Theory and experiment in gravitational physics Will Visit to download the full and correct content document: https://textbookfull.com/product/theory-and-experiment-in-gravitational-physics-will/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Theory and Experiment in Gravitational Physics Clifford M. Will
https://textbookfull.com/product/theory-and-experiment-ingravitational-physics-clifford-m-will/
Gravitational Wave Physics and Astronomy An Introduction to Theory Experiment and Data Analysis 1st Edition Anderson Warren G Creighton Jolien D E
https://textbookfull.com/product/gravitational-wave-physics-andastronomy-an-introduction-to-theory-experiment-and-dataanalysis-1st-edition-anderson-warren-g-creighton-jolien-d-e/
1st Karl Schwarzschild Meeting on Gravitational Physics
1st Edition Piero Nicolini
https://textbookfull.com/product/1st-karl-schwarzschild-meetingon-gravitational-physics-1st-edition-piero-nicolini/
The Clouds An Experiment in Theory Fiction 1st Edition
Gualeni
https://textbookfull.com/product/the-clouds-an-experiment-intheory-fiction-1st-edition-gualeni/
Category Theory in Physics Mathematics and Philosophy
Springer Proceedings in Physics Marek Ku■ (Editor)
https://textbookfull.com/product/category-theory-in-physicsmathematics-and-philosophy-springer-proceedings-in-physics-marekkus-editor/
Molecular Spectroscopy—Experiment and Theory: From Molecules to Functional Materials Andrzej Kole■y■ski
https://textbookfull.com/product/molecular-spectroscopyexperiment-and-theory-from-molecules-to-functional-materialsandrzej-kolezynski/
Supersymmetry Beyond Minimality: From Theory to Experiment 1st Edition Shaaban Khalil
https://textbookfull.com/product/supersymmetry-beyond-minimalityfrom-theory-to-experiment-1st-edition-shaaban-khalil/
Free Will and Consciousness in the Multiverse Physics Philosophy and Quantum Decision Making Christian D. Schade
https://textbookfull.com/product/free-will-and-consciousness-inthe-multiverse-physics-philosophy-and-quantum-decision-makingchristian-d-schade/
Complexity in Chemistry and Beyond Interplay Theory and Experiment New and Old Aspects of Complexity in Modern Research 1st Edition Klaus Mainzer (Auth.)
https://textbookfull.com/product/complexity-in-chemistry-andbeyond-interplay-theory-and-experiment-new-and-old-aspects-ofcomplexity-in-modern-research-1st-edition-klaus-mainzer-auth/
TheoryandExperimentinGravitationalPhysics The2015centenaryofthepublicationofEinstein’sgeneraltheoryofrelativityandthe firstdetectionofgravitationalwaveshavefocusedrenewedattentiononthequestionof whetherEinsteinwasright.
Thisreviewofexperimentalgravityprovidesadetailedsurveyoftheintensivetesting ofEinstein’stheoryofgravity,includingtestsintheemergingstrong-fielddynamical regime.Itdiscussesthetheoreticalframeworksneededtoanalyzegravitationaltheoriesand interpretexperiments.Completelyrevisedandupdated,thisneweditionfeaturescoverage ofnewalternativetheoriesofgravity,aunifiedtreatmentofgravitationalradiation,andthe implicationsofthelatestbinarypulsarobservations.Itspanstheearliesttestsinvolvingthe solarsystemtothelatesttestsusinggravitationalwavesdetectedfrommergingblackholes andneutronstars.Itisacomprehensivereferenceforresearchersandgraduatestudents workingingeneralrelativity,cosmology,particlephysics,andastrophysics.
CliffordM.Will isDistinguishedProfessorofPhysicsattheUniversityofFloridaand ChercheurAssoci ´ eattheInstitutd’AstrophysiquedeParis.Heisamemberofthe USNationalAcademyofSciencesandaFellowoftheAmericanPhysicalSociety, theAmericanAcademyofArtsandSciences,andtheInternationalSocietyonGeneral RelativityandGravitation.
TheoryandExperiment inGravitationalPhysics CLIFFORDM.WILL
UniversityofFlorida
UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia
314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India
79AnsonRoad,#06–04/06,Singapore079906
CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence.
www.cambridge.org Informationonthistitle:www.cambridge.org/9781107117440 DOI:10.1017/9781316338612
©CliffordM.Will2018
Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress.
Firstpublished2018
PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-11744-0Hardback
CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate.
ForLeslie
Preface Theyear2015markedthe100thanniversaryofthepublicationofEinstein’sgeneraltheory ofrelativity,andrelativistsworldwidecelebratedthishistoricoccasion.Asifthiswerenot enough,onSeptember14,2015,scientistsattheLIGOgravitational-waveobservatoriesin theUnitedStatesdetected,forthefirsttime,gravitationalwavespassingtheEarth,emitted byapairofmergingblackholesoverabillionlightyearsaway.Thiseventprovidedakind offairy-talecapstonetoaremarkablecentury.
Indeed,somepopularaccountsofthehistoryofgeneralrelativityreadlikeafairytale, goingsomethinglikethis:in1905,Einsteindiscoveredspecialrelativity.Hethenturned hisattentiontogeneralrelativityandaftertenyearsofhardwork,hegotgeneralrelativity inNovember1915.In1919,Eddingtonverifiedthetheorybymeasuringthebendingof starlightduringasolareclipse.Einsteinbecamefamous.Andeverybodylivedhappily everafter.
Therealhistoryofgeneralrelativityisrathermorecomplex.AtthetimeofEddington’s measurementsoflightbending,therewasconsiderableskepticismabouttheresults.There weremajorconceptualdifficultieswiththetheory;itwasveryhardtounderstandwhatthis newtheorywasandwhatitreallypredicted.Andfinally,therewasanabidingsensethat thetheorymainlypredictedsomeverytinycorrectionstoNewtoniangravity,andthatit reallywasn’tallthatimportantforphysics.
Asaresult,withinabouttenyearsofitsdevelopment,generalrelativityenteredaperiod ofdecline,dubbedthe“low-watermark”byJeanEisenstaedt(2006),sothatbytheend ofthe1950s,generalrelativitywasconsideredtobeinthebackwatersofphysicsand astronomy,notafitsubjectforaseriousscientisttopursue.
Butduringthe1960stherebeganaremarkablerenaissanceforthetheory.Thiswas driveninpartbythediscoveryofquasars,pulsars,andthecosmicbackgroundradiation, systemswhereitbecameclearthatgeneralrelativitywouldplayacentralrole.Itwasalso fueledbythebeginningsofaworldwideefforttoputthetheorytothetestusingnew precisiontoolssuchasatomicclocksandradiotelescopes,togetherwiththeemerging spaceprogram.Andgravitationaltheoristsdevelopedavarietyoftoolsthatallowedthem toclarifywhatthetheoryanditscompetitorspredicted,analyzethenewexperimental results,anddevisenewtests.
Today,generalrelativityisfullyintegratedintothemainstreamofphysics,andinfact iscentraltosomeofthekeyscientificquestionsoftoday,suchas:Howdidtheuniverse beginandwhatisitsfuture?Whatgovernsphysicsattheshortestdistancesandthelongest distances?Doblackholesreallyexistandhowdotheyaffecttheirsurroundings?Howcan wereconcilegravityandquantummechanics?
Yet,isitthecorrecttheoryofgravity?WasEinsteinreallyright?
Bythetimeofthecentenaryofgeneralrelativity,Einstein’stheoryhadbeentestedin manywaysandtohighprecision,andhadpassedeverytest.Sofar,noexperimenthasbeen abletoputanunambiguousdentinthearmorofgeneralrelativity.Andyet“experimental gravity”isasactiveandexcitingafieldasitwasin1981,whenthefirsteditionofthisbook cameout.Thisismotivatedinpartbytheongoingmysteriesandconundraassociatedwith theaccelerationoftheuniverse,theapparentexistenceofdarkmatter,andthedifficultyof marryinggeneralrelativitywithquantummechanics.
ButitisalsomotivatedbyournewfoundabilitytoexploreregimesfortestingEinstein’s theoryfarbeyondtherelativelyweakandbenignrealmsofthelaboratoryandthesolar system.Thisexplorationbegan,ofcourse,withthediscoveryofthebinarypulsarin1974, leadingtothefirsttestsinvolvingneutronstars,butinrecentyearsithasaccelerated dramatically.
Aswelooktowardthesecondcenturyofgeneralrelativity,twoimportantthemesare goingtobe(i)testinggeneralrelativityinthestrong-gravityregimenearblackholesand neutronstars,goingbeyondtheweak-gravityconditionsofthesolarsystemand(ii)testing generalrelativityinthehighlydynamicalregime,wheregravitationalradiationisbotha phenomenontobescrutinizedandatoolforstudyingdynamical,strong-gravitysources.
Thereisnobetterillustrationofthisnewerafortestinggeneralrelativitythanthe outpouringofpapersfollowingthefirstdetectionsofgravitationalwavesbytheLIGOVirgocollaboration,showinghowthedataplacenewandcompellingconstraintsonawide rangeofalternativetheories,inwaysthatwouldnothavebeenpossibleusingsolar-system measurements.Itismyhopethatthisbookwillservenotonlyasanupdateofthe1981 editionbutalsoasafoundationforstudentsandresearcherswhowishtojoininthisnew efforttocheckwhetherEinsteinwasright.
Acknowledgments Overmyfifty-year-longadventureintheworldoftestinggeneralrelativity,ithas beenmygreatfortunetohavehadthreeinspiringmentors:KipThorne,Subrahmanyan Chandrasekhar,andBobWagoner.KipassignedmethePhDprojectoffiguringoutwhat hadtobedonetotestgeneralrelativitybetter.Healsotaughtbyexamplethewaysof research,teaching,scientificwriting,andpresentingsciencetobroadaudiences.From ChandraIlearnedastyleofmeticulousattentiontodetailincalculationsthathasbeen ahallmarkofmyownresearch.Healsogavemeadeepappreciationforsciencehistory. Bob’sinfectiousenthusiasmforphysicsandastronomytaughtmethat,ifyouaren’thaving fundoingthiswork,you’reinthewrongbusiness.Ihavealwayshadfun!
Ialsowanttoacknowledgesomeofthecolleagues,collaboratorsandstudentswhohad animpactdirectlyorindirectlyonmycareerinexperimentalgravity,andwhothus,inone wayoranother,leftamarkonthisbook:EricAdelberger,JohnAnderson,K.G.Arun, EmanueleBerti,BrunoBertotti,LucBlanchet,AlessandraBuonanno,ThibaultDamour, RobertDicke,DouglasEardley,FrancisEveritt,WilliamFairbank,MarkHaugan,Timothy Krisher,BalaIyer,LarryKidder,RyanLang,DavidLee,AlanLightman,CraigLincoln, SaeedMirshekari,Wei-TouNi,AnnaNobili,KenNordtvedt,Ho-JungPaik,Michael Pati,EricPoisson,BobReasenberg,PeterSaulson,BernardSchutz,IrwinShapiro,Adam Stavridis,JoeTaylor,RobertVessot,MartinWalker,JosephWeber,AlanWiseman,Nicol ´ as Yunes,andHelmutZaglauer.
IamgratefultotheInstitutd’AstrophysiquedeParisforitshospitalityduringannual staysin2015–2017,wherelargepartsofthisbookwerewritten.Thisworkwassupported inpartbytheUSNationalScienceFoundationunderGrantsNo.PHY13-06069andPHY 16-00188.
1
Introduction OnSeptember14,1959,twelvedaysafterpassingthroughherpointofclosestapproach totheEarth,theplanetVenuswasbombardedbypulsesofradiowavessentfromEarth. AhandfulofanxiousscientistsatLincolnLaboratoriesinMassachusettswaitedtodetect theechoofthereflectedwaves.Totheirinitialdisappointment,neitherthedatafromthis day,norfromanyofthedaysduringthatmonth-longobservation,showedanydetectable echonearinferiorconjunctionofVenus.However,alater,improvedreanalysisofthedata showedabonafideechointhedatafromoneday:September14.Thusoccurredthefirst recordedradarechofromaplanet.
Exactlyfifty-sixyearslater,onSeptember14,2015,aratherdifferentsignalwas receivedbyscientists,thistimeinHanford,Washington,andLivingston,Louisiana.The signalwasnotelectromagneticbutinsteadwasawaveinthefabricofspacetimeitself. Itwasthefinalburstofgravitationalwavesfromtwoblackholesthatmergedtoforma singleblackholesomewhereinthesouthernskysome1.3billionyearsago.Thesignalwas recognizedwithinminutesbyautomateddataprocessingsoftware.Thistime,thescientists, numberingover1,000,wereanxiouslestthesignalbeanunluckyartifactofinstrumental noise.ButonFebruary11,2016,afteranintensiveandsecretivefivemonthsofdetailed analysis,checksandcross-checks,theyannouncedataWashington,DC,pressconference thattheLaserInterferometerGravitational-WaveObservatory(LIGO)hadmadethefirst directdetectionofgravitationalwaves.
Asifthe100thanniversaryofthegeneraltheoryofrelativityduring2015wasnot alreadysomethingtocelebrate,thedetectionofgravitationalwaveswasicingonthe cake.1 Itwasalsothecapstoneofahalf-centuryperiodduringwhichgeneralrelativity experiencedaremarkablerenaissance,fromasubjectrelegatedtothebackwatersof physicsandastronomy,toonethatisregardedascentraltothemajorscientificquestions oftheday,fromthenatureofthefundamentalparticlestothefateoftheuniverse.Itwas aperfectillustrationofhowthefieldwastransformedfromonethatwasoncecalled“a theorist’sparadiseandanexperimentalist’spurgatory,”tooneinwhichexperimentalists andtheoristsworkhandinhand.Ithighlightedthefield’sevolutionfromtheworldof “smallscience,”whereindividualsorsmallgroupsscratchedoutmathematicalformulas intheirtinyoffices,tothatof“bigscience,”whereworldwidecollaborationsofscientists conducttheiraffairsviateleconandSkype,spendbudgetsmeasuredinunitsofmegabucks ormegaeuros,andrequireprojectmanagerstokeepmattersontrack.
1 Andascoopoficecreamontopoftheicingwastheawardofthe2017NobelPrizeinPhysicstothreeof LIGOsfounders,RainerWeiss,BarryBarish,andKipThorne.Theotherpioneeroftheproject,RonDrever, hadalreadydiedinMarchofthatyear.
Theoriginsofthisremarkabletransformationofgeneralrelativityfromanobscureniche ofmathematicsandphysicstoamajorsubfieldofphysicsandastronomy,todaycalled “GravitationalPhysics,”canbefoundinasetofeventsoftheacademicyear1959–1960, beginningwiththatfirstradarechofromVenus.Fourkeyeventsfollowed.
OnMarch9,1960,theeditorialofficeof PhysicalReviewLetters receivedapaper byRobertPoundandGlenRebkaJr.,entitled“ApparentWeightofPhotons.”Thepaper reportedthefirstsuccessfullaboratorymeasurementofthegravitationalredshiftoflight. ThepaperwasacceptedandpublishedintheApril1issue.
InJune1960,thereappearedinvolume10ofthe AnnalsofPhysics apaperon“ASpinor ApproachtoGeneralRelativity”byRogerPenrose.Itoutlinedastreamlinedcalculusfor generalrelativitybasedupon“spinors”ratherthanupontensors.
Laterthatsummer,CarlBrans,ayoungPrincetongraduatestudentworkingwithRobert Dicke,beganputtingthefinishingtouchesonhisPhDthesis,entitled“Mach’sPrinciple andaVaryingGravitationalConstant.”Partofthatthesiswasdevotedtothedevelopment ofa“scalar-tensor”alternativetothegeneraltheoryofrelativity.Althoughitsauthorsnever referredtoitthisway,itcametobeknownastheBrans-Dicketheory.
OnSeptember26,1960,justoverayearaftertherecordedVenusradarecho, astronomersThomasMatthewsandAllanSandageandcoworkersatMountPalomarused the200-inchtelescopetomakeaphotographicplateofthestarfieldaroundthelocation oftheradiosource3C48.Althoughtheyexpectedtofindaclusterofgalaxies,whatthey sawatthepreciselocationoftheradiosourcewasanobjectthathadadecidedlystellar appearance,anunusualspectrum,andaluminositythatvariedonatimescaleasshortas fifteenminutes.Thenamequasistellarradiosourceor“quasar”wassoonappliedtothis objectandtootherslikeit.
Thesedisparateandseeminglyunrelatedeventsoftheacademicyear1959–1960,in fieldsrangingfromexperimentalphysicstoabstracttheorytoastronomy,signaledthe beginningofaneweraforgeneralrelativity.Thiserawastobeoneinwhichgeneral relativitynotonlywouldbecomeanimportanttheoreticaltooloftheastrophysicistbut alsowouldhaveitsvaliditychallengedasneverbefore.Yetitwasalsotobeatimein whichexperimentaltoolswouldbecomeavailabletotestthetheoryinunheard-ofways andtounheard-oflevelsofprecision.
Theopticalidentificationof3C48(MatthewsandSandage,1963)andthesubsequent discoveryofthelargeredshiftsinitsspectrallinesandinthoseof3C273(Greensteinand Matthews,1963;Schmidt,1963)presentedtheoristswiththeproblemofunderstanding theenormousoutputofenergyfromaregionofspacecompactenoughtopermitthe luminositytovarysystematicallyovertimescalesasshortasdaysorhours.Manytheorists turnedtogeneralrelativityandtothestrongrelativisticgravitationalfieldsitpredicts,to providethemechanismunderlyingsuchviolentevents.Thiswasthefirstuseofthetheory’s strong-fieldaspect,inanattempttointerpretandunderstandobservations.Thesubsequent discoveryofthecosmicmicrowavebackground(CMB)radiationin1964,ofpulsarsin 1967,andofthefirstblackholecandidatein1971showedthatitwouldnotbethelast. However,theuseofrelativisticgravitationinastrophysicalmodelbuildingforcedtheorists andexperimentaliststoaddressthequestion:Isgeneralrelativitythecorrectrelativistic theoryofgravitation?Itwouldbedifficulttoplacemuchconfidenceinmodelsforsuch
phenomenaasquasarsandpulsarsiftherewereseriousdoubtaboutoneofthebasic underlyingphysicaltheories.Thus,thegrowthof“relativisticastrophysics”intensifiedthe needtostrengthentheempiricalevidencefororagainstgeneralrelativity.
ThepublicationofPenrose’sspinorapproachtogeneralrelativity(Penrose,1960)was oneoftheproductsofanewschoolofrelativitytheoriststhatcametotheforeinthelate 1950s.Theserelativistsappliedtheelegant,abstracttechniquesofpuremathematicsto physicalproblemsingeneralrelativity,anddemonstratedthatthesetechniquescouldalso aidintheworkoftheirmoreastrophysicallyorientedcolleagues.Thebridgingofthegaps betweenmathematicsandphysicsandmathematicsandastrophysicsbysuchworkersas Bondi,Dicke,Sciama,Pirani,Penrose,Sachs,Ehlers,Misner,andotherschangedtheway thatresearch(andteaching)inrelativitywascarriedout,andhelpedmakeitanactiveand excitingfieldofphysics.Yetagainthequestionhadtobeaddressed:Isgeneralrelativity thecorrectbasisforthisresearch?
Theotherthreeeventsof1959–1960contributedtotherebirthofaprogramtoanswer thatquestion,aprogramofexperimentalgravitationthathadbeensemi-dormantforforty years.
ThePound-Rebka(1960)experiment,inadditiontoverifyingtheprincipleofequivalenceandthegravitationalredshift,demonstratedthepowerfuluseofquantumtechnology ingravitationalexperimentsofhighprecision.Thenexttwodecadeswouldseefurther usesofquantumtechnologyinsuchtoolsasatomicclocks,laserranging,superconducting gravimeters,andgravitational-wavedetectors,tonameonlyafew.Recordingradar echosfromVenus(Smith,1963)openedupthesolarsystemasalaboratoryfortesting relativisticgravity.Therapiddevelopmentoftheinterplanetaryspaceprogramduring theearly1960smaderadarrangingtobothplanetsandartificialsatellitesavitalnew toolforprobingrelativisticgravitationaleffects.Coupledwiththetheoreticaldiscovery in1964oftherelativistictime-delayeffect(Shapiro,1964),itprovidednewandaccurate testsofgeneralrelativity.Forthenextdecadeandahalf,untilthesummerof1974,the solarsystemwouldbetheprimaryarenaforhigh-precisiontestsofgeneralrelativity. Finally,thedevelopmentoftheBrans-Dicke(1961)theoryprovidedaviablealternative togeneralrelativity.Itsveryexistenceandagreementwiththeexperimentalresultsofthe daydemonstratedthatgeneralrelativitywasnotauniquetheoryofgravity.Someeven preferreditovergeneralrelativityonaestheticandtheoreticalgrounds.Attheveryleast,it showedthatdiscussionsofexperimentaltestsofrelativisticgravitationaleffectsshouldbe carriedonusingabroadertheoreticalframeworkthanthatprovidedbygeneralrelativity alone.Italsoheightenedtheneedforhigh-precisionexperimentsbecauseitshowedthatthe mere detection ofasmallgeneralrelativisticeffectwasnotenough.Whatwasnowrequired wasmeasurementsoftheseeffectstoaccuraciesof10percent,1percent,orfractionsofa percentandbetter,todistinguishamongcompetingtheoriesofgravitation.
Toappreciatemorefullytheregenerativeeffectthattheseeventshadongravitational theoryanditsexperimentaltests,itisusefultoreviewbrieflythehistoryofgeneral relativityintheforty-fiveyearsfollowingEinstein’spublicationofthetheory.
Inderivinggeneralrelativity,Einsteinwasnotparticularlymotivatedbyadesireto accountforunexplainedexperimentalorobservationalresults.Instead,hewasdriven bytheoreticalcriteriaofeleganceandsimplicity.Hisprimarygoalwastoproducea
gravitationtheorythatincorporatedtheprincipleofequivalenceandspecialrelativityin anaturalway.Intheend,however,hehadtoconfrontthetheorywithexperiment.This confrontationwasbasedonwhatcametobeknownasthe“threeclassicaltests.”
Oneofthesetestswasanimmediatesuccess–theabilityofthetheorytoaccount fortheanomalousperihelionshiftofMercury.Thishadbeenanunsolvedproblemin celestialmechanicsforoverhalfacentury,sincetheannouncementbyUrbainJeanJoseph LeVerrierin1859that,aftertheperturbingeffectsoftheplanetsonMercury’sorbithad beenaccountedfor,thereremainedinthedataanunexplainedadvanceintheperihelion ofMercury.Themodernvalueforthisdiscrepancyisaboutforty-threearcsecondsper century.Anumberofadhocproposalsweremadeinanattempttoaccountforthisexcess, includingtheexistenceofanewplanet,dubbed“Vulcan,”neartheSun,andadeviation fromtheinverse-squarelawofgravitation.Ahalfcenturyofastronomicalsearchesfor Vulcanyieldednumerousclaimedsightings,butintheend,nosolidevidencefortheplanet wasfound.AndwhileachangeintheNewtonianinverse-squarelawproposedbySimon Newcombe,fromthepower2tothepower2.000000157,couldaccountfortheperihelion advanceofMercury,itultimatelyconflictedwithdataonthemotionoftheMoon.
EinsteinwaswellawareoftheproblemofMercury,and,infact,heuseditasaway totesthisearlyattemptsatatheoryofgravity;forexample,hefinallyrejectedthe1912 “Entwurf”or“draft”theorythathehaddevelopedwithMarcelGrossmanninpartbecause itgavethewrongperihelionadvance.Butwhenhethoughthehadobtainedthefinaltheory inNovember1915,thefactthatitgavethecorrectadvanceconvincedhimthathehad succeeded.
Thenextclassicaltest,thedeflectionoflightbytheSun,wasnotonlyasuccess,itwas asensation.ShortlyaftertheendofWorldWarI,twoexpeditionsorganizedbyArthur StanleyEddingtonsetoutfromEngland:oneforSobral,inBrazil;andonefortheisland ofPrincipeoffthecoastofAfricatoobservethesolareclipseofMay29,1919.Theirgoal wastomeasurethedeflectionoflightaspredictedbygeneralrelativity:1.75arcseconds foraraythatgrazestheSun.Theobservationshadtobemadeinthepathoftotalityof asolareclipse,duringwhichtheMoonwouldblockthelightfromtheSunandreveal thefieldofstarsaroundit.Photographicplatestakenofthestarfieldduringtheeclipse werecomparedwithplatesofthesamefieldtakenwhentheSunwasnotpresent,andthe angulardisplacementofeachstarwasdetermined.Theresultswere1.13 ± 0.07timesthe EinsteinpredictionfortheSobralexpedition,and0.92 ± 0.17forthePrincipeexpedition (Dysonetal.,1920).TheNovember1919announcementoftheseresultsconfirmingthe theorycaughttheattentionofawar-wearypublicandhelpedmakeEinsteinacelebrity. Nevertheless,theexperimentswereplaguedbysystematicerrors,andsubsequenteclipse expeditionsdidlittletoimprovethesituation.
ThethirdclassicaltestwasactuallythefirstproposedbyEinstein(1908):thegravitationalredshiftoflight.Butbycontrastwiththeothertwotests,therewasnoreliable confirmationofituntilthe1960Pound-Rebkaexperiment.Onepossibletestinvolved theredshiftofspectrallinesfromthesun.A1917measurementbyastronomerCharles St.John(1917)failedtodetecttheeffect,sowingconsiderabledoubtaboutthevalidity ofthetheory.Thirtyyearsofsuchmeasurementsrevealedmainlythattheobservedshifts insolarspectrallinesaredominatedbyDopplershiftsduetoradialmassmotionsinthe
solarphotosphere,andbylineshiftsduetothehighpressuresinthesolaratmosphere, makingdetectionoftheEinsteinshiftverydifficult.Itwouldbe1962beforeareliablesolar redshiftmeasurementwouldbemade.Similarlyinconclusivewereattemptstomeasure thegravitationalredshiftofspectrallinesfromwhitedwarfs,primarilyfromSiriusB and40EridaniB,bothmembersofbinarysystems.Becauseofuncertaintiesinthe determinationofthemassesandradiiofthesestars,andbecauseofpossiblecomplications intheirspectraduetoscatteredlightfromtheircompanions,reliable,precisemeasurements werenotpossible.Furthermore,bythelate1950s,itwasbeingsuggestedthatthe gravitationalredshiftwasnotatruetestofgeneralrelativityafterall.AccordingtoLeonard SchiffandRobertDicke,thegravitationalredshiftwasaconsequencepurelyofthe principleofequivalence,anddidnottestthespecificfieldequationsofgravitationaltheory. Cosmologywasoneareawheregeneralrelativitycouldconceivablybeconfronted withobservation.Initiallythetheorymetwithsuccessinitsabilitytoaccountforthe observedexpansionoftheuniverse,yetbythe1940stherewasconsiderabledoubt aboutitsapplicability.Accordingtopuregeneralrelativity,theexpansionoftheuniverse originatedinadenseprimordialexplosioncalledthe“bigbang.”However,atthattime, themeasuredvalueoftheexpansionratewassohighthatworkingbackwardintimeusing thecosmologicalsolutionsofgeneralrelativityledtotheconclusionthattheageofthe universewaslessthanthatoftheEarth!Oneresultofthisdoubtwastheriseinpopularity duringthe1950softhesteady-statecosmologyofHermanBondi,ThomasGold,andFred Hoyle.Thismodelavoidedthebigbangaltogether,andallowedfortheexpansionofthe universebythecontinuouscreationofmatter.Butbythelate1950s,revisionsinthecosmic distancescalehadreducedtheexpansionratebyafactoroffive,andhadtherebyincreased theageoftheuniverseinthebigbangmodeltoamoreacceptablelevel.Nevertheless, cosmologywasstillinitsinfancy,hardlysuitableasanarenafortestingtheoriesof gravity.Theeraof“precisioncosmology”wouldnotbeginuntilthelaunchoftheCosmic BackgroundExplorer(COBE)satellitein1989followedbyitsprecisemeasurementsof thespectrumandfluctuationsofthecosmicbackgroundradiation.
Meanwhile,asmall“cottageindustry”hadsprungup,devotedtotheconstruction ofalternativetheoriesofgravitation.Someofthesetheorieswereproducedbysuch luminariesasHenriPoincar ´ e,AlfredNorthWhitehead,EdwardArthurMilne,George Birkhoff,NathanRosen,andFrederickBelinfante.Manyoftheseauthorsexpressedan uneasinesswiththenotionsofgeneralcovarianceandcurvedspacetime,whichwere builtintogeneralrelativity,andrespondedbyproducing“specialrelativistic”theories ofgravitation.Manyofthesetheoriesconsideredspacetimeitselftobegovernedby specialrelativity,andtreatedgravitationasafieldonthatbackground.Asof1960,itwas possibletoenumerateatleasttwenty-fivesuchalternativetheories,asfoundintheprimary researchliteraturebetween1905and1960;forapartiallist,seeWhitrowandMorduch (1965).
Thus,by1960,itcouldbearguedthatthevalidityofgeneralrelativityrestedon thefollowingempiricalfoundation:onetestofmoderateprecision(theperihelionshift, approximately10percent),onetestoflowprecision(thedeflectionoflight,approximately 25percent),oneinconclusivetestthatwasnotarealtestanyway(thegravitational redshift),andcosmologicalobservationsthatcouldnotdistinguishbetweengeneral
relativityandthesteady-statetheory.Furthermore,avarietyofalternativetheorieslaid claimtoviability.
Inaddition,theattitudetowardthetheoryseemedtobethat,whereasitwasundoubtedly importantasafundamentaltheoryofnature,itsobservationalcontactswerelimited.This viewwaspresentforexampleinthestandardtextbooksongeneralrelativityofthisperiod, suchasthosebyMøller(1952),Synge(1960),andLandauandLifshitz(1962).Asa consequence,generalrelativitywascutofffromthemainstreamofphysics.Itwasduring thisperiodthatonenewlymintedgraduateoftheCaliforniaInstituteofTechnologywas advisednottopursuethissubjectforhisgraduatework,becausegeneralrelativity“hadso littleconnectionwiththerestofphysicsandastronomy”(hisname:KipThorne).
However,theeventsof1959–1960changedallthat.Thepaceofresearchingeneral relativityandrelativisticastrophysicsbegantoquickenand,associatedwiththisrenewed effort,thesystematichigh-precisiontestingofgravitationaltheorybecameanactiveand challengingfield,withmanynewexperimentalandtheoreticalpossibilities.Theseincluded newversionsofoldtests,suchasthegravitationalredshiftanddeflectionoflight,with accuraciesthatwereunthinkablebefore1960.Theyalsoincludedbrandnewtestsof gravitationaltheory,suchasthegyroscopeprecession,thetimedelayoflight,andthe “Nordtvedteffect”inlunarmotion,alldiscoveredtheoreticallyafter1959.
Becausemanyoftheexperimentsinvolvedtheresourcesofprogramsforinterplanetary spaceexplorationandobservationalastronomy,theircostintermsofmoneyandmanpower washighandtheirdependenceuponincreasinglyconstrainedgovernmentfundingagencieswasstrong.Thus,itbecamecrucialtohaveasgoodatheoreticalframeworkaspossible forcomparingtherelativemeritsofvariousexperiments,andforproposingnewonesthat mighthavebeenoverlooked.Anotherreasonthatsuchatheoreticalframeworkwasnecessarywastomakesomesenseofthelarge(andstillgrowing)numberofalternativetheories ofgravitation.Suchaframeworkcouldbeusedtoclassifytheories,elucidatetheirsimilaritiesanddifferences,andcomparetheirpredictionswiththeresultsofexperimentsina systematicway.Itwouldhavetobepowerfulenoughtobeusedtodesignandassessexperimentaltestsindetail,yetgeneralenoughnottobebiasedinfavorofgeneralrelativity.
AleadingexponentofthisviewpointwasDicke(1964).Itledhimandotherstoperform severalhigh-precisionnullexperimentsthatgreatlystrengthenedtheempiricalsupportfor thefoundationsofgravitationtheory.Withinthisviewpointoneasksgeneralquestions aboutthenatureofgravityanddevisesexperimentstotestthem.Themostimportant dividendoftheDickeframeworkistheunderstandingthatgravitationalexperimentscan bedividedintotwoclasses.Thefirstconsistsofexperimentsthattestthefoundations ofgravitationtheory,oneofthesefoundationsbeingtheprincipleofequivalence. Theseexperiments(E ¨ otv ¨ osexperiment,Hughes-Dreverexperiment,gravitationalredshift experiment,andothers)accuratelyverifythatgravitationisaphenomenonofcurved spacetime,thatis,itmustbedescribedbya“metrictheory”ofgravity,atleasttoa highlevelofprecision.GeneralrelativityandBrans-Dicketheoryareexamplesofmetric theoriesofgravity.
Thesecondclassofexperimentsconsistsofthosethattestmetrictheoriesofgravity. HereanothertheoreticalframeworkwasdevelopedthattakesupwheretheDicke frameworkleavesoff.Knownasthe“Parametrizedpost-Newtonian”or PPN formalism,
itwaspioneeredbyKennethNordtvedtJr.(1968b),andlaterextendedandimproved byWill(1971c),WillandNordtvedt(1972),andWill(1973).The PPN frameworktakes theslowmotion,weakfield,orpost-Newtonianlimitofmetrictheoriesofgravity,and characterizesthatlimitbyasetoftenreal-valuedparameters.Eachmetrictheoryofgravity hasparticularvaluesforthe PPN parameters.The PPN frameworkwasideallysuitedto theanalysisofsolarsystemgravitationalexperiments,whosetaskthenbecameoneof measuringthevaluesofthe PPN parametersandtherebydelineatingwhichtheoryofgravity iscorrect.Asecondpowerfuluseofthe PPN frameworkwasinthediscoveryandanalysis ofnewtestsofgravitationtheory,examplesbeingtheNordtvedteffect(Nordtvedt,1968a), preferred-frameeffects(Will,1971b),andpreferred-locationeffects(Will,1971b,1973). TheNordtvedteffect,forinstance,isaviolationoftheequalityofaccelerationofmassive bodies,suchastheEarthandMoon,inanexternalfield;theeffectisabsentingeneral relativitybutpresentinmanyalternativetheories,includingtheBrans-Dicketheory.The thirduseofthe PPN formalismwasintheanalysisandclassificationofalternativemetric theoriesofgravitation.After1960,theinventionofalternativegravitationtheoriesdidnot abatebutchangedcharacter.ThecrudeattemptstoderiveLorentz-invariantfieldtheories describedpreviouslyweremostlyabandonedinfavorofmetrictheoriesofgravity,whose developmentandmotivationwereoftenpatternedafterthatoftheBrans-Dicketheory.
A“theoryofgravitationtheories”wasdevelopedaroundthe PPN formalismtoaidin theirsystematicstudy.The PPN formalismthusbecamethestandardtheoreticaltoolfor analyzingsolarsystemexperiments,lookingfornewtests,andstudyingalternativemetric theoriesofgravity.
Butbythemiddle1970sitbecameapparentthatthesolarsystemcouldnolongerbethe soletestinggroundforgravitationtheories.Thereasonwasthatmanyalternativetheories ofgravityagreedwithgeneralrelativityintheirweak-field,slow-motionlimitsclosely enoughtopassallsolarsystemtests.Buttheydidnotnecessarilyagreeinotherpredictions, suchasneutronstars,blackholes,gravitationalradiation,orcosmology,phenomenathat involvedstrongordynamicalgravity.
Thiswasconfirmedinthesummerof1974withthediscoverybyJosephTaylorand RussellHulseofthebinarypulsar(HulseandTaylor,1975).Herewasasystemthat featured,inadditiontosignificantpost-Newtoniangravitationaleffects,highlyrelativistic gravitationalfieldsassociatedwiththepulsar(andpossiblyitscompanion)andthe possibilityoftheemissionofgravitationalradiationbythebinarysystem.Theroleof thebinarypulsarasanewarenafortestingrelativisticgravitywasconfirmedfouryears laterwiththeannouncement(Tayloretal.,1979)thattherateofchangeoftheorbital periodofthesystemhadbeenmeasured.Theresultagreedwiththepredictionofgeneral relativityfortherateoforbitalenergylossduetotheemissionofgravitationalradiation. Butitdisagreedstronglywiththepredictionsofmanyalternativetheories,evensomewith post-Newtonianlimitsidenticaltothatofgeneralrelativity.
By1981,whenthefirsteditionofthisbookwaspublished,itwasnotuncommonto describetheperiod1960–1980asa“goldenera”forexperimentalgravity.Manyofthe eventsofthatperiodweredescribedforalayaudienceinmy1986book WasEinstein Right? (Will,1986).Butthephrase“goldenera”suggeststhatitwasdownhillfromthat timeforward.Quitetheoppositewastrue.
Solar-systemtestsofrelativisticgravitycontinued,withhighlightsincludingdramaticallyimprovedmeasurementsoflightdeflectionandtheShapirotimedelay,measurements of“frame-dragging”bytheGravityProbeBandtheLaserGeodynamicsSatellite (LAGEOS)experiments,andsteadilyimprovinglunarlaserranging.Binarypulsartests continued,aidedbyremarkablediscoveries,includingthefamous“doublepulsar”anda pulsarinatriplesystem.
Atthesametime,thecentralthrustoftestinggravitybegantoshiftawayfromtheweakfieldlimit.Twothemesbegantoemergeasthekeythemesforthefuture.
ThefirstthemeisDynamicalGravity.Thisinvolvesphenomenainwhichthevariation withtimeofthespacetimegeometryplaysanimportantrole.Inthesolarsystem,velocities aresmallcomparedtothespeedoflightandthemassesoftheplanetsaresmallcompared tothemassofthesun,sotheunderlyingspacetimegeometrycanbeviewedeitherasbeing stationaryorasevolvinginaquasistationarymanner.Butinthebinarypulsar,forexample, thetwobodieshavealmostthesamemassandareorbitingeachothertentimesfaster thanplanetsinthesolarsystem,andconsequentlythevaryingspacetimegeometrythat theybothgeneratedevolvesintogravitationalwavespropagatingawayfromthesystem, causingittoloseenergy.Amoredramaticexampleisthefinalinspiralofthetwoblack holeswhosegravitationalsignalwasdetectedbyLIGOin2015.Theblackholesaremade ofpurecurvedspacetime,andthemannerinwhichthatgeometryevolvedduringthe finalfractionsofasecondoftheinspiralandmergerleftitsimprintonthegravitational wavesthatweredetected.Thefinalblackholethatwasleftoverevenoscillatedafew times,emittingaspecifickindofgravitationalradiationcalledringdownwaves.Thisisthe regimeofdynamicalgravity.Dynamicalgravityoftengoeshandinhandwithgravitational radiation.
ThesecondthemeisStrongGravity.Muchlikemodernart,theterm“strong”means differentthingstodifferentpeople.Tosomeonesteepedingeneralrelativity,theprincipal figureofmeritthatdistinguishesstrongfromweakgravityisthequantity ∼ Gm/c2 r, where m isthecharacteristicmassscaleofthephenomenon, r isthecharacteristicdistance scale,and G and c aretheNewtoniangravitationalconstantandthespeedoflight, respectively.Neartheeventhorizonofanonrotatingblackhole,orfortheexpanding observableuniverse, ∼ 1;forneutronstars, ∼ 0.2.Thesearetheregimesofstrong gravity.Forthesolarsystem, < 10 5 ;thisistheregimeofweakgravity.
Analternativeviewof“strong”gravitycomesfromtheworldofparticlephysics.Here thefigureofmeritis Gm/c2 r3 ∼ 2 ,wherethecurvatureofspacetimeassociated withthephenomenon,representedbytheleft-handside,iscomparabletotheinverse squareofafavoritelengthscale .If isthePlancklength ( G/c3 )1/2 ∼ 10 35 m,this wouldcorrespondtotheregimewhereoneexpectsconventionalquantumgravityeffects tocomeintoplay.Anotherpossiblescalefor istheTeVscaleassociatedwithmany modelsforunificationoftheforces,ormodelswithextraspacetimedimensions.Fromthis viewpoint,stronggravityiswheretheradiusofcurvatureofspacetimeiscomparableto thefundamentallength.Weakgravityiswheretheradiusofcurvatureismuchlargerthan this.TheuniverseatthePlancktimeisstronggravity.Justoutsidetheeventhorizonofan astrophysicalblackholeisweakgravity.
Wewilladopttherelativist’sviewofstronggravity.
Theboundarybetweendynamicalgravityandstronggravityissomewhatfuzzy.Onecan explorestronggravityalonebystudyingthemotionofastararoundastaticsupermassive blackholeorofgasaroundaneutronstar.Gravitationalwavescanbeemittedbyabinary systemofwhitedwarfs,wellcharacterizedbyweakgravity.However,thestrongestwaves tendtocomefromsystemswithcompact,stronglygravitatingbodies,becauseonlysuch bodiescangetcloseenoughtogethertoreachtherelativisticspeedsrequiredtogenerate stronggravitationalwaves.Andtheuniverseasawholecanbethoughtofasboth“strong gravity”anddynamical,yetbecauseofthehighdegreeofsymmetry,gravitationalwaves donotplayamajorroleinitsevolution.Bycontrast,primordialgravitationalwavescould bedetectable,influctuationsofthecosmicbackgroundradiation,forexample.Regardless ofthespecificcontext,testinggeneralrelativityinthestrong-fieldanddynamicalregimes willdominatethisfieldforsometimetocome.
AsayoungstudentofseventeenatthePolytechnicalInstituteofZ¨urich,Einsteinstudied theworkofHelmholtz,Maxwell,andHertz,andultimatelyusedhisdeepunderstanding ofelectromagnetictheoryasafoundationforspecialandgeneralrelativity.Heappears tohavebeenespeciallyimpressedbyHertz’sconfirmationthatlightandelectromagnetic wavesareoneandthesame(Schilpp,1949).TheelectromagneticwavesthatHertzstudied wereintheradiopartofthespectrum,at30MHz.Itisamusingtonotethat,sixtyyears later,the“goldenage”fortestingrelativisticgravitybeganwithradiowaves,the440MHz wavesreflectedfromVenus,andendedwithradiowaves,thepulsedsignalsfromthebinary pulsar,observedat430MHz.Wearenowinanewerafortestinggeneralrelativity,anera inwhichwecanexploitandstudyanentirelynewkindofwave,awaveinthefabricof spacetimeitself.
Duringthehalf-centurythatclosedonthecentenaryofEinstein’sformulationofgeneral relativity,theempiricalfoundationsofhisgreattheorywerestrengthenedasneverbefore. Thequestionthenarises,whybothertocontinuetotestit?Onereasonisthatgravityisa fundamentalinteractionofnature,andassuchrequiresthemostsolidempiricalunderpinningwecanprovide.Anotheristhatallattemptstoquantizegravityandtounifyitwith theotherforcessuggestthatthestandardgeneralrelativityofEinsteinmaynotbethelast word.Furthermore,thepredictionsofgeneralrelativityarefixed;thepuretheorycontains noadjustableconstants,sonothingcanbechanged.Thuseverytestofthetheoryiseither apotentiallydeadlytestorapossibleprobefornewphysics.Althoughitisremarkable thatthistheory,born100yearsagooutofalmostpurethought,hasmanagedtosurvive everytest,thepossibilityoffindingadiscrepancywillcontinuetodriveexperimentsfor yearstocome.TheseexperimentswillsearchfornewphysicsbeyondEinsteininmany differentdirections:thelargedistancescalesofthecosmologicalrealm;scalesofvery shortdistancesorhighenergy;andtherealmsofstronganddynamicalgravity.
Throughoutthisbook,wewilladopttheunitsandconventionsofstandardtextbookssuchasMisner,Thorne, andWheeler(1973)(hereafterreferredtoasMTW)orSchutz(2009).Forapedagogicaldevelopmentofmany ofthetopicspresentedhere,suchasNewtoniangravity,post-Newtoniantheory,andgravitationalradiation, wewillreferreaderstoPoissonandWill(2014)(hereafterreferredtoasPW).Althoughwehaveattemptedto
Box1.1
produceareasonablyself-containedaccountofgravitationtheoryandgravitationalexperiments,thereader’s pathwillbegreatlysmoothedbyafamiliaritywithgeneralrelativityatthelevelofoneofthesetexts.
Wewilluse“geometrizedunits,”inwhich G = c = 1(exceptinChapter2)andinwhichmassandtimehave thesameunitsasdistance.Greekindicesonvectorsandtensorswillrunoverthefourspacetimedimensions, whileLatinindiceswillrunonlyoverspatialdimensions.WewillusetheEinsteinsummationconvention, inwhichonesumsrepeatedindicesovertheirrange.Multi-indexobjects,suchasproducts x j x k x l willbe denotedusingcapitalsuperscripts,e.g., x N ,where N isthenumberofindices.Partialderivativesandcovariant derivativeswillbedenotedbycommasandsemicolonsprecedingindices,respectively.Parenthesesenclosing indiceswilldenotesymmetrization,whilesquarebracketswilldenoteantisymmetrization.
TheEinsteinEquivalencePrinciple ThePrincipleofEquivalencehasplayedacentralroleinthedevelopmentofgravitation theory.Newtonregardedthisprincipleassuchacornerstoneofmechanicsthathedevoted theopeningparagraphsofhismasterwork PhilosophiaeNaturalisPrincipiaMathematica (oftencalledthe“Principia”)toadetaileddiscussionofit(Newton,1686).Onpage1, Definition1,hedefinedthe“quantity”ofmattertobeitsmass,andalsodefinedthe “weight”ofabody.Heassertedthatthemass“isproportionaltheweight,asIhavefound byexperimentsonpendulums,veryaccuratelymade,whichshallbeshownhereafter.”To Newton,thePrincipleofEquivalencedemandedthatthe“mass”ofanybody,namelythat propertyofabody(inertia)thatregulatesitsresponsetoanappliedforce,beequaltoits “weight,”thatpropertythatregulatesitsresponsetogravitation.Bondi(1957)coinedthe terms“inertialmass” mI ,and“passivegravitationalmass” mP ,torefertothesequantities, sothatNewton’ssecondlawandthelawofgravitationtaketheforms
where g isthegravitationalfield.ThePrincipleofEquivalencecanthenbestated succinctly:foranybody,1
Analternativestatementofthisprincipleisthatallbodiesfallinagravitationalfieldwith thesameaccelerationregardlessoftheirmassorinternalstructure.Newton’sequivalence principleisnowgenerallyreferredtoasthe“WeakEquivalencePrinciple”(WEP).
ItwasEinsteinwhoaddedthekeyelementtoWEPthatrevealedthepathtogeneral relativity.Ifallbodiesfallwiththesameaccelerationinanexternalgravitationalfield, thentoanobserverinafreelyfallingelevatorinthesamegravitationalfield,thebodies shouldbeunaccelerated,exceptforpossibletidaleffectsduetoinhomogeneitiesin thegravitationalfield.Tidaleffectscanbemadeassmallasonepleasesbyconfining everythingasufficientlysmallelevator.Thus,insofarastheirmechanicalmotionsare concerned,thebodieswillbehaveasifgravitywereabsent.Einsteinwentonestepfurther. Heproposedthatnotonlyshouldmechanicallawsbehaveinsuchanelevatorasifgravity wereabsentbutalsososhouldallthelawsofphysics,including,forexample,thelawsof electrodynamics.ThisnewprincipleledEinsteintogeneralrelativity.Itisnowcalledthe “EinsteinEquivalencePrinciple”(EEP).
Yet,itwasonlyinthe1960sthatwegainedadeeperunderstandingofthesignificanceof theseprinciplesofequivalenceforgravitationandexperiment.Largelythroughthework
1 AlthoughNewtonassertedonlythat mP and mI beproportionaltoeachother,theycanbemadeequalby suitablechoiceofunitsfor a and g
ofRobertDicke,wehavecometoviewprinciplesofequivalence,alongwithexperiments suchastheEotvosexperimentandthegravitationalredshiftexperiment,asprobesmoreof thefoundationsofgravitationtheorythanofgeneralrelativityitself.Thisviewpointispart ofwhathascometobeknownastheDickeFramework,tobedescribedinSection2.1, allowingonetodiscussataveryfundamentallevelthenatureofspacetimeandgravity. Withinthisframeworkoneasksquestionssuchas:Doallbodiesrespondtogravitywiththe sameacceleration?Doesenergyconservationimplyanythingaboutgravitationaleffects? Whattypesoffields,ifany,areassociatedwithgravitation–scalarfields,vectorfields, tensorfields ?InSection2.2,wearguethattheEinsteinEquivalencePrincipleisthe foundationforallgravitationtheoriesthatdescribegravityasamanifestationofcurved spacetime,theso-calledmetrictheoriesofgravity.InSection2.3wedescribetheempirical supportforEEPfromavarietyofexperiments.
Einstein’sgeneralizationoftheWeakEquivalencePrinciplemaynothavebeena generalizationatall,accordingtoaconjecturebasedontheworkofLeonardSchiff. InSection2.4wediscussSchiff’sconjecture,whichstatesthatanycompleteandselfconsistenttheoryofgravitythatsatisfiesWEPnecessarilysatisfiesEEP.Schiff’sconjecture andtheDickeFrameworkhavespawnedanumberofconcretetheoreticalformalismsfor comparingandcontrastingmetrictheoriesofgravitywithnonmetrictheories,foranalyzing experimentsthattestEEP,andforprovingSchiff’sconjecture.Theseincludethe TH μ and c2 formalisms,presentedinSection2.5,andtheStandardModelExtension(SME), discussedinSection2.6.
Whatwouldhappenifaviolationofoneoftheseprincipleswereobserved?One possibilityisthattheentireedificeofmetrictheoriesofgravity,includinggeneralrelativity, wouldcometumblingdown.Anotherpossibilityisthattheapparentviolationwould actuallysignalthepresenceofsomefieldorinteractionthatliesoutsidethestandard modelofstrong,electromagneticandweakinteractions,plusgravity.Thislatterviewpoint hasproventobefruitful,exploitingtheultrahighprecisionapparatusdevelopedtotest equivalenceprinciplesinordertosearchforandultimatelyplacelimitsonnewphysics. WewilldescribeafewexamplesofthisapproachinSection2.7.
2.1TheDickeFramework TheDickeFrameworkforanalyzingexperimentaltestsofgravitationwasspelledoutin appendix4ofDicke’sLesHoucheslectures(Dicke,1964).Itmakestwomainassumptions aboutthetypeofmathematicalformalismtobeusedindiscussinggravity:
1.Spacetimeisafour-dimensionaldifferentiablemanifold,witheachpointinthemanifold correspondingtoaphysicalevent.Themanifoldneednot apriori haveeitherametric oranaffineconnection.Thehopeisthatexperimentwillforceustoconcludethatit hasboth.
2.Theequationsofgravityandthemathematicalentitiesinthemaretobeexpressedina formthatisindependentoftheparticularcoordinatesused,i.e.,incovariantform.
Noticethatevenifthereissomephysicallypreferredcoordinatesystemorreference frameinspacetime,thetheorycanstillbeputintocovariantform.Forexample,ifa theoryhasapreferredcosmictimecoordinate,onecanintroduceascalarfield T(P ),whose numericalvaluesareequaltothevaluesofthepreferredtime t accordingto T(P )= t(P ), where P isapointinspacetime.Ifspacetimeisendowedwithametric,onemightalso demandthat ∇T beatimelikevectorfieldandbeconsistentlyorientedtowardthefuture (orthepast)throughoutspacetimebyimposingthecovariantconstraints ∇T · ∇T < 0 and ∇ ⊗ ∇T = 0.where ∇ isacovariantderivativewithrespecttothemetric.Other typesoftheorieshave“flatbackgroundmetrics” η ;thesecanalsobewrittencovariantly bydefining η tobeasecond-ranktensorfieldwhoseRiemanntensorvanisheseverywhere, thatis, Riem (η )= 0andbydefiningcovariantderivativesandcontractionswithrespect to η .Inmostcases,thiscovarianceisachievedatthepriceoftheintroductionintothe theoryof“absolute”or“priorgeometric”elements (T, η ),thatarenotdeterminedby thedynamicalequationsofthetheory.Someauthorsregardtheintroductionofabsolute elementsasafailureofgeneralcovariance(Einsteinwouldbeoneexample),howeverwe willadopttheweakerassumptionofcoordinateinvariancealone.(Forfurtherdiscussion ofpriorgeometry,seeSection3.3.)
Havinglaiddownthismathematicalviewpoint,Dickethenimposestwoconstraintson allacceptabletheoriesofgravity.Theyare:
1.Gravitymustbeassociatedwithoneormorefieldsoftensorialcharacter(scalars, vectors,andtensorsofvariousranks).
2.Thedynamicalequationsthatgoverngravitymustbederivablefromaninvariantaction principle.
Theseconstraintsstronglyconfineacceptabletheories.Forthisreasonweshouldaccept themonlyiftheyarefundamentaltooursubsequentarguments.Formostapplicationsof theDickeFrameworkonlythefirstconstraintisneeded.Itisafact,however,thatthemost successfulgravitationtheories,and all theoriesofcurrentinterest,arethosethatsatisfy bothconstraints.
TheDickeFrameworkisparticularlyusefulforaskingquestionssuchaswhattypesof fieldsareassociatedwithgravity,andhowdotheyinteractwiththefundamentalfieldsof thestandardmodelofelectromagnetic,weakandstronginteractions.Forexample,thereis strongevidencefromelementaryparticlephysicsforatleastonesymmetricsecond-rank tensorfieldthatisapproximatedbytheMinkowskimetric η whengravitationaleffectscan beignored.TheHughes-Dreverexperimentrulesoutorstronglyconstrainstheexistence ofmorethanonesecond-ranktensorfield,eachcouplingdirectlytomatter,andvarious laboratorytestsofLorentzinvarianceruleoutalong-rangevectorfieldcouplingdirectly tomatter.However,thisisnottheonlypowerfuluseoftheDickeFramework. ThegeneralunbiasedviewpointembodiedintheDickeFrameworkhasallowedtheorists toformulateasetoffundamentalcriteriathatanygravitationtheoryshouldsatisfyifitis tobeviable[herewedo not imposeconstraints(1)and(2)above].Twoofthesecriteria arepurelytheoretical,whereastwoarebasedonexperimentalevidence.
(i)Itmustbecomplete,thatis,itmustbecapableofanalyzingfrom“firstprinciples” theoutcomeofanyexperimentofinterest.Itisnotenoughforthetheorytopostulate
thatbodiesmadeofdifferentmaterialfallwiththesameacceleration.Thetheorymust incorporateacompletesetofelectrodynamicandquantummechanicallaws,whichcan beusedtocalculatethedetailedbehaviorofrealbodiescomposedofnucleonsand electronsingravitationalfields.Thisdemandshouldnotbeextendedtoofar,however. Inareassuchasquantumgravity,unificationwiththestandardmodelofparticlephysics, spacetimesingularities,andcosmicinitialconditions,evenspecialandgeneralrelativity arenotregardedasbeingcompleteorfullydeveloped.Wealsodonotregardthepresence of“absoluteelements”andarbitraryparametersingravitationaltheoriesasasignof incompleteness,eventhoughtheyaregenerallynotderivablefrom“firstprinciples,”rather weviewthemaspartoftheclassofcosmicboundaryconditions.Themostcommon andsuccessfulwayofformulatinga“complete”theoryistouseanactionprinciplethat combinesthestandardmodelaction(asitiscurrentlyknown)forthenongravitational sectorwithanactionforthegravitational“fields”(includingthespacetimemetric), togetherwithsomecouplingbetweenthem.
(ii)Itmustbeself-consistent,thatis,itspredictionfortheoutcomeofeveryexperiment mustbeunique.Whenonecalculatespredictionsbytwodifferent,thoughequivalent methods,onemustgetthesameresults.Anexampleisthebendingoflightcomputed eitherinthegeometricalopticslimitofMaxwell’sequationsorinthezero-rest-masslimit ofthemotionoftestparticles.
(iii)Itmustberelativistic,thatis,inthelimitasgravityis“turnedoff”comparedto otherphysicalinteractions,thenongravitationallawsofphysicsmustreducetothelaws ofspecialrelativity,eitherperfectlyortoahighdegreeofprecision.Theevidenceforthis comesfrommorethanacenturyofsuccessesofspecialrelativityinareasrangingfrom high-energyphysicstoatomicphysics(seeBox2.1).Thisdoesnotnecessarilyimplya blindorperfectacceptanceofLorentzinvarianceandspecialrelativity,andinfactvigorous experimentalsearchesforpotentialviolationsofLorentzinvariancearecontinuing,inpart tosearchforrelicsignaturesofquantumgravityorofweakcosmicfieldsthatcoupleto matter(seeSection2.6).
ThefundamentaltheoreticalobjectthatenterstheselawsistheMinkowskimetric η , whichhasorthonormaltetradsrelatedbyLorentztransformations,andwhichdetermines thetickingratesofatomicclocksandthelengthsoflaboratoryrods.Ifweview η asa field,thenweconcludethattheremustexistatleastonesecond-ranktensorfieldinthe Universe,asymmetrictensor ψ ,thatiswellapproximatedby η whengravitationaleffects canbeignored.
Letusexaminewhattheevidenceforspecialrelativitydoesanddoesnottellusaboutthe tensorfield ψ .First,itdoes not guaranteetheexistenceof global Lorentzframes,thatis, coordinatesystemsextendingthroughoutspacetimeinwhich ψ = η = diag( 1,1,1,1). Nordoesitdemandthatateachevent P ,thereexistlocalframesrelatedbyLorentz transformations,inwhichthelawsofnongravitationalphysicstakeontheirspecial relativisticforms.Specialrelativityonlydemandsthat,inthelimitasgravityis“turned off”thenongravitationallawsofphysicsreducetothelawsofspecialrelativity.
Wewillhenceforthassumetheexistenceofthetensorfield ψ . (iv)ItmusthavethecorrectNewtonianlimit,thatis,inthelimitofweakgravitational fieldsandslowmotions,itmustreproduceNewton’slaws.Theoverwhelmingmajorityof phenomenaintheuniversecanbeveryadequatelydescribedbythelawsofNewtonian
Box2.1 Testsofspecialrelativity Specialrelativityhasbeensothoroughlyintegratedintothefabricofmodernphysicsthatitsvalidityisrarely challenged,exceptbycranksandcrackpots.Butweshouldrememberthatitdoesrestonastrongempirical foundation,includinganumberofclassictests.
TheMichelson-Morley(1887)experimentanditsmanydescendents(Shanklandetal.,1955;Champeney etal.,1963;Jasejaetal.,1964;BrilletandHall,1979;Riisetal.,1988;Krisheretal.,1990b)failedtofindevidence ofavariationofthespeedoflightwiththeEarth’svelocitythroughahypothetical“aether.”
Severalclassicexperimentswereperformedtoverifythatthespeedoflightisindependentofthespeed oftheemitter.Ifthespeedoflightweregivenby c + k v,where v isthevelocityoftheemitter,and k isa parametertobemeasured,thenorbitsofbinary-starsystemswouldappeartohaveananomalouseccentricity unexplainablebynormalNewtoniangravity.Thistestisnotunambiguousatopticalwavelengths,however, becauselightisabsorbedandreemittedbytheinterveninginterstellarmedium,therebylosingthememory ofthespeedofthesource,aphenomenonknowntoastronomersasextinction.ButatX-raywavelengths,the pathlengthofextinctionistensofkiloparsecs,soBrecher(1977)usedthreenearbyX-raybinarysystemsin ourgalaxytoobtainabound |k | < 2 × 10 9 ,fortypicalorbitalvelocities v /c ∼ 10 3 .
Attheotherextreme,a1964experimentatCERNusedneutralpionsmovingat v /c ≥ 0.99975asthe sourceoflight.Photonsproducedbythedecay π 0 → γ + γ werecollimatedandtimedoveraflightpath of30meters.Theagreementofthephotons’speedwiththelaboratoryvaluesetabound |k | < 10 4 for v ≈ c (Alvägeretal.,1964).
Theobservationalevidencefortimedilationisoverwhelming.IvesandStilwell(1938)measuredthe frequencyshiftsofradiationemittedintheforwardandbackwarddirectionbymovingionsofH2 andH3 molecules.Thefirst-orderDopplershiftcancelsoutfromthesumoftheforwardandbackwardshifts,revealing thesecond-ordertime-dilationeffect,whichwasfoundtoagreewiththeory.(Ironically,Iveswasadie-hard opponentofspecialrelativity.)
TheclassicRossi-Hall(1941)experimentshowedthatthelifetimeof μ-mesonswasprolongedbythe Lorentzfactor γ =(1 v 2 /c 2 ) 1/2 .Muonsarecreatedintheupperatmospherewhencosmic-ray protonscollidewithnucleiofair,producingpions,whichdecayquicklytomuons.Witharesthalf-lifeof 2.2 × 10 6 s,andwithnotimedilation,amuontravellingnearthespeedoflightshouldtravelonly2/3 ofakilometeronaveragebeforedecayingtoaharmlesselectronorpositronandtwoneutrinos.Yetmuons aretheprimarycomponentofcosmicraysdetectedatsealevel.RossiandHallmeasuredthedistributionof muonsasafunctionofaltitudeandalsomeasuredtheirenergies,andconfirmedthetime-dilationformula.
Inanexperimentperformedin1966atCERN,muonsinastorageringmovingat v /c = 0.997were observedtohavelifetimes12timeslargerthanmuonsatrest,inagreementwiththepredictionto2percent (Farleyetal.,1966).Also,sincethestorageringwas5metersindiameter,themuons’accelerationswere greaterthanthegravitationalaccelerationontheEarth’ssurfacebyafactorof1019 ;theseaccelerationshad noapparenteffectontheirdecayrates.
TheincorporationofLorentzinvarianceintoquantummechanicsprovidedfurthersupportforspecial relativity.Theachievementsincludethepredictionofanti-particlesandelementaryparticlespin,andthe manysuccessesofrelativisticquantumfieldtheory.
Forapedagogicalreviewwrittenontheoccasionofthe2005centenaryofspecialrelativity,seeWill(2006). Wewilldescribecontemporarytestsofwhatistodaycalled“LocalLorentzInvariance”inSection2.3.2.
Another random document with no related content on Scribd:
[Contents]
S
L L .
CHAPTER I.
R
A .—T H .
Aiohikupua1 was a very strong man, both in boxing and wrestling. When he set sail from Maui and landed at Kauhola, in Kohala, he found the people gathered at Hinakahua, where they were holding their customary games of boxing, wrestling and other manly exhibitions of strength. At this
N M K L .
MOKUNA I.
N A . N H .
He kanaka ikaika o Aiohikupua i ke kui a me ka mokomoko. Ia ia i holo ai mai Maui aku a pae ma Kauhola i Kohala, e mokomoko ana o Hinakahua. Kahi o na kanaka a pau e piha ana. Ilaila o Ihuanu, he kanaka ikaika no Kohala i ke kui.
place he met Ihuanu, a very expert and strong boxer who belonged to that district, Kohala.
When Aiohikupua and his companions came ashore in Kohala they proceeded up to see the wrestling. When they arrived at the grounds, Ihuanu came out and challenged: “Who is to come from that side and meet me, wrestling?” No one was seen to come and accept the challenge because they were all afraid of him. After this Ihuanu turned to Aiohikupua and said: “Say, stranger, you had better join in the fun.” When Aiohikupua heard the invitation he went up to Ihuanu and said: “Say, son of the soil, you have asked me to join you in the fun, and this is what I wish to say to you: Get two others beside yourself on your side, making three of you. With that number the stranger will feel it worth while to join you.” When Ihuanu heard this from Aiohikupua, he made reply: “You are a very conceited man. I am the best man among all the people of Kohala, and here you have asked that there must be
A pae o Aiohikupua ma Kohala, pii aku la lakou e ike i ka mokomoko. A hiki lakou, oili mai la o Ihuanu, a kahea mai la:
“Owai mai ma kela aoao e mokomoko mai me a’u,” aohe kanaka aa mai, ua makau ia o Ihuanu e na mea a pau loa. A pau ka olelo ana a Ihuanu, huli ae la ia a olelo mai ia
Aiohikupua: “E ka malihini, e pono paha ke lealea.” A lohe o Aiohikupua i keia leo o Ihuanu, hele aku la ia a kokoke, a olelo aku la: “E ke kamaaina! ua noi mai oe ia’u, e lealea kaua. A eia hoi ka’u ia oe. I elua ma kou aoao, hui pu me oe, akolu. Alaila, akolu oukou, e aho ia mikomiko iho ka malihini.” A lohe o Ihuanu i keia olelo a
Aiohikupua, olelo mai la ia: “He oi oe o ke kanaka olelo hookano. Owau no ka oi mamua o na mea a pau o Kohala nei, a ke olelo mai nei oe i ekolu aku makou ma kekahi aoao, a i hookahi oe. He keu oe o ke kanaka wahahee, heaha la oe i kuu manao.”
three of us on one side to meet you alone on your side. You are the most conceited2 man that I have ever seen. What are you to me?”
Aiohikupua then boasted, saying to Ihuanu: “I am not going to stand up and box with you unless you have three on your side. And what do I care for you and the people that have gathered here? I can turn this crowd into nothing with my left hand.” Because of these words of Aiohikupua, one of the strong men in Kohala who had come to witness the games came up behind Aiohikupua and said to him: “Say, don’t get Ihuanu angry, for he is the strongest man in Kohala; there is nothing kept away from him when he asks.” At this Aiohikupua pushed him to one side3 whereby the man was killed. Upon seeing this, one of the warriors came up behind Ihuanu and said to him: “Say, Ihuanu, we see that our side will not be victorious this day. I am sure the stranger will win out, because one of our companions is killed by just
I aku o Aiohikupua i kana olelo kaena i mua o Ihuanu: “Aole au e ku aku ana e kui me oe, ke ku ole mai oukou ekolu i mua o’u. A heaha la oe a me ka lehulehu ia’u? e hiki ia’u ke hoolilo i keia aha i mea ole, i loko o kuu lima hema.” A no keia olelo a Aiohikupua, hele mai la kekahi koa ikaika a ma ke kua o Aiohikupua. Olelo mai la: “E! mai olelo aku oe ia Ihuanu, o ko
Kohala oi no kela, aohe puko momona ia ia.” Ia wa, huli ae la o Aiohikupua a papale ae la. Ia wa no make loa ua kanaka ala. Hele mai la kekahi mau koa a ma ke kua o Ihuanu, a olelo mai la: “E Ihuanu, ke ike nei makou, aole e lanakila ana ko kakou aoao i keia la. Ma kuu manao paa, o ka malihini ke lanakila ana. No ka mea, ua make ko kakou kanaka, i pale wale ia mai nei no, o ka make ia. Nolaila, ke noi aku nei au e hui ka aha, e pau ka mokomoko ana, a me
receiving a mere push. Therefore I beg of you that the crowd be dispersed and the games brought to an end and you withdraw your challenge and meet the stranger in a kindly way and shake hands, and in that way save yourself.”4 By these words the hot anger in Ihuanu was [408]rekindled, and so he replied: “Say, my men, don’t be afraid because of the death of that man from the push he received. Did I not do the very same thing some few days ago? Then why should you all be afraid? But if you are afraid, then go and hide your faces in the sky; and if you should hear that Ihuanu is victorious, remember it was by the blow known as Kanikapihe,5 the blow the teacher has not instructed you of, for I see he will not be able to overcome me, for I hear the end of my loin cloth snap6 behind me.” His companions then said to him: “We have nothing more to say to you, we have done our part. Stand up then and face your opponent; perhaps you will be saved by means of the blow your teacher has not instructed
kou aa ana i ka malihini, a e aloha olua me ka lulu lima ana, alaila oe ola.” Ma keia olelo, ua hoaa ia ko [409]Ihuanu huhu wela loa. Nolaila, olelo aku o Ihuanu: “E ko’u poe kanaka, mai hopohopo, ma ka make ana o kela kanaka o kakou, ma ke pale ana o ka lima. Aole anei au i hana pela, mamua aku nei, a heaha la ko oukou mea i makau ai? Nolaila, ina hopo oukou, alaila, e huna aku i ko oukou mau maka i ke aouli. A i lohe aku oukou, ua lanakila o Ihuanu, e hoomanao oukou i kuu puupuu o Kanikapihe, ka ai a ke kumu i koe ia oukou, aole i ao ia. No ka mea, ke ike nei au aole e lanakila mai oia maluna o’u, no ka mea, ua kani ka pola o kuu malo i ka hope.” I aku na hoa mokomoko ia Ihuanu: “Ua pau ka makou olelo ia oe, aohe olelo i koe, ku ia i mua o ko hoa. Malama o pakele oe i ka ai a ko kumu i koe ia makou, a pela no hoi ka pola o ko malo.” Alaila, nee aku la na hoa ma waho o ka aha mokomoko.
us of, and perhaps the end of your loin cloth did tell you the truth.”7 With this the companions of Ihuanu retired to the outer edge of the crowd.
While Ihuanu was boasting before the people, Aiohikupua came out of the crowd and stood in the presence of Ihuanu, then clapped his arms around his body and said to Ihuanu: “Say, Ihuanu, strike sixteen blows at my middle.” When Ihuanu heard this from Aiohikupua he turned and surveyed the crowd that was around them and when he saw a small boy, who was being held in the arms of a certain person, he called out: “Let that small boy come and strike Aiohikupua.”
Continuing, Ihuanu said boastingly: “Let this small boy strike you.”8 When Aiohikupua heard this from Ihuanu, his anger welled up within him until his very hair stood on end; he then turned to the people and said: “What man is willing to face the boy from Kauai? I will therefore at this time say, that my god is able to give me the victory over your strong man this day and to
Ia Ihuanu e olelo kaena ana i mua o ka aha, oili mai la o Aiohikupua a ma ke alo o Ihuanu ku iho la, a upoipoi na lima, me ka olelo aku ia Ihuanu: “E Ihuanu, kui ia i kuu piko a pololei, i eha kauna kui.” (Ua like me umikumamaono puupuu.) A lohe o Ihuanu i keia olelo a Aiohikupua, huli ae la o Ihuanu a puni ka aha mokomoko. A ike aku la i kekahi keiki opiopio e hii ia mai ana, kahea aku la ia, e hele mai e kui ia Aiohikupua. Wahi a na olelo kaena a Ihuanu: “Na keia keiki opiopio oe e kui.” A lohe o Aiohikupua i keia olelo a Ihuanu. Pii ae la kona huhu a ke poo o kalakala. Huli aku la o Aiohikupua a olelo i ka aha kanaka. “Owai ke kanaka i aa mai i ko Kauai keiki nei, nolaila, ke olelo nei au. He hiki i kuu akua ke haawi mai ia’u e lanakila maluna o ko oukou kanaka ikaika i keia la. A e hoolilo hoi i ke poo i milimili na kuu poe
make his head a plaything for my canoe men.” After making the above remarks, he prayed to his god as follows: hoewaa.” A mahope o keia mau olelo a Aiohikupua, pule iho la ia i kona mau akua, penei:
Lanipipili, Lanioaka, Lanikahuliomealani.
Say, Hekilikaakaa, Say, Nakolowailani, Recognize your offspring, Look at your child And present me with the head of Ihuanu, That the multitude might see That I am the conqueror. It is ended, the kapu is released.9
At the close of the prayer, Aiohikupua asked his opponent: “Are you ready, Ihuanu, to strike at me?” Ihuanu replied: “I will not strike you. I want you to strike at me.” When the boxing teacher of Ihuanu heard what his pupil had answered he came up to his side and said to him: “If he should again ask you to strike him do it,10 because this is the proper time.” Shortly after this Aiohikupua again requested of Ihuanu to strike him. At this request, Ihuanu let drive at his
Lanipipili, Lanioaka, Lanikahuliomealani, E Hekilikaakaa, E Nakolowailani, E ike i ka oukou pulapula, E nana i ka oukou Kama, E haawi mai ke poo o Ihuanu I ike keia aha apau loa, Owau ka lanakila maluna, Amama, ua noa.
A pau ka pule, olelo aku o
Aiohikupua, ua makaukau anei oe e Ihuanu e kui mai ia’u? Olelo mai o Ihuanu: “Aole au e kui ia oe, nau e kui mai ia’u.” A lohe ke kumu kui a Ihuanu, hele mai la a ma ka aoao. I mai la: “E! i olelo hou mai e kui oe, kui ia, no ka mea, o ka manawa iho la no ia.”
Mahope o laila, ninau hou o
Aiohikupua ia Ihuanu, e waiho mai ana o Ihuanu i ka puupuu, hu ka makani, aole nae i ku o
Aiohikupua, [411]no ka mea, ua alo ia, a hala ae la ka Ihuanu
opponent but did not hit him, for [410]Aiohikupua was on his guard and dodged. After dodging this blow from Ihuanu, Aiohikupua struck at his opponent, hitting him just below the chest so strong that the fist of Aiohikupua went clear through and came out at the back. Aiohikupua then raised up his arm, with the body of Ihuanu on it, twirled the body around over his head and then threw it outside of the rows of people that were standing around. At sight of this great strength a mighty shout came from the people and after this they began to disperse. After this Aiohikupua went over to the place where the body of Ihuanu was lying and cut off his head and took it to his canoe men11 , and they all returned to their double canoe, which they boarded and set sail for Hamakua, landing at Paauhau.