 161632128 ABCDEFGH  . Hencethegeneralsolutionisgivenby12 c y yyy ,where  2 1 1 3cos3sin 16 yxxxx  and  2 1 3sin34cos3 128 yxxx  InProblems47–49welistth

WWyy  ,thecoefficientfunctions    2 1 yxfx uxdx Wx     and    1 2 yxfx uxdx Wx     intheparticularsolution1122 p y uyuy ofEq.(32)inthetext,andfinally p y itself. 47. 2 1 x ye  ,2 x ye  , 3 x We  , 3 1 4 3 x ue  , 2 22 x ue  , 2 3 x p ye  48. 2 1 x ye  , 4 2 x ye  , 62 x We  ,12 x u  , 6 2 1 12 x ue  ,  12 61 12 x p yxe  49. 2 1 x y e  , 2 2 x y xe  , 4 x We  , 2 1 ux  ,22ux  , 22 x p yxe 
12 ,

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.