VARIATIONALPRINCIPLES IN CLASSICALMECHANICS
DouglasCline
UniversityofRochester
9August2017
c °2017DouglasCline
ISBN:978-0-9988372-4-6e-book(AdobePDFcolor)
ISBN:978-0-9988372-5-3print(Paperbackgrayscale)
VariationalPrinciplesinClassicalMechanics
Contributors
Author:DouglasCline
Illustrator:MeghanSarkis
PublishedbyUniversityofRochesterRiverCampusLibraries UniversityofRochester Rochester,NY14627
VariationalPrinciplesinClassicalMechanics byDouglasClineislicensedunderaCreativeCommons Attribution-NonCommercial-ShareAlike4.0InternationalLicense(CCBY-NC-SA4.0),exceptwhereotherwisenoted.
Youarefreeto:
• Share—copyorredistributethematerialinanymediumorformat.
• Adapt—remix,transform,andbuilduponthematerial.
Underthefollowingterms:
• Attribution—Youmustgiveappropriatecredit,providealinktothelicense,andindicateifchanges weremade.Youmustdosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensor endorsesyouoryouruse.
• NonCommercial—Youmaynotusethematerialforcommercialpurposes.
• ShareAlike—Ifyouremix,transform,orbuilduponthematerial,youmustdistributeyourcontributions underthesamelicenseastheoriginal.
• Noadditionalrestrictions—Youmaynotapplylegaltermsortechnologicalmeasuresthatlegally restrictothersfromdoinganythingthelicensepermits.
Thelicensorcannotrevokethesefreedomsaslongasyoufollowthelicenseterms.
Version1.0
1Abriefhistoryofclassicalmechanics1
1.1Introduction..............................................1
1.2Prehistoricastronomy........................................1
1.3Greekantiquity............................................1
1.4MiddleAges..............................................2
1.5AgeofEnlightenment........................................3
1.6 19 century..............................................5
1.7The 20 centuryrevolutioninphysics...............................7
2ReviewofNewtonianmechanics9
2.1Introduction..............................................9
2.2Newton’sLawsofmotion......................................9
2.3Inertialframesofreference......................................10
2.4First-orderintegralsinNewtonianmechanics...........................11
2.4.1LinearMomentum......................................11
2.4.2Angularmomentum.....................................11
2.4.3Kineticenergy........................................12
2.5Conservationlawsinclassicalmechanics..............................12
2.6Motionof finite-sizedandmany-bodysystems...........................12
2.7Centerofmassofamany-bodysystem...............................13
2.8Totallinearmomentumofamany-bodysystem..........................14
2.8.1Center-of-massdecomposition................................14
2.8.2Equationsofmotion.....................................14
2.9Angularmomentumofamany-bodysystem............................16
2.9.1Center-of-massdecomposition................................16
2.9.2Equationsofmotion.....................................16
2.10Workandkineticenergyforamany-bodysystem.........................18
2.10.1Center-of-masskineticenergy................................18
2.10.2Conservativeforcesandpotentialenergy..........................18
2.10.3Totalmechanicalenergy...................................19
2.10.4Totalmechanicalenergyforconservativesystems.....................20
2.11VirialTheorem............................................22
2.12ApplicationsofNewton’sequationsofmotion...........................24
2.12.1Constantforceproblems...................................24
2.12.2LinearRestoringForce....................................25
2.12.3Position-dependentconservativeforces...........................25
2.12.4Constrainedmotion.....................................27
2.12.5VelocityDependentForces..................................28
2.12.6SystemswithVariableMass.................................29
2.12.7Rigid-bodyrotationaboutabody-fixedrotationaxis...................31
2.12.8Timedependentforces....................................34
2.13Solutionofmany-bodyequationsofmotion............................37
2.13.1Analyticsolution.......................................37
2.13.2Successiveapproximation..................................37
2.13.3Perturbationmethod.....................................37
2.14Newton’sLawofGravitation....................................38
2.14.1Gravitationalandinertialmass...............................38
2.14.2Gravitationalpotentialenergy
2.14.3Gravitationalpotential
2.14.4Potentialtheory.......................................41
2.14.5Curlofthegravitational
2.14.6Gauss’sLawforGravitation.................................43
2.14.7CondensedformsofNewton’sLawofGravitation.....................44 2.15Summary...............................................46
3.4.4Planependulum.......................................57
3.5Linearly-dampedfreelinearoscillator
3.5.1Generalsolution.......................................58 3.5.2Energydissipation......................................61
3.6Sinusoidally-drive,linearly-damped,linearoscillator...
3.6.1Transientresponseofadrivenoscillator
3.6.2Steadystateresponseofadrivenoscillator ........................63
3.6.3Completesolutionofthedrivenoscillator.........................64
3.6.4Resonance...........................................65
3.6.5Energyabsorption......................................65
3.7Waveequation............................................68
3.8Travellingandstandingwavesolutionsofthewaveequation...................69
3.9Waveformanalysis..........................................70
3.9.1Harmonicdecomposition...................................70
3.9.2Thefreelinearly-dampedlinearoscillator .........................70
3.9.3Dampedlinearoscillatorsubjecttoanarbitraryperiodicforce.............71
3.10Signalprocessing...........................................72
3.11Wavepropagation ..........................................73
3.11.1Phase,group,andsignalvelocitiesofwavepackets....................74
3.11.2Fouriertransformofwavepackets.............................79
3.11.3Wave-packetUncertaintyPrinciple.............................80
3.12Summary...............................................82
4Nonlinearsystemsandchaos89
4.1Introduction..............................................89
4.2Weaknonlinearity..........................................90
4.3Bifurcation,andpointattractors..................................92
4.4Limitcycles..............................................93
4.4.1Poincaré-Bendixsontheorem................................93
4.4.2vanderPoldampedharmonicoscillator:..........................94
4.5Harmonically-driven,linearly-damped,planependulum......................97
4.5.1Closetolinearity.......................................97
4.5.2Weaknonlinearity......................................99
4.5.3Onsetofcomplication....................................100
4.5.4Perioddoublingandbifurcation...............................100
4.5.5Rollingmotion ........................................100
4.5.6Onsetofchaos........................................101
4.6Differentiationbetweenorderedandchaoticmotion........................102
4.6.1Lyapunovexponent.....................................102
4.6.2Bifurcationdiagram.....................................103
4.6.3PoincaréSection.......................................104
4.7Wavepropagationfornon-linearsystems... ...........................105
4.7.1Phase,group,andsignalvelocities.............................105
4.7.2Solitonwavepropagation ..................................107
4.8Summary...............................................108 Workshopexercises.............................................110 Problems..................................................110
5Calculusofvariations
5.1Introduction..............................................111
5.2Euler’sdifferentialequation.....................................112
5.3ApplicationsofEuler’sequation...................................114
5.4Selectionoftheindependentvariable................................117
5.5Functionswithseveralindependentvariables () ........................119
5.6Euler’sintegralequation.......................................121
5.7Constrainedvariationalsystems...................................122
5.7.1Holonomicconstraints....................................122
5.7.2Geometric(algebraic)equationsofconstraint.......................122
5.7.3Kinematic(differential)equationsofconstraint......................122
5.7.4Isoperimetric(integral)equationsofconstraint......................123
5.7.5Propertiesoftheconstraintequations...........................123
5.7.6Treatmentofconstraintforcesinvariationalcalculus...................124
5.8Generalizedcoordinatesinvariationalcalculus..........................125
5.9Lagrangemultipliersforholonomicconstraints..........................126
5.9.1Algebraicequationsofconstraint..............................126
5.9.2Integralequationsofconstraint...............................128
5.10Geodesic................................................130
5.11Variationalapproachtoclassicalmechanics............................131
5.12Summary...............................................132 Workshopexercises.............................................133
6Lagrangiandynamics 135
6.1Introduction..............................................135
6.2NewtonianplausibilityargumentforLagrangianmechanics ...................136
6.3Lagrangeequationsfromd’Alembert’sPrinciple..........................138
6.3.1d’Alembert’sPrincipleofvirtualwork...........................138
6.3.2Transformationtogeneralizedcoordinates.........................139
6.3.3Lagrangian..........................................140
6.4LagrangeequationsfromHamilton’sPrinciple...........................141
6.5Constrainedsystems.........................................142
6.5.1Choiceofgeneralizedcoordinates..............................142
6.5.2Minimalsetofgeneralizedcoordinates...........................142
6.5.3Lagrangemultipliersapproach...............................142
6.5.4Generalizedforcesapproach.................................144
6.6ApplyingtheEuler-Lagrangeequationstoclassicalmechanics..................144
6.7Applicationstounconstrainedsystems...............................146
6.8Applicationstosystemsinvolvingholonomicconstraints.....................148
6.9Applicationsinvolvingnon-holonomicconstraints.........................161
6.10Velocity-dependentLorentzforce..................................168
6.11Time-dependentforces........................................169
6.12Impulsiveforces............................................170
6.13TheLagrangianversustheNewtonianapproachtoclassicalmechanics.............172
6.14Summary...............................................173 Workshopexercises.............................................176 Problems..................................................178
7Symmetries,InvarianceandtheHamiltonian179
7.1Introduction..............................................179
7.2Generalizedmomentum.......................................179
7.3InvarianttransformationsandNoether’sTheorem.........................181
7.4Rotationalinvarianceandconservationofangularmomentum..................183
7.5Cycliccoordinates..........................................184
7.6Kineticenergyingeneralizedcoordinates.............................185
7.7GeneralizedenergyandtheHamiltonianfunction.........................186
7.8Generalizedenergytheorem.....................................187
7.9Generalizedenergyandtotalenergy................................187
7.10Hamiltonianinvariance........................................188
7.11Hamiltonianforcycliccoordinates.................................193
7.12Symmetriesandinvariance.....................................193
7.13Hamiltonianinclassicalmechanics.................................193
7.14Summary...............................................194
Workshopexercises.............................................196 Problems..................................................197
8Hamiltonianmechanics199
8.1Introduction..............................................199
8.2LegendreTransformationbetweenLagrangianandHamiltonianmechanics...........200
8.3Hamilton’sequationsofmotion...................................201
8.3.1Canonicalequationsofmotion...............................202
8.4Hamiltonianindifferentcoordinatesystems............................203
8.4.1Cylindricalcoordinates ................................203
8.4.2Sphericalcoordinates, .................................204
8.5ApplicationsofHamiltonianDynamics...............................205
8.6Routhianreduction..........................................210
8.6.1R -RouthianisaHamiltonianforthecyclicvariables................211
8.6.2R -RouthianisaHamiltonianforthenon-cyclicvariables...........212
8.7Dissipativedynamicalsystems....................................216
8.7.1Generalizeddragforce....................................216
8.7.2Rayleigh’sdissipationfunction...............................217
8.8Summary...............................................221
Workshopexercises.............................................223 Problems..................................................224
9Conservativetwo-bodycentralforces227
9.1Introduction..............................................227
9.2Equivalentone-bodyrepresentationfortwo-bodymotion.....................228
9.3Angularmomentum L ........................................230
9.4Equationsofmotion.........................................231
9.5Differentialorbitequation:......................................232
9.6Hamiltonian..............................................233
9.7Generalfeaturesoftheorbitsolutions...............................234
9.8Inverse-square,two-body,centralforce...............................235
9.8.1Boundorbits.........................................236
9.8.2Kepler’slawsforboundplanetarymotion.........................237
9.8.3Unboundorbits........................................238
9.8.4Eccentricityvector... ...................................239
9.9Isotropic,linear,two-body,centralforce..............................241
9.9.1Polarcoordinates.......................................242
9.9.2Cartesiancoordinates....................................243
9.9.3Symmetrytensor A0 .....................................244
9.10Closed-orbitstability.........................................245
9.11Thethree-bodyproblem.......................................250
9.12Two-bodyscattering.........................................251
9.12.1Totaltwo-bodyscatteringcrosssection..........................251
9.12.2Differentialtwo-bodyscatteringcrosssection.......................252
9.12.3Impactparameterdependenceonscatteringangle....................252
9.12.4Rutherfordscattering....................................254
9.13Two-bodykinematics.........................................256 9.14Summary...............................................262
10Non-inertialreferenceframes267
10.1Introduction..............................................267
10.2Translationalaccelerationofareferenceframe ...........................267
10.3Rotatingreferenceframe.......................................268
10.3.1Spatialtimederivativesinarotating,non-translating,referenceframe.........268
10.3.2Generalvectorinarotating,non-translating,referenceframe..............269
10.4Referenceframeundergoingrotationplustranslation... ....................270
10.5Newton’slawofmotioninanon-inertialframe..........................270
10.6Lagrangianmechanicsinanon-inertialframe...........................271
10.7Centrifugalforce...........................................272
10.8Coriolisforce.............................................273
10.9Routhianreductionforrotatingsystems..............................277
10.10EffectivegravitationalforcenearthesurfaceoftheEarth....................280
10.11Freemotionontheearth.......................................282
10.12Weathersystems...........................................284
10.12.1Low-pressuresystems:....................................284
10.12.2High-pressuresystems:....................................286
10.13Foucaultpendulum..........................................286
10.14Summary...............................................288
Workshopexercises.............................................289 Problems..................................................290
11Rigid-bodyrotation 291
11.1Introduction..............................................291
11.2Rigid-bodycoordinates........................................292
11.3Rigid-bodyrotationaboutabody-fixedpoint...........................292
11.4Inertiatensor.............................................294
11.5Matrixandtensorformulationsofrigid-bodyrotation......................295
11.6Principalaxissystem.........................................295
11.7Diagonalizetheinertiatensor. ...................................296
11.8Parallel-axistheorem.........................................297 11.9Perpendicular-axistheoremforplanelaminae...........................300
11.10Generalpropertiesoftheinertiatensor...............................301 11.10.1Inertialequivalence......................................301
11.10.2Orthogonalityofprincipalaxes ...............................302
11.11Angularmomentum L andangularvelocity ω vectors......................303
11.12Kineticenergyofrotatingrigidbody................................305
11.13Eulerangles..............................................307
11.14Angularvelocity ω ..........................................309
11.15KineticenergyintermsofEulerangularvelocities........................310 11.16Rotationalinvariants.........................................311
11.17Euler’sequationsofmotionforrigid-bodyrotation........................312
11.18Lagrangeequationsofmotionforrigid-bodyrotation.......................313
11.19Hamiltonianequationsofmotionforrigid-bodyrotation.....................315
11.20Torque-freerotationofaninertially-symmetricrigidrotor....................315 11.20.1Euler’sequationsofmotion:.................................315 11.20.2Lagrangeequationsofmotion:...............................319
11.21Torque-freerotationofanasymmetricrigidrotor.........................321
11.22Stabilityoftorque-freerotationofanasymmetricbody.. ....................322
12.7Two-bodycoupledoscillatorsystems
12.11Dampedcoupledlinearoscillators
13Hamilton’sprincipleofleastaction381 13.1Introduction..............................................381
13.2PrincipleofLeastAction......................................382
13.2.1Hamilton’sPrinciple.....................................382 13.2.2Least-actionprincipleinHamiltonianmechanics.....................383 13.2.3Abbreviatedaction......................................384
13.3StandardLagrangian.........................................385
13.4GaugeinvarianceoftheLagrangian.................................385
13.5Non-standardLagrangians......................................387
13.6Inversevariationalcalculus.....................................387
13.7DissipativeLagrangians.......................................388
13.8Linearvelocity-dependentdissipation................................389 13.9Summary...............................................392
14AdvancedHamiltonianmechanics393 14.1Introduction..............................................393
14.2PoissonbracketrepresentationofHamiltonianmechanics....................395 14.2.1PoissonBrackets.......................................395 14.2.2FundamentalPoissonbrackets:...............................395 14.2.3Poissonbracketinvariancetocanonicaltransformations.................396 14.2.4CorrespondenceofthecommutatorandthePoissonBracket...............397 14.2.5ObservablesinHamiltonianmechanics...........................398 14.2.6Hamilton’sequationsofmotion...............................401
14.2.7Liouville’sTheorem.. ...................................405 14.3CanonicaltransformationsinHamiltonianmechanics.......................407 14.3.1Generatingfunctions.....................................408 14.3.2Applicationsofcanonicaltransformations.........................410 14.4Hamilton-Jacobitheory.......................................412 14.4.1Time-dependentHamiltonian................................412 14.4.2Time-independentHamiltonian...............................414 14.4.3Separationofvariables....................................415 14.4.4Visualrepresentationoftheactionfunction .......................422 14.4.5AdvantagesofHamilton-Jacobitheory...........................422 14.5Action-anglevariables........................................423 14.5.1Canonicaltransformation..................................423
14.5.2Adiabaticinvarianceoftheactionvariables........................426
14.6Canonicalperturbationtheory...................................428 14.7Symplecticrepresentation......................................430 14.8ComparisonoftheLagrangianandHamiltonianformulations..................430 14.9Summary...............................................432 Workshopexercises.............................................435 Problems..................................................436
15Analyticalformulationsforcontinuoussystems437 15.1Introduction..............................................437
15.2Thecontinuousuniformlinearchain................................437
15.3TheLagrangiandensityformulationforcontinuoussystems...................438 15.3.1Onespatialdimension....................................438 15.3.2Threespatialdimensions..................................439
15.4TheHamiltoniandensityformulationforcontinuoussystems..................440
15.5Linearelasticsolids..........................................441
15.5.1Stresstensor.........................................442
15.5.2Straintensor.........................................442
15.5.3Moduliofelasticity......................................443
15.5.4Equationsofmotioninauniformelasticmedia......................444
15.6Electromagnetic fieldtheory.....................................445
15.6.1Maxwellstresstensor....................................445
15.6.2Momentumintheelectromagnetic field..........................446
15.7Ideal fluiddynamics.........................................447
15.7.1Continuityequation.....................................447
15.7.2Euler’shydrodynamicequation...............................447
15.7.3Irrotational flowandBernoulli’sequation
15.7.4Gas flow............................................448
15.8Viscous fluiddynamics........................................450
15.8.1Navier-Stokesequation....................................450
15.8.2Reynoldsnumber.......................................451
15.8.3Laminarandturbulent fluid flow..............................451
15.9Summaryandimplications.....................................453
16Relativisticmechanics
16.3.3TimeDilation:........................................458
16.3.4LengthContraction.....................................459
16.3.5Simultaneity.........................................459
16.4Relativistickinematics........................................462
16.4.1Velocitytransformations...................................462
16.4.2Momentum..........................................462
16.4.3Centerofmomentumcoordinatesystem..........................463 16.4.4Force.............................................463
16.4.5Energy.............................................463
16.5Geometryofspace-time.......................................465
16.5.1Four-dimensionalspace-time................................465
16.5.2Four-vectorscalarproducts.................................466
16.5.3Minkowskispace-time....................................467
16.5.4Momentum-energyfourvector...............................468
16.6Lorentz-invariantformulationofLagrangianmechanics......................469
16.6.1Parametricformulation...................................469
16.6.2ExtendedLagrangian....................................469
16.6.3Extendedgeneralizedmomenta...............................471
16.6.4ExtendedLagrangeequationsofmotion..........................471
16.7Lorentz-invariantformulationsofHamiltonianmechanics.....................474
16.7.1Extendedcanonicalformalism................................474
16.7.2ExtendedPoissonBracketrepresentation.........................476
16.7.3ExtendedcanonicaltransformationandHamilton-Jacobitheory.............476
16.7.4ValidityoftheextendedHamilton-Lagrangeformalism..................476
16.8TheGeneralTheoryofRelativity..................................478
16.8.1Fundamentalconcepts....................................478
16.8.2Einstein’spostulatesoftheGeneralTheoryofRelativity.................479
16.8.3Experimentalevidence....................................479
16.9Implicationsofrelativistictheorytoclassicalmechanics.....................480
16.10Summary...............................................481
Workshopexercises.............................................482 Problems..................................................482
17Thetransitiontoquantumphysics483
17.1Introduction..............................................483
17.2Briefsummaryoftheoriginsofquantumtheory.........................483
17.2.1Bohrmodeloftheatom...................................485
17.2.2Quantization.........................................485
17.2.3Wave-particleduality....................................486
17.3Hamiltonianinquantumtheory...................................487
17.3.1Heisenberg’smatrix-mechanicsrepresentation.......................487
17.3.2Schrödinger’swave-mechanicsrepresentation.......................489
17.4Lagrangianrepresentationinquantumtheory...........................490
17.5CorrespondencePrinciple......................................491
17.6Summary...............................................492
18Epilogue 493
Appendices
AMatrixalgebra 495
A.1Mathematicalmethodsformechanics................................495
A.2Matrices................................................495
A.3Determinants.............................................499
A.4Reductionofamatrixtodiagonalform... ...........................501
BVectoralgebra 505
B.1Linearoperations...........................................505 B.2Scalarproduct............................................505
B.3Vectorproduct............................................506
B.4Tripleproducts............................................507
COrthogonalcoordinatesystems509
C.1Cartesiancoordinates ( ) ....................................509
C.2Curvilinearcoordinatesystems ...................................509
C.2.1Two-dimensionalpolarcoordinates ( ) ..........................510
C.2.2CylindricalCoordinates ( ) ..............................512
C.2.3SphericalCoordinates () ................................512
C.3Frenet-Serretcoordinates......................................513
DCoordinatetransformations515
D.1Translationaltransformations....................................515
D.2Rotationaltransformations.....................................515
D.2.1Rotationmatrix.......................................515
D.2.2Finiterotations........................................518
D.2.3Infinitessimalrotations....................................519
D.2.4Properandimproperrotations...............................519
D.3Spatialinversiontransformation...................................520
D.4Timereversaltransformation....................................521
ETensoralgebra 523
E.1Tensors................................................523
E.2Tensorproducts............................................524
E.2.1Tensorouterproduct.....................................524
E.2.2Tensorinnerproduct.....................................524
E.3Tensorproperties...........................................525
E.4Contravariantandcovarianttensors................................526
E.5Generalizedinnerproduct......................................527
E.6Transformationpropertiesofobservables..............................528
FAspectsofmultivariatecalculus529
F.1Partialdifferentiation........................................529
F.2Linearoperators...........................................529
F.3TransformationJacobian.......................................531
F.3.1Transformationofintegrals:.................................531
F.3.2Transformationofdifferentialequations:..........................531
F.3.3PropertiesoftheJacobian:.................................531
F.4Legendretransformation.......................................532
GVectordifferentialcalculus533
G.1Scalardifferentialoperators.....................................533
G.1.1Scalar field..........................................533
G.1.2Vector field..........................................533
G.2Vectordifferentialoperatorsincartesiancoordinates.......................533
G.2.1Scalar field..........................................533
G.2.2Vector field..........................................534
G.3Vectordifferentialoperatorsincurvilinearcoordinates.. ....................535
G.3.1Gradient:...........................................535
G.3.2Divergence:..........................................536
G.3.3Curl:..............................................536
G.3.4Laplacian:...........................................536
HVectorintegralcalculus537
H.1Lineintegralofthegradientofascalar field............................537
H.2Divergencetheorem.........................................537
H.2.1Fluxofavector fieldforGaussiansurface.........................537
H.2.2Divergenceincartesiancoordinates.............................538
H.3StokesTheorem............................................540
H.3.1Thecurl............................................540
H.3.2Curlincartesiancoordinates................................541
H.4Potentialformulationsofcurl-freeanddivergence-free fields...................543
IWaveformanalysis 545
I.1Harmonicwaveformdecomposition.................................545
I.1.1PeriodicsystemsandtheFourierseries...........................545
I.1.2AperiodicsystemsandtheFourierTransform.......................547
I.2Time-sampledwaveformanalysis..................................548
I.2.1Delta-functionimpulseresponse..............................549
I.2.2Green’sfunctionwaveformdecomposition.........................550
Example:Bolasthrownbygaucho
2.5 Example:Theidealgaslaw
2.6 Example:Themassofgalaxies
2.7 Example:Diatomicmolecule
2.8 Example:Rollercoaster
Example:Merry-go-round
2.14 Example:Centerofpercussionofabaseballbat
2.15 Example:Energytransferincharged-particlescattering
3.3 Example:Waterwavesbreakingonabeach
3.6 Example:FouriertransformofaGaussianwavepacket:
3.7 Example:Fouriertransformofarectangularwavepacket:
3.8 Example:Acousticwavepacket
3.9 Example:Gravitationalredshift ....................................82
3.10 Example:Quantumbaseball
4.1 Example:Non-linearoscillator
5.1 Example:Shortestdistancebetweentwopoints
5.2 Example:Brachistochroneproblem ...................................114
5.3 Example:Minimaltravelcost ......................................116
5.4 Example:Surfaceareaofacylindrically-symmetricsoapbubble
5.5 Example:Fermat’sPrinciple ......................................119
5.6 Example:Minimumof (∇)2 inavolume
5.7 Example:Twodependentvariablescoupledbyoneholonomicconstraint
5.8 Example:Catenary
5.9 Example:TheQueenDidoproblem
6.1 Example:Motionofafreeparticle,U=0 ...............................146
6.2 Example:Motioninauniformgravitational field
6.3 Example:Centralforces .........................................147
6.4 Example:Diskrollingonaninclinedplane
6.5 Example:Twoconnectedmassesonfrictionlessinclinedplanes
6.6 Example:Twoblocksconnectedbyafrictionlessbar
6.7 Example:Blockslidingonamovablefrictionlessinclinedplane
6.8 Example:Sphererollingwithoutslippingdownaninclinedplaneonafrictionless floor.
6.9 Example:Massslidingonarotatingstraightfrictionlessrod.
6.10
Example:Sphericalpendulum ......................................155
6.11 Example:Springplanependulum ....................................156
6.12 Example:Theyo-yo
6.13 Example:Massconstrainedtomoveontheinsideofafrictionlessparaboloid
6.14 Example:Massonafrictionlessplaneconnectedtoaplanependulum
6.15 Example:Twoconnectedmassesconstrainedtoslidealongamovingrod
6.16 Example:Massslidingonafrictionlesssphericalshell
6.17 Example:Rollingsolidsphereonasphericalshell
6.18 Example:Solidsphererollingplusslippingonasphericalshell
6.19 Example:Smallbodyheldbyfrictionontheperipheryofarollingwheel
6.20 Example:Planependulumhangingfromavertically-oscillatingsupport
6.21 Example:Series-coupleddoublependulumsubjecttoimpulsiveforce
7.1 Example:Feynman’sangular-momentumparadox
7.2 Example:Atwoodsmachine .......................................182
7.3 Example:Conservationofangularmomentumforrotationalinvariance: ..............183
7.4 Example:Diatomicmoleculesandaxially-symmetricnuclei .....................184
7.5 Example:Linearharmonicoscillatoronacartmovingatconstantvelocity
7.6 Example:Isotropiccentralforceinarotatingframe
7.7 Example:Theplanependulum .....................................191
7.8 Example:Oscillatingcylinderinacylindricalbowl
8.1 Example:Motioninauniformgravitational field ...........................205
8.2 Example:One-dimensionalharmonicoscillator ............................205
8.3 Example:Planependulum ........................................206
8.4 Example:Hooke’slawforceconstrainedtothesurfaceofacylinder
8.5 Example:Electronmotioninacylindricalmagnetron ........................208
8.6 Example:SphericalpendulumusingHamiltonianmechanics
8.7 Example:Sphericalpendulumusing
8.8 Example:Sphericalpendulumusing
8.9 Example:Singleparticlemovinginaverticalplaneundertheinfluenceofaninverse-square centralforce ...............................................216
8.10 Example:Driven,linearly-damped,coupledlinearoscillators
8.11 Example:Kirchhoff ’srulesforelectricalcircuits
9.1 Example:Centralforceleadingtoacircularorbit =2
9.2 Example:Orbitequationofmotionforafreebody
9.3 Example:Lineartwo-bodyrestoringforce
9.4 Example:Inversesquarelawattractiveforce
9.5 Example:Attractiveinversecubiccentralforce
9.6 Example:Spirallingmassattachedbyastringtoahangingmass
9.7 Example:Two-bodyscatteringbyaninversecubicforce
10.1 Example:Acceleratingspringplanependulum
10.2 Example:Surfaceofrotatingliquid
10.3 Example:Thepirouette
10.4 Example:Crankedplanependulum
10.5 Example:Nucleonorbitsindeformednuclei
10.6 Example:Freefallfromrest .......................................283
10.7 Example:Projectile firedverticallyupwards
10.8 Example:MotionparalleltoEarth’ssurface
11.1 Example:Inertiatensorofasolidcuberotatingaboutthecenterofmass.
11.2 Example:Inertiatensorofaboutacornerofasolidcube.
11.3 Example:Inertiatensorofahulahoop ................................301 11.4 Example:Inertiatensorofathinbook .................................301
11.5 Example:Rotationaboutthecenterofmassofasolidcube
11.6 Example:Rotationaboutthecornerofthecube
11.7 Example:Eulerangletransformation
11.8 Example:Rotationofadumbbell
11.9
Example:Precessionratefortorque-freerotatingsymmetricrigidrotor
11.10 Example:Tennisracquetdynamics ...................................323
11.11 Example:Rotationofasymmetrically-deformednuclei
11.12 Example:TheSpinning"Jack"
11.13 Example:TheTippeTop
11.14
Example:Tippingstabilityofarollingwheel
11.15 Example:Pivoting
11.16 Example:Rolling
11.17 Example:Forcesonthebearingsofarotatingcirculardisk
12.1 Example:TheGrandPiano
12.2 Example:Twocoupledlinearoscillators
12.3 Example:Twoequalmassesseries-coupledbytwoequalsprings
12.4 Example:Twoparallel-coupledplanependula
12.5 Example:Theseries-coupleddoubleplanependula
12.6 Example:Threeplanependula;mean-fieldlinearcoupling
12.7 Example:Threeplanependula;nearest-neighborcoupling
12.8 Example:Systemofthreebodiescoupledbysixsprings
12.9 Example:LineartriatomicmolecularCO 2
12.10 Example:Benzenering .........................................365
12.11 Example:Twolinearly-dampedcoupledlinearoscillators
12.12 Example:Collectivemotioninnuclei .................................375
13.1 Example:Gaugeinvarianceinelectromagnetism
13.2 Example:Thelinearly-damped,linearoscillator:
14.1 Example:Checkthatatransformationiscanonical
14.2 Example:Angularmomentum:
14.3 Example:Lorentzforceinelectromagnetism ..............................402
14.4 Example:Wavemotion: .........................................402
14.5 Example:Two-dimensional,anisotropic,linearoscillator
14.6 Example:Theeccentricityvector ....................................404 14.7 Example:Theidentitycanonicaltransformation
14.8 Example:Thepointcanonicaltransformation
14.9 Example:Theexchangecanonicaltransformation
14.10 Example:Infinitessimalpointcanonicaltransformation
14.11 Example:1-Dharmonicoscillatorviaacanonicaltransformation
14.12 Example:Freeparticle ..........................................415
14.13 Example:Pointparticleinauniformgravitational field
14.14 Example:One-dimensionalharmonicoscillator
14.15 Example:Thecentralforceproblem
14.16 Example:Linearly-damped,one-dimensional,harmonicoscillator
14.17 Example:Adiabaticinvarianceforthesimplependulum
14.18 Example:Harmonicoscillatorperturbation ..............................428
14.19 Example:Lindbladresonanceinplanetaryandgalacticmotion
15.1 Example:Acousticwavesinagas ...................................449 16.1 Example:Muonlifetime .........................................460
16.2 Example:RelativisticDopplerEffect ..................................461
16.3 Example:Twinparadox .........................................461
16.4 Example:Rocketpropulsion .......................................464
16.5 Example:Lagrangianforarelativisticfreeparticle ..........................472
16.6 Example:Relativisticparticleinanexternalelectromagnetic field
16.7 Example:TheBohr-Sommerfeldhydrogenatom ............................477
A.1 Example:Eigenvaluesandeigenvectorsofarealsymmetricmatrix
A.2 Example:Degenerateeigenvaluesofrealsymmetricmatrix
D.1 Example:Rotationmatrix: .......................................517
D.2 Example:Proofthatarotationmatrixisorthogonal
E.1 Example:Displacementgradienttensor
F.1 Example:Jacobianfortransformfromcartesiantosphericalcoordinates ..............531
H.1 Example:Maxwell’sFluxEquations ..................................539
H.2 Example:Buoyancyforcesin fluids ..................................540
H.3 Example:Maxwell’scirculationequations ...............................542
H.4 Example:Electromagnetic fields: ....................................543
I.1
Example:Fouriertransformofasingleisolatedsquarepulse: ....................548
I.2 Example:FouriertransformoftheDiracdeltafunction: .......................548
Preface
Thegoalofthisbookistointroducethereadertotheintellectualbeauty,andphilosophicalimplications, ofthefactthatnatureobeysvariationalprinciplesthatunderlietheLagrangianandHamiltoniananalytical formulationsofclassicalmechanics.Thesevariationalmethods,whichweredevelopedforclassicalmechanics duringthe 18 19 century,havebecomethepreeminentformalismsforclassicaldynamics,aswellasfor manyotherbranchesofmodernscienceandengineering.Theambitiousgoalofthisbookistoleadthestudent fromtheintuitiveNewtonianvectorialformulation,tointroductionofthemoreabstractvariationalprinciples thatunderlietheLagrangianandHamiltoniananalyticalformulations.Thisculminatesindiscussionofthe contributionsofvariationalprinciplestothedevelopmentofrelativisticandquantummechanics.Thebroad scopeofthisbookattemptstounifytheundergraduatephysicscurriculumbybridgingthechasmthat dividestheNewtonianvector-differentialformulationandtheintegralvariationalformulationofclassical mechanics,andthecorrespondingchasmthatexistsbetweenclassicalandquantummechanics.Powerful variationaltechniquesinmathematics,thatunderliemuchofmodernphysics,areintroducedandproblem solvingskillsaredevelopedinordertochallengestudentsatthecrucialstagewhenthey firstencounterthis sophisticatedandchallengingmaterial.Theunderlyingfundamentalconceptsofclassicalmechanics,and theirapplicationstomodernphysics,areemphasizedthroughoutthecourse.
Afullunderstandingofthepowerandbeautyofvariationalprinciplesinclassicalmechanics,isbest acquiredby firstlearningtheconceptsofthevariational approach,andthenapplyingtheseconceptsto manyexamplesinclassicalmechanics.Classicalmechanicsistheidealtopicforlearningtheprinciplesand thepowerofusingthevariationalapproachpriortoapplyingthesetechniquestootherbranchesofscience andengineering.TheunderlyingphilosophicalapproachadoptedbythisbookwasespousedbyGalileo Galilei"Youcannotteachamananything;youcanonlyhelphim finditwithinhimself."
Thedevelopmentofthistextbookwasinfluencedbythreetextbooks:"TheVariationalPrinciplesof Mechanics "byCorneliusLanczos(1949)[La49],"ClassicalMechanics" (1950)byHerbertGoldstein[Go50], and"ClassicalDynamicsofParticlesandSystems "(1965)byJerryB.Marion[Ma65].Marion’sexcellent textbookwasunusualinpartiallybridgingthechasmbetweentheoutstandinggraduatetextsbyGoldstein andLanczos,andabevyofintroductorytextsbasedonNewtonianmechanicsthatwereavailableatthat time.Thepresenttextbookwasdevelopedtocoverthetechniquesandphilosophicalimplicationsofthe variationalapproachestoclassicalmechanics,withabreadthanddepthclosetothatprovidedbyGoldstein andLanczos,butinaformatthatbettermatchestheneedsoftheundergraduatestudent.Anadditional goalistobridgethegapbetweenclassicalandmodernphysicsintheundergraduatecurriculum.
Thisbookwaswritteninsupportofthephysicsjunior/seniorundergraduatecourseP235Wentitled "VariationalPrinciplesinClassicalMechanics"thattheauthortaughtattheUniversityofRochesterbetween 1993 2015.Theselecturenotesweredistributedtostudents toallowpre-lecturestudy,facilitatedaccurate transmissionofthecomplicatedformulae,andminimizednotetakingduringlectures.Theselecturenotes evolvedintothepresenttextbookthatwasusedforthiscourse.Thetargetaudienceofthecourse,upon whichthistextbookisbased,typicallycomprised ≈ 70% junior/seniorundergraduates, ≈ 25% sophomores, ≤ 5% graduatestudents,andtheoccasionalwell-prep aredfreshman.Thetargetaudiencewasphysics andastrophysicsmajors,butitattractedasignificantfractionofmajorsfromotherdisciplinessuchas mathematics,chemistry,optics,engineering,music,andthehumanities.Asaconsequence,thebookincludes appreciableintroductorylevelphysics,plusmathematicalreviewmaterial,toaccommodatethediverse rangeofpriorpreparationofthestudents.Thistextbookincludesmaterialthatextendsbeyondwhat reasonablycanbecoveredduringaone-termcourse.Thissupplementalmaterialispresentedtoshowthe importanceandbroadapplicabilityofvariationalconceptstoclassicalmechanics.Thebookincludes 162 workedexamplestoillustratetheconceptspresented. Advancedgroup-theoreticconceptsareminimizedto
betteraccommodatethemathematicalskillsofthetypicalundergraduatephysicsmajor.Forcompatibility withmodernliteratureinthis field,thisbookfollowsthewidely-adoptednomenclatureusedin"Classical Mechanics"byGoldstein[Go50],withrecentadditionsbyJohns[Jo05].
Thebookisbrokenintofourmajorsections.This firstreviewsectionsetsthestagebyincludinga briefhistoricalintroduction(chapter 1),reviewoftheNewtonianformulationofmechanicsplusgravitation (chapter 2),linearoscillatorsandwavemotion(chapter 3),andanintroductiontonon-lineardynamics andchaos(chapter 4).Extensivereadingassignmentsareassignedtominimizethetimespentonthis reviewofNewtonianvectorialmechanics.Buildingontheintroductorysection,thesecondsectionofthe bookintroducesthevariationalprinciplesofanalyticalmechanicsthatunderliethisbook.Itincludesan introductiontothecalculusofvariations(chapter 5),theLagrangianformulationofmechanicswithapplicationstoholonomicandnon-holonomicsystems(chapter 6),adiscussionofsymmetries,invariance,plus Noether’stheorem(chapter 7)andanintroductiontotheHamiltonianandtheHamiltonianformulation ofmechanicsplustheRouthianreductiontechnique(Chapter 8).Thethirdsectionofthebook,applies LagrangianandHamiltonianformulationsofclassicaldynamicstocentralforceproblems(chapter 9),motioninnon-inertialframes(chapter 10),rigid-bodyrotation(chapter 11),andcoupledoscillators(chapter 12).The finalsectionofthebookdiscussesHamilton’sPrincipleplusadvancedapplicationsofLagrangian mechanics(chapter 13),HamiltonianmechanicsincludingPoisson brackets,Liouville’stheorem,canonical transformations,Hamilton-Jacobitheory,theaction-angletechnique(chapter 14),andclassicalmechanics inthecontinua(chapter 15).ThisisfollowedbyabriefreviewoftherevolutioninclassicalmechanicsintroducedbyEinstein’stheoryofrelativisticmechanics.TheextendedtheoryofLagrangianandHamiltonian mechanicsisusedtoapplyvariationaltechniquesto theSpecialTheoryofRelativityfollowedbyasuperficial introductiontotheconceptsofGeneralTheoryofRelativity(chapter 16).Thebook finisheswithabrief reviewoftheroleofvariationalprinciplesinbridgingthegapbetweenclassicalmechanicsandquantum mechanics,(chapter 17).Theseadvancedtopicsextendbeyondthetypicalsyllabusforanundergraduate classicalmechanicscourse.Thereasonforintroducingtheseadvancedtopicsistostimulatestudentinterest inphysicsbygivingthemaglimpseofthephysicsatthesummitthattheyhavestruggledtoclimb.This glimpseillustratesthebreadthofclassicalmechanics, andtherolethatvariationalprincipleshaveplayed inthedevelopmentofclassical,relativistic, quantal,andstatisticalmechanics.These finalsupplemental lecturesillustratethebeautyandunityofclassicalmechanics,andthefoundationthatclassicalmechanics hasprovidedtothedevelopmentofmodernphysics.Theappendicessummarizeaspectsofthemathematical methodsthatareexploitedinclassicalmechanics.
Thepresenttextbookcontainsmorematerialthanrequiredforajunior/seniorundergraduateclassical mechanicscourse,andthus,itcouldserveasthetextforagraduatecoursebyfocussingthecourseonthe variationalprinciplescoveredbychapters 5 17.Thepartitioningandorderingofthetopicsinthebook aretheresultofmanypermutationstriedwhileteachingclassicalmechanicsformanyyears.Chapters 1 through 3 plusthemathematicalappendices,areusedasreadingassignmentsduringthe firstthreeweeks ofclasstominimizethetimespentreviewingNewtonianmechanics.Thismaximizestheclasstimeavailable tocoverthevariationalapproach,thatis,chapters 5 through 14.Thebriefreviewsofthemechanicsinthe continua,andthetransitiontoquantummechanics,providethestudentwithaglimpseoftheimplications ofanalyticalmechanicstothesemoreadvancedtopics.
InformationregardingtheassociatedP235undergraduatecourseattheUniversityofRochesterisavailableonthewebsiteathttp://www.pas.rochester.edu/~cline/P235/index.shtml.Informationaboutthe authorisavailableattheClinehomewebsite:http://www.pas.rochester.edu/~cline/index.html.
TheauthorthanksMeghanSarkiswhopreparedmanyof theillustrations,JoeEasterlywhodesignedthe bookcoverplusthewebpage,andMorianaGarciawhoorganizedpublication.AndrewSifaindevelopedthe diagnosticworkshopquestions.Theauthorappreciates thepermission,grantedbyProfessorStruckmeier,to quotehispublishedarticleontheextendedHamilton-Lagrangianformalism.Theauthoracknowledgesthe feedbackandsuggestionsmadebymanystudentswhohavetakenthiscourse,aswellashelpfulsuggestions byhiscolleagues;AndrewAbrams,AdamHayes,ConnieJones,AndrewMelchionna,DavidMunson,Alice Quillen,RichardSarkis,JamesSchneeloch,Steven Torrisi,DanWatson,andFrankWolfs.Theselecture notesweretypedinLATEXusingScientificWorkPlace(MacKichanSoftware,Inc.),whileAdobeIllustrator, Photoshop,Origin,Mathematica,andMUPAD,wereusedtopreparetheillustrations.
DouglasCline, UniversityofRochester,2017
THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
To protect the Project Gutenberg™ mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase “Project Gutenberg”), you agree to comply with all the terms of the Full Project Gutenberg™ License available with this file or online at www.gutenberg.org/license.
Section 1. General Terms of Use and Redistributing Project Gutenberg™ electronic works
1.A. By reading or using any part of this Project Gutenberg™ electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg™ electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg™ electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8.
1.B. “Project Gutenberg” is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg™ electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg™ electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg™ electronic works. See paragraph 1.E below.
1.C. The Project Gutenberg Literary Archive Foundation (“the Foundation” or PGLAF), owns a compilation copyright in the collection of Project Gutenberg™ electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg™ mission of promoting free access to electronic works by freely sharing Project Gutenberg™ works in compliance with the terms of this agreement for keeping the Project Gutenberg™ name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg™ License when you share it without charge with others.
1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg™ work. The Foundation makes no representations concerning the copyright status of any work in any country other than the United States.
1.E. Unless you have removed all references to Project Gutenberg:
1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg™ License must appear prominently whenever any copy of a Project Gutenberg™ work (any work on which the phrase “Project Gutenberg” appears, or with which the phrase “Project
Gutenberg” is associated) is accessed, displayed, performed, viewed, copied or distributed:
This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
1.E.2. If an individual Project Gutenberg™ electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase “Project Gutenberg” associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg™ trademark as set forth in paragraphs 1.E.8 or 1.E.9.
1.E.3. If an individual Project Gutenberg™ electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg™ License for all works posted with the permission of the copyright holder found at the beginning of this work.
1.E.4. Do not unlink or detach or remove the full Project Gutenberg™ License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg™.
1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg™ License.
1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg™ work in a format other than “Plain Vanilla ASCII” or other format used in the official version posted on the official Project Gutenberg™ website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original “Plain Vanilla ASCII” or other form. Any alternate format must include the full Project Gutenberg™ License as specified in paragraph 1.E.1.
1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg™ works unless you comply with paragraph 1.E.8 or 1.E.9.
1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg™ electronic works provided that:
• You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg™ works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg™ trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information
about donations to the Project Gutenberg Literary Archive Foundation.”
• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.
• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.
• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.
1.F.
1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other
medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGESExcept for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH
1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg™
Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.
Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project
Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.
Section 3. Information about the Project Gutenberg Literary Archive Foundation
The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.
The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact
Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation
Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form
accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.
The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.
While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.
International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.
Section 5. General Information About Project Gutenberg™ electronic works
Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.