The geology of iberia: a geodynamic approach: volume 5: active processes: seismicity, active faultin

Page 1


The

Geology of Iberia: A Geodynamic Approach: Volume 5: Active Processes: Seismicity, Active Faulting and Relief

Visit to download the full and correct content document: https://textbookfull.com/product/the-geology-of-iberia-a-geodynamic-approach-volume -5-active-processes-seismicity-active-faulting-and-relief-cecilio-quesada/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

The Geology of Iberia A Geodynamic Approach Volume 3

The Alpine Cycle Cecilio Quesada

https://textbookfull.com/product/the-geology-of-iberia-ageodynamic-approach-volume-3-the-alpine-cycle-cecilio-quesada/

The Geology of Iberia A Geodynamic Approach Volume 2

The Variscan Cycle Cecilio Quesada

https://textbookfull.com/product/the-geology-of-iberia-ageodynamic-approach-volume-2-the-variscan-cycle-cecilio-quesada/

Coulson and Richardson’s Chemical Engineering, Fourth Edition: Volume 3A: Chemical and Biochemical Reactors and Reaction Engineering R. Ravi

https://textbookfull.com/product/coulson-and-richardsonschemical-engineering-fourth-edition-volume-3a-chemical-andbiochemical-reactors-and-reaction-engineering-r-ravi/

Political Geology: Active Stratigraphies and the Making of Life Adam Bobbette

https://textbookfull.com/product/political-geology-activestratigraphies-and-the-making-of-life-adam-bobbette/

Thinking like an engineer an active learning approach

Stephan

https://textbookfull.com/product/thinking-like-an-engineer-anactive-learning-approach-stephan/

Active Disturbance Rejection Control of Dynamic Systems A Flatness Based Approach Hebertt Sira-Ramírez

https://textbookfull.com/product/active-disturbance-rejectioncontrol-of-dynamic-systems-a-flatness-based-approach-heberttsira-ramirez/

Active Origami Edwin A. Peraza Hernandez

https://textbookfull.com/product/active-origami-edwin-a-perazahernandez/

The Design of Active Crossovers Douglas Self

https://textbookfull.com/product/the-design-of-active-crossoversdouglas-self/

Yoga Therapy A Personalized Approach for Your Active Lifestyle 1st Edition Kristen Butera

https://textbookfull.com/product/yoga-therapy-a-personalizedapproach-for-your-active-lifestyle-1st-edition-kristen-butera/

Cecilio Quesada

José Tomás Oliveira

Editors

The Geology of Iberia: A Geodynamic Approach

Volume 5: Active Processes: Seismicity, Active Faulting and Relief

José Miguel Azañón · João Manuel Lopes Cardoso Cabral

Volume Coordinators

RegionalGeologyReviews

SeriesEditors

RolandOberhänsli,Potsdam,Brandenburg,Germany

MaartenJ.deWit,AEON-ESSRI,NelsonMandelaMetropolitanUniversity,PortElizabeth, SouthAfrica

FrançoisM.Roure,Rueil-Malmaison,France

TheGeologyof seriesseekstosystematicallypresentthegeologyofeachcountry,region andcontinentonEarth.Eachbookaimstoprovidethereaderwiththestate-of-the-art understandingofaregionsgeologywithsubsequentupdatededitionsappearingevery5to10 yearsandaccompaniedbyanonline “mustread” referencelist,whichwillbeupdatedeach year.Thebooksshouldformthebasisofunderstandingthatstudents,researchersand professionalgeologistsrequirewhenbeginninginvestigationsinaparticularareaandare encouragedtoincludeasmuchinformationaspossiblesuchas:MapsandCross-sections,Past andcurrentmodels,Geophysicalinvestigations,GeochemicalDatasets,EconomicGeology, Geotourism(Geoparksetc.),Geo-environmental/ecologicalconcerns,etc.

Moreinformationaboutthisseriesat http://www.springer.com/series/8643

TheGeologyofIberia: AGeodynamicApproach

Volume5:ActiveProcesses:Seismicity, ActiveFaultingandRelief

Editors

CecilioQuesada

InstitutoGeológicoyMinerodeEspaña(IGME) andFacultyofGeologicalSciences

UniversidadComplutensedeMadrid Madrid,Spain

Jos

ISSN2364-6438ISSN2364-6446(electronic)

RegionalGeologyReviews

ISBN978-3-030-10930-1ISBN978-3-030-10931-8(eBook) https://doi.org/10.1007/978-3-030-10931-8

LibraryofCongressControlNumber:2018966121

© SpringerNatureSwitzerlandAG2020

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproduction onmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelieved tobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty, expressedorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthatmayhavebeen made.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations.

Coverillustration:TheactiveNigüelas-PadulFaulttotheSWofSierraNevada.TheCaballoPeak(3011m)inthe backgroundandthevillageofDúrcalinthevalley.

PhotographbyJSanzdeGaldeano

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

AbouttheEditors

CecilioQuesada hasdevelopedhisentireprofessionalcareer atInstitutoGeológicoMinerodeEspaña(SpanishGeological Survey),fromwhereheretiredin2013.HeiscurrentlyHonour ProfessorattheFacultyofGeologicalSciences,Universidad Complutense,Madrid,wherehealsoservedtemporarilyas associateprofessor.Asa “surveyperson”,hisresearch interests,pastandpresent,includegeologicalmapping, regionalgeology,tectonicsandgeochronology,mainlyfocused ontheVariscanorogeninitsglobalcontext.Hehas participatedintenIGCPprojectssince1979,beingcurrently involvedinProject648:SupercontinentCycles&Global Geodynamics.

José TomásOliveira holdsPh.D.andAggregationby Portugueseuniversities,isGeologistandpresentlyCollaborator atLaboratorioNacionaldeEnergiaeGeologia,former GeologicalSurveyofPortugal,whereheactedalsoashead ofboththeGeologyandMineralResourcesdepartments.Asa surveygeologist,hismainactivityhasbeenconcentratedin regionalgeologicalmappinginPortugalandMozambique, withparticularinterestinstratigraphy,clasticsedimentology andbasinanalysis.Hewasaninvitedprofessoratuniversities ofPortugalandAngola,authorandeditorofseveralgeological maps,thelastoneasco-editoroftherecentlypublished GeologicalMapofPortugalandSpain,2015,scale 1:1,000,000.

AbouttheVolumeCoordinators

José MiguelAzañón isFullProfessorintheDepartmentof GeodynamicsattheUniversityofGranada,conducting researchandteachingonactivetectonics,naturalhazardsand engineeringgeology.Hehaspublishedover100international journalarticles.Hiscurrentresearchinterestsincludetectonic geomorphologyandactiveprocessesespeciallywithregardto theWesternMediterranean.

JoãoManuelLopesCardosoCabral isAssociateProfessor withAggregationattheGeologyDepartmentofFCUL, ResearcheroftheAssociateLaboratoryInstitutoD.Luiz (IDL)andformerCoordinatorofLATTEX Laboratoryof TectonophysicsandExperimentalTectonicsofthisfaculty.He hasperformedextensiveresearchontheneotectonicsand seismotectonicsofmainlandPortugal.Heisauthorofnumerousnationalandinternationalscienti ficpublications,among whichtheNeotectonicMapofMainlandPortugal.

Contributors

PedroAlfaro DepartamentoCienciasdelaTierrayMedioAmbiente,UniversidaddeAlicante,Alicante,Spain

José MiguelAzañón InstitutoAndaluzdeCienciasdelaTierra(CSIC-UGR),Instituto AndaluzdeGeofísica,DepartamentodeGeodinámica,UniversidaddeGranada,Granada, Spain

TeresaBardají U.D.Geología,Dpto.Geología,GeografíayMedioAmbiente,Universidad deAlcalá,Alcalá deHenares,Madrid,Spain

JosepBatlló InstitutCartogr àficiGeològicdeCatalunya,Barcelona,Spain

AnaCabero FacultaddeCiencias,UNED,Madrid,Spain

JoãoCabral DepartamentodeGeologia,FaculdadedeCiências,InstitutoDomLuiz, UniversidadedeLisboa,Lisbon,Portugal

CarolinaCanora DepartamentodeGeodinámica,FacultaddeCienciasGeológicas, UniversidadComplutensedeMadrid,Madrid,Spain

PedroP.Cunha MARE-MarineandEnvironmentalSciencesCentre,DepartmentofEarth Sciences,UniversityofCoimbra,Coimbra,Portugal

SusanaCustódio FaculdadedeCiências,InstitutoDomLuiz,UniversidadedeLisboa, Lisbon,Portugal

CristinoJ.Dabrio Dpto.deEstratigrafía,FacultaddeCC.Geológicas,UCM,Madrid,Spain

RuiManueldaSilvaFernandes UniversidadeDaBeiraInteriorandInstitutoDomLuiz, FaculdadedeCiências,UniversidadedeLisboa,Lisbon,Portugal

MartaFerrater RISKNATGroupandGEOMODELS,DepartamentdeGeodinàmicai Geofísica,FacultatdeGeologia,UniversitatdeBarcelona,Barcelona,Spain

JorgePedroGalve DepartamentodeGeodinámica,UniversidaddeGranada,Granada,Spain

FranciscoJuanGarcíaTortosa DepartamentodeGeología,UniversidaddeJaén,Campus LasLagunillas,Jaén,Spain

JuliánGarcía-Mayordomo InstitutoGeológicoyMinerodeEspaña,Madrid,Spain

José LuisGoy Dpto.Geología,FacultaddeCiencias,UniversidaddeSalamanca,Salamanca, Spain

FranciscoJavierGraciaPrieto DepartamentodeCienciasdelMar,CampusUniversitario dePuertoReal,PuertoReal,Cádiz,Spain

EulàliaGràcia InstitutdeCiènciesdelMar CSIC,Barcelona,Spain

DiamantinoM.InsuaPereira InstituteofEarthSciences,PoleoftheUniversityofMinho, Braga,Portugal

JuanMiguelInsua-Arévalo DepartamentodeGeodinámica,FacultaddeCiencias Geológicas,UniversidadComplutensedeMadrid,Madrid,Spain

AntonioJabaloy DepartamentodeGeodinámica,UniversidaddeGranada,Granada,Spain

AlejandroJiménezBonilla DepartamentodeSistemasFísicos,QuímicosyNaturales, UniversidadPablodeOlavide,Seville,Spain

PierreGillesLacan CentrodeGeociencias,UniversidadNacionalAutónomadeMéxico, Juriquilla,Querétaro,Mexico

JavierLario FacultaddeCiencias,UNED,Madrid,Spain

CarlosMarín-Lechado InstitutoGeológicoyMinerodeEspaña,Granada,Spain

RosaMartín InstitutoAndaluzdeGeofísica,UniversidaddeGranada,Granada,Spain

FidelMartínGonzález ÁreadeGeologíaESCET,UniversidadReyJuanCarlos,Móstoles (Madrid),Spain

RaquelMartín-Banda InstitutoGeológicoyMinerodeEspaña,Madrid,Spain

IvánMartín-Rojas DepartamentoCienciasdelaTierrayMedioAmbiente,Universidadde Alicante,Alicante,Spain

José J.Martínez-Díaz DepartamentodeGeodinámica,FacultaddeCienciasGeológicas, UniversidadComplutensedeMadrid,Madrid,Spain

José ManuelMartínez-Solares InstitutoGeográficoNacional,Madrid,Spain

EulàliaMasana RISKNATGroupandGEOMODELS,DepartamentdeGeodinàmicai Geofísica,FacultatdeGeologia,UniversitatdeBarcelona,Barcelona,Spain

José Morales DepartamentodeFísicaTeóricaydelCosmos,InstitutoAndaluzdeGeofísica, UniversidaddeGranada,Granada,Spain

MaríaOrtuño RISKNATGroupandGEOMODELS,DepartamentdeGeodinàmicai Geofísica,FacultatdeGeologia,UniversitatdeBarcelona,Barcelona,Spain

AntonioPedrera InstitutoGeológicoyMinerodeEspaña,Seville,Spain

HéctorPerea InstitutdeCiènciesdelMar CSIC,Pg.MarítimdelaBarceloneta37-49, 08003Barcelona,Spain;

GRD,ScrippsInstitutionofOceanography,UniversityofCaliforniaSanDiego,LaJolla 92093,USA

PauloPereira InstituteofEarthSciences,PoleoftheUniversityofMinho,Braga,Portugal

José VicentePérez-Peña DepartamentodeGeodinámica,UniversidaddeGranada,Granada, Spain

JuanRemondo DCITIMAC,UniversidaddeCantabria,Santander,Spain

PatriciaRuano DepartamentodeGeodinámica,InstitutoAndaluzdeCienciasdelaTierra (CSIC-UGR),UniversidaddeGranada,CampusdeFuentenueva,Granada,Spain

CarlosSanzdeGaldeano InstitutoAndaluzdeCienciasdeLaTierra(CSIC-UGR), UniversidaddeGranada,CampusdeFuentenueva,Granada,Spain

PabloG.Silva Dpto.Geología,UniversidaddeSalamanca,EPTSde Ávila, Ávila,Spain

José LuisSimón DepartamentoCienciasdelaTierra,UniversidaddeZaragoza,Saragossa, Spain

DanielStich DepartamentodeFísicaTeóricaydelCosmos,InstitutoAndaluzdeGeofísica, UniversidaddeGranada,Granada,Spain

PaulaTeves-Costa FaculdadedeCiências,InstitutoDomLuiz,UniversidadedeLisboa, Lisbon,Portugal

MarcViaplana-Muzas RISKNATGroupandGEOMODELS,DepartmentofEarthand OceanDynamicsandDepartmentofEarthScience,UniversityofBarcelona,Barcelona,Spain

CaridadZazo Dpto.Geolog ía,MuseoNacionalCCNaturales,CSIC,Madrid,Spain

Preface

ThegeologyoftheIberianPeninsulaanditscontinentalshelvesiscomplexandvarieddespite itsrelativelysmallsize.Withsome590,000km2 inland(IberianPeninsula,theBalearicand othersmallAtlanticandMediterraneanislands)andsomeadditional200,000km2 makingup thecontinentalshelves,therecordexposedspansfornearlythelast600MaofEarth’shistory. Thegeologicalrecordisnotonlylongbutalsodeep:fromsurfi cialtouppermantlesegments areexposedbothinlandandunderthesea.Atthesurface,threemaindivisionsareevidentafter aquickglanceatanylarge-scalegeologicalmap:(1)several,ratherlargeCenozoicbasins, whichoverlie;(2)avastareainthewesternpartoftheIberianPeninsulawherePaleozoicand Precambrianrockscropout(IberianMassif,makingthesouthwesternendoftheEuropean Variscanorogen);and(3)theeasternhalfofthepeninsulaandtheBalearicislands(westernmostextentoftheAlpine–Carpathian–Himalayanorogenicsystem)wheremostlyMesozoic rocksareexposedalthoughsomePrecambrianandPaleozoicbasementinliersalsoexist. SeveralreviewsofthegeologyofIberiahavebeenpublishedinthelastdecades,which collectivelyprovideareasonablygoodandcompletedescriptionofallthestratigraphicand structuralelementsofIberianGeology.However,theadvancesproducedinalmostevery geologicaldisciplinesincethelastofthosebookswaspublishedareoutstandinganditis worthwhiletotryandsynthesizetheminordertoderivetheirimplicationstoabetter understandingoftheglobalevolution.Previousreviewswereorganizedfollowingeithera purelystratigraphicarrangementoronerelatedtoatime-ordereddescriptionofthevarious tectono-stratigraphicunitscroppingoutinIberia.Forthepresentcase,ageodynamicapproach ispreferred.Theterm “geodynamic” ishereinusedinitswidestsignifi cance,i.e.pertainingto everykindoftime-evolvingprocesstakingplaceintheEarththathasanexpressioninthe geologicalrecord.Itisthusnotrestrictedtoitscurrentuseassynonymousof “tectonic” and alsoreferstosublithosphericprocesses(e.g.mantleplumes,lithosphericdelamination,etc.), lithosphericprocesses(e.g.isostasy,platetectonics,magmatism,metamorphism,etc.)aswell asouterprocesses(e.g.climate,eustacy,erosion–transport–sedimentation,etc.).Obviously, mostoftheseareinterrelatedandhavemutualfeedbackeffects.Neverthelessanddespitethe previousstatement,weacknowledgethatthemostreadilyrecognizable first-ordergeodynamic eventsarethoserelatedtothetectonicevolution,andweusethemtoestablisha first-order divisionoftheIberiangeologicalrecord.Fromageodynamic(platetectonics)pointofview, severaleventsarerecordedinIberia,themostsignifi cantofwhichrelatetothefollowing global-scaleprocesses:

• amalgamationofGondwanaintheNeoproterozoic(Cadomianarcandorogeny),

• CambrianriftingthatledtoopeningtheRheicOceanintheLowerOrdovician,

• driftofGondwanafromLowerOrdoviciantoDevoniantimes,

• subductionandcollisionwiththeLaurussianplatetoformPangea(Variscanorogeny)in theLowerDevonian–LowerPermianinterval,

• variousriftingeventsthatledtoPangea’sbreak-upbysequentialopeningoftheNeotethys, NorthAtlanticandBiscayoceans(UpperPermian–LowerCretaceous), xi

• individualizationanddriftofanIberianmicroplateduringmostoftheCretaceous, • collisionwiththeEurasianplateinthenorthandwiththeAfricanplateinthesouth(Alpine orogeny)fromthelatestCretaceoustothepresent.

Collectively,theseeventscharacterizetwocompleteWilsoncycles(VariscanandAlpine) andanolder,incompletelyexposed,Neoproterozoiccycle(Cadomian).Theseareaffectedand arerecordedinarelativelysmallcontinentalareathatwasalwayslocatedinperipheralpositionsrelativetothemajorcontinentstowhichitsuccessivelybelonged:Gondwanainthe Neoproterozoic –Devoniantimespan,PangeabetweentheDevonianandtheLowerJurassic, LaurasiafromthenuptotheLowerCretaceouswhenIberiabecameanindependentmicroplate, and finallyreturningtothesouthwesterntipofEurasiasincethePaleogenetothepresent.

Alltheseeventsmarkedanimprintinthehistoryofdeformation,magmatismandmetamorphismatalllithosphericlevels,aswellasintheformationofbasinsandtheirsubsequent evolution.Accordingtotheprevailingtectonicregimeatthetimeoftheirformation,sedimentary basinsofeachcycleinclude:(i)terrestrialtomarinerift-relatedtypes;(ii)platform,slopeand continentalrisebasinsduringpassivemarginstages;(iii)synorogenicforearcandforeland basins;and(iv)late-to-postorogenicintermontanebasins.Apartfrompaleotectonicinfluences, thesedimentarybasinsandthesurfacewereobviouslysubjectedtovariablepaleoclimatic, isostaticandeustaticconditions,whichalsoimpartedtheirimprintonsedimentation.

Themainpurposeofthisbookistoproduceanupdatedreviewofalltheaforementioned eventsandprocessesasexpressedinthegeologicalrecordinIberia,andtheircontributionto understandingtheglobalevolutionoftheEarthinthelast600millionyears.Theresponseto theeditors’ callforcontributionsamongvariousspecialistshasbeenoverwhelming:nearly 300contributorsandmanyhundredmanuscriptpages.Asaresult,wehavebeenforcedto changetheoriginallyintendedsinglebookintoa five-volumepublicationbuttryingtokeepits overallentityasanintegralpieceofwork.Assuch,thevariousvolumesareintendedto provideasequentiallycoordinatedaccountofthemaineventsrecordedintheIberiangeologicalmemory.This,however,bynomeansimplieseithertopicexhaustivenessorthe existenceofasubjacentcommonwayofthinking.Instead,itisbasicallyacontributedwork andwehaverespectedtheauthors’ personalapproachestotheirrespectivecontributions.Also, anddespitethehugesizeofthepublication,nooneshouldexpectto findeveryIberian geologytopicinit.

Underthegeneraltitle TheGeologyofIberia:AGeodynamicApproach,wehavesplitthe publicationintothefollowingvolumesandsubtitles:

Volume1:GeneralIntroductionandCadomianCycle

Volume2:TheVariscanCycle

Volume3:TheAlpineCycle

Volume4:CenozoicBasins

Volume5:ActiveProcesses:Seismicity,ActiveFaultingandRelief

Thepresent Preface appearsinall fivevolumesbutthe GeneralIntroductiontothe GeologyofIberia isonlypublishedasChap.1inPartIofVolume1,towhichthepotential interestedreadersarereferredto.This, Volume5:ActiveProcesses:Seismicity,Active FaultingandRelief,isdevotedtounravellingtheevolutionofIberiainrecenttimes,stillunder waningAlpineconvergencebetweenEurasiaandAfrica.Thisisfacedthroughanexhaustive analysisofhistoricalandinstrumentalseismicity,theevidenceofactivefaultingandother activeprocesses,toconcludewiththeirexpressionintheformationofthepresentrelief.

Finally,wewishtoexpressourwarmestacknowledgementtoallthecontributors,andvery especiallytothebookandchaptercoordinators,fortheirenthusiasticcollaborationandgood work,whichhasmadepossiblethecompletionofthisexcitingchallenge.Everypossible successistheirs,andeveryfailureisours.Lastbutnotleast,weacknowledgeSpringerand

especiallyDr.AlexisVizcaino, EarthSciences,GeographyandEnvironment editor,for bringingtheidea,forinvitingustoeditthebookandforprovidingcontinuoussupportand encouragement.

Madrid,SpainCecilioQuesada Lisbon,PortugalJosé TomásOliveira November2018

3.3.2IberianChain

CarlosSanzdeGaldeano,José MiguelAzañón,JoãoCabral,PatriciaRuano, PedroAlfaro,CarolinaCanora,MartaFerrater,FranciscoJuanGarcíaTortosa, JuliánGarcía-Mayordomo,EulàliaGràcia,JuanMiguelInsua-Ar évalo, AlejandroJiménezBonilla,PierreGillesLacan,CarlosMarín-Lechado, RaquelMartín-Banda,FidelMartínGonzález,José J.Martínez-Díaz, IvánMartín-Rojas,EulàliaMasana,MaríaOrtuño,AntonioPedrera,HéctorPerea, andJosé LuisSimón

4.2ActiveFaultsinMainlandPortugal(WestIberia)

4.2.1NNE–SSWStrike-SlipFaultsintheNorthwesternIberianMassif (NorthernPortugal)

4.2.2ENE–WSWReverseFaultsBoundingthePortugueseCentralRange (CentralIberianMassif)

4.2.3ReverseFaultingintheSouthwesternIberianMassif.Example oftheVidigueira–MouraFault(SouthernPortugal) ..............

4.2.4Porto–Coimbra–TomarFault

4.2.5LowerTagusValleyFaultSystem

4.2.6ActiveFaultingintheAlgarve(SPortugal)

4.3ActiveFaultsintheSpanishIberianMassifandtheCantabrian Mountains

4.3.1GaliciaandCantabrianMountains

4.3.2SpanishIberianMassif

4.4ActiveFaultsWithinthePyrenees ...............................

4.4.1NormalFaultsWithintheHighPyrenees

4.4.2FaultsWithintheNorthwesternPyrenees

4.4.3FaultswithAssociatedSeismicityWithin theSouthwesternPyrenees ................................

4.4.4FaultsWithintheEasternDomain

4.4.5OtherPossiblyActiveFaults

4.5SlowActiveFaultsAlongtheExtensionalNortheasternMargin oftheIberianPeninsula .......................................

4.5.1ActiveFaultsintheTransverseRangesandEmpordà Basin

4.5.2ActiveFaultsintheCatalanCoastalRanges

4.5.3ActiveFaultsintheMaestratBasin

4.5.4ActiveFaultsintheMediterraneanSea ......................

4.6ActiveFaultsintheIberianChain

4.6.1TheConcudFault

4.6.2TheJilocaGrabenandItsNorthwardsProlongation:Sierra Palomera,Calamocha,DarocaandMunébregaFaults ............

4.6.3TheTeruelGraben:SierradeElPobo,Teruel andValdecebroFaults

4.6.4ConcludingRemarks

4.7ActiveFaultsintheBeticCordillera

4.7.1TheEasternBeticShearZone(EBSZ)

4.7.2TheNorteasternSectoroftheBeticCordillera(PrebeticArea)

4.7.3TheBeticCentralRegion

4.7.4TheWesternSectoroftheBeticCordillera ....................

5ActiveLandscapesofIberia .......................................

JorgePedroGalve,José VicentePérez-Peña,José MiguelAzañón, DiamantinoM.InsuaPereira,PedroP.Cunha,PauloPereira,MaríaOrtuño, MarcViaplana-Muzas,FranciscoJavierGraciaPrieto,JuanRemondo, AntonioJabaloy,TeresaBardají,PabloG.Silva,JavierLario,CaridadZazo, José LuisGoy,CristinoJ.Dabrio,andAnaCabero

5.1Introduction 78

5.2ReliefEvolutionandAssociatedGeodynamicProcessesinMainland Portugal(WesternIberia) ...................................... 79

5.2.1MainEvolutionaryPhasesoftheLandscape 79

5.2.2PlateausandMountainsofNorthernPortugal 80

5.2.3PortugueseCentralRangeandAdjacentPiedmonts 83

5.2.4PlateausofSouthernPortugal ............................. 84

5.2.5MesozoicOnshoreTerrainsUpliftedDuringtheCenozoic 84

5.2.6ReliefoftheMondego,LowerTagus–AlvaladeCenozoicBasins andtheAlgarveRegion

5.3ReliefandActiveProcessesintheCantabrianMountains

5.3.1AlpineExhumationoftheCantabrianMountains ...............

5.3.2UpliftRatesEstimatedThroughMarineTerraceDating

5.3.3EstimatedRiverIncisionRates

5.4OriginandEvolutionofthePyreneesTopography

5.4.1GeneralDescriptionoftheInternalStructureandthePresent-Day ReliefofthePyrenees

5.4.2EvolutionofthePyreneanOrogen

5.4.3ActivityofTectonicStructuresDuringthePostorogenicPhase

5.4.4OnsetofthePresent-DayDrainageSystem

5.4.5MainDrainageDivideDynamics

5.4.6PresentDayUplift?theDebateontheIsostaticCompensation oftheChain

5.5ReliefEvolutionoftheIberianChain

5.6.1EasternBetics

5.6.2CentralBetics

5.6.3WesternBetics

5.6.4AgesandRatesoftheUpliftandDenudationintheBetics

5.6.5QuaternaryCoastalUpliftoftheBeticLittoral

ActiveProcessesinIberia:AnIntroduction

Abstract

Thischapterprovidesageneralintroductiontotheothers chaptersofthisvolume.Itmainlyexplainsthemain regionalactiveprocessescurrentlyaffectingtheIberian Peninsulaasexpressedbyrecentandongoingseismic activity,activefaultingandreliefgeneration.Inthis chaptertheconcept “neotectonicperiod” isconsideredto lastfortheentireQuaternaryPeriod(approximatelythe last3Ma),aconceptalsofollowedintheotherchapters. Itisalsodiscussedthatthecurrenttectonicregimeand theactiveprocessesduringthe “neotectonicperiod” are mainlyduetoverticalmovementsofthelithosphere, resultingfromisostaticadjustmentsandactivefaulting, withinastillongoingregionalregimeofconvergence betweenAfricaandEurasia.

Thepresentchapter “ActiveProcessesintheIberianPeninsula:Seismicity,ActiveFaultingandRelief” dealswiththe neotectonicdeformationswithintheIberianPeninsula,which resultfromtheregionalactivetectonicprocesses.Tectonic activityishereconsideredinthesenseofdeformationsthat occurredinthecurrenttectonicregime,uptothepresent, whichcorrespondsroughlytotheQuaternaryPeriod(approximatelythelast3Ma),althoughlongertermcontinuity ofprocessesandthecoherentdescriptionofanevolutionary settingoftenrequiresawidertime-window.

Theneotectonicdeformationsincludetwomajorinterrelatedcomponentsthatareindependentlydescribedfor methodologicalpurposes:(i)verticalmovementsofthe lithosphere,resultingfromisostaticadjustmentsandtectonic

J.M.Azañón(&)

DepartamentodeGeodinámica,InstitutoAndaluzdeGeofísica, UniversidaddeGranada,InstitutoAndaluzdeCienciasdela Tierra(CSIC-UGR),CampusFuentenuevas/n,Granada,18071, Spain

e-mail: jazanon@ugr.es

J.Cabral

InstitutoDomLuiz,DepartamentodeGeologia,Faculdadede Ciências,UniversidadedeLisboa,Lisbon,1749-016,Portugal

e-mail: jcabral@fc.ul.pt

© SpringerNatureSwitzerlandAG2020

processessuchaslithospherebuckling,and(ii)active faulting,bothwithamajorimpactonthelateCenozoic evolutionoftheIberianreliefanditspresentconfi guration. Theseinterdependentsubjectsaredealtwithintwodistinct sections,wheretheirgenesis,evolutionandimprintonthe regionalIberiangeologyaredescribedinthelong-term, geologicaltimeframe.

Besidesthosetwoactivetectoniccomponentsthatregisterthelong-termaccumulated, fi nitestrain,twoother subjectsareconsideredinthe firstsectionsofthepresent chapter,namelyactivedeformationfromspace-geodetic observations(GNSSdata)andtheregionalseismicity,asan expressionofthepresent,short-term,instantaneousdeformations,andtheirlinktotheregionalneotectonicsframework.Thesetwosectionsarepresentedinthe firstpartof thischapterbecausebothseismicityandgeodeticobservationsareconsideredessentialdatatopointouttheareasof presentactivedeformationwithintheIberianPeninsula.

TheinteractionoftheIberianmicroplate aspartof Eurasia,withtheNubiaplateisidentifi edasthesourceforthe regionalneotectonicdeformations.Regionalgeodynamics hasthusbeendrivenbytheNW-SEtoWNW-ESEoblique convergenceofEurasiaandNubia,whichhasoccurredatthe longitudesoftheIberianPeninsulaatanaveragerateof4.5–6mm/yrforthepast3Ma,accordingtotheglobalgeological modelsofplatemotions(NUVEL-1AbyDeMetsetal. 1994, andthemorerecentMORVELbyDeMetsetal. 2010). Space-geodeticobservationsindicatethattheEurasia-Nubia displacementvectorsrotatedanticlockwiserelativetothe NWdirectionofgeologicalmodelsandsuggestaslowing downoftheconvergencerate(e.g.Calaisetal. 2003;Fernandesetal. 2007;NocquetandCalais 2004).

Despitethewell-establishedinterplatecontextofoblique convergence,deformationattheplatebordersisrather complex,evidencingadiffuseplateboundarywithdistributeddeformation.Tothewest,alongtheGulfofCádiz andtowardstheAtlanticOceantheplateboundaryis expressedasawide,roughlyE-Wdeformationband,where severalmajoractivefaultswithpredominantreverse

C.QuesadaandJ.T.Oliveira(eds.), TheGeologyofIberia:AGeodynamicApproach, RegionalGeologyReviews, https://doi.org/10.1007/978-3-030-10931-8_1

kinematicshavebeenidenti fiedtrendingapproximatelyE-W andNE-SWtoNNE-SSW(e.g.Zitellinietal. 2001, 2004, 2009;Gràciaetal. 2003;Terrinhaetal. 2003).Recently, severalWNW-ESEright-lateralstrike-slipfaultshavebeen identi fiedinthisregion,interactingwiththeobliquely trendingreversefaultsandforminganarrowbandof deformationoveralengthofca.600km(Rosasetal. 2009, 2012;Zitellinietal. 2009).

CoevalWSW-ENEextensionintheAlboránDomain (producingtheAlboránBasin)andleft-lateralshearalong theNEtrendingTrans-Alboránshearzonearenotstraightforwardinthecontextofregionalshortening,corroborating thecomplexityofdeformationattheplateborders(e.g. Serpellonietal. 2007;Bufornetal. 2010).Deformationis apparentlytransferredfromnorthernAfrica(AtlasandRif), throughtheAlboránsea,toSEIberia(BeticsandtheCarboneras AlhamadeMurcia Alicantefaultsystem)inan overalltranstensiletoleft-lateralstrike-slipregime.

Inthiscontext,andbaseduponanumberofindependent observations(asseafloormorphology,earthquakedistribution andseismicprofiles),Gutscheretal.(e.g.Gutscher 2004; Gutscheretal. 2002, 2009)proposetheoccurrenceofactive subductionintheGibraltarArcbywestwardroll-backofan old(Miocene?)plate.Thismodelhasbeencontestedbyseveralauthors(e.g.Pedreraetal. 2011),whoarguethatthe eastwardGibraltarArcoceanicsubductionsystemisinactive probablysincetheLateMiocene-EarlyPliocene.Accordingto theseauthors,thecurrenttectonicframeworkintheGibraltar Arcdomainisofcontinentalcollision,withtheregional intermediateseismicitybeingassociatedtopartoftheold subductedslab,orthogonaltotheregionalconvergence.

Thisoveralltectonicsettingengendersastress fieldinthe IberianPeninsulawhichischaracterizedbyapredominately NNW-SSEtoNW-SEtrendingSHmax(e.g.Andewegetal. 1999;DeVicenteetal. 2008;Custódioetal. 2016)reflecting theIberia-Nubiaconvergenceasamajordrivingmechanism forthecrustalstresses.Theoveralltendencyofchangein faultingstyle(reversetostrike-slipandtonormalfaulting) fromSWtoNandNEpointstoapermutationofprincipal stressesandapredominantNNW-SSEcontractionand ENE-WSWextension.Someregionaldeviationsoccurto thisgeneralpattern,indicatingdistinctlocalizeddriving mechanismsfortheneotectonicprocesses.

References

AndewegB,DeVicenteG,CloetinghS,etal.(1999)Localstress fields andintraplatedeformationofiberia:variationsinspatialand temporalinterplayofregionalstresssources.Tectonophysics 305:153–164.

BufornE,CescaS,delFresnoC,UdiasA(2010)Complexityofthe Ibero-Magrhebianregion:intermediatedepthearthquakes.GeophysicalResearchAbstractsV.12,EGU2010-1951.

CalaisE,DeMetsC,NocquetJM(2003)Evidenceforapost-3.16-Ma changeinNubia–Eurasia–NorthAmericaplatemotions?Earthand PlanetaryScienceLetters216(1–2):81–92.

CustódioS,LimaV,ValesD,etal.(2016)Imagingactivefaultingina regionofdistributeddeformationfromthejointclusteringoffocal mechanismsandhypocentres:ApplicationtotheAzores–western Mediterraneanregion.Tectonophysics676:70–89.

DeVicenteG,CloetinghS,Muñoz-MartínA,etal.(2008)Inversionof momenttensorfocalmechanismsforactivestressesaroundthe microcontinentIberia:Tectonicimplications.Tectonics27(1): TC1009, https://doi.org/10.1029/2006tc002093

DeMetsC,GordonRG,ArgusDF,SteinS(1994)Effectofrecent revisionstothegeomagneticreversaltimescaleonestimatesof currentplatemotions.GeophysResLett21:2191–2194.

DeMetsC,GordonRG,ArgusDF(2010)Geologicallycurrentplate motions.GeophysJInt181:1–80.

FernandesRMS,MirandaJM,MeijningerBML,etal.(2007)Surface velocity fieldoftheIbero-Maghrebiansegmentofthe Eurasia-Nubiaplateboundary.GeophysJInt169:315–324. https://doi.org/10.1111/j.1365-246x.2006.03252.x.

GràciaE,DañobeitiaJJ,VergésJ,Bartolomé R(2003)Crustal architectureandtectonicevolutionoftheGulfofCádiz(SW IberianMargin)attheconvergenceoftheEurasianandAfrican plates.Tectonics22(4:1033–1057.

GutscherMA(2004)WhatcausedthegreatLisbonearthquake? Science305:1247–1248.

GutscherMA,MalodJ,RehaultJP,etal.(2002)Evidenceforactive subductionbeneathGibraltar.Geology30:1071–1074.

GutscherMA,DomínguezS,WestbrookGetal.(2009)Deepstructure, recentdeformationandanalogmodelingoftheGulfofCádiz accretionarywedge:implicationsforthe1755Lisbonearthquake. Tectonophysics475:85–97.

NocquetJM,CalaisE(2004)Geodeticmeasurementsofcrustal deformationintheWesternMediterraneanandEurope.PureAppl Geophys161, https://doi.org/10.1007/s00024-003-2468-z PedreraA,Ruiz-ConstánA,Galindo-ZaldivarJ,etal.(2011)Istherean activesubductionbeneaththeGibraltarorogenicarc?Constraints fromPliocenetopresent-daystress field.JGeodyn52:83–96, https://doi.org/10.1016/j.jog.2010.12.003

RosasFM,DuarteJC,NevesMC,etal.(2012)Thrust-wrenchinterferencebetweenmajoractivefaultsintheGulfofCadiz(Africa-Eurasia plateboundary,offshoreSWIberia):tectonicimplicationsfrom coupledanalogueandnumericalmodeling.Tectonophysics548–549:1–21(http://dx.doi.org/10.1016/j.tecto.2012.04.013 ).

RosasFM,DuarteJC,TerrinhaP,ValadaresV,MatiasL(2009) Morphotectoniccharacterizationofmajorbathymetriclineamentsin NWGulfofCadiz(Africa-Iberiaplateboundary):insightsfrom analoguemodellingexperiments.MarineGeology26:33–47, https://doi.org/10.1016/j.margeo.2008.08.002

SerpelloniE,VannucciG,PondrelliS,etal.(2007)Kinematicsofthe WesternAfrica-Eurasiaplateboundaryfromfocalmechanismsand GPSdata.GeophysJInt169:1180–1200. https://doi.org/10.1111/j. 1365-246x.2007.03367.x

TerrinhaP,PinheiroLM,HenrietJP,etal.(2003)Tsunamigenicseismogenicstructures,neotectonics,sedimentaryprocessesand

slopeinstabilityonthesouthwestPortugueseMargin.MarGeol195 (1–4):55–73.

ZitelliniN,MendesLA,CórdobaD,etal.(2001)Sourceof1755 Lisbonearthquakeandtsunamiinvestigated.EOS,Transactions, AmericanGeophysicalUnion,82(26):285,290.

ZitelliniN,RovereM,TerrinhaP,etal.(2004)Neogenethrough quaternarytectonicreactivationofSWIberianpassivemargin; geodynamicsofAzoresTunisia.PureandAppliedGeophysics161 (3):565–587.

ZitelliniN,GràciaE,MatiasLetal.(2009)ThequestfortheAfrica–EurasiaplateboundarywestoftheStraitofGibraltar.Earthand PlanetaryScienceLetters280(1–4):13–50.

ActiveDeformationintheIberianPeninsula fromGeodeticTechniques

Abstract

IntheIberianPeninsula,morethan300continuousGNSS (CGNSS)stationsprovideservicetodetectdeformation duetogeodynamicprocessesandcombinedwith real-timekinematic(RTK)dataareusefultolocateand monitoringactivestructuresandprocesses.Mostofthe geodynamicstudiesusingGNSStechniquesintheIberian PeninsulaarelargelyfocusedupontheEurasia-Africa plateboundarygeometry,kinematicsandactivetectonics. AlthoughtheuseofCGNSSisthebestoptionto determineverysmallcrustalmovements,asintheIberia Peninsula,inareaswithlackofCGNSSstations,eight non-permanentnetworks(SGNSS)wereinstalledmainly inthesouth-southeastofIberianPeninsula,providing valuableinformationabouttheactivityofkeyactive structures.

GlobalNavigationSatelliteSystem(GNSS)providesvariouskinematicandpostprocessingmethodsofpositioning solutions.Thesetechniqueshaveundergonesignificant developmentinrecentdecadesandtodayarewidelyusedin variousapplicationssuchasmonitoringgeodynamicprocesses,earlywarningsystems,mappingandengineering applications.Therearetwomainlysurveyingmethods: (i)ContinuouslyOperatingReferenceStation(CORS, CGNSS)networksand(ii)Non-permanentGNSSnetworks (survey-mode,SGNSS)withrepeatabilityoftheobserved positionafteratimespantoguaranteethedataaccuracy.

2.1PermanentNetworks

ContinuousGNSS(CGNSS)networksrevealtheirusefulness todetectdeformationsduetogeodynamicprocessesbetween tectonicplates(inter-plate)andinsidetheplates(intra-plate). TheContinuouslyOperatingReferenceStation(CORS)network,combinedwithreal-timekinematic(RTK)correctionsis awidelyusedtechniquetoachievecentimeterpositioning accuracyinrealtimeorpost-processing(RINEX).TheRTK GNSSdataareactuallyusefulinactivetectonicstolocate activestructuresandtomonitoractiveprocessesalongtime, andtoprovidehigh-precisiontopographicprofilesfor detectingsubtlechangesinslopeasofterracesurfaces(e.g. Figueiredoetal. 2014).IntheIberianPeninsula,morethan 300GNSSstationsprovidethisservice(Fig. 2.1)andare availabletobeusedatnocost.

P.Ruano(&)

DepartamentodeGeodinámica,UniversidaddeGranada,Instituto AndaluzdeCienciasdeLaTierra(CSIC-UGR),Campus Fuentenuevas/n,Granada,18071,Spain

e-mail: pruano@ugr.es

R.M.daS.Fernandes

UniversidadeDaBeiraInteriorandInstitutoDomLuiz,Faculdade deCiências,UniversidadedeLisboa,Lisbon,1749-016,Portugal e-mail: rui@segal.ubi.pt

© SpringerNatureSwitzerlandAG2020

TheincreaseddensityofCORSstationsinthelasttwo decadeschangedthewayofstudyingthedynamicsofthe Earth’ssurfaceprovidingunprecedentedspatialandtemporal samplingofcrustaldeformationthatallowtoidentifytectonicallyactiveareasandtodetectverysmallrelative movements.VariousnetworksweredevelopedontheIberian Peninsulainthelastdecadebyregionalandnationalinstitutionsandprivateagencies(seeFig. 2.1 formoredetail).It isworthmentioningthenetworkdevelopedbyTopo-Iberia projectthatincludedintermediatestationsinkeysectors(de Lacyetal. 2014;Gárateetal. 2015).Mostofthegeodynamic studiesusingGNSStechniquesintheIberianPeninsulaare largelyfocusedupontheEurasia-Africaplateboundary geometryandkinematics(Fadiletal. 2006;Stichetal. 2006; Fernandesetal. 2007;Mantovanietal. 2007;Serpellonietal. 2007;Nocquet 2012;Pérez-Peñaetal. 2010;Vernantetal. 2010;Koualietal. 2011;Mancillaetal. 2013)ortocompute strainratemodels(Cunhaetal. 2012;Nevesetal. 2014).

ThemostcompleteandrecentanalysisofGNSSstations inIberiaisprovidedbyPalanoetal.(2015)showingthe geodeticvelocity fieldof280GNSSstations(Fig. 2.2). Neresetal.(2016)basedon250stationsshownumerical

C.QuesadaandJ.T.Oliveira(eds.), TheGeologyofIberia:AGeodynamicApproach, RegionalGeologyReviews, https://doi.org/10.1007/978-3-030-10931-8_2

Betics

Pyrenees

ARAGEA Permanent

BIZKAIA

CARM

CatNet

ERVA

GALNET

REGAM RAP ITACYL IGN IDERIOJA Guipuzkoa

REP

RGAC

RGAN

RGAPA

RGE

ReNEP

XGAIB

TopoIberia

CuaTeNeo

Fig.2.1 AvailableGNSSnetworksinIberia.Permanentwith RTKGNSSnetworks:ARAGEA(http://gnss.aragon.es);BIZKAIA (http://www.bizkaia.eus/home2/Temas/DetalleTema.asp?Tem_ Codigo=3328);CARM(http://gps.medioambiente.carm.es/ );CATNET (http://catnet-ip.icc.cat/ );ERVA(www.icv.gva.es);GALNET(http:// cartogalicia.com/galnet2/ );GIPUZKOA(http://b5m.gipuzkoa.eus/ web5000/es/geodesia/red-gnss/);IDERIOJA(https://www.iderioja. larioja.org/);IGN(www.ign.es);ITACYL(http://gnss.itacyl.es/);RAP (www.ideandalucia.es);REGAM(http://cartomur.imida.es/regam );

modelsthatpredictfaultkinematicsandheaverates(horizontalcomponentofsliprates).Basedonallthesestudies, themaingeneralfeaturesofthegeodeticvelocity fi eldin Iberiaare:

PotSis-ResPyr

Bajo Segura

Balanegra

CuaTeTeo

Padul

Granada Basin

Baza Basin

Zafarraya-Sierra Tejeda

ReNEP(ftp.igeo.pt);REP(www.rep-gnss.es);RGAC(http://www. territoriodecantabria.es/cartogra fia-sig/servicio-correcciones-gnssprecision);RGAN(http://www.navarra.es );RGE(http://www.gps2. euskadi.net/);XGAIB(http://xarxagnss.caib.es).Activefaultsfrom QAFIdataset(García-Mayordomoetal. 2012)areshown.Abbreviationsinmap:AMFAlhamadeMurciaFault;BFBazaFault;BNF BalananegraFault;BSB;BajoSeguraBasin;CFCrevillenteFault;CFZ CarbonerasFaultZone;GFGaleraFault;STASierraTejeda Antiform;ZFZafarrayaFault

– WNW-ESEconvergenceatarateof *5mm/yr, accommodatingtherelativemotionbetweenthetwo largeEurasianandNubianplates(McCluskyetal. 2003; Serpellonietal. 2007;DeMetsetal.2010). Gibraltar

Pyrenees

Fig.2.2 GNSSvelocitiesand95%confidenceellipsesina fixedEurasianreferenceframeforIberia(fromGárateetal. 2015 andPalanoetal. 2015).ActivefaultsfromQAFIdataset(García-Mayordomoetal. 2012)areshown

Alarge-scaleclockwiserotationoftheIberianPeninsula withrespecttostableEurasia.

– AfragmentationofthewesternMediterraneanbasininto severalcrustalblocksaccordingtotheirdistinctgeologicalhistory.

– Ageneralincreasinggradientofthegeodeticvelocity vectorfromtheNorthtotheSouthofIberia.

– WestwardrelativemotionoftheGibraltarArcof *3–5mm/yearwithasignificanthorizontalextension approximatelyintheE–Wdirection.

– WNWtoNEfan-shapedpatternofgeodeticvelocity vectorsinEasternBeticsshowingaroughlyN-Scompression(Echavarr íaetal. 2013).

GeodeticstudiesfocusedontheBeticshavepoorregional coverageor/andlackadetaileddescriptionoftherelationshipswithmainactivetectonicstructures.Basedon Topo-Iberianetwork,González-Castilloetal.(2015)analyze therelationshipsoftheCGNSSdisplacementsandtheactive tectonicsofthewesternBeticsanditsforeland. Galindo-Zaldívaretal.(2015)provideapreciseregional displacementpatterninthecentralandeasternBeticswith heterogeneousWandWSWresidualdisplacementwith respecttotheEurasiareferenceframe.

Ontheotherhand,Asensioetal.(2012)showthatthe westernandcentralPyreneesmoveawayfromthestablepart ofWesternEuropewithavelocityof0.5–1.5mm/yr.

ANNE–SSWprofileacrossthewesternPyreneesindicates extensionatarateequivalentto0.3–0.4mm/yrifawidthof thePyreneesof100–150kmisassumed.

2.2Non-permanentNetworks

Thebestoptiontodetermineverysmallcrustalmovements, asintheIberiaPeninsula,usinggeodeticmeasurementsisto useanetworkofpermanentGNSSstations(CGNSS). However,tocharacterizethedeformationofspeci ficactive structureswhenthisisnotpossibleduetoalackofCORSin theareaorto financialconstraints,thedeploymentofa networkofclosely-spacedpillarsanditsperiodicobservationbygeodeticcampaigns(SGNSS)becomesthebest option.However,alongtimespanmeasurementseriesis neededinthiscase.IntheIberianPeninsulaseveral non-permanentnetworks(Fig. 2.1)wereinstalledmainlyin thesouth-southeast,providingvaluableinformationabout theactivityofkeystructures:

– ThePotSis(Talayaetal. 1999)andResPyr(Fletaetal. 1996;Rigoetal. 2015)networksalongthePyrenees mountainrange,includingatotalof85GPSsites,were installedand firstmeasuredin1992and1995–1997, respectively.Rigoetal.(2015)estimatedamaximum extensionalhorizontalstrainrateof2.0 ± 1.7nanostrain peryearintheN–Sdirectioninthewesternpartofthe range,inagreementwiththeresultofAsensioetal. (2012)fromapermanentnetwork.

TheBajoSeguranon-permanentnetworkshowsa * N-Sshorteninginthewholebasin.TheratesintheBajo Segurafaultzonevaryfromwesttoeastbetween0.73 and0.24mm/yr.Inthenorthernborderofthebasin, alongtheCrevillentefaultzonealeft-lateralmovement variesbetween0.44and0.75mm/yrintheE-Wdirection (Alfaroetal. 2012;Sánchez-Alzolaetal. 2014). –

TheCuaTeNeonetwork(Colominaetal. 1998;Echeverríaetal. 2013)coversthesouthandcentralpartofthe EasternBeticShearZone.Theresultsshowcontinuing tectonicactivityintheSEBetics(Echeverr íaetal. 2013). ThemostprominentfeatureistheNWorientedmotionof themajorityofthestationsatratesrangingfrom2mm/yr nearthecoastto0.5mm/yrinland.MostofthedeformationisconcentratedontheAlhamadeMurciafault, thesourceofthe2011Lorcaearthquake(Mw5.2). Echeverriaetal.(2013)estimateareverse-sinistral geodeticsliprateof1.5 ± 0.3mm/yrforthisfault. Echeverriaetal.(2015)usingCORSstationsandCuaTeNeonetworksfoundastrike-sliprateof 1.3 ± 0.2mm/yrfortheCarbonerasfaultzone.

– InCampodeDalías(Almeríaprovince)twolevelling profilesandaSGNSSnetworkwereestablishedinorder tomonitorthepresentverticalandhorizontaldeformationsandtherelationshipbetweentheBalanegrafault andfolddevelopment(Marín-Lechadoetal. 2010)in ordertoelucidatethefaultbehaviour.

– In2008anon-permanentnetworkwasinstalledinthe BazaBasin(Galindo-Zaldívaretal. 2015).Atotalof7 measurementcampaignswereperformedtoquantifythe presentsliprateoftheBazafaultandotheractivefaults astheGalerafault.Thegeodeticresultsareinagreement withthekinematicsoftheBazafaultestablishedby geologicalstudies(Alfaroetal. 2008).

TheGranadanon-permanentnetworkwasestablishedin 1999tomonitorthepresentNW-SEcompressionand NE-SWextensionaccommodatedmanlybynormal faultsthataffecttheBasin(Giletal. 2002).Consistent resultshavenotyetbeenobtained,duetothesmallstrain ratesofthearea,alongertimespanthanadecadebeing needed.InthePadulareaanothernon-permanentnetworkshowsadeformationof0.5mm/yr(Giletal. 2002; Ruizetal. 2003;Giletal. 2017).Theabsenceof instrumentalorhistoricalseismiceventswouldindicate thatfaultactivityoccursatleastpartiallybycreep.Padul faultkinematicswillberelatedtothepresent-daydominanceoftheENE-WSWregionalextensionversus NNW-SSEshorteningthatproducedtheupliftand northwestwardsdisplacementofSierraNevadaantiform (Giletal. 2017).

– Twonon-permanentnetworkswereestablishedin2004 attheZafarrayaFaultandSierraTejedaantiform (Galindo-Zaldívaretal. 2003;Borqueetal. 2005)to quantifytheirpresent-daydeformationwithatotalof16 sites.Inthe first6yearsofmonitoring,theresultssuggestaveryslowactivityoftheSierraTejedaantiform andthedextralcharacteroftheZafarrayafault,witha NW-SEextensionthatmayduetoanactivefault(Ruano etal. 2011).

References

AlfaroP,DelgadoJ,SanzdeGaldeanoCetal(2008)TheBazaFault:a majoractiveextensionalfaultintheCentralBeticCordillera(South Spain).InternationalJournalofEarthSciences97:1353–1365. https://doi.org/10.1007/s00531-007-0213-z .

AlfaroP,Bartolomé R,BorqueJMetal(2012)TheBajoSeguraFault Zone:ActiveblindthrustingintheEasternBeticCordillera(SE Spain).JournalofIberianGeology38:271–284.

AsensioE,KhazaradzeG,EcheverriaAetal(2012)GPSstudiesof activedeformationinthePyrenees.GeophysicalJournal

International190(2):913–921. https://doi.org/10.1111/j.1365-246x. 2012.05525.x

BorqueMJ,Galindo-ZaldívarJ,GilAJ,etal(2005)Establishmentofa non-permanentGPSnetworktomonitordeformationsinZafarraya FaultandSierraTejedaAntiform(Spain).FísicalaTierra17: 23–31.

ColominaI,FletaJ,GiménezJ,etal(1998)TheCuaTeNeoGPS networktoquantifyhorizontalmovementsintheSoutheasternpart oftheIberianPeninsula.1aAsamHispGeodyGeof{’\i}sica,9{a} AsamNacGeodyGeof{’\i}sica199–204. CunhaTA,MatiasLM,TerrinhaPetal(2012)NeotectonicsoftheSW Iberiamargin,GulfofCadizandAlboranSea:Areassessment includingrecentstructural,seismicandgeodeticdata:Geophysical JournalInternational,v.188:850–872, https://doi.org/10.1111/j. 1365-246x.2011.05328.x

deLacyMC,ArmenterosJA,RuizArmenterosAM,etal(2014) RedGPSTOPOIBERIA:ResultadosobtenidosenelCentrode AnálisisdelaUJA.FísicalaTierra26:25–33. EcheverríaA,KhazaradzeG,AsensioEetal(2013)Crustal deformationineasternBeticsfromCuaTeNeoGPSnetwork. Tectonophysics608:600–612. EcheverriaA,KhazaradzeG,AsensioEetal(2015)Geodeticevidence ofrcontinuingtectonicactivityoftheCarbonerasfault(SESpain). Tectonophysics663:302–309. FadilA,VernantP,McCluskySetal(2006)Activetectonicsofthe westernMediterranean:Geodeticevidenceforrollbackofa delaminatedsubcontinentallithosphericslabbeneaththeRif Mountains,Morocco.Geology34:529–532. https://doi.org/10. 1130/g22291.1

FernandesRMS,MirandaJM,MeijningerBMLetal(2007)Surface velocity fieldoftheIbero-Maghrebiansegmentofthe Eurasia-Nubiaplateboundary.GeophysJInt169:315–324. https://doi.org/10.1111/j.1365-246x.2006.03252.x

FigueiredoPM,CabralJ,RockwellTK(2014)Recognitionof PleistocenemarineterracesinthesouthwestofPortugal(Iberian Peninsula):evidencesofregionalQuaternaryuplift.AnnGeophys 56:S0672.

FletaJ,SoroM,GiménezJ,SuriñachE(1996)RedGPSparamedidas geodinámicasenelPirineo(ResPyr).Geogaceta20:992–995.

Galindo-ZaldívarJ,GilAJ,BorqueMJ,etal(2003)Activefaultingin theinternalzonesofthecentralBeticCordilleras(SE,Spain). JGeodyn36:239–250. https://doi.org/10.1016/s0264-3707(03) 00049-8

Galindo-ZaldívarJ,GilAJ,SanzdeGaldeanoCetal(2015)Active shallowextensionincentralandeasternBeticCordillerafrom CGPSdata.Tectonophysics663:290–301.

GarateJ,Martin-DavilaJ,KhazaradzeG,etal(2015)Topo-Iberia project:CGPScrustalvelocity fieldintheIberianPeninsulaand Morocco.GPSSolut19:287–295. https://doi.org/10.1007/s10291014-0387-3

García-MayordomoJ,Insua-ArévaloJM,Martínez-DíazJJetal(2012) TheQuaternaryactivefaultsdatabaseofIberia(QAFIv20).JIber Geol38(1):285–302.

GilAJ,Rodriguez-CaderotG,LacyMCetal(2002)Establishmentofa Non-PermanentGpsNetworkToMonitortheRecentNe-Sw DeformationintheGranadaBasin(Betic.StudGeophysGeod 46:395–410.

Gil,AJ,Galindo-Zaldívar,J,SanzdeGaldeano,Cetal.(2017).The PadulnormalfaultactivityconstrainedbyGPSdata:Brittle extensionorthogonaltofoldinginthecentralBeticCordillera. Tectonophysics,712,64–71.

González-CastilloL,Galindo-ZaldívarJ,deLacyMC,etal(2015) ActiverollbackintheGibraltarArc:EvidencesfromCGPSdatain thewesternBeticCordillera.Tectonophysics663:310–321. https:// doi.org/10.1016/j.tecto.2015.03.010

KoulaliA,OuazarD,TahaytA,etal(2011)NewGPSconstraintson activedeformationalongtheAfrica-Iberiaplateboundary.Earth PlanetSciLett308:211–217. https://doi.org/10.1016/j.epsl.2011.05. 048

MancillaF,StichD,BerrocosoMetal(2013)Delaminationinthe BeticRange:Deepstructure,seismicity,andGPSmotion.Geology 41:307–310.

MantovaniE,VitiM,BabbucciD,AlbarelloD(2007)Nubia-Eurasia kinematics:AnalternativeinterpretationfromMediterraneanand NorthAtlanticevidence.AnnGeophys. https://doi.org/10.4401/ag3073.

Marín-LechadoC,GalindoZaldívarJ,GilAJetal(2010)Levelling profilesandGPSnetworktomonitortheactivefoldingandfaulting deformationintheCampodeDalías(BeticCordillera,Southeastern Spain).Sensors10:3504–3518.

McCluskyS,ReilingerR,MahmoudSetal(2003)GPScontraintson Africa(Nubia)andArabiplatemotions.GeophysJInt155:126–138. NeresM,CarafaMMC,FernandesRMSetal(2016)Lithospheric deformationintheAfrica-Iberiaplateboundary:Improvedneotectonicmodelingtestingabasal-drivenAlboranplate.JGeophysRes SolidEarth121:6566–6596. https://doi.org/10.1002/2016jb013012 NevesMC,FernandesRM,AdamC(2014)Refinedmodelsof gravitationalpotentialenergycomparedwithstressandstrainrate patternsinIberia.JGeodyn81:91–104. https://doi.org/10.1016/j. jog.2014.07.010

NocquetJM(2012)Present-daykinematicsoftheMediterranean:A comprehensiveoverviewofGPSresults,Tectonophysics,579:220–242.

PalanoM,GonzálezPJ,FernándezJ(2015)TheDiffusePlateboundary ofNubiaandIberiaintheWesternMediterranean:Crustal deformationevidenceforviscouscouplingandfragmentedlithosphere.EarthandPlanetaryScienceLetters430:439–447.

Pérez-PeñaA,Martín-DavilaJ,GárateJ,etal(2010)Velocity fieldand tectonicstraininSouthernSpainandsurroundingareasderived fromGPSepisodicmeasurements.JGeodyn49:232–240. https:// doi.org/10.1016/j.jog.2010.01.015

RigoA,VernantP,FeiglKLetal(2015)Present-daydeformationof thePyreneesrevealedbyGPSsurveyingandearthquakefocal mechanismsuntil2011,Geophys.J.Int.,201(2):947–964, https:// doi.org/10.1093/gji/ggv052.2015.

RuanoP,GilAJ,Galindo-ZaldívarJetal(2011)Geodeticstudiesinthe ZafarrayaFault(BeticCordilleras).In:2ndINQUA-IGCP-567 InternationalWorkshoponActiveTectonics,EarthquakeGeology, ArchaeologyandEngineering.Corinth,Greece,pp210–213. RuizAM,FerhatG,AlfaroPetal(2003)Geodeticmeasurementsof crustaldeformationonNW-SEfaultsoftheBeticCordillera, southernSpain,1999–2001.JGeodyn35:259–272. https://doi.org/ 10.1016/s0264-3707(02)00134-5

Sánchez-AlzolaA,BorqueMJ,Martín-RojasI,etal(2014)Tasasde deformaciónGPSenlaCuencadelBajoSegura(CordilleraBética Oriental).Geogaceta56:3–6.

SerpelloniE,GVannucci,Pondrelli,Setal(2007)Kinematicsofthe WesternAfrica–Eurasiaplateboundaryfromfocalmechanismsand GPSdata.GeophysicalJournalInternational169:1180–1200. StichD,SerpelloniE,MancillaFetal(2006).Kinematicsofthe Iberia-MaghrebplatecontactfromseismicmomenttensorsandGPS observations.Tectonophysics426:295–317.

TalayaJ,FeiglK,TérmensAetal(1999)Practicallessonsfrom analysisofaGPSnetworkdesignedtodetectmovements of 1mm/yearintheeasternpyrenees.PhysChemEarth 24:355–359. https://doi.org/10.1016/s1464-1895(99)00041-1 . VernantP,FadilA,MourabitT(2010)Geodeticconstraintsonactive tectonicsoftheWesternMediterranean:Implicationsforthe kinematicsanddynamicsoftheNubia-Eurasiaplateboundary zone.JournalofGeodynamics49:123–129.

SeismicityoftheIberianPeninsula

Abstract

Earthquakesareaconspicuousmanifestationofactive processesinandaroundtheIberianPeninsula,providing evidenceforactivefaultingattheplateboundaryzone,as wellasacrosslargeintraplateareas.Anextensivesample offaultingfrommanyindividualstructuresisprovided throughtheearthquakesthatappearinthegeological, historicalandinstrumentalrecords.Modernseismic broadbandnetworksallowforestimatingearthquake sourceparametersroutinely.Thedistributionofhypocenterslocatesthezonesofprincipalstressrelease,andfocal mechanismdepictthevarietyofdifferenttectonicregimes overtheregion.Olderearthquakeshavebeenstudied frompaleoseismology,macroseismicinformationor

D.Stich(&) J.Morales

DepartamentodeFísicaTeóricaydelCosmos,InstitutoAndaluz deGeofísica,UniversidaddeGranada,CampusUniversitariode Fuentenuevas/n,18071Granada,Spain

e-mail: stich@ugr.es

J.Morales

e-mail: jmorales@ugr.es

J.M.Martínez-Solares InstitutoGeográficoNacional,C/GeneralIbáñezde Íbero3,28003 Madrid,Spain

e-mail: jmmsolares@fomento.es

S.Custódio P.Teves-Costa FaculdadedeCiências,InstitutoDomLuiz,Universidadede Lisboa,1740-016Lisbon,Portugal e-mail: sicustodio@fc.ul.pt

P.Teves-Costa

e-mail: ptcosta@fc.ul.pt

J.Batlló InstitutCartogràficiGeològicdeCatalunya,ParcdeMontjuïc, 08038Barcelona,Spain

e-mail: josep.batllo@icgc.cat

R.Martín

InstitutoAndaluzdeGeofísica,UniversidaddeGranada,Campus UniversitariodeCartuja,18071Granada,Spain

e-mail: rosa@ugr.es

analoguerecordings,improvingourunderstandingof long-termcharacteristics.

3.1Introduction

Earthquakeseismologymadeimportantcontributionstothe studyoftectonics,startingwithitsfundamentalroleinthe discoveryandconfirmationofplatetectonics,basisofour presentunderstandingoftheglobalevolutionoftheEarth’s lithosphere,butthecontributionsareimportantalsoatthe regionallevel(seeJackson 2002,forareview).

Presentseismicityisstudiedmainlyusingtherecordsof thousandsofseismographsaroundtheworld.Justinthe IberianPeninsula,takingtogetherallkindofinstruments (seismographsandaccelerographs)thereareafewhundreds ofstations.Butthissituationisreallynew.Just fiftyyears agothetotalnumberofseismicstationsaroundtheworld wasscarcelytwothousandsandjusttwelvewerelocatedin theIberianPeninsula.Onehundred fiftyyearsagothere werenoseismicstationsatall.

Thus,instrumentalseismicrecordscannotbetheunique sourceofdataifalongrecordofseismicityisneeded,andit is.Weshouldkeepinmindthattheseismicityrateofa regionisnothomogeneousintimeorinsize.Evenmore,we knowthatintheIberianPeninsulathebiggerearthquakes mostlyoccurredbeforethesettingoftheearlierseismographs.Toaccountfortheseoldereventsweshallrelyon non-instrumentalrecords.Theymaybewrittenreportsabout theeffectsoftheearthquakes(historicalseismicity),orthose obtainedstudyingtheireffectsonoldbuildings(archeoseismology)oreventherecordsofearthquakespreservedon faultsanddifferentgeologicalunits(paleoseismology).Each oneoftheseapproachesrequiresspeci fictechniquesanddata differentfromgeology.

AreviewofourpresentknowledgeoftheIberian Peninsulaseismicityanditscloserelationshiptotectonicsis presentedinthissection.

© SpringerNatureSwitzerlandAG2020 C.QuesadaandJ.T.Oliveira(eds.), TheGeologyofIberia:AGeodynamicApproach, RegionalGeologyReviews, https://doi.org/10.1007/978-3-030-10931-8_3

3.2HistoricalSeismicity:Characteristics ofSeismicityintheIberianPeninsula

NowadaystherearemanytoolstodetectandanalyseEarth’s seismicity.Informationaboutpreviousearthquakescomes fromnon-instrumentalsourcesdependingontheperiodwe consider.Paleoseismicityisusedforperiodsinwhichthe geologicalrecordistheonlyavailablesourceofinformation toanalyseandinterprettheoccurredearthquakes.Inthelast twodecades,interestingpaleoseismologicalresultshave beenobtainedintheIberianPeninsula(e.g.Masanaetal. 2001a, b;Cabral(2012);Martínez-D íazetal. 2012;Canora etal. 2015;seeChap. 4 formoredetails).

Anotherwaytostudythepastearthquakesisthe archeoseismology,startingwiththeearliestconstructions.In theIberianPeninsula,newinsightswerethusobtainedonthe occurrenceofancientearthquakes(e.g.VillaValdés 2009; Silvaetal. 2005;Rodríguez-Pascuaetal. 2015).

Next,wecontemplatetheso-calledhistoricalseismicity, mainobjectofthepresentsection,whichspansapproximatelyfromtheearlywrittenreportsuntilthe firstdecadeof the20thcentury.Studiesinthenineteeneightiesledtothe publicationofseismiccatalogsofsimilarqualityinSpain andPortugal(MezcuaandMartínezSolares 1983;Mezcua 1982;Oliveira 1986).Basedonthem,onnewstudiesof speci ficeventsandinthenewevaluationofthehistorical documentation,Martínez-SolaresandMezcua(2002)publishedanewcatalogfortheperiodupto1900coveringthe wholePeninsula.Thisnewcatalogchangedsomeofthe intensitydatapreviouslypublished(MezcuaandMartínez Solares 1983;Oliveira 1986).ItusestheEMS-98asthe referenceintensityscale,insteadoftheMSKandMM56 scalesusedinthepreviouscatalogs.Ifwecomparethe macroseismicinformationcontainedinbothcatalogs,forthe periodbetween1000and1900,wecanobserveaconsiderableincreaseofearthquakeswithlowerintensity,between IIIandV.Onthecontrary,aslightdecreaseinthenumberof earthquakesexceedingdegreeVIisobserved.Forthevalues withintermediateintensities,aremarkabledifferencecanbe seen.Thisisattributabletothefactthattheyhavebeen includedinamoresystematicwayinthenewcatalog,as recommendedbytheEMS-98scale.

Anothermacroseismicscale,complementarytothe EMS-98,istheEnvironmentalSeismicIntensityscale (ESI-07;Michettietal. 2007;Silvaetal. 2015a, b)developedbyINQUA(InternationalUnionofQuaternary Research).ESI-07isbasedonthesizeanddistributionofthe effectsofearthquakesonthenaturalenvironment.Ifearthquakeeffectsonpeopleandbuiltenvironmentarenoteasily observed,ESI-07isahelpfuldiagnostictooltoassessseismicintensitylevelsXtoXIIinsparselypopulatedor inhabitedareas.TheEarthquakeEnvironmentalEffects

(EEE)inSpainwerecompiledintheSpanishEarthquake GeologicalEffectsCatalog(SilvaandRodríguez-Pascua, 2014)andinseveralotherpublications(e.g.Silvaetal. 2015a, b;Giner-Roblesetal. 2016).

3.2.1DistributionofIntensities

UsingtheearthquakescompiledintheMartínezSolaresand Mezcua(2002)catalog,wecananalysetheirdistribution throughthefrequency-maximumintensityrelationshipand compareitwiththatobtainedfortheinstrumentalperiod. Forthispurpose,weconsidertwotimewindows:thehistoricalperiodbetweentheyears1000and1900andthe instrumentalperiodbetween1901and2015(Fig. 3.1). ConsideringtheGutenberg-Richterrelation,thesedistributionsshouldtheoretically fittoastraightline,althoughthe lackofdatacompletenessforbothtimewindowscausesthe lowervaluesofintensitytoappeardampedand,onthe contrary,theshortintervalof115yearsfortheinstrumental periodmakesitincompleteforthehighestintensityvalues. Bothcurvesarenotformallycomparable,sincethey representtimeintervalsofdifferentsizeandthevaluesofthe macroseismicintensitycannotbeassumedhomogeneous betweenthem.However,fromtheslopesofeachcurve,itis possibletodetermine,forintensitieshigherthanVI,the referenceyearfromwhichthehistoricalperiodcanbe consideredcomplete.Forthispurposewerepresentthe numberofearthquakesofmaximumintensityhigherthanVI intheperiodwheretheintensitydataareestimatedtobe morereliable(1400–1900).Usingtwotimeintervals 25 and50years-inordertobettercomparetheintensity thresholds,werepresentthecorrespondinghistogramsin Fig. 3.2a,b.FromaqualitativeexaminationofthedistributionplottedinFig. 3.2a,b,itispossibletoinferthat,for intensitieshigherthanVII,thecatalogcanbeconsidered completefrom1401onwards,becausethenumberofevents

Fig.3.1 Frequency-intensitydistributionforhistoricalperiod(1000–1900)andinstrumental(1901–2015)

Fig.3.2 Numberofeventsbetweentheyears1400and1900for4intensitylevels. a 25yearsinterval; b 50yearsinterval

withintensityVIIisstable,despitethe fluctuationsintime thatlogicallymayoccur.Instead,Fig. 3.2ashowsan increaseofeventswithintensityhigherthanVIafter1801. ButFig. 3.2bshowsadifferentview.Eventswithintensity higherthanVIseemstostabilize.Suchdifferences, dependingonthechosentimeinterval,showhowdiffi cultit istodeterminecompletitudeintervals.Numericalalgorithms donotperformbetterduetothelargeincertitudeofthe results.

3.2.2EstimationofMagnitude

Currentlysomeauthorsdeterminetheequivalentmagnitude directlyfromtheintensitydatapoints,avoidingthesubjectiveuseofisolines.Inparticular,BakunandWentworth (1997)developedamethodologyforCaliforniaableof estimatingfromtheintensitydatathelocationandseismic momentmagnitudesimultaneously.Itisagreedthatto determinethesizeofearthquakes,themomentmagnitude Mwisamuchmoresignifi cantestimatorthananyothertype ofmagnitude,sincetheseismicmoment, Mo,contains informationaboutthedimensionsofthesource,theamplitudeofthedeformationandthephysicalcharacteristicsof thematerialinwhichtheruptureoccurs.Incontrast,other typesofmagnitude,suchas mb, Ml or Ms,maysaturate whenthereleasedenergyreachesacertainlevel.

FollowingBakunandWentworth’smethodology,Mezcuaetal.(2004)calibratedthejointestimationprocessfor theIberianPeninsulaandMartínezSolaresandMezcua (2002)applieditforsomeofthemostimportantearthquakes ofthehistoricalperiod,whenthenumberofavailableIDP (intensitydatapoint)wasenough.Table 3.1 liststheestimatedmomentmagnitudevalues Mw.Fromitwecan deducethat,exceptfortheLisbonearthquakeof1755(becauseitislocatedoutsidethecontinentalarea),themaximummagnitudethresholdforthepeninsulaisnear Mw =7.0.Recently,Mezcuaetal.(2013)calculated Mw

valuesforanextendedsetofearthquakes.Otherauthors (BakunandScotti 2006;Stucchietal. 2010)calculated attenuationlawsfordifferentpartsoftheIberianPeninsula andappliedthemtoasetofevents.

Anothermethodforepicentralparametercalculationfrom IDPwasdevisedbyGasperinietal.(1999).Inthiscasethe epicenteriscalculatedasthebarycenteroftheIDPswith higherdegrees.Oncetheepicenterisobtained,themagnitudeiscalculatedthroughpreviouslycalculatedintensity attenuationlaws.Thismethod,withcalibratedlaws,has beenusedforthelargeearthquakesoccurredintheIberian Peninsulaonthebuild-upoftheSHEECcatalog(Stucchi etal. 2013)andalsobyGomez-Caperaetal.(2015).

3.2.3SeismicSequences

InalimitedareasuchastheIberianPeninsula,thetemporal distributionofearthquakesdoesnotfullyfollowthePoisson lawofindependentevents,sincethesearegroupedinto differenttypesofseismicsequencesandmustbeconsidered asinterdependentphenomena.Therefore,someseismic catalogsdistinguishthoseearthquakesconsideredasaftershocksandprecursorsofamajorearthquake,orswarms. Althoughtherearemethodsthatallowdefiningnumerically theeventsthatmakeuptheseismicseries,forthehistorical perioditismoreusefultouseexpertcriteriaanddefinethem fromtheconsiderationofrelatedevents,intimeandspace andwhosemacroseismicinformationisconsistentwitheach other.

TheprocessesofseismicsequencesoccurintheIberian Peninsulaalmostsystematically,bothduringhistoricaland instrumentaltimes.Table 3.2 liststhemostimportantseries ofearthquakeslongerthantwomonthsidenti fiedinMartínezSolaresandMezcua(2002)andclassi fiedaccordingto thetypeofrecordedactivity:mainearthquakewithprecursor andaftershockevents(PMR);majorearthquakewithfollowedaftershocks(MR)andswarms(E).

Table3.1 Estimatedmoment magnitude DateMwDateMw 1396-December6.51806-October-275.3 1431-April-246.71817-March-185.7 1504-April-56.81829-March-216.6 1522-September-226.51841-August-35.7 1531-January-267.01847-July-285.9 1680-October-96.81863-June-104.2 1722-December-276.51877-October-255.9 1748-March-236.21883-January-164.1 1755-November-18.51883-October-206.0 1761-March-316.71884-December-256.5 1804-January-136.71899-August-245.9 1804-August-256.4

FromTable 3.2 itfollowsthatthesequencesoflonger duration andwithalargenumberofearthquakes belong tothetypeofaftershock(MR)activity.Inthecaseofthe spatialdistributionofearthquakescontainedinaseismic series,theepicentersarelocated,withinthishistoricalperiod,inthesamecoordinatesasthemainepicenter.This coincidencedoesnotnecessarilyalwaysexist,sincethe sequencemustbegroupedaroundtheruptureareaandcould allow,asininstrumentalseismicitystudies,todefineitssize anddirection.

3.2.4AdditionalInformation

Manyoftheavailablecasestudiesonhistoricalearthquakes addinformationnotdirectlyrelatedtotheseismicparametersandyetprovidesocialoreconomicdataofgreatinterest. Oneofthesedatacanbethevictimsofearthquakes.

Table 3.3 showsthoseeventsthatareknowntohaveproducedfatalities,althoughforsomeofthemtheamountisjust estimatedorevenunknown(MartínezSolaresandMezcua 2002).Anotherkindofinformationofgreatimportancein thedeterminationoftheseismicriskconsistsintheeconomiclossescausedbythegreatearthquakes.Their assessment,however,isdifficulttoquantifyduetothelack ofdocumentation,bothduetothelackofdataontheactual distributionofdamageandthelackofknowledgeofthe replacementcosts.Eventhoughtheestimatedquantitiesare mostlikelybelowtherealvalue,wehavehoweversome examplesthatcanillustratethelossescausedbysomehistoricalearthquakes,eachvaluedinthecirculatingcurrency atthetime.Thus,intheearthquakeof1504inCarmona (Seville)damagewasestimatedat7,562,500maravedies (Gentil 1989);thatofthe1748Montesa(Valencia)earthquakewasquantifi edat116,377.5lb(Alberola 1995),and theearthquakethataffectedLisbonin1755wasestimatedto

havecaused onlyinSpain,damageof70,250,070reais (Martínez-Solares 2001).TheearthquakeinAndalusia (1884)reached5,826,028.66pesetas(MuñozandUdías 1980).Anyoftheseamountstransformedintothepresent currencywouldrevealthesigni ficanteconomiclosses causedbytheseearthquakes,whichpresumablyweremuch lowerthantheywouldbetodaybecausetheelementspresentlyexposedtoriskaremuchmorenumerousand valuable.

3.2.5EarlyInstrumentalData

Iffeltintensitiesarethemaindatausedtoevaluateearthquakesinthehistoricalperiod,thepresentseismicityis characterizedmainlythroughtheanalysisofinstrumental records.Hypocentralcoordinates,magnitudes,momenttensorandotherparametersconsignedoncatalogsareobtained fromtherecordedwaveforms.Butithasnotbeenthisway sincethebeginningoftheinstrumentalrecordsmorethana centuryago.Instrumentalrecordingofearthquakesandits analysishavebeeninconstantevolution,anditshouldbe pointedoutthatthesamecautionsweobservewhendealing witholdmacroseismicdatashouldbeobservedwhenusing resultsfromearlyinstrumentaldata.

SeismoscopeswerepresentintheIberianPeninsulaat leastsince1885(Batlló 2006)andthe firstpeninsularcontinuousrecordingdatesbackto1898(Batlló 2004).Nevertheless,itisnotpossibletospeakaboutafullinstrumental recordofseismicitydowntomagnitudeM3uptothe nineteensixties.Ifwearelookingforepicentreslocatedwith uncertaintieslessthanafewkilometresandmagnitudes accuratetotwotenthsofdegree,thedatemovestothelast decadeofthe20thcentury.

TheevolutionofseismicrecordinginSpainandPortugal followedparallelpaths.Earlyseismographswereall

Table3.2 Seismicsequences

1373Ribagorça(L)4VIII–IX7MR 1427Amer(Gi)3VIII12E 1620–1621Alcoy(A)2VII–VIII7MR 1674Lorca(Mu)2VIII5PMR 1748Estubeny(V)2IX9MR 1755–1756SW.CaboS.Vicente12X59MR 1761SW.CaboS.Vicente2.5VI–VII15MR 1778Granada6VI26E 1788LaSeud’Urgell(L)5VI15E 1791–1792Melilla11VI–VII56E 1804MardeAlborán7VII–VIII17MR 1804Dalias(Al)4VIII–IX51PMR 1806–1807PinosPuente(Gr)12VIII159MR 1826Granada8VI20E 1829Torrevieja(A)4IX–X42PMR 1848Melilla2VII11MR 1848–1849OrihuelaTremedal (Te) 3VI–VII10PMR 1851–1852NE.Palmade Mallorca 13VII18MR 1861–1862Torrevieja(A)12IV25E 1862Torrevieja(A)6V21E 1863Huercal-Overa(Al)4VI–VII42E 1882–1883Archena(Mu)4VI–VII35E 1883VillanuevaCastellon (V) 2.5V6E 1884–1886ArenasdelRey(Gr)31IX–X253MR

mechanicalinstruments.Itisnecessarytowaituntilthe nineteen fifties,aroundtheInternationalGeophysicalYear of1957–58,to findelectromagneticshort-periodinstruments,moreadaptedfortherecordofregionalseismicity. Anewstepforwardwasdoneinthesixties,withthe installationofthreeWorld-WideStandardizedSeismographicNetwork(WWSSN)stationsinthePeninsula (Málaga,PortoandToledo).AsPortugalwasmoreseverely shakenbythelarge28February1969earthquakeinthegulf ofCádiz,theplanninganddeploymentofamodernseismic network(withcentralizedrecordingandoperation)started therealreadyin1970,eventhoughitwasnotcompleted untiltheeighties(Senosetal. 2004).Spainwouldhaveto waituntiltheearlyeightiesforthedeploymentofa telemeteredseismicnetwork.Areviewoftheevolutionof seismicnetworksinSpaincanbefoundinGonzález(2016) andreferencestherein.SimilarinformationforPortugalcan befoundinFerryBorgesetal.(1976)andCustódioetal. (2012).

Thus,seismographssufferedalongevolutionandtheir characteristicschanged(andimproved)withtime(Dewey andByerly 1969;Batlló 2014).Earlyinstrumentalrecords wereobtainedmainlyinpapersupportandtheyhadalimiteddynamicrangeandfrequencyresolution.Theprecise timingoftheinstrumentswasadjustedindependentlyateach stationfewtimesaweek.Thus,thebestclockaccuracies rangeontheorderof1s;butstationtimeoffsetsontheorder of10swerenotexceptional.Epicenterlocationswithsuch inaccuraciesproducelargeerrors.Anexampleoftheellipse errorofthebestinstrumentallocationisthe1909Benavente event,nearLisbon.Theshortestsemi-axisoftheellipseis around50kmlong.Thus,inthiscasethemacroseismic epicenterismorereliable.

Inaddition,someofthepresentlyconsignedparameters andmethodsusedtocharacterizeseismicitywereunknown uptorecenttimes.EarthquakeMagnitudewasdefinedfor the fi rsttimebyRichter(1935).Ifhypocentrallocationusing linearleastsquareswasalreadydevisedbyGeiger(1910)

Another random document with no related content on Scribd:

medium, a computer virus, or computer codes that damage or cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGESExcept for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH

1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project

Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form

accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and

distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.