The flp microsatellite platform flight operations manual 1st edition jens eickhoff (eds.) - The 2025

Page 1


Visit to download the full and correct content document: https://textbookfull.com/product/the-flp-microsatellite-platform-flight-operations-manua l-1st-edition-jens-eickhoff-eds/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

The Instrument Flight Manual The Instrument Rating Beyond 8th edition William K. Kershner

https://textbookfull.com/product/the-instrument-flight-manualthe-instrument-rating-beyond-8th-edition-william-k-kershner/

ICAO Doc 8168 6th Edition Aircraft Operations Vol 1 Flight Procedures Icao

https://textbookfull.com/product/icao-doc-8168-6th-editionaircraft-operations-vol-1-flight-procedures-icao/

Electrical submersible pumps manual: design, operations, and maintenance Second Edition Takács

https://textbookfull.com/product/electrical-submersible-pumpsmanual-design-operations-and-maintenance-second-edition-takacs/

ICAO Doc 8168 7th Edition Aircraft Operations Vol 2

Construction of Visual and Instrument Flight Procedures Icao

https://textbookfull.com/product/icao-doc-8168-7th-editionaircraft-operations-vol-2-construction-of-visual-and-instrumentflight-procedures-icao/

Unit Operations of Chemical Engineering, 7th Edition, solutions manual only Warren Mccabe

https://textbookfull.com/product/unit-operations-of-chemicalengineering-7th-edition-solutions-manual-only-warren-mccabe/

Flight Mechanics Theory of Flight Paths 1st Edition

Angelo Miele

https://textbookfull.com/product/flight-mechanics-theory-offlight-paths-1st-edition-angelo-miele/

Tallinn Manual 2 0 on the International Law Applicable to Cyber Operations 2nd Edition Michael N. Schmitt

https://textbookfull.com/product/tallinn-manual-2-0-on-theinternational-law-applicable-to-cyber-operations-2nd-editionmichael-n-schmitt/

Modern C 1st Edition Jens Gustedt

https://textbookfull.com/product/modern-c-1st-edition-jensgustedt/

Modern C 1st Edition Jens Gustedt

https://textbookfull.com/product/modern-c-1st-edition-jensgustedt-2/

The FLP Microsatellite Platform

Flight Operations Manual

SpringerAerospaceTechnology

Moreinformationaboutthisseriesathttp://www.springer.com/series/8613

TheFLPMicrosatellite Platform FlightOperationsManual

Germany

ISSN1869-1730

SpringerAerospaceTechnology

ISSN1869-1749(electronic)

ISBN978-3-319-23502-8ISBN978-3-319-23503-5(eBook) DOI10.1007/978-3-319-23503-5

LibraryofCongressControlNumber:2015950460

SpringerChamHeidelbergNewYorkDordrechtLondon © SpringerInternationalPublishingSwitzerland2016

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.

Printedonacid-freepaper

SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com)

Foreword

DearReaders,

Oneofthemostcommontrendsinthespacesectoristheevolutionofsmall satellites.Thisdevelopmentwillbeintensifiedinthenextyears.Smallsatellitesof anykindofferalotofopportunities;nomatterifitissmallsatelliteofmicro-,nanoorpico-class.

Notleast,smallsatellitesenablealotofdifferententitieswithnewchancestobe spaceactors.Entitieslikeuniversitiesordevelopingcountriesbringanewlookon spacerelatedquestions.Thatisareasontowelcomeanynewtechnologyhelping thosetoparticipate.Attheendwe findinsomerespectsanewspace “democracy.”

Thisgenerationexperiencesmoreandfastertechnologicalnewdevelopments. Miniaturizationimpliesthecoreofit.Thereforeitisaforward-lookingideato developnotonlyanewclassofsatellitesbutanewplatform.Aplatformwithits subsystemsprovidesadaptationsandcanbeusedforavarietyofdifferentpayloads. Thatisthebasicideaofthe FutureLow-costPlatform (FLP).TheGerman AerospaceCenterDLRsupportedthatideafromitsearlybeginningsuptonow.

EditorJensEickhoffandalltheauthorssubmitaformidablecompendium the “FlightOperationsManual.”

Thisbookisausefulintroductionandapracticalhelpforallwhowanttobase theirworkontheFLP,eveniftheywanttofamiliarizeortodeepentheir knowledge.

Iwishtoanyreadergreatbenefitbystudyingthemanualandgreatsuccessfor thisoeuvre.

June2015 Dr.GerdGruppe

MemberoftheExecutiveBoardofDLR GermanAerospaceCenterDLR Cologne,Germany

Preface

Thismanualrepresentsthe flightoperationshandbookforthe “FutureLow-Cost Platform ” (FLP),amicrosatelliteplatformdevelopedbytheInstitutfür Raumfahrtsysteme,UniversitätStuttgart,Germanywiththeengineeringsupport fromAirbusDSGmbH,Friedrichshafen,Germany.

TheFLPisathree-axis-stabilizedsatelliteplatformforthe100–150kgclassof satellitescorrespondingtoapproximately1m3 size.Themanualwasdevelopedin parallelto fi nalassemblyandtestphaseofthe fi rstsatellitebasedonthisFLP platform the “FlyingLaptop” fromtheIRS,Stuttgart.

Sincethemanualservesashandbookforthe flightoperatorsduringmission controlitprovidesathoroughinsightintotheperformanceandarchitectureofthe platformandtheandtheoperationstechniques informationnotavailablefor studentsinclassicacademicliterature.Themanualisthereforestructuredforan efficienttrainingofnewspacecraftoperators(i.e.,studentsbeingtrainedtocontrol theuniversitysatellite)andthusitdoesnotfollowdocumentcontentguidelinesfor FlightOperationsManualsfromESA,NASA,oranyotheragencystandards.

AlthoughthemanualfocusesonthegenericplatformtoprovideadocumentationforfutureFLP-basedspacecraft,itquotesforsomepassagesandelements missionspeci ficdata,takenfromthe “FlyingLaptop” projectforbetterillustration purposes,suchasfortopicslike

• theinterfacesbetweenplatformandpayloads,

• thethermalcontrolsubsystem whichobviouslyalwayscoverstheentire spacecraft,

• thegroundinfrastructuresfromStuttgartandDLR/GSOCbeingusedforthis missionand

• anumberoflimittablevaluesandeventtablesinthechaptersandannexes.

The firstFLP-basedsatellite “FlyingLaptop” providesonlyanattitudecontrol subsystembutdoesnotyetfeaturepropulsionmodulefororbitcontrol.Italsodoes notyetprovideaSpaceWire-basedpayloadcontrolandpayloaddataprocessing network.BothsuchelementshavebeenstudiedbyAirbusDS,Friedrichshafenfor

• anESAPhase-Aspacedebrisdetectionmissioncalled “Space-basedSpace Surveillance” and

• inanR&TstudycalledOBC-SAtogetherwithDLR,FraunhoferFOKUSand otherpartners.

Someverybriefsectionsonthesetopics includingtheupgradedonboard computerdesignundertest areincludedinthismanualtodemonstratethe potentialofthearchitecture.Thecorrespondingliteratureandpapersarecitedinthe references.InhouseAirbusDSthisenhanceddesignwithanupgradedonboard computer,SpaceWirepayloadequipmentnetworkandpropulsionsubsystemis called “FLPGeneration2.”

June2015

DonationforLife

WiththeroyaltiesofthisbooktheauthorssponsortheGermanandinternational bonemarrowdonor ’sdatabaseforthe fightagainstleukemiaandotherbloodcancer variants.Manyofthesepatientscanonlybesavedbyabonemarrowtransplantand needacompatibledonor.

Germany: DKMSDeutsche Knochenmarkspenderdatei gemeinnützigeGesellschaftmbH Phone:+49-(0)7071-943-0 https://www.dkms.de/

USA: www.deletebloodcancer.org/

UK: www.deletebloodcancer.org.uk

Poland: www.dkms.pl

Spain: www.dkms.de/de/fundacióndkms-españa

1IntroductiontotheMicrosatellitePlatform

1.8CoreDataHandlingSubsystem......................12 1.9FLPPayloadControlComputer.....................13

1.10AttitudeControlSubsystem........................14 1.10.1SensorsandActuators.....................15 1.10.2SatelliteSystemModes....................17

1.11ReactionControlSubsystem........................19

1.12CommunicationSubsystem.........................20

1.13ThermalControlSubsystem........................21

2.1SpacecraftConfigurationHandlingConcept.............26

2.1.7CoarseNadirPointingMode.................32

2.1.8OperationalModes

2.1.9OperationalModes

2.1.11OpenModeConcept......................34

2.1.12ModeTablesandSequencesControlService.....34

2.1.13SpacecraftEquipmentOperationVersusModes....47

2.4.1PUS-Service1

2.4.2PUS-Service2

2.4.3PUS-Service3

2.4.4PUS-Service4

2.4.5PUS-Service5

2.4.6PUS-Service6

2.4.7PUS-Service8

2.4.8PUS-Service9

2.4.9PUS-Service11

2.4.10PUS-Service12

2.4.11PUS-Service15

2.4.12PUS-Service17

2.4.13PUS-Service18

2.4.14PUS-Service19

2.4.15PUSService200

2.4.16PUS-Service201

2.4.17PUS-Service202

2.4.18PUS-Service203

3DataHandlingandControlConcept ......................73

UlrichMohr,BastianBätzandJensEickhoff

3.1OnboardSoftwareArchitecture......................74

3.1.1OBSWHierarchyConcept..................75

3.1.2Command/ReplyFlowThroughtheOBSW......78

3.2OBSWObjectTypes.............................80

3.2.1ServiceObjects..........................81

3.2.2DeviceHandlerObjects....................81

3.2.3AssemblyObjects........................86

3.2.4ControllerObjects........................87

3.2.5SubsystemObjects........................89

3.2.6Top-LevelSystemObject...................89

3.2.7ObjectExecution.........................89

3.2.8OBSWObject-IDsandPRIDs...............90

3.3ObservabilityFunctionsProvidedbytheOBSW..........93

3.3.1CommandVerification.....................93

3.3.2CyclicHK.............................93

3.3.3EventMessages..........................94

3.4FLPSoftwareDynamicArchitecture..................95

3.4.1Process/TaskManagement..................96 3.4.2ObjectTasks............................97

3.4.3PollingSequenceTable....................98

3.4.4DynamicScheduling......................100

4.1On-BoardDataHandlingSubsystem..................104

4.2CombinedDataandPowerManagementInfrastructure.....104

4.2.1ThePCDUasAnalogRIU..................106

4.2.2ACombined-ControllerforPower andDHSFDIR..........................106

4.2.3CompletenessofSystemArchitecture...........107

4.3DataManagement...............................109

4.3.1PROMData............................110

4.3.2I/O-BoardPersistentRAM..................111

4.3.3OBCRAMandPROMDirectAccess..........111

4.4SystemBootatLauncherSeparation..................112

4.5OBSWControlledFunctions.......................114

4.6CoreDHSSubsystemControl......................115

4.6.1I/O-BoardHandler........................115

4.6.2I/O-BoardAssembly......................117

4.6.3CoreDHSController......................118

4.6.4CoreDHSModeTransitionsandTelemetry......119

5PowerSupplySubsystem ..............................121

Kai-SörenKlemichandBastianBätz

5.1SubsystemOverview.............................122

5.2SolarPanels...................................123

5.3SolarArrayDeploymentMechanism..................124

5.4Battery.......................................127

5.4.1GeneralMonitoring.......................129

5.4.2BatterySoCEstimation....................131

5.4.3OperatingtheBattery......................133

5.5PowerControlandDistributionUnit..................134

5.5.1PowerControlandDistributionFunctions.......135

5.5.2PCDUDesignOverview...................139

5.5.3PCDUBoot-upSequenceandPCDUModes.....141

5.5.4SpecificPCDUFunctionsintheCDPI Architecture............................143

5.5.5DiversePCDUFunctions...................144

5.6PowerSubsystemControl.........................146

5.6.1PCDUDeviceHandler.....................148

5.6.2PSSController..........................148

5.6.3PowerSubsystemModeTransitions andTelemetry...........................156

5.6.4PowerSubsystemObject-IDs,ControllerVariables andLimits.............................159

5.6.5PowerSubsystemVariables,Limits, andParameters..........................160

6PlatformCommunicationSubsystem ......................173

JensEickhoffandKai-SörenKlemich

6.1TTCSubsystemOverview.........................174

6.2SignalAcquisitionProcedure.......................177

6.3TTCSubsystemControl...........................178

6.3.1TTCSubsystemDeviceHandlers.............179

6.3.2TTCSubsystemAssemblies.................182

6.3.3TTCSubsystemObject-IDs.................183

6.3.4TTCController..........................184

6.3.5TTCSubsystemModeTransitionsandTelemetry...186

7AttitudeControlSubsystem .............................195

OliverZeile,UlrichMohr,BastianBätzandNicoBucher

7.1SubsystemOverview.............................196

7.2MissionObjectivesandACSSubsystemModes..........197

7.3Magnetometers.................................197

7.4SunSensorUnit................................198

7.5GPSReceiverSystem............................200

7.6FiberopticGyroscopes............................201

7.7StarTracker...................................203

7.8ReactionWheels................................204

7.9Magnetotorquers................................205

7.10ExtensionsforFLPGeneration2....................206

7.11ACSSubsystemControl..........................208

7.11.1ACSSubsystemModes....................209

7.11.2ACSDeviceHandlers.....................209

7.11.3ACSAssemblies.........................221

7.11.4ACSController..........................225

7.11.5ACSSubsystemModeTransitionsandTelemetry...231

8ThermalControlSubsystem ............................245 FabianSteinmetzandSebastianKeil

8.1ThermalSubsystemOverview.......................246

8.2Sensors,Calibration,Limits........................254

8.3TCSSubsystemControl...........................256

8.3.1InitialControlConcept.....................258

8.3.2TCSController..........................260

8.3.3TCSSubsystemModeTransitionsandTelemetry...269

9PayloadControlSubsystem

PhilippHagel,PaulWalkerandJensEickhoff

9.1AspectsofPayloadControlandDataHandling...........272

9.1.1PayloadControlviathePlatformOBC..........273

9.1.2PayloadControlviaDedicatedPMC...........273

9.2PayloadControlontheFirstFLPBasedSatellite.........275

9.2.1PMCHardware..........................275

9.2.2PMCMainboardElementsandFunction........277

9.2.3PMCSoftware..........................278

9.3PayloadControlinNetwork-CentricArchitectures.........282

9.3.1FLPGeneration2SpaceWireNetwork..........283

9.3.2FLPGeneration2TargetArchitecture..........287

10FailureDetection,IsolationandRecoveryConcept

RouvenWittandJensEickhoff

10.1.2FDIRRequirements.......................293

10.1.3FaultToleranceThroughRedundancy..........295

10.1.4RedundancyonFLP......................297

10.1.5ThreeStagesofDeviceFailureDetection........298

10.1.6SystemFailureDetection...................298

10.1.7EventUtilization.........................299

10.2.1ComponentFunctionsDuringFailureHandling....305 10.2.2PCDUasReconfigurationUnit...............307 10.2.3ReconfigurationSequence...................310

10.2.4HPC-BasedSpacecraftReconfiguration.........318

11SatelliteMissionPhasesandPlanning

JensEickhoff,MichaelLengowskiandKai-S

12StuttgartMissionControlInfrastructure

JensEickhoff,NicoBucher,MaximilianBöttcher, CharlesThibaut,DougieJohnmanandBryanTatman 12.1PlatformControlInfrastructure......................422

12.1.1DigitalTM/TCProcessingComponents.........424 12.1.2RFSignalProcessing......................428 12.1.3TheHighFrequencyChain..................441 12.1.4TheAntennaSystem......................442

12.2FlightDynamicsInfrastructure......................446

13Stuttgart/DLRInfrastructureforLEOP ...................451 PeterWillburger,KlausWiedemann,RolfKozlowski,MarcinGnat, CiprianFurtuna,JensEickhoffandNicoBucher

13.1LinkBetweenIRSandtheDLRAntennaStation.........452

13.2DLRAntennaStationInfrastructure...................453

13.3GSOCSystemsSupportingtheFLPMission............457

13.3.1SpaceLinkExtension(SLE)System...........457

13.3.2AutomatedFileDistributionSystem............460 13.4OperationsWorkflow............................462

13.4.1SchedulingProcess.......................462

13.4.2LEOPPhase............................464

13.4.3CommissioningPhase.....................464

13.4.4RoutinePhase...........................465

14EarthObservationMissionPlanning ......................467

Kai-SörenKlemich,GianlucaCerroneandWolfgangHeinen

14.1MOISInfrastructure.............................468 14.2SchedulerResourceModel.........................472 14.3MissionPlanningInfrastructureandWorkFlow..........473

15FlightProcedures ....................................481

Kai-SörenKlemichandJensEickhoff

15.1DefinitionsforFLPFlightProcedures.................482

16FLPMissionInformationDatabase

Kai-S

17.3SpacecraftTelecommand/TelemetryDefinitions..........512

17.3.1TelecommandDefinitions...................512

17.3.2TelemetryDefinitions......................556

17.3.3EventTelemetryDefinitions.................556

17.4FLPFlightProcedures............................616

17.5TTCSubsystemDataSheets........................623

17.5.1BitErrorRateReferenceData................623

17.5.2TTCHousekeepingParameterReferenceData....624

17.6TC/TMLinkBudgetsfortheIRSAntennaStation........631 17.7PowerSubsystemDataSheets......................635

17.7.1PCDUSwitchandFuseAllocation............635

17.7.2PowerConsumptionVersusModes............637 17.7.3PowerBudget...........................642

17.8TCSSubsystemDataSheets........................642 17.9MassBudget..................................647

17.10OrbitAnalysis.................................648

17.10.1OrbitEnvironment........................648

17.10.2OrbitDefinitionfortheFLPMission FlyingLaptop...........................649

17.10.3LongitudinalDisplacementperPass andOrbitRepeatCycle....................651 17.10.4ContacttoIRSandOtherGroundStations.......652 17.10.5Sun,UmbraandPenumbraPhases.............655 17.10.6OrbitalDrift............................657 17.10.7Multi-angleEarthObservation................659

17.11SpacecraftSkinConnectorPanelLayout...............659 17.12Red-TaggedItems...............................664

17.13Green-TaggedItems.............................664

17.14TwoLineElementOrbitDataDefinitions..............665

Contributors

BastianBätz InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart, Germany

MaximilianBöttcher InstituteofSpaceSystems,UniversityofStuttgart, Stuttgart,Germany

NicoBucher InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart, Germany

GianlucaCerrone RHEASystemS.A.,Wavre,Belgium

JensEickhoff AirbusDSGmbH,Friedrichshafen,Germany

CiprianFurtuna DeutschesRaumfahrtKontrollzentrum(GSOC), Oberpfaffenhofen,Germany

MarcinGnat DeutschesRaumfahrtKontrollzentrum(GSOC),Oberpfaffenhofen, Germany

PhilippHagel InstituteofSpaceSystems,DeutschesZentrumfürLuft-und Raumfahrt,Bremen,Germany

WolfgangHeinen RHEASystemS.A.,Wavre,Belgium

DougieJohnman SatelliteServicesB.V.,Noordwijk,TheNetherlands

SebastianKeil InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart, Germany

Kai-SörenKlemich InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart, Germany

RolfKozlowski DeutschesRaumfahrtKontrollzentrum(GSOC), Oberpfaffenhofen,Germany

MichaelLengowski InstituteofSpaceSystem,UniversityofStuttgart,Stuttgart, Germany xxi

UlrichMohr InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart, Germany

FabianSteinmetz InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart, Germany

BryanTatman SatelliteServicesB.V.,Noordwijk,TheNetherlands

CharlesThibaut InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart, Germany

PaulWalker 4LinksLtd,MiltonKeynes,UK

KlausWiedemann DeutschesRaumfahrtKontrollzentrum(GSOC), Oberpfaffenhofen,Germany

PeterWillburger DeutschesRaumfahrtKontrollzentrum(GSOC), Oberpfaffenhofen,Germany

RouvenWitt InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart, Germany

OliverZeile InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart, Germany

Abbreviations

GeneralAbbreviations

a.m.Abovementioned cf.Confer e.g.Examplegiven i.e.Idest->thatis w.r.t.Withrespectto

TechnicalAbbreviations

ADAcceptanceCheck(BypassFlag=0)andData(ControlCommand Flag=0)ModeorAD-Mode

AFDAutomatedFileDistributionSystem

AISAutomaticIdentificationSystem(ShipTracking)

AITAssembly,IntegrationandTest

AOSAttitudeofSight

APIApplicationProgrammingInterface

APIDApplicationID

ASMAttachedSynchronizationMarker(ofaCCSDSCADU)

BCRBatteryChargeRegulator

BDBypassofAcceptanceCheck(BypassFlag=1)andData(Control CommandFlag=0)ModeorBD-Mode

BERBitErrorRate

BoLBeginofLife

BRDFBidirectionalReflectanceDistributionFunction(ofobservedground targets)

CADComputerAidedDesign

CADUChannelAccessDataUnit

CCCombined-Controller

CCSDSConsultativeCommitteeforSpaceDataSystems

CDClockDivider

CDMClockDistributionModule

CDPICombinedDataandPowerManagementInfrastructure

CLCWCommandLinkControlWord

CLTUCommandLinkTransmissionUnit

CPDUCommandPulseDecodingUnit

CPUCentralProcessingUnit

CRCCyclicRedundancyCode

CSPCommandSequenceParameterFile

CTRController

CVPCommandVerificationProfiles

CVSConcurrentVersioningSystem

CWContinuousWaveModeorCW-Mode

DFTDataFlowTest

DHDeviceHandler

DoDDepthofDischarge

DOMDe-Orbiting-Mechanism

DPUDataProcessingUnit(oftheStarTrackers)

DRAMDynamicRandomAccessMemory

ECSSEuropeanCooperationonSpaceStandardization

EDACErrorDetectionandCorrection

EEPROMElectricallyErasablePROM

EoLEndofLife

ESAEuropeanSpaceAgency

ESDElectrostaticDischarge

FCLTUForwardCommunicationsLinkTransmissionUnit

FDEFlightDynamicsEvents

FDIRFailureDetection,Isolation,andRecovery

FMFlightModel

FOGFiberopticGyro

FOMFlightOperationsManual

FPGAFieldProgrammableGateArray

FRAMFerroelectricRandomAccessMemory

GCCGroundControlCenter

GDSGroundDataSystems(DLR)

GPSGlobalPositioningSystem

HFHighFrequency

HKHousekeeping

HPCHighPriorityCommand

HWHardware

I/OInput/Output

IADCUnitedNationsInter-AgencySpaceDebrisCoordinationCommittee

IF Interface

IMBUIntegratedModemandBasebandUnit

IRSInstitutfürRaumfahrtsysteme,InstituteofSpaceSystems, UniversityofStuttgart,Germany

ITARInternationalTrafficinArmsRegulations

ITUInternationalTelecommunicationUnion

JTAGJointTestActionsGroup(TestInterface)

LCLLatchingCurrentLimiter

LEOPLaunchandEarlyOrbitPhase

LHCPLeftHandCircularPolarization

LOSLineofSight

LTANLocalTimeofAscendingNode

LTDNLocalTimeofDescendingNode

MAP-IDMultiplexerAccessPointIdentifier

MCSMissionControlSystem

MGMMagnetometer

MGTMagnetotorquer

MIBMissionInformationBase

MOISManufacturingandOperationsInformationSystem

MRAMMagnetoresistiveRandomAccessMemory

NASANationalAeronauticsandSpaceAdministration

NCTRSNetworkControlandTelemetryRoutingSystem

NISNetworkIntegrationSystem

NORADNorthAmericanAerospaceDefenseCommand

NRZ-LNon-Return-to-ZeroLevel

NRZ-MNon-Return-to-ZeroMode

NV-RAMNon-VolatileRAM

OBCOnboardComputer

OBSWOnboardSoftware

OBSW-DPOnboardSoftwareDataPool

OSOperatingSystem

PCBPrintedCirquitBoard

PCDUPowerControlandDistributionUnit

PLOCPayloadController —“PayloadOnboardComputer”

PPSPulsePerSecond

PROMProgrammableRead-OnlyMemory

PSTPollingSequenceTable

PSUPowerSupplyUnit

PUSESAPacketUtilizationStandard

QAQualityAssurance

RAFRemoteAcquisitionForwarding

RAMRandomAccessMemory

RCFRemoteCallForwarding

RFRadioFrequency

RF-SCOERadioFrequencySpecialCheckoutEquipment

RHCPRightHandCircularPolarization

RISCReducedInstructionSetComputer

RMSRateMonotonicScheduling

ROMRead-OnlyMemory

RTEMSReal-TimeExecutiveforMultiprocessorSystems

RTOSReal-TimeOperatingSystem

RTSReal-TimeSimulator

RWReactionWheel

S/CSpacecraft

S2KSCOS-2000

SASolarArray

SBCSingleBoardComputer

SCIDSpacecraftIdentifier

SCOESpecialCheckoutEquipment

SCVSpacecraftCon figurationVector

SEUSingleEventUpset

SIFServiceInterface

SLESpaceLinkExtension

SoCBatteryStateofCharge

SPARCScalableProcessorArchitecture

SpWSpaceWire

SRAMStaticRandomAccessMemory

SSBSLESwitchboard

SSOSun-SynchronousOrbit

SSRAMSynchronousStaticRandomAccessMemory

STRStarTracker

SUSSunSensor

SVStateVector

SWSoftware

TAATechnicalAssistanceAgreement

TCTelecommand

TCCTelecommandChannelLayer

TCSThermalControlSystem

TFTransferFrame

TIDTotalIonizingDose

TMTelemetry

VCVirtualChannel

VCIDVirtualChannelIdenti fier

WSWorkstation

WSP-CWeilheimSLEProvidertoCortex

XNSExtendedNavigationSolution

Chapter1 IntroductiontotheMicrosatellitePlatform

JensEickhoff

Abstract ThebookrepresentstheFlightOperationsManualofthemicrosatellite platform.Beforedivingintotheoperationsoftheplatformanditssubsystems,into failuremanagementandgroundstationfunctions,thischapterprovidesabrief overviewontheFutureLow-costPlatform(FLP).Itexplainsthebasicconceptof theplatformversusacompletesatellite,itsketchesoutthe fi rstFLPprototype satellite “FlyingLaptop” andexplainswhichpartsrepresentthere-usableplatform. Theseplatformelementscanbetakenoverforothermissionstosignificantly reducethedevelopmenteffort.

Keywords Stuttgartsmallsatelliteprogram Futurelow-costplatform(FLP) Prototypesatellite “FlyingLaptop” Orbitandoperationalmodes Platform re-usability Subsystemsoverview CombinedDataandPowerManagement Infrastructure

J.Eickhoff(&)

AirbusDSGmbH,Friedrichshafen,Germany e-mail:jens.eickhoff@airbus.com

© SpringerInternationalPublishingSwitzerland2016

J.Eickhoff(ed.), TheFLPMicrosatellitePlatform, SpringerAerospaceTechnology,DOI10.1007/978-3-319-23503-5_1

1.1TheUniversitySmallSatelliteProgram

Overthepast6yearsamicrosatelliteplatformhasbeendevelopedatthe “Institut fürRaumfahrtsysteme” (IRS)oftheUniversityofStuttgart,Germanywith substantialcoachingandco-fundingfromitspartnerAirbusDSGmbH, Friedrichshafen,Germany.Thisplatformiscalledthe “FutureLow-costPlatform ” (FLP)anditistargetedforthe50–150kgclassofsmallsatellites,corresponding approximatelytotheupto1m3 volumeclassanditisdesignedforsatellites launchedassecondarypassengers.

TheFLPisafullythree-axisstabilizedplatform.Itissuitedforavarietyof missionscenariosperformingeithernadir-pointingEarthobservationwithe.g. scannerinstruments,ortargetpointingEarthobservatione.g.withcamerainstrumentsorinertialpointinge.g.forastronomicalmissionsandtelescopepayloads andobviouslyforcombinationsthereof.Thetotalpointingerrorduringonepassis lessthan150arcsecandthepointingknowledgeisbetterthan7arcsec.Toachieve thesevalues,stateoftheartstartrackers,magnetometersand fiberopticgyrosas wellasGPSreceiversareusedasavionicssensors.Reactionwheelsandmagnetotorquersareusedasactuators.

The “FlyingLaptop” (seeFig. 1.1)isthe firstsatelliteintheSmallSatProgram oftheIRSandisbasedontheFLPdesign.Ithasbeendevelopedandbuiltprimarily

Fig.1.1 FlyingLaptopartist’sviewandmechanicalconfiguration. © IRS,UniversityofStuttgart

byPh.D.andgraduatestudents,supportedinmanpower,materialandfacilityusage byAirbusDSGmbH,bytheAirbusDSdaughterTESATSpacecom,byspace agencyandresearchfacilities(DeutschesZentrumfürLuft-undRaumfahrt,DLR). Theprojectis financedbythefederalstateofBaden-Württemberg,theuniversity andtheindustrypartners.Attimeofmanuscriptsubmissionthe “FlyingLaptop” hassuccessfullycompleteditsenvironmentaltestcampaign,its finalOnboard Software(OBSW)testsandiswaitingforalaunchopportunity.Thepartnersshare diverseinterestsinthisplatform/satelliteproject:

• Themainprojectgoalsfortheindustryandagencypartnersistoqualifyelectroniccomponentsforspace,inparticulartheelementsoftheinnovative, integratedOBC/PCDUinfrastructureCDPI[47]andtoqualifythe “Future Low-costPlatform” (FLP)—“future” sinceattimeofmanuscriptsubmission it stilllacksin-orbitqualifi cation.

• Fortheuniversitythemissiongoalsareandhavebeentoestablishtheexpertise andinfrastructurefordevelopment,integration,testandoperationsofsatellites attheIRS.Theprogramisalsousedtoimprovetheeducationofstudentsby providingthepossibilityforhandsonexperiencewithinachallengingspace project.Onceinorbit,thesatellitewillbeusedtodemonstratenewtechnologies, toperformEarthobservationandtotrainstudentsasmissionoperatorsusinga state-of-the-artmissioncontrolinfrastructure.

The “FlyingLaptop”—asFLPGeneration1spacecraft isnotyetequipped withanypropulsionsubsystemfororbitcontrol.Formoredetailspleasereferto Sect. 1.11.AirbusDSGmbHmeanwhilehasstudiedanenhancedversionofthe platform FLPGeneration2 featuringahydrazinepropulsionsubsystemfororbit controlandde-orbitingfromhigherorbitaltitudes(Table 1.1).

Dimensions60×70×80cm

Mass117kg

LaunchTypePiggy-Back(secondarypayload)

DesiredOrbitcircular,polar

OrbitAltitude500–650km

AttitudeControl3-axisstabilized

CommunicationsS-band

SolarPanels3(2deployable)

Table1.1 “FlyingLaptop” satellitecharacteristics

1.2SatelliteOrbit

ThesatellitehasbeendesignedforacircularSun-SynchronousOrbit(SSO)witha LocalTimeofDescendingNode(LTDN)between9:30hand11:00h.Asthe operationallifetimeofthissatelliteistargetedtobetwoyearsandthesatellite shouldnotstayinorbitformorethan25yearsafterendoflife(consideringthe EuropeanCodeofConductonSpaceDebrisMitigation[1]),thedesiredorbital altitudeisbetween500and650km.Forde-orbitingafteroperationalusethe satelliteisequippedwithanexperimentalDe-Orbiting-Mechanism(DOM)from TohokuUniversity,Japan.

1.3MechanicalDesignandLauncherInterface

The “FlyingLaptop” isacuboidwithtwodeployablesolarpanels.Ithasatotal massof117kg.Figure 1.1 showsthesatelliteconfigurationwithdeployedsolar panels.Itsmaindimensionsduringlaunchwithundeployedsolarpanelsare600by 702by866mm3 asdepictedinFig. 1.2

Alauncheradapterringisinstalledonthesatellite.Thedepictedvariantis designedtobecomplianttotheSoyuzpiggy-backseparationadapter.Adeployable De-Orbiting-Mechanism(DOM)islocatedinsidethelaunchadapterring.

Thestructureofthe “FlyingLaptop” isahybriddesign.Thelowerpartismade ofintegralaluminumpartsandtheupperpart,wheretheopticalpayloadsare installed,consistsofcarbon- fiberreinforcedsandwichstructureswhichprovidea morestablealignmentofthecamerasduetotheirlowthermalexpansion.The thermalcontrolsubsystem(TCS)ofthesatelliteconsistsofseveraltemperature sensorsandheatersinsidethesatelliteaswellasMulti-Layer-Insulationandradiatorsontheoutside.Noactivecoolingsystemisused(Fig. 1.3).

1.4TechnologyandPayloads

Asmentionedabove,thepurposeofthe “FlyingLaptop” missionistodemonstrate newtechnologiesandtospacequalifytheFLPplatformdesign.Themainasset althoughitisnotapayload concernsthe “CombinedDataandPower ManagementInfrastructure ” (CDPI)withtheOnboardComputer(OBC)basedona LEON3FTprocessor,SpaceWiredrivenI/O-BoardswhichserveasacommunicationinterfacebetweentheProcessor-Boards,fullCCSDS/PUSstandardbased Telecommand(TC)andTelemetry(TM)viaCCSDS-Decoder/Encoder-Boardsand theOBCrecon figurationperformedbytheCDPICombined-Controllerinthe PCDU.TheinternationalpartnerconsortiumfortheCDPIarchitectureisAirbusDS GmbH(Germany),AeroflexColoradoSpringsInc.(USA),AeroflexGaislerAB

© IRS,UniversityofStuttgart

(Sweden),4LinksLtd.(UK),HEMAKabeltechnikGmbH&Co.KG(Germany) andVectronicAerospaceGmbH(Germany).Formoredetailspleasereferto[47]. ThemainpayloadoftheFLPmission “FlyingLaptop”istheMulti-spectral ImagingCameraSystem(MICS),whichconsistsofthreeseparatecameras,using

Fig.1.2 FlyingLaptopsatellitelaunchconfiguration.

Another random document with no related content on Scribd:

back

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.