Zonal Jets Phenomenology Genesis and Physics Boris Galperin Visit to download the full and correct content document: https://textbookfull.com/product/zonal-jets-phenomenology-genesis-and-physics-boris -galperin/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Iterative Methods without Inversion 1st Edition Anatoly Galperin
https://textbookfull.com/product/iterative-methods-withoutinversion-1st-edition-anatoly-galperin/
Zonal marking the making of modern European football Cox
https://textbookfull.com/product/zonal-marking-the-making-ofmodern-european-football-cox/
Managerial Accountant’s Compass: Research Genesis and Development Gary Oliver
https://textbookfull.com/product/managerial-accountants-compassresearch-genesis-and-development-gary-oliver/
Phenomenology of illness 1st Edition Carel
https://textbookfull.com/product/phenomenology-of-illness-1stedition-carel/
Unconsciousness Between Phenomenology and Psychoanalysis 1st Edition Dorothée Legrand https://textbookfull.com/product/unconsciousness-betweenphenomenology-and-psychoanalysis-1st-edition-dorothee-legrand/
Husserl’s legacy : phenomenology, metaphysics, and transcendental philosophy Dan Zahavi
https://textbookfull.com/product/husserls-legacy-phenomenologymetaphysics-and-transcendental-philosophy-dan-zahavi/
Sternberg and Dietrich: The Phenomenology of
James Phillips
Spectacle https://textbookfull.com/product/sternberg-and-dietrich-thephenomenology-of-spectacle-james-phillips/
An Image Processing Tour of College Mathematics 1st Edition Yevgeniy V Galperin https://textbookfull.com/product/an-image-processing-tour-ofcollege-mathematics-1st-edition-yevgeniy-v-galperin/
Phenomenology and Science: Confrontations and Convergences 1st Edition Jack Reynolds https://textbookfull.com/product/phenomenology-and-scienceconfrontations-and-convergences-1st-edition-jack-reynolds/
ZonalJets Phenomenology,Genesis,andPhysics Inrecentdecades,greatprogresshasbeenmadeinourunderstandingofzonaljetsacross manydisciplines–atmosphericscience,oceanography,planetaryscience,geophysicalfluid dynamics,plasmaphysics,magnetohydrodynamics,turbulencetheory–butcommunicationbetweenresearchersfromdifferentfieldshasbeenweakornon-existent.Eventhe terminologymaybesodisparatethatresearchersworkingonsimilarproblemsdonot understandeachother.Thiscomprehensive,multidisciplinaryvolumewillbreakcrossdisciplinarybarriersandaidtheadvancementofthesubject.Itpresentsastate-of-the-art summaryofallrelevantbranchesofthephysicsofzonaljets,fromtheleadingexperts. Thephenomenaandconceptsareintroducedatalevelaccessibletobeginninggraduate studentsandresearchersfromdifferentfields.Thebookalsoincludesaveryextensive bibliography.
BORISGALPERIN isanassociateprofessorintheCollegeofMarineScienceattheUniversityofSouthFlorida,wherehehasreceivedtwoOutstandingResearchAchievement Awards.Hediscoveredadeepsimilaritybetweenzonaljetsinoceansandongiantplanets, conductslaboratoryinvestigationsemulatinggeophysicalandplanetaryflows,andisacodeveloperofananalyticaltheoryofanisotropicturbulencethatexplainsobservedspectraup tonumericalcoefficients.
PETERL READ isaprofessorintheDepartmentofPhysicsattheUniversityofOxford. Heisbestknownforresearchonlaboratoryanaloguesofatmosphericandoceaniccirculation,andforstudiesofthedynamicsofalmostallSolarSystemplanets(includingthe Earth).Hewasaco-investigatorontheCassiniandMarsReconnaissanceOrbitermissions. HewasawardedtheAdrianGillPrizeoftheRoyalMeteorologicalSocietyandtheLewis FryRichardsonMedaloftheEuropeanGeosciencesUnionforinterdisciplinarycontributionstothenonlineardynamicsofrotatingfluidsandplanetaryatmospheres.
ZONALJETS Phenomenology,Genesis,andPhysics Editedby
BORISGALPERIN
UniversityofSouthFlorida,St.Petersburg
PETERL.READ
UniversityofOxford,Oxford
UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06-04/06,Singapore079906
CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence.
www.cambridge.org
Informationonthistitle:www.cambridge.org/9781107043886 DOI:10.1017/9781107358225
©CambridgeUniversityPress2019
Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress.
Firstpublished2019
AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Names:Galperin,Boris,editor. | Read,PeterL.,1953–editor. Title:Zonaljets:phenomenology,genesis,andphysics/editedbyBoris Galperin(UniversityofSouthFlorida,SaintPetersburg),PeterL.Read (UniversityofOxford,Oxford).
Description:Cambridge;NewYork,NY:CambridgeUniversityPress,[2019] | Includesbibliographicalreferencesandindex. Identifiers:LCCN2018039871 | ISBN9781107043886(hardback) | ISBN9781107619562(pbk.)
Subjects:LCSH:Jets. | Zonalwinds. | Jetstream. | Winds. | Waterjets. | Turbulence. Classification:LCCQC935.Z662019 | DDC551.51/83–dc23 LCrecordavailableathttps://lccn.loc.gov/2018039871 ISBN978-1-107-04388-6Hardback
CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate.
ListofContributorspage ix
Foreword xiii
Acknowledgments xv
ListofAbbreviations xvii
Dedications:RaymondHideandGarethP.Williams xix
IIntroduction
1TheWorldofJets3
BORISGALPERINANDPETERL.READ
IIZonalJetsinNature
2TerrestrialAtmospheres9 JONATHANL.MITCHELL,THOMASBIRNER,GUILLAUMELAPEYRE, NOBORUNAKAMURA,PETERL.READ,GWENDALRIVIÈRE,AGUSTÍN SÁNCHEZ-LAVEGAANDGEOFFREYK.VALLIS
3Oceans46
PETERC.CORNILLON,ERICFIRING,ANDREWF.THOMPSON, LEONIDM.IVANOV,IGORKAMENKOVICH,CHRISTIANE.BUCKINGHAM ANDYAKOVD.AFANASYEV
4GasGiants72
AGUSTÍNSÁNCHEZ-LAVEGA,LAWRENCEA.SROMOVSKY,ADAMP. SHOWMAN,ANTHONYD.DELGENIO,ROLANDM.B.YOUNG,RICARDO HUESO,ENRIQUEGARCÍA-MELENDO,YOHAIKASPI,GLENNS.ORTON, NAIARABARRADO-IZAGIRRE,DAVIDS.CHOIANDJOHNM.BARBARA 5ExoplanetsandtheSun104 JAMESY-K.CHO,HEIDARTH.THRASTARSON,TOMMIT.KOSKINEN, PETERL.READ,STEVENM.TOBIAS,WOOSOKMOONAND JACKW.SKINNER
IIIJetsinLaboratories 6ZonalJetFlowsintheLaboratory:AnIntroduction119 PETERL.READ
7ConvectivelyDrivenTurbulence,RossbyWavesandZonalJets: ExperimentsontheCoriolisPlatform135 PETERL.READ,JOELSOMMERIAANDROLANDM.B.YOUNG
8Turbulence,RossbyWavesandZonalJetsonthePolar β -Plane: ExperimentswithLaboratoryAltimetry152 YAKOVD.AFANASYEV
9ZonalJetsintheLaboratory:ExperimentswithElectromagnetically ForcedFlows167 STEFANIAESPA,GABRIELLADINITTO,BORISGALPERINANDJESSE HOEMANN
IVZonalFlowsinMagneticallyConfinedPlasmas 10Theory181 PAULW.TERRY
11Experiments194 TERESAESTRADA
VGenesisandMaintenanceofZonalJets:Turbulence andInstabilities
12GeneralResultsonZonationinRotatingSystemswitha β -Effect andtheElectromagneticForce209 BINCHENGANDALEXMAHALOV
13BarotropicandZonostrophicTurbulence220 BORISGALPERIN,SEMIONSUKORIANSKY,ROLANDM.B.YOUNG, REICHEMKE,YOHAIKASPI,PETERL.READANDNADEJDA DIKOVSKAYA
14ZonalJetFormationbyPotentialVorticityMixingatLargeand SmallScales238 RICHARDK.SCOTTANDDAVIDG.DRITSCHEL
15RadiatingInstability247
JINBOWANG,MICHAELA.SPALL,JOSEPHPEDLOSKYAND IGORKAMENKOVICH
16ModulationalInstabilityinBasicPlasmaandGeophysicalModels255 BRENDAE.QUINN,SERGEYV.NAZARENKO,COLMP.CONNAUGHTON, STEVENGALLAGHERANDBOGDANHNAT
17 β -PlumeMechanismofZonalJetCreationbyaSpatially LocalizedForcing266 YAKOVD.AFANASYEVANDLEONIDM.IVANOV
18MeridionalPropagationofZonalJetsinOceanGyres284 BALASUBRAMANYAT.NADIGAANDDAVIDN.STRAUB
19DynamicsofBaroclinicMultipleZonalJets292 PAVELBERLOFFANDIGORKAMENKOVICH
VIGenesisandMaintenanceofZonalJets:StatisticalTheories
20StatisticalClosuresandZonalFlows309 JOHNA.KROMMESANDJEFFREYB.PARKER
21DirectStatisticalSimulationofaJet332 J.BRADMARSTON,WANMINGQIANDSTEVENM.TOBIAS
22ZonalFlowsasStatisticalEquilibria347 FREDDYBOUCHETANDANTOINEVENAILLE
23ZonostrophyandOtherQuadraticInvariantsinDriftand Quasi-GeostrophicWaveTurbulence360 KATIEL.HARPER,BRENDAE.QUINN,SERGEYV.NAZARENKOAND MIGUELD.BUSTAMANTE
24KineticTheoryandQuasi-LinearTheoriesofJetDynamics368 FREDDYBOUCHET,CESARENARDINIANDTOMÁSTANGARIFE
25StatisticalStateDynamics:ANewPerspectiveonTurbulencein ShearFlow380
BRIANF.FARRELLANDPETROSJ.IOANNOU
26ZonalFlowasPatternFormation401 JEFFREYB.PARKERANDJOHNA.KROMMES
27EmergenceofNonzonalCoherentStructures419 NIKOLAOSA.BAKASANDPETROSJ.IOANNOU
VIIMaterialTransportinFlowswithJets 28AnisotropicandInhomogeneousEddy-InducedTransport inFlowswithJets437 IGORKAMENKOVICH,PAVELBERLOFFANDIRINAI.RYPINA
29Turbulence,DiffusionandMixingBarriersinFlowswithZonalJets450 BORISGALPERIN,SEMIONSUKORIANSKY,STEFANIAESPA, GUGLIELMOLACORATA,NADEJDADIKOVSKAYAAND JESSEHOEMANN
References
461 Index 502
CONTRIBUTORS YAKOVD . AFANASYEV MemorialUniversityofNewfoundland DepartmentofPhysicsandPhysicalOceanography Canada
NIKOLAOSA BAKAS LaboratoryofMeteorologyandClimatology DepartmentofPhysics UniversityofIoannina Greece
JOHNM BARBARA NASA,GoddardInstituteforSpaceStudies USA
NAIARABARRADO - IZAGIRRE
EscueladeIngenieríadeBilbao Dpt.FísicaAplicadaI UniversidaddelPaísVasco Spain
PAVELBERLOFF DepartmentofMathematics ImperialCollegeLondon UnitedKingdom
THOMASBIRNER MeteorologicalInstitute Ludwig-Maximilians-University Germany
FREDDYBOUCHET ENSdeLyon,CNRS,UCBL LaboratoiredePhysique,UniversitédeLyon France
CHRISTIANE . BUCKINGHAM NationalOceanographyCentre UniversityofSouthampton UnitedKingdom
MIGUELD BUSTAMANTE ComplexandAdaptiveSystemsLaboratory SchoolofMathematicsandStatistics UniversityCollegeDublin Ireland
REICHEMKE DepartmentofAppliedPhysicsandApplied Mathematics ColumbiaUniversity USA
BINCHENG DepartmentofMathematics UniversityofSurrey UnitedKingdom
JAMESY - K CHO SchoolofPhysicsandAstronomy QueenMaryUniversityofLondon UnitedKingdom
DAVIDS CHOI DepartmentofPlanetarySciences UniversityofArizona USA
COLMP CONNAUGHTON CentreforComplexityScience UniversityofWarwick UnitedKingdom
PETERC CORNILLON GraduateSchoolofOceanography UniversityofRhodeIsland USA
ANTHONYD . DELGENIO NASA,GoddardInstituteforSpaceStudies USA
NADEJDADIKOVSKAYA DepartmentofMechanicalEngineering Ben-GurionUniversityoftheNegev Israel
GABRIELLADINITTO DICEA SapienzaUniversitàdiRoma Italy
DAVIDG . DRITSCHEL SchoolofMathematicsandStatistics UniversityofStAndrews UnitedKingdom
STEFANIAESPA DICEA SapienzaUniversitàdiRoma Italy
TERESAESTRADA LaboratorioNacionaldeFusion CIEMAT Spain
BRIANF FARRELL DepartmentofEarthandPlanetarySciences HarvardUniversity USA
ERICFIRING DepartmentofOceanography UniversityofHawai’iatManoa USA
STEVENGALLAGHER DepartmentofPhysics UniversityofWarwick UnitedKingdom
BORISGALPERIN CollegeofMarineScience UniversityofSouthFlorida USA
ENRIQUEGARCÍA - MELENDO EscueladeIngenieríadeBilbao DepartamentoFísicaAplicadaI UniversidaddelPaísVasco Spain
KATIEL . HARPER MathematicsInstitute UniversityofWarwick UnitedKingdom
BOGDANHNAT DepartmentofPhysics UniversityofWarwick UnitedKingdom
JESSEHOEMANN CollegeofMarineScience UniversityofSouthFlorida USA
RICARDOHUESO EscueladeIngenieríadeBilbao DepartamentoFísicaAplicadaI UniversidaddelPaísVasco Spain
PETROSJ IOANNOU DepartmentofPhysics NationalandKapodistrianUniversityofAthens Greece
LEONIDM IVANOV DepartmentofOceanography NavalPostgraduateSchool USA
IGORKAMENKOVICH RosenstielSchoolofMarineandAtmosphericScience UniversityofMiami USA
YOHAIKASPI DepartmentofEarthandPlanetarySciences WeizmannInstituteofScience Israel
TOMMIT . KOSKINEN DepartmentofPlanetarySciences LunarandPlanetaryLaboratory UniversityofArizona USA
JOHNA KROMMES PlasmaPhysicsLaboratory,MS28 PrincetonUniversity USA
GUGLIELMOLACORATA ISAC,NationalResearchCouncil Italy
GUILLAUMELAPEYRE LaboratoiredeMétéorologieDynamique/IPSL CNRS/EcoleNormaleSupérieure France
ALEXMAHALOV SchoolofMathematicalandStatisticalSciences ArizonaStateUniversity USA
J . BRADMARSTON DepartmentofPhysics BrownUniversity USA
JONATHANL MITCHELL AtmosphericandOceanicSciences Earth,PlanetaryandSpaceSciences UniversityofCalifornia–LosAngeles USA
WOOSOKMOON
NordicInstituteforTheoreticalPhysics Sweden
BALASUBRAMANYAT NADIGA
LosAlamosNationalLaboratory,MS-B214 USA
NOBORUNAKAMURA UniversityofChicago USA
CESARENARDINI ENSdeLyon,CNRS,UCBL LaboratoiredePhysique UniversitédeLyon France
SERGEYV . NAZARENKO MathematicsInstitute UniversityofWarwick UnitedKingdom
GLENNS ORTON JetPropulsionLaboratory CaliforniaInstituteofTechnology USA
JEFFREYB PARKER PlasmaPhysicsLaboratory,MS29 PrincetonUniversity USA
JOSEPHPEDLOSKY WoodsHoleOceanographicInstitution USA
WANMINGQI DepartmentofPhysics BrownUniversity USA
BRENDAE . QUINN SchoolofMechanicalEngineering CenterforMediterraneanSeaStudies Tel-AvivUniversity Israel
PETERL . READ Atmospheric,OceanicandPlanetaryPhysics DepartmentofPhysics UniversityofOxford UnitedKingdom
GWENDALRIVIÈRE LaboratoiredeMétéorologieDynamique/IPSL CNRS/EcoleNormaleSupérieure France
IRINAI RYPINA WoodsHoleOceanographicInstitution PhysicalOceanographyDepartment USA
AGUSTÍNSÁNCHEZ - LAVEGA EscueladeIngenieríadeBilbao DepartamentoFísicaAplicadaI UniversidaddelPaísVasco Spain
RICHARDK SCOTT SchoolofMathematicsandStatistics UniversityofStAndrews UnitedKingdom
ADAMP . SHOWMAN DepartmentofPlanetarySciences LunarandPlanetaryLaboratory UniversityofArizona USA
JACKW SKINNER SchoolofPhysicsandAstronomy QueenMaryUniversityofLondon UnitedKingdom
JOELSOMMERIA LaboratoiredesEcoulementsGéophysiquesetIndustriels CNRS/UniversitéGrenobleAlpes France
MICHAELA . SPALL WoodsHoleOceanographicInstitution USA
LAWRENCEA SROMOVSKY SpaceScienceandEngineeringCenter UniversityofWisconsin–Madison USA
DAVIDN . STRAUB AtmosphericandOceanicSciences McGillUniversity Canada
SEMIONSUKORIANSKY DepartmentofMechanicalEngineering Ben-GurionUniversityoftheNegev Israel
TOMASTANGARIFE ENSdeLyon,CNRS,UCBL LaboratoiredePhysique UniversitédeLyon France
PAULW TERRY DepartmentofPhysics UniversityofWisconsin–Madison USA
HEIDARTH THRASTARSON JointInstituteforRegionalEarthSystemScience andEngineering UniversityofCalifornia–LosAngeles andJetPropulsionLaboratory CaliforniaInstituteofTechnology USA
ANDREWF THOMPSON EnvironmentalScienceandEngineering CaliforniaInstituteofTechnology USA
STEVENM TOBIAS DepartmentofAppliedMathematics UniversityofLeeds UnitedKingdom
GEOFFREYK VALLIS CollegeofEngineering,MathematicsandPhysicalSciences UniversityofExeter UnitedKingdom
ANTOINEVENAILLE ENSdeLyon,CNRS,UCBL LaboratoiredePhysique UniversitédeLyon France
JINBOWANG JetPropulsionLaboratory CaliforniaInstituteofTechnology USA
ROLANDM B YOUNG Atmospheric,OceanicandPlanetaryPhysics DepartmentofPhysics UniversityofOxford UnitedKingdom
FOREWORD Thewindsinouratmosphereandcurrentsinouroceansare oftendescribedintermsof turbulence, vortices, waves,and jets Weintroducetheseconceptsandtheanalysistechniquesthatgo alongwiththemtotrytomakesenseofthecomplexityofthe flowsthatweobserve.Thepresentvolumetakestheconcept ofjetsasitsprimaryfocus,butstartingfromthisperspectiveit providesadistinctiveandtimelyintroductiontocurrenttrends inatmosphericandoceanicfluiddynamics,andthedynamics ofrotating,stratifiedflowsmoregenerally.
Turbulence issometimesthoughtofastheamorphousbackground,characterizedbychaosbutalsobydistinctivespectralshapesandmovementsofenergybetweenscales.From theperspectiveofatmosphericandoceanfluiddynamics,a greatadvancewastherealizationoftheprofounddifferences betweentwo-dimensionalandthree-dimensionalturbulence, withenergycascadingtolargerratherthansmallerscalesin thetwo-dimensionalcase,resultinginmuchreduceddissipativeflows.Thenaïvepicturethatthethinnessoftheatmosphere andoceansascomparedtotheradiusoftheplanetunderliesthe relevanceoftwo-dimensionalturbulenceforlarge-scaleflows isincorrect.Rather,itistheextenttowhichtheflowisdominatedbysolid-bodyrotationwhenviewedinaninertialreferenceframe,andthewayinwhichrotationconstrainsthevertical gradientofthehorizontalwinds,thatisthekey–aconstraint thatwasnotfullyincorporatedintoourtheoriesofgeophysical fluiddynamicsuntiltheadventofquasi-geostrophictheoryin thelate1940s.
Thestudyofatmospheric vortices goesbackatleasttoAristotle’stheoryof“whirlwinds”inhis Meteorology (notthestartingpointthatIrecommendtomystudents).Therearevortices intheatmosphere,tropicalcyclones,thataresowell-defined thatwegivethemnames,buttheJovianGreatRedSpottakes theprizeforlongevityandnamerecognition.Well-definedvorticesonscalesoftenstohundredsofkilometersarenowknown tobewidespreadintheocean.Vorticescanemergenaturally frommoreturbulentantecedentsinthepresenceofbackground rotation,andidealizedsystemshavebeendesignedtostudythe transitionbetweenturbulence-dominatedandvortex-dominated flows.
Butaquicklookattheweathermapmakesitclearthat analternativestartingpointfordescribinglarge-scaleatmosphericflowsisthatof waves.ThesearepredominatelyRossby waves,owingtheirexistencetoambientvorticitygradients. Thesevorticitygradientsinturnexistduetothefactthat theradialcomponentofthevorticityduetosolid-bodyrotationisafunctionoflatitude,increasingmonotonicallyfrom thesouthpoletothenorthpole,anditisthisgradientthat
createsthepotentialforRossbywaves.Thisseeminglyesotericconsequenceofrotationandsphericitycolorsalloflargescalemeteorologyandoceanography.Quasi-geostrophictheory againprovidesthekeyinsightsintohowRossbywavescanbe generatedthroughtheprocessknownasbaroclinicinstability inbothatmosphereandoceans.Whenthesewavesbecomesufficientlynonlineartheycangenerategeostrophic(quasi-twodimensional)turbulenceorrollupintovortices,justifyingthe term extratropicalcyclones eventhoughthewavyunderpinning ofthesemid-latitudeweatherproducersarealwaysevident.We sometimesrefertothismixoffinite-amplitudeRossbywaves andquasi-geostrophicturbulenceasthe macroturbulence ofthe mid-latitudetroposphere.
Thesamecombinationofrotationandsphericitycreates conditionsthatallowfortheexistenceofpersistentzonal (east–west)jetsinplanetaryatmospheres.Zonaljetsarealso prominentintheoceans,especiallyneartheequatorandin theSouthernOcean.Thesejetsarecombinationsofforced andinternallygeneratedstructures.Intheatmosphere,radiation createsanorth–southtemperaturegradientinthetroposphere that,incombinationwithrotatingandsurfacefriction,createswest-to-eastwindsintheuppertroposphere.Thesewinds arereshapedbytheHadleycirculationinthetropics,creating thesubtropicaljet,andbyenergyfedbackintothesezonal flowsbytheatmosphere’smacroturbulence,thedominantprocessshapingmid-latitude eddy-driven jets.TheEarthpresents arelativelycomplexsetting,withthesubtropicaljetnotalways clearlyseparatedfromthesingleeddy-drivenmid-latitudejet. Butifyouhaveanatmosphericmodelallyouhavetodois increasetherotationrateorincreasetheradiusoftheplanet tocreatebetterseparation,and,mostfamously,multipleeddydrivenzonaljets,resultinginbandedcirculationpatternshaving morethanasuperficialresemblancetothatobservedonJupiter.
Zonaljetsinourterrestrialatmospherecontainabouthalfof thetotalkineticenergyoftheatmosphericflow,andasmuchas 90%oftheavailablepotentialenergy(thepotentialenergythat canbeconvertedtokineticenergybyrearrangingthefluidadiabaticallyandloweringitscenterofmass).Itisthisavailable potentialenergyinthejetsthatistappedbybaroclinicinstability,providingtheenginedrivingtheatmosphere’smacroturbulence,whichthenfeedsbacktoshapethejetsintoformsthat mayhavelittleresemblancetothezonalflowsthatexistinthe absenceoftheseinteractions.
Changeinthestructureandpositionofjetsisacentraltheme inclimatechangeresearch.Weareconfidentthattheozone holeinthestratosphereoverAntarcticahascausedthemidlatitudetroposphericjetintheSouthernHemispheretoshift
poleward,andtheworld’sclimatemodelsconsistentlypredict thatawarmingsurfacewillalsopushthemid-latitudejetpolewardinbothhemispheres,accompaniedbyalloftheweather patternsthatrideonthisjet.Weneedtounderstandthesejet shiftsduetohumanactivityfarbetterthanwedotoday.
Thisambitiousbookprovidesanup-to-datesurveyofatmosphericandoceanicjetsandtheirinteractionswithturbulence, waves,andvortices.Itintroducesthereadertothelatesttheoreticalideasand,crucially,itbringsindataandinsightsfrom studiesofotherplanetaryatmospheres,especiallythegasgiants
withtheirbeautifuljetstructures,andfromlaboratoryexperiments,tocreateabroadoverviewofjetdynamicsthatwill widentheperspectivesofstudentsandactiveresearchersstudyingthedynamicsoftheatmosphere,theoceans,otherplanetary atmospheres,andclimatechange.
IsaacHeld GeophysicalFluidDynamicsLaboratory/NOAA,
PrincetonUniversity
ACKNOWLEDGMENTS Theoriginsofthisbookdatebacktoearlyin2011whenone ofus(BG)proposedbiddingforastudyteamattheInternationalSpaceSciencesInstitute(ISSI)inBern,Switzerland.This entailedidentifyingasuitableproblemandassemblingasmall groupofinterestedscientistswhomightbepreparedtocome togetherforaseriesofmeetingsoveraperiodofthreeyears. Thethemewecameupwithfocusedontheoriginofzonal jets,primarilyasfoundintheatmospheresandoceansofthe Earthandotherplanets.Thiswas,wethought,arichfieldin which,althoughtherewasalreadyalargeliteratureofresearch onthesubject,manyproblemswereoutstanding.Itwasalso timely,givenrecentdevelopmentse.g.insatelliteoceanographyandplanetaryexploration,aswellasinnumericalmodelingandrelatedtheory,especiallyinrelationtoeddy-drivenphenomenaandtheanisotropicpropertiesofturbulenceinrotating fluids.
Intheevent,ourapplicationwassuccessfulandledtothe establishingofacoreteamofaroundadozenscientistsatvariouscareerstages,andanagreementtobeginwithourfirstmeetinginMarch2012.Atthesametime,Borisfloatedtheideawith CambridgeUniversityPress(CUP)thatthisteamcouldcollaboratetoproduceanauthoritativebookonthesubject.ISSI encouragetheirstudyteamstoproduceapublicationattheend oftheirproject,andsowewerepushingatanopendoorso farastheywereconcerned.CUPrespondedenthusiastically, andsoourjourneybegan,toendwiththeproductionofthis book.Forthiswemustacknowledgethesupport,encouragement,andpatienceofoureditor,DrMattLloyd,forsticking withusand,togetherwithhiscolleague,ZoePruce,foralltheir helpinbringingthisprojecttofruition.
Attheoutset,thescopeofourdiscussionswasrestricted togeophysicaljetsandrelatedstudiesinlaboratoryfluidmechanicalexperimentation,butfromanearlystagewe entrainedtheinterestofProfessorPatDiamondfromthe UniversityofCalifornia,SanDiego.Patcamefromtheplasma physicscommunity,buthadlongbeenintriguedbyanalogies, bothmathematicalandphysical,betweenplasmaphenomena, suchasdriftwaveturbulence,andRossbywaveturbulencein rotatingflows.ThankstoPat’sinterestandencouragement,we werepersuadedtobroadenthescopeoftheteamtoexplore theseanalogiesingreaterdepth.Accordingly,thefollowing twomeetingsoftheISSIteamin2013and2014includedparticipationbyanumberof(mostlytheoretical)scientistsfrom theplasmaphysicscommunity,duringwhichahostofinsights wereshared.Thismeantthatallofuswerebeingconfronted bysomechallengingnewandunfamiliarideas,concepts,and terminology,butthesynergyrapidlybecameapparent.Sowe
mustacknowledgeandexpressourappreciationofallofthe participantsthroughouttheISSIprogramforjoininginthis exercisewithsuchenergyandenthusiasm.Thesuccessofthese meetingsowesmuchtothededicationandhospitalityofthe staffatISSI,ofwhomwewouldparticularlymentionDrMaurizioFalangaandhisteam,especiallySalibaF.Salibaforhis assistanceinrunningtheITequipmentduringourmeetingsat ISSI.WealsothankJesseHoemannforhiseffortsinmaintainingtheISSIwebpagesthatweresousefulinkeepingthestudy teamand(later)theauthorsinformedabouttheISSImeetings andthebookproject.
HavingpulledtogethersuchateamfortheISSIstudy,the realworkbegantobuildateamofauthorstowritetheindividualchaptersforthebook.WhiletheISSIparticipantswere alreadysigneduptocontributechapterstothebook,itrapidly becameapparentthatthiswouldstillleavegapsinthecoverageofcertaintopics,soweareverygratefultoanumberof otherauthorswhoeithervolunteeredorwererecruitedtothe causeaftertheendoftheISSIproject.Fromtheoriginalcore team,ourgrouphadexpandedtoabout60contributorsbythe endofthisendeavor.Mostscientiststhesedaysleadverybusy lives,keepingupwiththeliterature,writinggrantproposalsand researchpapers,andbalancingarangeofresponsibilitiessuch asmanaginglaboratories,teaching,administration,andahost ofotheractivities.Sotheeditorsaregreatlyindebtedtoallof ourcolleaguesforagreeingtotakesomeprecioustimeoutof theirbusylivestosummarizeandreviewrecentmajorresults intheirareasofspecialization.Wearealsogratefulfortheir patienceandpersistenceinthefaceofwhatmustoftenhave seemedtosomelikeincessantnagging(orstalling)fromthe editors.
Nextinlineforacknowledgmentbyallofus–editors, authors,andreaders–arethedozensofcolleagueswhoprovidedindependentexternalreviewsforallofthechaptersof thisbook.Thesepeoplearealsoamongtheleadingexpertsin awiderangeoftopics,andthey,too,sacrificedsignificanttime toperformanimportantcommunityservice:makingsurethat theresultsandotherinformationinthesechaptersareaccurate, complete,andbalanced.Theirtimeandefforthavesubstantially improvedthisreview,andwillhopefullyhavemadeitamuch moreusefulfutureresourceforstudentsandotherresearchers newtothisfield.
Finally,weexpressourprofoundgratitudetoDrRoland Youngforhisinvaluableassistancewiththefinalproofreading andthecorrectionandconsolidationofthereferencelist.The accuracy,consistencyandcompletenessofthelatterisduein nosmallmeasuretohisherculeanefforts.
DEDICATIONS:RAYMONDHIDEAND GARETHP.WILLIAMS Duringtheproductionofthisbookourcommunitysadlylost twogreatscientistswhowerepresentatthedawnofgeophysicalandplanetaryscienceandcontributedagreatdealtoshaping thescienceasweknowittoday.TheywereRaymondHideand GarethP.Williams.Wededicatethisbooktotheirmemory.
RaymondHideCBEScDFRS(1929–2016) RaymondHidewasbornon17May1929intoaworking-class familyinanimpoverishedcoal-miningvillageinSouthYorkshire.Theeldestofthreebrothers,hehadatoughearlylife.His fathercommittedsuicidewhenhewas12andhismotherleft thefamilyshortlyafterwards,leavingRaymondandhisgrandmothertobringuphistwoyoungerbrothers,earningmoneyby cleaningwindowsandworkinginabaker’sshop.Despitethese hardships(orperhapsbecauseofthem?)heturnedtoacademic study(atwhichheexcelled),winningscholarships,firsttothe PercyJacksonGrammarSchoolnearDoncasterandlatertoread PhysicsatManchesterUniversity,fromwhichhegraduatedin 1950withfirstclasshonours.
ItwasduringhistimeatManchesterthatheencountered theNobelPrize-winningphysicistP.M.S.(laterLord)Blackett,which,togetherwithhisbackgroundfromthecoal-mining industry,firedhislifelonginterestingeophysics.Atthistime, inthelate1940s,Blackettwasexploringanewtheoryfor thegenerationoftheEarth’smagneticfieldandRaymond becameinvolvedinsomeofBlackett’smeasurementswhile atManchester.Blackett’stheorywasincompetitionwiththe dynamohypothesis,beingpromotedatthetimebySirEdward (“Teddy”)Bullard,thenatCambridgeUniversity.Raymond subsequentlywenttoCambridgetoworkforhisPhD,initiallytoinvestigatealaboratoryanalogueoffluidmotionin theEarth’scoreintheformofadifferentiallyheated,rotating,cylindricalfluidannulus.Althoughthisexperimentwas alongwayfrombeingabletocapturetheEarth’sgeodynamo,itspossiblelinktothedynamicsoftheatmospherewas onlymade(accordingtoRaymond’sownaccount)followinga chanceencounterwithSirHaroldJeffreys,whohappenedto passbyRaymond’sexperimentwhenitwasrunning,peered overhisshoulderandremarked“Hmm–looksliketheatmosphere!”Thisopenedupawhollynewperspectiveonthese rotatingannulusexperimentsandRaymond’sseminalobservationsofbaroclinicwaves,quasi-periodic“vacillations”,intransitivemultipleflowstatesandhysteretictransitionstowards irregularstateswenowinterpretas“deterministicchaos”or
“geostrophicturbulence”.Itisdifficultnowtooverestimate thesignificanceofthesediscoveries,whichpredatedthemuch moreprominentdevelopmentsinthetheoryofdynamicalsystemsandchaosinthe1970sand1980sbyotherssuchasEd Lorenz,DavidRuelleandFlorisTakens.
AfterhisPhD,RaymondmovedbrieflytoworkwithS.ChandrasekharattheUniversityofChicagointheUSA,wherehe alsometfellowexperimentalistDaveFultz(famousforhis “dishpan”baroclinicconvectionexperiments)beforespending aperiodofNationalServiceworkinginplasmaphysicsatHarwell.RaymondmetAnnLicencewhilstatHarwell,marryingherin1957andbeginningalonganddevotedpartnership thatlasteduntilAnn’sdeathin2015.Hebecamealecturerin physicsatKing’sCollege,UniversityofDurham(nowtheUniversityofNewcastleuponTyne)in1957,butin1961hewas offeredaprestigiousfacultypositionatMITwherehesetupa successfullaboratoryandwaspromotedtofullprofessor.
Thisprovedtobeaveryimportantdevelopment,bringing himintoclosecontactwithkeypeopleinmeteorologyatthe time,suchasEdLorenzandJuleCharney,whowerethendevel-
RaymondHide
opingawholenewwayofthinkingaboutthegeneralcirculation oftheatmosphereandissuessuchasitspredictability.TheinfluenceofHide’sandFultz’sexperimentsonthesedevelopments wasfrequentlyacknowledgedbyLorenzhimself.Itisnowclear thattheywerecrucialinestablishingtherelevanceandphysicalityofidealisedtheoriesofbaroclinicinstability,suchasthose ofEricEadyandJuleCharney,tosynopticmeteorology.Raymond’stimeatMITalsobroughthimintocontactwithNASA’s spaceprogrammeduringtheopeningphasesoftheunmanned explorationofotherplanetsandtheiratmospheres.ThisstimulatedhisimaginationtoproposeinventiveexplanationsforfeaturessuchasJupiter’sGreatRedSpot(thefirstofthesebasedon theconceptofaTaylorcolumnoveralargemountain)andcloud bands,whichremainedanobjectofhisinterestthroughouthis life.Forthelatter,henotedthesignificanceofthelengthscale L = (U /β ) 1/2 sometenyearsbeforeitsmorewell-knowninvocationbyPeterRhines(nowknownasthe“Rhinesscale”).For theformer,itreliedonthepresenceofasolidobstacleblocking theflow,whichbecameuntenableonrealisingthatJupiterhas nosolidsurface;helatercameupwithotherideasinvolving slopingconvectionthatarestillbeingdiscussed.
In1967RaymondmadetheheadlinesintheUKwhenhewas persuadedbySirJohnMasontoreturntoEnglandtotakeupa seniorscientistpositionattheMetOffice,againstthe“brain drain”ofEuropeantalenttowardtheUSAatthetime.Mason’s reasoningwastoinvigoratetheresearchcultureoftheMet Officebyrecruitingacharismaticintellectualrolemodelwho couldconnectMetOfficeresearchersmoreeffectivelywiththe widerscientificworld.Withhindsight,thisledtooneofRaymond’smosteffectivelegacies,asasuccessionofresearchers spentpartoftheirearlycareerworkinginRaymond’sresearch group,alongsideuniversityresearchstudentsandoccasional internationalvisitors,beforemovingontoseniorandinfluential positionselsewherewithintheMetOfficeandbeyond.Hisirrepressibleenergyandenthusiasmalsoledhimtointeracteffectivelywithother,moreconventional,areasofmeteorological research,playingarole,forexample,inJohnFindlater’sdiscoveryintheearly1970softheSomalilow-leveljetandidentifyingitasawesternboundarycurrent(similartotheGulfStream
andKuroshiointheoceans)intheatmosphere.Inotherwork ontheEarth’srotation,anextremelyfruitfulcollaborationhe ledbetweentheMetOffice,ECMWFandJPLwasabletolink smallfluctuationsinthelengthofthedayandinstantaneous poleofrotationtoexchangesofangularmomentumbetween theatmosphereandsolidEarth.ThisshowedthatastrogeodeticmeasurementsoftheEarth’smotioncouldshedimportant lightonthedynamicsoftheatmosphereand,moreover,thatthe atmosphereplaysanimportantroleinexcitingnaturaloscillations(the“Chandlerwobble”)inthesolidEarthitself.
RaymondmovedtoOxfordin1990,brieflytobecomethe DirectoroftheRobertHookeInstitute,ajointcollaboration whichhehelpedtosetupinthe1980sbetweenOxfordUniversity,theMetOfficeandNERC’sInstituteforOceanographic Studies,whiletheremainderofhisgroupwasassimilatedinto theuniversity.HeretiredfromtheMetOfficein1992andlater movedtoLondon,whereheremainedactiveforawhile,based atImperialCollege.Hediedpeacefullyon5September2016 afteralongperiodofillnessandissurvivedbyhistwodaughters,KathrynandJulia,hisson,Steve,andtheirrespective families.
Raymond’sresearchcareerwastheepitomeofcrossdisciplinarycreativity,embracingfundamentalfluidmechanics andmagnetohydrodynamics,planetaryinteriors,atmospheres andoceans,climatologyandmeteorology.Hismanyachievementswererecognisedbyasuccessionofmedalsandawards frombothnationalandinternationallearnedsocietiesandinstitutions.Hehadtheuniquedistinctionofhavingbeenelected PresidentofboththeRoyalMeteorologicalSociety(1974–76) andtheRoyalAstronomicalSociety(1983–85),aswellasof theEuropeanGeophysicalSociety(1982–84).Forthoseof uswhohadtheprivilegeofworkingwithhim,itisajoyto recallandappreciatehisenergy,creativity,enthusiasticcuriosity,wisdomand,inparticular,hisselflesssupport,adviceand encouragementforgenerationsofyoungerscientists.Hewas alsoatalentedharmonicaplayer!
P ETER L.R EAD UniversityofOxford
GarethP.Williams(1939–2014)
GarethWilliams,anatmosphericscientistwhofocusedonthe large-scalestructureofplanetaryatmospheresandafellowof theAmericanMeteorologicalSociety,diedonNovember5, 2014attheUniversityMedicalCenterofPrinceton.Gareth wasborninasmallWelsh-speakingcommunity,Penrhynside, inNorthWalesintheUK.Heoncesaidthatheonlylearned Englishwhenhewenttoschool.Fromanearlyageheexcelled inmathematicsandoutdoorsports.HelovedbikingandroaminginthemountainsofWalesclosetohishome.Hereceived abachelor’sdegreeandaPhDinmathematicsattheUniversityofWalesatBangor.HewasrecruitedbyJosephSmagorinskytocometotheUnitedStatesandjointheGeneralCirculationLaboratoryoftheUSWeatherBureauinWashington,DC (latertheGeophysicalFluidDynamicsLaboratory,GFDL,of NOAAinPrinceton,NJ).In1964GarethmarriedJanetHarding,whomhehadmetwhileshewasvacationingnearhisseasidevillage;akeencyclist,heoncerode100milestovisither atherhomeinEngland.AfterahoneymooninCorsicathey crossedtheAtlanticonthe QueenMary forGarethtotakeup hispositionattheWeatherBureau.
Inthe1960sthedisciplineofgeophysicalfluiddynamics wasstillinitsinfancy.TherewasgreatinterestinthelaboratoryexperimentsofDaveFultzandRaymondHide,which illustratedthephysicsofstratification,rotationandhorizontal densitygradientsandtheremarkablevarietyoffluiddynamicalbehaviorthatresult.Gareth’sfirstmajorcontributionwasto buildanumericalmodelofHide’sexperimentthatcouldberun ontheprimitivecomputersoftheday.Inadditiontounderstandingtheselaboratoryexperimentsmorethoroughly,thegoalwas alsotoseeifnumericalmodelscouldsucceedinsimulatingthe parameterdependenceofflowsthatresemblethegeneralcirculationoftheatmosphere.Gareth’sinvestigationssucceeded, providinganinvaluablelinkbetweenlaboratoryresults,numericalmodelsandtheory,andlentcredibilitytoearlyaudacious attemptsatsimulatinggeneralcirculation.
AftertheGFDLmovedfromWashingtontoPrincetoninthe fallof1968,Gareth’sinterestsgraduallymovedfromlaboratoryexperimentstothedynamicsofplanetaryatmospheres.In theearly1970sgroundworkwasbeinglaidforanambitious explorationoftheplanetsofoursolarsystembyNASA’sJet PropulsionLaboratory.Whilethebandedpatternsontheface ofJupiterwereknownsinceGalileo’stime,thedataavailable providedlittleinsightastotheirorigin.ThePioneerprobes showedthatthevisibleoutercloudsofJupiterwereinmotion andshowedaregularpatternofcirculation,spatiallycorrelated withthelightanddarkbandsknownpreviously.Wideareasof cumsolezonalmotionwereseparatedbynarrowerbandsof muchfastermotionintheoppositedirection.Thissuggestedto WilliamsthatthecirculationofJupiterwasdrivenbyatype ofgeostrophicturbulenceanalogoustothatwhichexistsin theEarth’satmosphere,butwithverydifferentscalesrelative tothesizeoftheplanet.TosupportthisconjectureWilliams usedanumericalmodelofashallow,two-dimensionalflowof uniformdensityonasphericalsurface.Theturbulenceinthis modelwasgeneratedbyrandomforcing.Theflowpatternsin
GarethWilliamsin1983.Inthebackground,MtSnowdon,thehighest peakinWales.
themodel,withmultiplezonaljetsemergingspontaneously, receivedwidespreadattentionwhenfirstpublishedin1975.Earlierworkhademphasizedthepossibilitythatthejetsvisibleat thesurfacewereamanifestationofdeepconvectivecellsdriven byheatingintheinterioroftheplanet.Gareth’sworkhighlightedaverydifferentperspectiveinwhichthesurfaceflowis driveninathinshellbytheabsorptionofsolarradiation,resultingindynamicsfamiliartoterrestrialmeteorologists,albeitin averydifferentparametersetting.
Garethdevotedmuchofhiscareertopursingthisidea,first inatwo-dimensionalframework,buildingontheworkofPeter Rhinesontheinteractionsbetweenwavesandjetsinrotatingflows,andtheninthree-dimensionalsystemsinwhichthe imposedrandomstirringwasreplacedbynaturallyoccurring instabilities.AlthoughdefinitivetheoriesoftheJovianatmospheremustawaitfuturethree-dimensionalmeasurementsof Jupiter’satmosphericcirculation,Gareth’sinnovativeworkon surface-driventheorieshaveleftapermanentimprintonthe field.AnotherfeatureoftheJovianatmosphere,theGreatRed Spot,alsofascinatedGarethandhecontinuedtoenergetically pursuethegoalofsimulatingtheJovianjets,theGreatRedSpot andothersmallervorticesinJupiter’satmosphereinasingle coherentmodeluntilhishealthproblemsintervenedinrecent years.Whilehecollaboratedwithanumberofcolleagues, Garethprimarilywrotesingle-authoredpaperswhichreflected hisdistinctivestyleandaverysharpfocusontheproblemthat fascinatedhim,aproblembestdescribedbythetitleofa1982 paperinwhichheshowedhowtocreateaJovian-likecirculationbymodifyingparametersinastandardterrestrialglobal atmosphericmodel:“TheRangeandUnityofPlanetaryCirculations.”
Inthe1970s,whenthelabfirstmovedtoNewJersey,wehad winterswithsnowonthegroundforweeksatatime.Gareth tookupcross-countryskiingandbecameanexpert.Hehadthe loveofmusicofatrueCeltandregularlyattendedconcertsin PrincetonwithJanet,hiswifeof50years.Heleavesbehindtwo sonsandthreegrandchildren.
I SAAC H ELD andK IRK B RYAN NOAAandPrincetonUniversity
I INTRODUCTION TheWorldofJets BORISGALPERINANDPETERL.READ Planetarycirculationsaretypicallydriveneitherbythethermalenergyreceivedfromtheprimarystarand/orfromheat sourceswithinaplanet’sinterior.Viacomplicatedconversion processes,thisenergyistransferredintothekineticenergyof atmosphericandoceaniccirculations.Amongmanycomponentsofthesecirculations,jetflows,andespeciallyzonaljets, i.e.,thosemovingclosetotheeast–westdirection,areamong themostfundamental‘buildingblocks’.Beingconstrainedby angularmomentumconservation,theycanemergeasaresult ofdirectlyorremotelyappliedbodyand/orsurfaceforces, boundaryconditions,waveinteractions,etc.
Zonaljetsareubiquitousingeophysicalandplanetarysystems.Onsomeplanets,suchasJupiterandSaturn,thejetsare profoundlystrong,theirinfluenceonthedistributionofclouds isclearlyvisibleeventhroughrelativelysimpleamateurtelescopes,andtheirappearanceisalmostunchangingoverhundredsofyearssinceearlyobservations.Onotherplanets,such asEarth,someoceanjetsaresoweakandmeanderingthatthey arevirtuallyundetectablewithouttimeaveraging.Unsurprisingly,therefore,thereisanongoingdiscussiononwhetheror notsuchcirculationfeaturescanevenbecharacterisedasjets.
Despitevastdifferencesinthevisualappearanceofjetsin variousenvironments,theirunderlyingphysicsisdescribedby moreorlessthesameequations,thatareamenabletoscaling frommacroscopicplanetaryenvironmentstoroom-sizedlaboratoryexperimentsand,further,tothescalesofzonalflows obtainedinplasmadevicessuchastokamaks.
Onrotatingplanets,manyzonaljetsowetheirexistenceto theanisotropisationofkineticenergytransferbythe β -effect, where β isthemeridionalgradientoftheCoriolisparameter f = 2Ω sin φ (where Ω istheplanetaryrotationrateand φ islatitude).Since β isdeterminedbytheplanetaryradius,a β -effectand,thus,zonaljets,generallypertaintothelargest scalesandfastestmotionsinasystem.However,onplanetary bodieswithaveryslowrotation,suchasVenusandTitan,a fascinatingphenomenonofsuperrotationoccursintheirupper atmosphereswherethezonalwindvelocityfarexceedsthe velocityoftheunderlyingsurfaceandis,thus,atleastpartially decoupledfromtheplanetaryangularvelocity.
Zonaljetsplayacriticalroleinthetransferofmomentum andscalarsubstances(salt,heat,humidity,solids,gases,etc.) thatdeterminepatternsofweatherandclimateaswellasair andwaterquality,dispersionofdebrisandaerosols,e.g.,from duststormsorthespreadofforestfires,andsoon.Itisself evidentthatnoimprovementinourunderstandingandmodellingcapabilitiesofallthesephenomenaispossiblewithout expandingourknowledgeaboutjetflowsandtheirinteraction withtheenvironment.
ToseeaWorldinagrainofsand, AndaHeaveninawildflower, HoldInfinityinthepalmofyourhand, AndEternityinanhour.
AuguriesofInnocence
W ILLIAM B LAKE (1757–1827)
KHM-Museumsverband.
Intenseresearchoverthelastseveraldecadesproducedavast bodyofliteratureintheareasoftheatmosphericandplanetarysciences,physicaloceanography,andexperimentaland plasmaphysics.However,adisconnectbetweendifferentdisciplinaryareasandtheuseofdifferentterminologiesandjargon amongsttheirrespectivecommunitieshavesignificantlyhamperedcross-disciplinaryresearch.Gradually,wehavecometo realisethatwehavebeentryingtoconquertheWorldofJetsby buildingaTowerofBabel.
ThefamouspaintingbyPieterBruegeltheElder,presentedin Fig.1.1,providesahistoricallegoryofthehumanpropensityto buildmonumentalintellectualtowerswithperplexingconnectionsbetweenthechambersandlongdarkcorridorsthatseeminglyleadnowhere.
Thisbookcanthereforebeviewedasa‘touristguide’,helpingtonavigatewanderingreadersbetweenthechambersand corridorsoftheZonalJetsedifice.ItwouldlikelybeataskcomparabletothelaboursofSisyphusforasingleauthortocover allaspectsofjetflows.Instead,wehaveoptedtosolicitcontributionsfrommanyleadingscientistswhohavebeenactivein therecentdevelopmentoftheoriesofjetformationandmaintenanceinanumberofdifferentdisciplines,andarecontinuing toworkonimprovingtheunderstandingoftheirdynamicsin differentenvironments.Theauthorselectiongrewoutfromthe originalcoreteamof14scientistswhoparticipatedinastudy programmeattheInternationalSpaceSciencesInstitute(ISSI) inBern,Switzerland,withthemajorityaffiliatedwithEuro-
Figure1.1 PieterBruegeltheElder, TheTowerofBabel,1563. KunsthistorischesMuseumVienna,PictureGallery.Copyright:
peaninstitutions.WeareextremelygratefultoISSIforprovidinguswiththeopportunitytoconvenesuchateam.Butit rapidlybecameclear,especiallywhenthelinksandconnectionsbetweengeophysicaljetsandthoseinmagnetisedplasmasbecameapparent,thatthetaskthatfacedusindeveloping thisbookdemandedinputfromanevenwidergroupofauthors. Wewerethereforedelightedthatsomanydistinguishedscientistsfromthesemanydisciplinesweresufficientlyinterested andmotivatedtocontributetothisproject.
Ithaslongbeenrecognisedthatturbulenceplaysaparamount roleinthedynamicsofplanetarycirculations.Defant(1921), forinstance,statedthat‘Theideathatthemid-latitudeflowcan beregardedaspronouncedgrand-scaleturbulenceshouldnotbe viewedalltooventurous’(aloosetranslationfromtheGerman; seeBirneretal.,2013).Overtheyears,withthepublication ofseminalworksbyL.F.RichardsonandA.N.Kolmogorov (see,e.g.,Frisch,1995),appreciationoftheroleofturbulence hasbeensteadilyincreasing.Eady(1950)statedthat‘Anytheoryoftheatmosphericcirculationmustbebasedonatheory of(large-scale)atmosphericturbulence.Moreover,thistheory mustgodeeperthanmostexistingtheoriesofturbulence.Itis futiletobegthequestionbyintroducinghypotheticalcoefficientsofeddy-transfer.Wehavenotonlytoestablishthecause oftheturbulencebutalsotoderivefromfirstprinciplesitspropertieswithregardtotransferofheat,angularmomentum,etc.’
Thesevisionaryremarkshavepermeatedallsubsequent developmentsofgeophysicalandplanetaryfluiddynamicsand haveguided,eitherexplicitlyorimplicitly,theprogressofour understandingofthedynamicsofzonaljets.Theimpactofthese remarkscancertainlybefeltthroughoutthisbook.
Followingthisintroduction,thebookcontainssixpartsthat takethereaderonajourney,firsttoreviewnumerousmanifestationsofzonaljetsinnaturalandlaboratoryenvironments; thentodiscussanumberofbasicinstabilitiesthatgiveriseto zonaljetflows;concludingwithanelaborationofanalyticaltheoriesthatexplainnumerousfeaturesofthedynamicsofjets, andexpoundinguponthevariousdiffusionprocessesassociatedwithjets.Whilealmosteverychapterbeginswithitsown introduction,ageneraloverview,presentedbelow,describesthe overallstructureofthebook.
PartIIprovidesadetaileddiscussionofzonaljetsinavarietyofenvironmentsoftheSolarSystemandbeyond.Chapter2 elaboratesuponterrestrialatmospheres(Venus,Earth,Marsand Titan,thelargest,albeitslowlyrotating,satelliteofSaturn;‘terrestrial’isunderstoodhereinabroadsenseaspertainingto planetarybodieswithasolidsurface);Chapter3dealswiththe Earth’soceans;Chapter4isdedicatedtotheatmospheresand interiorsofthegiantplanets,whileChapter5focusesonjets thatmightexistonextrasolar(orexo-)planetsandstars.
Jetflowsineachoftheseenvironmentspresenttheirown challenges,bothtoobserveandtoexplain,andPartIIcovers theirentiregamut,fromveryweakjetsintheoceans,particularlyinthesubtropics,toverystrongjetsongiantplanets, especiallyontheirequators,andtosuperrotatingzonalflowson VenusandTitan.Inthegeneralaccount,PartIIpresentsacomprehensivesnapshotofthestateoftheartinobservationsand interpretationsofzonaljetsacrossgeophysicsandplanetaryscience.SincePartIIsetsthetonefortherestofthebook,particularattentionwaspaidtotheconnectionsbetweenthechapters withinthatpartandwithotherchaptersinthebook.
PartIIIconsidersjetsinvariouslaboratoryenvironments. Chapter6providesageneraloverviewanddiscussesscalingarguments.Chapter7presentsasynopsisofsomeexperimentsonthespontaneousdevelopmentofzonaljetsinrotatingconvection,usingthelargestavailablerotatingflowfacility attheCoriolislaboratoryatLaboratoiredesÉcoulementsGéophysiquesetIndustriels(LEGI)inGrenoble,France.Chapter8 describessomefurtherexperimentsoneddy-drivenzonaljets usingafacilitythatutilisesaltimetryformeasurementsofthe surfacevelocities,atechniquethatisquitesimilartothesatellitealtimetryinphysicaloceanography.Chapter9elaborates uponanotherfacilityinwhichzonaljetsareproducedbyexternallyimposedelectromagneticforcing.Thisfacilityallowsone tobypasstheinstabilitiesleadingtothecreationofzonaljets andratherconcentrateonthejets’dynamics.
PartIVisconcernedwithzonalflowsinmagneticallyconfinedplasmas.Chapters10and11respectivelydiscusstheoreticalandexperimentaldevelopmentsinthisarea.
PartVsurveysvariousinstabilitiesleadingtotheformation ofzonaljets.ItstartswithChapter12,presentingabeautiful generalmathematicaltheoremshowingthatflowsonarotatingspherehaveanaturalpropensitytowardszonation,i.e.to self-organiseintozonalflows.Therestofthechaptersinthis partarearrangedinorderofincreasingcomplexity.Chapter13 isadiscussionaboutthegenerationandmaintenanceofzonal jetsinbarotropicflowsundertherigidlidapproximation,i.e., inthelimitofaninfiniteRossbydeformationradius.That chapterpresentsaclassificationofdifferentflowregimeson a β -planeintermsofthezonostrophyindex, Rβ ,andintroducesthenotionofzonostrophicturbulence.Thisclassification isusedtoexplainandquantifythe‘latency’ofoceanicjets andthestrengthandrobustnessofzonaljetsongiantplanets. Chapter14extendsthisanalysistoflowswithafiniteRossby radius.Thetwochaptersthatfollow,Chapters15and16,detail thesequenceofbasicinstabilities,bothradiatingandmodulational,i.e.primaryandsecondary,thatfacilitatetheformationofzonaljets.Chapter17elaboratesupontheemergenceof elongatedzonalstructures,theso-called β -plumes,inresponse toalocalisedforcingthatmaybeinducedbyvarioussources. Chapter18isconcernedwithoff-zonalandmeridionaljetpropagation,whilethefocusinChapter19isontheeffectsof baroclinicity.
PartVIpresentsacollectionofanalyticalandstatistical resultsonthegenesisandmaintenanceofzonaljets.Mostof theseresultsarerelativelyrecent,astheyarerelatedtothe developmentsinotherareasofstatisticalhydrodynamics.Chapter20providesanextensiveintroductiontostatisticaltheories ofturbulence.Chapter21reviewsprogressmadeinutilising themethodofdirectstatisticalsimulation(DSS)asappliedto describetheformationandstatisticaldynamicsofjets.This approachcanbeusedtoexploretherangeofvalidityofquasilinearapproximationsappliedtodescribeeddy-drivenjetdynamics.Chapter22posesthequestion‘Whydozonaljetsform soofteninturbulentflowsdominatedbygeostrophicbalance, anddotheyhaveuniversalproperties?’andaddressesitusing themethodsofequilibriumstatisticalmechanics.Chapter23 demonstratesthattheemergenceofjetsinflowscontaining Rossbyorplasmadriftwavescanbeexplainedbythepresenceofnewquadraticinvariantssuchasthezonostrophy(as suitablydefined).Chapter24describestheapplicationofthe
kineticandquasi-lineartheoriestounderstandjetdynamics. Thebasicassumptionhereisthatjetformationandmaintenanceconstitutearegimeinwhichvelocityfluctuationsaround thebasejetareverysmallinmagnitudecomparedtothejet velocityitself.Suchjetsarecontinuouslydissipatedandforced byweak,nonzonalturbulentmotionsmaintainedbydiverse sources.Chapter25appliesstatisticalstatedynamics(SSD)as analternativetomoretraditionalmethods.Theutilityofthis methodisunderscoredbyitsapplicationtoaturbulentshear flow,wheretheSSDhelpedtounearthmechanismsthatwere previouslyobscure,particularlythosearisingfromcooperative interactionsamongdisparateturbulentscales.Chapter26continuestheuseofstatisticalmethodstoinvestigatethephysicsof zonaljets.Here,themotivationistounderstandthebehaviour ofturbulence-drivenzonalflowsinmagnetisedplasmas.Plasmaspossesstheirownhostofcomplexitiesthataredistinct fromthoseofgeophysics,includingthemassdifferencesof ionsandelectrons,kineticeffectssuchaswave–particleresonances,andelectromagneticeffects.Itisamarvelthatdespite theimmensedisparitiesbetweenlaboratoryplasmasandplanetaryatmospheres,similarphysicsineachconspirestoorganiseregularflowpatternsoutofturbulence.Finally,Chapter27 treatstheemergenceofcoherentstructuresinahomogeneous turbulentbackgroundasabifurcationphenomenon.Thischapter’sresultsprovideanexampleofasituationwherealargescalestructureinbarotropicturbulence,eitherazonaljetora nonzonalcoherentstructure,emergesandismaintainedbythe systematicselforganisationoftheturbulentReynoldsstresses byspectrallynonlocalinteractionsintheabsenceofaturbulent cascade.Theseresultsmayprovideatheoreticalbackgroundfor Chapter18.
PartVIIdealswithdiffusionandtransportprocessesin flowswithzonaljets.Chapter28analysesmaterialtransportin
flowswitheddiesandjets,takingintoaccounttheinteractions betweenthesetwoflowcomponentsinoceansandatmospheres. Amongmanyexamplesoftheimportanteffectsofoceanic eddiesarethemaintenanceofthestratificationintheAntarcticCircumpolarCurrent(ACC)andoftheNorthernHemispherethermoclineandcontrolofthepenetrationoftransient atmosphericgasesintotheNorthAtlantic.Intheatmosphere, theimportanceofthemid-latitudeeddy-inducedtransportfor themeridionaltemperaturestructurehaslongbeenrecognised; eddymixingiswidelybelievedtoplayakeyroleintracerdistribution.Chapter29relatesdiffusionprocessesinflowswith jetstothedynamicsofanisotropicturbulence.Itisshownthat thescalesofflowanisotropisationcanberelatedtothescalesof transitionbetweentheregimesofRichardsonandTaylordiffusion.Baseduponthis,theconceptofdynamics–transportdualityisdeveloped.Withinthisconcept,informationondynamics anddiffusionmaybeinterchangeable.Theconceptappliesnot onlytoflowswithRossbywavesbutalsotothosewithinternalwaves.Theusefulnessofthisconceptwasdemonstratedby contrastingtheverticaldiffusionofatracerintheACCandthe meridionaldiffusionofCometShoemaker–Levy9(SL9)debris inJupiter’sstratosphere.
Thisbookprovidesacomprehensivesurveyof,andintroductionto,boththephenomenologyofzonaljetformation withinfluidandplasmasystemsandthetheoryunderpinning ourcurrentunderstandingofhowandwhytheydevelop.Sciencehascomealongwayinelaboratingthisunderstanding, yetitremainsanimportantandactivefieldofresearch.We hopethatthisbookwillhelpfuturegenerationsofresearchers andstudentstogainabroadanddeepappreciationofthis fieldandthemanyinterdisciplinarylinksthatconnectwhat mayatfirstappearasverydifferentproblemsinvolvingzonal jets.
ZONALJETSINNATURE TerrestrialAtmospheres JONATHANL.MITCHELL,THOMASBIRNER,GUILLAUMELAPEYRE, NOBORUNAKAMURA,PETERL.READ,GWENDALRIVIÈRE, AGUSTÍNSÁNCHEZ-LAVEGAANDGEOFFREYK.VALLIS
2.1TERRESTRIALPLANETCIRCULATION:A HISTORICALPERSPECTIVE Forterrestrialplanetswithacirculatingatmosphere,jetsare oftenthelargest,mostpersistentandhencemostrecognizablefeature.Generally,ajetisabandoforganizedzonalflow movingataspeeddifferentfromthatoftheunderlyingplanetarysurface.Tomaintainsuchastateagainstsurfacefriction requiresatransferofangularmomentumwithintheatmosphere.Thus,atheoryofjetsisinevitablyatheoryofangular momentumandtheprocessesthataffectitsdistribution.
FortheEarth’satmosphere,aprimitiveformofsuchtheory startedlongbeforethediscoveryofajetstream,datingback totheworkofHadley(1735).Hadley’smodelwithasingle overturningcellperhemispherewaslatersupersededbyFerrel(1856)andThomson(1857)withareturningcellinthe mid-latitudes,buttheseaxiallysymmetricmodelsstill,today, provideatestbedforjetformationthroughangular-momentumconservingflow(e.g.HeldandHou,1980).Amoresubtlequestionofwhyoverturningcirculationmustariseinthefirstplace whenapurelyzonalflowwithradiativeequilibriumandthermal windbalanceisanexactsolutiontothegoverningequations wasaddressedbyHide(1969):finiteviscosity,nomatterhow small,disruptstheangularmomentumbalanceattheextrema andthecirculationisnecessarytorestorethebalanceagainstit.
Asimilarargumentmaybemadeforthefluxesofangular momentumduetolarge-scaleeddies.Wheneddyfluxesdisrupt theangularmomentumbalance(andthermalwindbalance), themeanmeridionalcirculationmustarisetorestorethebalanceintheclimatologicalmean.ThisisessentiallywhatJeffreys(1926)proposedastheprimaryroleoflarge-scaleeddies intheextratropicalgeneralcirculationoftheEarth’stroposphere.Hepaintedafundamentallydifferentpictureofaxially asymmetriccirculation,inwhichboththeeddiesandtheeddyinducedmeridionalcirculationtransportangularmomentum.In thisflowregime,jetsareoftensaidtobe eddydriven
However,ithadlongbeenavexingproblemthatthefluxof angularmomentuminthemid-latitudeisup-gradient,i.e.,into thejet,despitethepresenceofvigorousstirringbyeddies:Starr (1968)calledita“negativeviscosityphenomenon.”ThesolutiontothisconundrumwasradiationofRossbywaves,which carrynegativeangular(pseudo)momentum.Rossbywavesare generatedinthejetregionthroughtopographicalforcingand/or baroclinicinstability.Astheyexittheregion,thewavestake negativeangularmomentumaway,thusacceleratingtheflow eastward.Asthewavesdissipateelsewhere(e.g.,theequatorwardflankoftheuppertroposphericjetorinthewinter
stratosphere),theydepositthenegativeangularmomentumto theenvironmentanddeceleratetheflow(AndrewsandMcIntyre,1976).Thedistanttransportofangularmomentumby Rossbywavesislargelyresponsibleforthemaintenanceof Earth’seddy-drivenjet.
Wavesalsoplaycriticalrolesinmaintaining equatorial superrotation,sinceHide’sworkshowsthataxiallysymmetricflowcannotmaintainabsoluteangularmomentuminexcess ofplanetaryangularmomentumattheequator.Anexampleof superrotationisthewesterlyphaseofquasi-biennialoscillationsinthestratosphere(Baldwinetal.,2001),themaindriver ofwhichisverticallypropagatinggravitywaves(Lindzenand Holton,1968).Therehadbeenasignificantadvancesinthe theoryofwave–meanflowinteractioninthe1960sand1970s, startingfromtheworkofEliassenandPalm(1960)andDickinson(1969),latergeneralizedbyAndrewsandMcIntyre(1976), thatmadeitpossibletoquantifythetransferofangularpseudomomentum(commonlycalled“waveactivity”)bythewavesin termsofasimplediagnosticoftheEliassen–Palmfluxes.Some oftheseclassicaltheorieswillbereviewedinmoredetailbelow, withadditionalinsightsfromrecentdevelopments.
OfthemanyterrestrialplanetsandmoonsoftheSolarSystem,mostarewithoutathick,long-lastingatmosphere.Just fourbodies,Earth,Mars,VenusandTitan,formthebasisofour understandingofzonalflowsonterrestrialbodies.TheatmosphereofEarthis,ofcourse,thebestobservedandcharacterizedofthegroup.Marscurrentlyhasaratherthinatmosphere, butnonethelessrevealsarichphenomenologyofweather shapedbydustloading,astrongseasonalcycleandglobalscaletopography.Marshasbeenunderactivesurveillancefor sometime,andcurrentNASAandESAmissionsarebringing inaneweraofMarsglobalreanalysis.Theatmosphereof Venusisthedeepest/thickestofthefour,witha90+barsurface pressuredominatedbycarbondioxide.Anextremegreenhouse sustainshellishconditionsandsluggishwindsatthesurface, whiletheupperreachesofVenus’atmospherespinmuchfaster thantheunderlyingplanetarysurface.Thissamephenomenon ofatmosphericsuperrotationisobservedonSaturn’smoon Titan.TitanalsosharessimilaritiestoEarthwithamoderately thick,1.5barnitrogenatmosphereandaweathercycleof methane,andtoMarswithasignificantseasonalcycle.
Inthischapterweaimtosummarizethevariedjet-likephenomenaonEarth,Mars,VenusandTitan,andtoreviewour currentunderstandingofthephysicalmechanismsbehindtheir existence.WebegininSection2.2withareviewofjetphenomenaontheseterrestrialbodies.Section2.3thenreviewsthe mechanismsforspinningupbaroclinic,subtropicaljetstreams
Another random document with no related content on Scribd:
1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg™ work in a format other than “Plain Vanilla ASCII” or other format used in the official version posted on the official Project Gutenberg™ website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original “Plain Vanilla ASCII” or other form. Any alternate format must include the full Project Gutenberg™ License as specified in paragraph 1.E.1.
1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg™ works unless you comply with paragraph 1.E.8 or 1.E.9.
1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg™ electronic works provided that:
• You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg™ works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg™ trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information about donations to the Project Gutenberg Literary Archive Foundation.”
• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all
copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.
• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.
• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.
1.F. 1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and
expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg™ Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.
Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.
Section 3. Information about the Project Gutenberg Literary Archive Foundation The Project Gutenberg Literary Archive Foundation is a non-profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.
The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact
Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.
The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.
While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no
prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.
International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.
Section 5. General Information About Project Gutenberg™ electronic works Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.