The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.
Reproduced by Pearson from electronic files supplied by the author.
Publishing as Pearson, 75 Arlington Street, Boston, MA 02116.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.
ISBN-13: 978-0-321-78066-9
ISBN-10: 0-321-78066-3
www.pearsonhighered.com
Table of Contents
Chapter 1 Vectors
1.1Vectors in Two and Three Dimensions
1.2More About Vectors
1.3The Dot Product
1.4The Cross Product
1.5Equations for Planes; Distance Problems
1.6Some n-dimensional Geometry
1.7New Coordinate Systems
Exercises for Chapter 1
Exercises for Chapter 1
Chapter 2 Differentiation in Several Variables
2.1Functions of Several Variables; Graphing Surfaces
2.2Limits
2.3The Derivative
2.4Properties; Higher-order Partial Derivatives
2.5The Chain Rule
2.6Directional Derivatives
2.7Newton’s Method
Exercises for Chapter 2
for Chapter 2
Chapter 3 Vector-Valued Functions
3.1Parametrized Curves and Kepler’s Laws
3.2Arclength and Differential Geometry
3.3Vector Fields: An Introduction
3.4Gradient, Divergence, Curl and the Del Operator
5. Westartwiththetwovectors a and b.Wecancompletetheparallelogramasinthe figureontheleft.Thevectorfromthe origintothisnewvertexisthevector a + b.Inthe figureontherightwehavetranslatedvector b sothatitstailistheheadof vector a.Thesum a + b isthedirectedthirdsideofthistriangle.
8. Thevectors a =(1, 2, 1), b =(0, 2, 3) and a + b =(1, 2, 1)+(0, 2, 3)=(1, 0, 4) aregraphedbelow. Againnotethat theoriginisatthetailsofthevectorsinthe figure
Also, 1(1, 2, 1)=( 1, 2, 1).Thiswouldbepicturedbydrawingthevector(1,2,1)intheoppositedirection. Finally, 4(1, 2, 1)=(4, 8, 4) whichisfourtimesvector a andsoisvector a stretchedfourtimesaslonginthesamedirection.
9. Sincethesumontheleftmustequalthevectorontherightcomponentwise: 12+ x =2, 9+7= y ,and z + 3=5.Therefore, x =14, y =16,and z =8
19. Weprovidetheproofsfor R3 : (1)(k + l )a =(k + l )(a1 ,a2 ,a3 )=((k + l )a1 , (k + l )a2 , (k + l )a3 ) =(ka1 + la1 ,ka2 + la2 ,ka3 + la3 )= k a + l a (2) k (a + b)= k ((a1 ,a2 ,a3 )+(b1 ,b2 ,b3 ))= k (a1 + b1 ,a2 + b2 ,a3 + b3 ) =(k (a1 + b1 ),k (a2 + b2 ),k (a3 + b3 ))=(ka1 + kb1 ,ka2 + kb2 ,ka3 + kb3 ) =(ka1 ,ka2 ,ka3 )+(kb1 ,kb2 ,kb3 )= k a + k b (3) k (l a)= k (l (a1 ,a2 ,a3 ))= k (la1 ,la2 ,la3 ) =(kla1 ,kla2 ,kla3 )=(lka1 ,lka2 ,lka3 ) = l (ka1 ,ka2 ,ka3 )= l (k a)
20.(a) 0a isthezerovector.Forexample,in R3 :
(b) 1a = a.Againin R3 : 1
21.(a) Theheadofthevector sa isonthe x-axisbetween0and2.Similarlytheheadofthevector tb liessomewhereonthe vector b.Usingthehead-to-tailmethod, sa + tb istheresultoftranslatingthevector tb,inthiscase,totherightby2s (representedinthe figureby tb*).Theresultisclearlyinsidetheparallelogramdeterminedby a and b (andisonlyonthe boundaryoftheparallelogramifeither t or s is0or1.
(b) Againthevectors a and b willdetermineaparallelogram(withverticesattheorigin,andattheheadsof a, b,and a + b Thevectors sa + tb willbethepositionvectorsforallpointsinthatparallelogramdeterminedby(2,2,1)and(0,3,2).
22. HerewearetranslatingthesituationinExercise21bythevector → OP0 .Thevectorswillallbeoftheform → OP0 + sa + tb for 0 ≤ s,t ≤ 1
(c) Wesolve (3, 2)+ t( 1, 2)=( 4, 12) for t andgetthat t =7 minutes.Notethat both 3 7= 4 and 2 14= 12
(d) Wecanseethisalgebraicallyorgeometrically:Solvingthe x partof (3, 2)+ t( 1, 2)=( 13, 27) wegetthat t =16.Butwhen t =16, y = 30 not 27.Alsointhe figurebelowweseethepathtakenbythe fleawillmissthe point ( 13, 27).
24.(a) Theplaneisclimbingatarateof4milesperhour.
(b) Tomakesurethattheaxesareorientedsothattheplanepassesoverthebuilding,thepositive x directioniseastandthe positive y directionisnorth.Thenweareheadingeastatarateof50milesperhouratthesametimewe’reheadingnorth atarateof100milesperhour.Wearedirectlyovertheskyscraperin1/10ofanhouror6minutes.
(c) Usingouranswerin(b),wehavetraveledfor1/10ofanhourandsowe’veclimbed4/10ofamileor2112feet.Theplane is 2112 1250 or862feetabouttheskyscraper.
(b) The z componentsofthetwovectorsalongtheropesmustbeequalandtheirsummustbeoppositeofthe z component inpart(a).Their y componentsmustalsobeoppositeeachother.Sincethevectorpointsinthedirection(0, ±2,1), the y componentwillbetwicethe z component.Togetherthismeansthatthevectorinthedirectionof (0, 2, 1) is (0, 50, 25) andthevectorinthedirection(0,2,1)is(0,50,25).
27. Theforce F duetogravityontheweightisgivenby F =(0, 0, 10).Theforcesalongtheropesareeachparalleltothe displacementvectorsfromtheweighttotherespectiveanchorpoints.Thatis,thetensionvectorsalongtheropesare
F1 = k ((3, 0, 4) (1, 2, 3))= k (2, 2, 1)
F2 = l ((0, 3, 5) (1, 2, 3))= l ( 1, 1, 2), where k and l areappropriatescalars.Fortheweighttoremaininequilibrium,wemusthave F1 + F2 + F = 0,or,equivalently, that k (2, 2, 1)+ l ( 1, 1, 2)+(0, 0, 10)=(0, 0, 0). Takingcomponents,weobtainasystemofthreeequations:
+2l =10
Solving,we findthat k =2and l =4,sothat F1 =(4, 4, 2) and F2 =( 4, 4, 8)
1.2MoreaboutVectors
ItmaybeusefultopointoutthattheanswerstoExercises1and5arethe“same”,butthatinExercise1, i =(1, 0) andinExercise 5, i =(1, 0, 0).ThiscomesupwhengoingtheotherdirectioninExercises9and10.Inotherwords,it’snotalwaysclearwhether theexercise“lives”in R2 or R3
(d) Thesymmetricformsare: x +1 2 =7 y = z 3 5 (for(a)) 5 x 5 = y +3 4 = z 4 5 (for(b)) x +1 2 = y 7= z 3 5 (forthevariationof(a)) x 5 = y 1 4 = z 9 5 (forthevariationof(b))
22. Solvefor t ineachoftheparametricequations.Thus
andthesymmetricformis
23. Solvingfor t ineachoftheparametricequationsgives t = x 7, t =(y +9)/3,and t =(z 6)/( 8),sothatthesymmetric formis
24. Seteachpieceoftheequationequalto t andsolve:
25. Let t =(x +5)/3.Then x =3t 5.Inviewofthesymmetricform,wealsohavethat t =(y 1)/7 and t =(z +10)/( 2) Henceasetofparametricequationsis x =3t 5, y =7t +1,and z = 2
30. Ifyoumakethesubstitution u = t3 ,theequationsbecome:
x =3u +7, y = u +2, and z =5u +1
Themap u = t3 isabijection.Theimportantfactisthat u takesonexactlythesamevaluesthat t does,justatdifferenttimes. Since u takesonallreals,theparametricequationsdodeterminealine(it’sjustthatthespeedalongthelineisnotconstant).
31. Thistimeifyoumakethesubstitution u = t2 ,theequationsbecome:
x =5u 1, y =2u +3, and z = u +1
Theproblemisthat u cannottakeonnegativevaluessotheseparametricequationsareforaraywithendpoint ( 1, 3, 1) and heading (5, 2, 1).
36. Wecouldshowthattwopointsonthelinearealsointheplaneorthatforpointsontheline: 2x y +4z =2(5 t) (2t 7)+4(t 3)=5,sotheyareintheplane.
37. Forpointsonthelineweseethat x 3y + z =(5 t) 3(2t 3)+(7t +1)=15,sothelinedoesnotintersecttheplane.
38. Firstweparametrizethelinebysetting t =(x 3)/6,whichgivesus x =6t +3, y =3t 2, z =5t.Pluggingthese parametricvaluesintotheequationfortheplanegives 2(6t +3) 5(3t 2)+3(5t)+8=0 ⇐⇒ 12t +24=0 ⇐⇒ t = 2.
39. We findparametricequationsforthelinebysetting t =(x 3)/( 2),sothat x =3 2t, y = t +5, z =3t 2.Plugging theseparametricvaluesintotheequationfortheplane,we findthat 3(3 2t)+3(t +5)+(3t 2)=9 6t +3t +15+3t 2=22 for all valuesof t.Hencethelineiscontainedintheplane.
40. Againwe findparametricequationsfortheline.Set t =(x +4)/3,sothat x =3t 4, y =2 t, z =1 9t.Plugging theseparametricvaluesintotheequationfortheplane,we findthat
(c) Thisisjustlikepart(b)exceptthe x and y coordinateshavebeenswitched.Thisisthesameasreflectingthecircleabout theline y = x andsothisisalsoacircleofradius5.Ifyoucare,thecirclein(b)wasdrawnstartingatthepoint(5,0) counterclockwisewhilethiscircleisdrawnstartingat(0,5)clockwise.
(d) Thisisanellipsewithmajoraxisalongthe x-axisintersectingitat (±5, 0) andminoraxisalongthe y -axisintersectingit at (0, ±3): x
46. Thediscussioninthetextofthecycloidlookedatthepathtracedbyapointonthecircumferenceofacircleofradius a asitis rolledwithoutslippingonthe x-axis.Thevectorfromtheorigintoourpoint P wassplitintotwopieces: → OA (thevectorfrom theorigintothecenterofthecircle)and → AP (thevectorfromthecenterofthecircleto P ).Thissplitremainsthesameinour problem.
Chapter1Vectors
Thecenterofthecircleisalways a abovethe x-axis,andafterthewheelhasrolledthroughacentralangleof t radiansthe x coordinateisjust at.So → OA =(at,a).Thisdoesnotchangeinourproblem.
Thevector → AP wascalculatedtobe ( a sin t, a cos t).Thedirectionofthevectorisstillcorrectbutthelengthisnot.If weare b unitsfromthecenterthen → AP = b(sin t, cos t)
Weconcludethenthattheparametricequationsare x = at b sin t,y = a b cos t.When a = b thisisthecaseofthe cycloiddescribedinthetext;when a>b wehavethecurtatecycloid;andwhen a<b wehavetheprolatecycloid.
Note:Theanswersto12and13arethesame.Youmaywanttoassignbothexercisesandaskyourstudentswhythisshouldbe true.Youmightthenwanttoaskwhatwouldhappenifvector a wasthesamebutvector b wasdividedby √2
12. proji+j (2i +3j k)= (i + j) (2i +3j k) (i + j) (i + j) (i + j)= 2+3 1+1 (1, 1, 0)= 5 2 , 5 2 , 0
13. proj i+j √2 (2i +3j k)= ⎛
i+j √2 (2i +3j k) i+j √2 · i+j √2
14. proj5k (i j +2k)= (5k) · (i j +2k) (5k) · (5k) (5k)=
18. Herewetakethenegativeofthevectordividedbyitslength: i 2k i 2k = 1 √5 (1, 0, 2).
19. SameideaasExercise17,butmultiplyby3: 3(i + j k) i + j k = 3 √3 (1, 1, 1)= √3(1, 1, 1).
20. Thereareawholeplanefullofperpendicularvectors.Theeasiestthreeto findarewhenwesetthecoefficientsofthecoordinate vectorsequaltozerointurn: i + j, j + k,and i + k
21. Wehavetwocasestoconsider.
Ifeitheroftheprojectionsiszero:proja b = 0 ⇔ a
projb a = 0 Ifneitheroftheprojectionsiszero,thenthedirectionsmustbethesame.Thismeansthat a mustbeamultipleof b.Let a = cb,thenontheonehand
Ontheotherhand
Theseareequalonlywhen c =1
Inotherwords,proja b = projb a
22. Property2:
23. Wehave
24. Thefollowingdiagramsmightbehelpful: a
To find F1 ,thecomponentof F inthedirectionof a,weproject F onto a:
To find F2 ,thecomponentof F inthedirectionperpendicularto a,wecanjustsubtract F1 from F: F2 =(1, 2) 2 17 (4, 1)= 9 17 , 36 17 = 9 17 (1, 4)
Notethat F1 isamultipleof a sothat F1 doespointinthedirectionof a andthat F2 a =0 so F2 isperpendicularto a.
25.(a) Theworkdonebytheforceisgiventobetheproductofthelengthofthedisplacement( → PQ )andthecomponentof forceinthedirectionofthedisplacement(± proj → PQ F orinthecasepicturedinthetext, F cos θ ).Thatis,
28. Notethat i, j,and k eachpointalongthepositive x-, y -,and z -axes.Therefore,wemayuseTheorem3.3tocalculatethat
29. Asinthepreviousproblem,weuse a =3i +4k to findthat
α = (3i +4k) · i 3i +4k (1) = 3 5 ;
β = (3i +4k) · j 3i +4k (1) =0;
γ = (3i +4k) · k 3i +4k (1) = 4 5
30. Youcouldeitherusethethreerighttrianglesdeterminedbythevector a andthethreecoordinateaxes,oryoucoulduse Theorem3.3.Bythattheorem, cos α = a i a i = a1 a2 1 + a2 2 + a2 3 .Similarly, cos β = a2 a2 1 + a2 2 + a2 3 and cos γ = a3 a2 1 + a2 2 + a2 3
31. Considerthe figure:
If P1 isthepointon AB located r timesthedistancefrom A to B ,thenthevector → AP1 = r → AB.Similarly,since P2 isthepoint on AC located r timesthedistancefrom A to C ,thenthevector → AP2 = r → AC.Sonowwecanlookatthelinesegment P1 P2 usingvectors.
Thetwoconclusionsnowfollow.Because → P1 P2 isascalarmultipleof → BC,theyareparallel.Alsothepositivescalar r pulls outofthenormso → P1 P2 = r → BC = r → BC .
If M1 isthemidpointof AB and M2 isthemidpointof BC ,we’vejustshownthat M1 M2 isparallelto AC andhas halfitslength.Similarly,considertriangle DAC where M3 isthemidpointof CD and M4 isthemidpointof DA.Wesee that M3 M4 isparallelto AC andhashalfitslength.The firstconclusionisthat M1 M2 and M3 M4 havethesamelengthand areparallel.Repeatthisprocessfortriangles ABD and CBD toconcludethat M1 M4 and M2 M3 havethesamelengthand areparallel.Weconcludethat M1 M2 M3 M4 isaparallelogram. Forkicks—haveyourstudentsdrawthe figureforABCDa non-convexquadrilateral.Theargumentandtheconclusionstillholdeventhoughoneofthe“diagonals”isnotinsideofthe quadrilateral.
33. Inthediagraminthetext,thediagonalrunningfromthebottomlefttothetoprightis a + b andthediagonalrunningfrom thebottomrighttothetopleftis b a.
35.(a) Let’sstartwiththetwocircleswithcentersat W1 and W2 .Assumethatinadditiontotheirintersectionatpoint O that theyalsointersectatpoint C asshownbelow.
(b) Let’susetheresultsofpart(a)togetherwiththehint.Weneedtoshowthatthedistancefromeachofthepoints A, B , and C to P is r .Let’sshow,forexample,that → CP is r :
Theargumentsfortheothertwopointsareanalogous.
(c) Whatwereallyneedtoshowisthateachofthelinespassingthrough O andoneofthepoints A, B ,or C isperpendicularto thelinecontainingthetwootherpoints.Usingvectorswewillshowthat
36.(a) ThisfollowsimmediatelyfromExercise34ifyounoticethatthevectorsarethediagonalsoftherhombuswithtwosides b a and a b
Orwecanproceedwiththecalculation: ( b a + a ) · ( b a − a b).Theonlybitofgoodnewshereisthatthe crosstermsclearlycanceleachotheroutandwe’releftwith: b
=0 (b) Asin(a),theslickerwayistorecall(orreprovegeometrically)thatthediagonalsofarhombusbisectthevertexangles. Thennotethat ( b a + a b) isthediagonaloftherhombuswithsides b a and a b andsobisectstheanglebetween themwhichisthesameastheanglebetween a and b
Anotherwayistolet θ1 betheanglebetween a and b a + a b,andlet θ2 betheanglebetween b and b a + a b Then
Also
So b a + a b bisectstheanglebetweenthevectors a and b
19. Youneedto figureoutausefulorderingofthevertices.Youcaneitherplotthembyhandoruseacomputerpackagetohelp oryoucanmakesomeobservationsaboutthem.Firstlookatthe z coordinates.Twopointshave z = 1 andtwohave z =0 Theseformyourbottomface.Oftheremainingpointstwohave z =5—thesewillmatchupwiththebottompointswith z = 1,andtwohave z =6—thesewillmatchupwiththebottompointswith z =0.Theparallelepipedisshownbelow. We’llusethehighlightededgesasourthreevectors a, b,and c.Youcouldhavebasedthecalculationatanyvertex.Ihave chosen (4, 2, 1).Thethreevectorsare:
Finally,Volume = |(a × b) c| =53
Note:TheproofsofExercises20and28areeasierifyourememberthatifmatrix A isjustmatrix B withanytworows interchangedthenthedeterminantof A isthenegativeofthedeterminantof B .Ifyoudon’tusethisfact(whichisexploredin exerciseslaterinthischapter),youcanprovethiswithalongcomputation.Thatiswhytheauthorofthetextsuggeststhata computeralgebrasystemcouldbehelpful—andthiswouldbeagreatplacetouseitinaclassdemonstration.
27. Exercise25(f)showsusthat (a × b) × c isintheplanedeterminedby a and b andsoweexpectthesolutiontobeoftheform k1 a + k2 b forscalars k1 and k2 Usingformula(3)fromthetextfor a × b:
Themostimportantpairis a (b × c)= c (a × b).Becauseofthecommutativepropertyofthedotproduct c (a × b)= (a × b) c andsoweareshowingthat a (b × c)=(a × b) c c (a × b)=(a × b) c
(Forexample,the (a c)b cancelswiththe (c a)b becauseofthecommutativepropertyforthedotproduct.)
31. Ifyourstudentsareusingacomputeralgebrasystem,theymaynotnoticethatthisis exactly thesameproblemasExercise27. Justreplace c with (c × d) onbothsidesoftheequationinExercise27toobtaintheresulthere.
32. FirstapplyExercise29tothedotproducttoget
Youcaneitherobservethattwoofthesequantitiesmustbe0,oryoucanapplyExercise28tosee a · (c × a)= c · (a × a)=0 Exercise28alsoshowsthat b (c × a)= a (b × c).Theresultfollows.
33. WedidthisaboveinExercise29.
34. Theamountoftorqueistheproductofthelengthofthe“wrench”andthecomponentoftheforceperpendiculartothe “wrench”.Inthiscase,thewrenchisthedoor—sothelengthisfourfeet.The20lbforceisappliedperpendiculartothe planeofthedoorwayandthedoorisopen 45◦ .Sofromthetext,theamountoftorque = a F sin θ =(4)(20)(√2/2)= 40√2 ft-lb.
35.(a) Herethelengthof a is1foot,theforce F = 40poundsandangle θ = 120degrees.So
40.(a) v = ω × r =(0, 0, 12) × (2, 1, 3)=(12, 24, 0)=12i +24j
(b) Theheightofthepointdoesn’tchangesowecanviewthisasifitwereaproblemin R2 .When x =2 and y = 1,we can findthecentralanglebytaking tan 1 ( 1/2).Inonesecondtheanglehasmoved12radianssothenewpointis (√5cos(tan 1 ( 1/2)+12), √5sin(tan 1 ( 1/2)+12), 3) ≈ (1 15, 1 92, 3)
Another random document with no related content on Scribd:
distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted
by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6.
INDEMNITY
- You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg™
Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.
Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.
Section 3. Information about the Project
Gutenberg
Literary Archive Foundation
The Project Gutenberg Literary Archive Foundation is a non-profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.
The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact
Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation
Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.
The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of
compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.
While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.
International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.
Section 5. General Information About Project Gutenberg™ electronic works
Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.