On surface synthesis proceedings of the international workshop on surface synthesis école des houche

Page 1


On Surface Synthesis Proceedings of the International Workshop On Surface Synthesis École des Houches Les

Houches 25 30 May 2014 1st Edition André

Gourdon (Eds.)

Visit to download the full and correct content document: https://textbookfull.com/product/on-surface-synthesis-proceedings-of-the-international -workshop-on-surface-synthesis-ecole-des-houches-les-houches-25-30-may-2014-1s t-edition-andre-gourdon-eds/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

On Surface Atomic Wires and Logic Gates Updated in 2016 Proceedings of the International Workshop on Atomic Wires Krakow September 2014 1st Edition Marek Kolmer

https://textbookfull.com/product/on-surface-atomic-wires-andlogic-gates-updated-in-2016-proceedings-of-the-internationalworkshop-on-atomic-wires-krakow-september-2014-1st-edition-marekkolmer/

Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houches Summer School: Volume 103, August 2014 1st Edition Claudio Chamon

https://textbookfull.com/product/topological-aspects-ofcondensed-matter-physics-lecture-notes-of-the-les-houches-summerschool-volume-103-august-2014-1st-edition-claudio-chamon/

COOP 2014 Proceedings of the 11th International Conference on the Design of Cooperative Systems 27 30 May 2014 Nice France 1st Edition Chiara Rossitto

https://textbookfull.com/product/coop-2014-proceedings-ofthe-11th-international-conference-on-the-design-of-cooperativesystems-27-30-may-2014-nice-france-1st-edition-chiara-rossitto/

The Semantic Web Trends and Challenges 11th

International Conference ESWC 2014 Anissaras Crete Greece May 25 29 2014 Proceedings 1st Edition Valentina Presutti

https://textbookfull.com/product/the-semantic-web-trends-andchallenges-11th-international-conference-eswc-2014-anissarascrete-greece-may-25-29-2014-proceedings-1st-edition-valentinapresutti/

Stochastic processes and random matrices : lecture notes of the Les Houches Summer School First Edition. Edition Altland

https://textbookfull.com/product/stochastic-processes-and-randommatrices-lecture-notes-of-the-les-houches-summer-school-firstedition-edition-altland/

Advances in Information and Computer Security 9th

International Workshop on Security IWSEC 2014 Hirosaki

Japan August 27 29 2014 Proceedings 1st Edition Maki Yoshida

https://textbookfull.com/product/advances-in-information-andcomputer-security-9th-international-workshop-on-securityiwsec-2014-hirosaki-japan-august-27-29-2014-proceedings-1stedition-maki-yoshida/

The Effect of Surface Wettability on the Defrost Process 1st Edition Yang Liu

https://textbookfull.com/product/the-effect-of-surfacewettability-on-the-defrost-process-1st-edition-yang-liu/

Advanced Data Assimilation for Geosciences Lecture

Notes of the Les Houches School of Physics Special Issue June 2012 1st Edition Eric Blayo

https://textbookfull.com/product/advanced-data-assimilation-forgeosciences-lecture-notes-of-the-les-houches-school-of-physicsspecial-issue-june-2012-1st-edition-eric-blayo/

Many Body Physics with Ultracold Gases Lecture Notes of the Les Houches Summer School Volume 94 July 2010 1st Edition Christophe Salomon

https://textbookfull.com/product/many-body-physics-withultracold-gases-lecture-notes-of-the-les-houches-summer-schoolvolume-94-july-2010-1st-edition-christophe-salomon/

Advances in Atom and Single Molecule Machines

Series Editor: Christian Joachim

On-Surface Synthesis

Proceedings of the International Workshop On-Surface Synthesis, École des Houches, Les Houches

25–30 May 2014

AdvancesinAtomandSingleMolecule Machines

Serieseditor

ChristianJoachim,Toulouse,France

EditorialBoard

L.Grill

F.Jelezko

D.Martrou

T.Nakayama

G.Rapenne

F.Remacle

K.Ohmori

Moreinformationaboutthisseriesathttp://www.springer.com/series/10425

On-SurfaceSynthesis

ProceedingsoftheInternationalWorkshop On-SurfaceSynthesis, ÉcoledesHouches, LesHouches25–30May2014

ISSN2193-9691ISSN2193-9705(electronic) AdvancesinAtomandSingleMoleculeMachines

ISBN978-3-319-26598-8ISBN978-3-319-26600-8(eBook) DOI10.1007/978-3-319-26600-8

LibraryofCongressControlNumber:2015957046

© SpringerInternationalPublishingSwitzerland2016

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland

Preface

Thisbookcomprisescontributionsofthe fi rstPAMSworkshopthatwasorganized attheEcoledePhysiquedesHouches(France),inMay2014.Thisworkshophas broughttogetheranumberofleadingscientistsworkingonvariousstrategiesto synthesizeandstudysinglemolecules,1Dand2Dcovalentlybondedmolecular architecturesobtainedbyon-surfacesynthesis.

PAMS(forplanaratomicandmolecularscaledevices)isafour-yearlarge-scale integratingprojectfundedbytheEuropeanCommission’sFETprogramme.Itwas launchedinOctober2013withtheobjectivetoexploreallscienti ficandtechnologicalaspectsoftheconceptionandthefabricationofplanaratomicandmolecular scaleelectronicdevicesonSi:H,Ge:H,AlN,CaCO3 andCaF2 surfaces,fabricated withatomicscaleprecisionandreproducibility.Thethemesdescribedinthisvolumehavehugepotentialfortheinsitupreparationoflargemolecularlogicgates andhigh-conductancemolecularwiresbyon-surfacesynthesis,inultra-clean environmentasexploredbythePAMSchemists,physicistsandtheoreticians.

Inlessthanadecade,on-surfacesynthesisbycovalentcouplingofreactive precursorsadsorbedonmetallic,semiconductingorinsulatingsurfaceshasemerged asapowerfulapproachforthefabricationofnovelmoleculararchitectureswith potentialapplicationsinnanoelectronics,optoelectronicsandother fieldswhere newlow-dimensionalmaterialswithtailoredpropertiesareneeded.Usingthis bottom-uproute,atomicallyprecisegraphenenanoribbons,polyphthalocyanines films,metalcoordinationframeworks,porousmetalnetworks,superhoneycomb frameworks,etc.,havebeensynthesized.Anditmustbeemphasizedthatmost oftheselargemolecularstructurescannotbesynthesizedbystandardin-solution syntheses.

Theaimofthisbookistoregroupcontributionsattheforefrontofadvancesin thisveryactive field,focusingontheunderstandingofinter-orintramolecular chemicalcouplingmechanisms,onnewreactions,onnewsubstratesandonoptimizationofreactions.

IthanktheICT-FETprogramme,theLabexNEXTandEMPA,for financial supportinorganizingthisworkshop,andMarieHervé,PAMSEuropeanManager, forherhelpinpreparingthisworkshopandthisbook.

André Gourdon

Contents

TheEmergenceofCovalentOn-SurfacePolymerization ............1

ChristopheNacci,StefanHechtandLeonhardGrill

TransitionMetalsTriggerOn-SurfaceUllmannCouplingReaction: Intermediate,CatalystandTemplate ..........................23

L.Dong,S.Wang,W.Wang,C.Chen,T.Lin,J.Adisoejoso andN.Lin

On-Surface(Cyclo-)DehydrogenationReactions:RoleofSurface Diffusion ...............................................43

José A.Martín-Gago,AnnaL.PinardiandJosé I.Martínez

EnediyneCyclizationChemistryonSurfacesUnderUltra-High Vacuum ...............................................85

DimasG.deOteyza

On-SurfaceSynthesisbyAzide–AlkyneCycloadditionReactions onMetalSurfaces ........................................101

OscarDíazArado,HarryMönigandHaraldFuchs

On-SurfaceSynthesisofPhthalocyanineCompounds ..............115 E.Nardi,M.Koudia,S.Kezilebieke,J.-P.BucherandM.Abel

MolecularOn-SurfaceSynthesis:MetalComplexes,Organic Molecules,andOrganometallicCompounds .....................131

J.MichaelGottfried

On-SurfaceSynthesisofSingleConjugatedPolymerChains forSingle-MoleculeDevices .................................167 YujiOkawa,SwapanK.Mandal,MarinaMakarova,ElisseosVerveniotis andMasakazuAono

On-SurfacesSynthesisonInsulatingSubstrates ..................181 MarkusKittelmann,RobertLindnerandAngelikaKühnle

Bottom-UpFabricationofTwo-DimensionalPolymersonSolid Surfaces ...............................................199

MarkusLackinger

On-SurfaceDynamicCovalentChemistry

Jie-YuYue,Li-JunWanandDongWang

SynthesisofAtomicallyPreciseGraphene-BasedNanostructures: ASimulationPointofView .................................237

L.Talirz,P.Shinde,D.PasseroneandC.A.Pignedoli

FormationMechanismsofCovalentNanostructuresfromDensity

FunctionalTheory ........................................269

JonasBjörk

TheEmergenceofCovalentOn-Surface Polymerization

Abstract Thecovalentlinkingofmolecularbuildingblocksdirectlyinthe two-dimensionalconfinementofasurface,theso-calledon-surfacepolymerization, hasdevelopedrapidlyinthelastyearssinceitrepresentsareliablestrategytogrow functionalmolecularnanostructuresinacontrolledfashion.Here,wereviewthe growthofsuchstructuresviaon-surfaceUllmanncouplingandhighlightthemajor chemicalandphysicalaspects.Thesesystemsaretypicallystudiedbyscanning tunnelingmicroscopythatallowsexplorationoftheinitialmonomerspecies, intermediateproductsand fi nalnanostructureswithsub-molecularspatialresolution.Inthisway,thechemicalstructuresoftheexsitusynthesizedmolecular buildingblocksaredirectlycorrelatedwiththeoutcomeofthechemicalreaction. Wealsopresentexampleswithdifferentmonomerspeciesinviewofgrowing heterogeneousmolecularstructuresaswellastheimportanceofthemolecular interactionwiththetemplatesurfaceasafurtherkeyparametertocontrolthe moleculardiffusionandtunethe finalmoleculararchitecture.

1Introduction

Assemblingfunctionalmolecularbuildingblocksonasurfaceisapromisingroute towardcentralobjectivesofnanotechnologyandinparticularmolecularelectronics sinceitmightallowthegrowthofelectroniccircuitsbasedonthefunctionalitiesof individualmolecularspecies[1, 2].Otherbottom-upstrategiesleadtothegrowthof

C.Nacci L.Grill(&) DepartmentofPhysicalChemistry,Fritz-Haber-InstituteoftheMax-Planck-Society, 14195Berlin,Germany e-mail:leonhard.grill@uni-graz.at

C.Nacci L.Grill DepartmentofPhysicalChemistry,UniversityofGraz,8010Graz,Austria

S.Hecht(&) DepartmentofChemistry,Humboldt-Universit ätzuBerlin,12489Berlin,Germany e-mail:sh@chemie.hu-berlin.de

© SpringerInternationalPublishingSwitzerland2016

A.Gourdon(ed.), On-SurfaceSynthesis,AdvancesinAtomandSingle MoleculeMachines,DOI10.1007/978-3-319-26600-8_1

extendedsurfacesupportedtwo-dimensionalnetworkswithoutstandingtechnologicalrelevance[3, 4].Thus,althoughtheprecursormoleculesdonotcontaina functioninthesecases,theassemblyofmoleculesinthetwo-dimensionalconfinementofasurfacecanbeveryefficient.Inthe fi eldofweakerintermolecular interactions,manysuccessfulattemptsofgrowingsupramolecularpatternsatsurfaces[5–8]havebeenachieved.However,theuseofcovalentlinkingtostabilize moleculararrangementsatsurfacesattractedconsiderableattentioninthelastyears [9–27],becomingnowadaysawell-establishedtechnique.Thisapproachresultsin thepresenceofmolecularpolymersonsurfacesthatcouldhardlybedepositedonto thesurfaceundercleanconditionsbyusingconventionaltechniquesandpreventing anydefragmentationprocess[28].Thenatureofthecovalentbondprovideshigh stabilityandrobustnesstotheresultingnanostructuresandallowsforefficient “throughbond” chargetransport[29–31].

Inthischapter,wereviewthedevelopmentandconceptualfoundationofthe covalenton-surfacepolymerizationtechnique.Asourandmanyothers’ workis basedontheUllmannreaction[32],wefocusonthearyl–arylhomocouplingof halogenatedmonomerbuildingblockstypicallyperformedoncoinagemetalsurfaces.We firstprovidechemicalconsiderationsregardingthereactionmechanism andderivecriticalparametersforsuccessfullycarryingouton-surfacepolymerizations.Usingthisapproachcovalentlyboundmolecularassemblieswithapredefinedshapeandsizeareproducedunderultrahighvacuum(UHV)conditions.We showhowthe finaltopologyofthedesiredmolecularaggregatesisintimately connectedtothedesignofthesingle-moleculebuildingconstituents.Different growthstrategies,e.g.,one-stepversustwo-step(hierarchical)processes,can eventuallyleadtothesame finalmoleculararchitecture:themajordifferences betweenthetwocasesarehighlighted.Thesubstratesurfacecorrugationcanbe furthermoreexploitedtodriveon-surfacesynthesisprocessesalongcertaindirectionsandpromotethegrowthofnanostructureswithprede finedorientations.Inthis regard,theimportanceofthesurfaceanisotropyisdiscussed.

2ResultsandDiscussions

2.1On-SurfacePolymerizationTechnique

Ingeneral,theon-surfaceassemblyofmolecularbuildingblocksintolargeand extendedstructuresaccordingtoabottom-upschemecanbeachievedbydifferent strategies.Ifstabilizedbyratherweaknon-covalentintermolecularinteractions[5–8, 33],thesenanostructuresbelongtothe fieldofsupramolecularchemistry[34].For instancedipole–dipoleinteractionshavebeenusedtogovernthemolecularaggregationofporphyrinderivatives,carryingtwo trans-positionedcyanophenylgroups, intolonglinearchainsonaAu(111)surface(Fig. 1a)[6].Twoopposingcyanophenyl groupscanengageinaself-complementarydipolarinteraction(hydrogenbond) therebydrivinganddirectingtheself-assemblyintoelongatedporphyrinchains.

Fig.1 Supramolecularself-assembledmolecularstructures. a STMimageat63Kof trans-BCTBPPwiresholdtogetherviadipole–dipoleinteractionsonAu(111)(Reproducedfrom [6],withpermission). b Two-dimensionalnetworksofPTCDIandmelaminemoleculesstabilized viaH-bonding(modelstructuresofthemoleculesandnetworkintheupperpanel).Inthelower panel,anSTMimageofthenetwork( 2V,0.1nA).Inthe inset,ahigh-resolutionviewofthe Ag/Si(111)-√3 × √3R30° isshown(ReprintedbypermissionfromMacmillanPublishersLtd: Nature[7],copyright2003). c STMtopographicimageofanextendedandhighlyregularnetworks formedbyCodirectedassemblyofNC–Ph3–CNlinkers.Inthe inset,thestructureofthemolecule includingitslengthandSTMtopographyofthethreefold Co–carbonitrilecoordinationmotifwith modelstructureisshown(AdaptedwithpermissionfromSchlickumetal.[8].Copyright2007 AmericanChemicalSociety)

Amoreconventionalandstrongermultiplehydrogenbondingmotifwasusedto stabilizeatwo-componentmixtureof3,4,9,10-perylenetetracarboxylicdiimide (PTCDI)andmelaminemoleculesintoahoneycombpatternonametalsurface (Fig. 1b)[7].Thethreefoldsymmetricalmelaminemoleculesrepresentthebranch pointsofthehexagonalnetwork,whilethePTCDImoleculesserveasstraight connectors(Fig. 1b).Theassemblygeometryallowsforthelocalformationofthree hydrogenbondsforeachcomplementarymelamine–PTCDIconnectionandthis ratherstrongnon-covalentinteractionplaysthekeyroleinguidingthementioned speciesintolargelyextendedsupramolecularnetworks.Moreover,manyexamples oftwo-dimensionalmolecularassemblieshavebeenreportedinthe fieldof metallo-supramolecularchemistrywheremetalatomsareusedtobridgesuitably functionalizedmolecularunits(ligands).Themetal–ligandbondistypicallystronger ascomparedtohydrogenbondingandthisallowstheformationofmorerobust networks[33].Suchmetal–ligandinteractionshave,forexample,beenexploitedto fabricatetwo-dimensionalarchitecturesbasedonthecoordinationofrod-likedinitrilemolecules(NC–Phn–CN)tocobaltcenters(Fig. 1c)[8].

Inadditiontotheseinteractions,theformationofevenstrongercovalentcarbon–carbonbondsbetweenmoleculesonthesurfacegainedlargeattentioninthelast years[9–18, 30, 31, 35].Thenatureofthecovalentbondallowstoconferhigh stabilityanddurabilitytothemolecularstructures,incontrasttonon-covalent intermolecularbonds-basedstructures.Thispropertyisakeywhenthinkingof potentialuseinfutureapplications[2].Inanalogytotheapproachhere,the

Fig.2 Covalentlylinkedmoleculararchitecturesbyon-surfacepolymerization.Singlebuilding blocksaresynthesizedexsituwithhalogensubstituents.Afterbeingthermallyactivated,the speciesdiffuseacrossasurface,interacttoeachotherandtheformationofnewcarbon–carbon covalentbondstakeplaceattheactivatedsitespositions[9]

bottom-upgrowthoflargenetworksasgraphene[3]andboronnitride[4]sheets alsoledtohighlystablestructures,becauseofthecovalentnatureoftheirlinks.

Theconceptoftheon-surfacepolymerizationtechniqueisillustratedinFig. 2. Eachsinglebuildingblockisbasedonachemicallystablemolecularunitcarryinga certainnumberofpotentiallyreactivesitesatspeci ficpositions.Thesesitesare representedbyacarbon–halogenbondthathasabonddissociationenergylower thanallotherbondsinthemolecularframework.Afterdepositingthemoleculeson asurface,thehalogensubstituentsareactivated(i.e.,halogen–carbonbonddissociation)thermally,leavingthechemicalstructureofthemolecularbuildingblocks intact.Atthesametime,thenewspeciesthermallydiffuseoverthesurfaceand formnewcovalentC–Cbondsattheactivatedsitepositionswhentheygetcloseto eachother.

Thedesignandexsitusynthesisofmoleculeswithdifferentnumbersand arrangementsofinterconnectionpointsopensupthepossibilitytopreciselytunethe topologyofthe finalmoleculararchitecture.Beforedetailingthearchitectural controlachievableusingtheon-surfacepolymerizationapproach,afewaspects regardingthechemistryofboththemonomersaswellasthesurfacesneedtobe considered.Duetoitsdominantuseinthe fieldanditsimportanceforourown work,welimitthefollowingdiscussiontotheUllmannreaction.

3ChemicalConsiderations

WhenconsideringanUllmanncouplingreaction[32]astheconnectionsequence foranon-surfacepolymerization,severalkeycriteriahavetobemet.First,one needstodesignmonomers,whichontheonehandhavetobereactiveatthedesired connectionsitestoallowforregioselectiveactivation,forexample,bycarrying labilehalogensubstituents,yetotherwiseneedtobestableatthedepositionand reactionconditions.Inaddition,theactivatedmonomersalsohavetobemobileon thesurfacetodiffusetoothermonomersandthegrowingpolymer.Thelatterpoint inevitablyalsodependsonthesurface,whichneedstostabilizetheformedaryl

Fig.3 Possibleactivationmechanismsforarylhalidestoinitiatecovalenton-surface polymerization

radicalintermediates,yetalsohastoprovidemobilityandideallyfacilitateboththe activationandconnectionsteps,i.e.,actastemplateandcatalyst.

Whiletheseaspectsgenerallyapplytomoston-surfacepolymerizationreactions, therearesomespecificaspectswhenfocussingontheUllmannreaction.The reactioncanbeinitiatedbyseveraldifferentdissociationmechanismscausedsimply byheat(inabsenceorpresenceofametalcatalyst),electrons(fromthetipofan STM,andelectrodeorareducingagent)orphotons(Fig. 3).

Whileinallcasesthearyl–halogensinglebondisbroken,thetechnique/stimulus usedforactivationpotentiallyprovidescontroloverwheretheUllmannreaction andhencepolymerizationistakingplace.Incontrasttothepioneeringworkofthe RiedergrouponthedimerizationofiodobenzeneinducedwiththeSTMtipatthe stepedgeofaCu(111)surface[36]themajorityofthereportedworkhasbeen exploringthermalactivationmostlyinconjunctionwithcoinagemetalsubstrates. Hereby,thetemperaturerequiredfordissociationofthehalogensubstituentcruciallydependsonthetypeofhalogen(andpotentiallyalsoonthetypeof(het)aryl moiety)aswellasthetypeofsubstrate.The firstaspecthasbeenexploitedbyusfor thehierarchicalgrowthoftwo-dimensionalpolyporphyrinnetworks(seebelow), whereweutilizesequentialactivationof firstiodineandthenbrominesubstituents toseparatethetwoorthogonalgrowthdirections[35].WhiletheC–Ibondsare cleavedat120 °C,theC–Brbondscleaveat250 °ContheemployedAu(111) surface.Ofcourse,thelatterisimportantaswellsincesimilarC–Ibondscleaveat muchhighertemperaturesintheabsenceofacoinagemetalasshownbythework ofGourdon,Kühnle,andcoworkersoncalcite(CaCO3),wheretemperatureabove 300 °Carenecessaryforactivation[37].

ClearlyandnotsurprisinglyinthecontextoftheclassicUllmannworkusing copperspecies[32],coinagemetalsfacilitateactivationandaryl–arylcoupling[38]. However,therearetwoopposingeffectswhencomparingthecoinagemetalswith regardtotheirabilitytoaidon-surfaceUllmanntypepolymerization:Ontheone handthehigherreactivityoflessnoblecoppersurfacesaidsboththeinitialhalide dissociationaswellasthecouplingoftheactivatedarylmonomersbutalsosignificantlylowersthemobilityandhencediffusionofthemonomersandgrowing

polymers,therebyinhibitinggrowth.Faselandcoworkershaveactuallyengagedin adetailedcomparativestudyshowingtheseopposingeffectsfortheCu(111),Ag (111),andAu(111)surfaces[39].Theauthorsfoundtheonsetofnetworkformation fromhexa(meta-phenylene)macrocyclichexaiodidemonomerstooccurat200 °C forCu(111),whileonAu(111)250 °CandonAg(111)300 °Cwererequired. However,themorphologyoftheobtainedpoly(1,3,5-phenylene)sdifferssignificantlyastheCu(111)grownstructuresarehighlybranchedfractal-likewhileinthe caseofAg(111)extendedhigh-quality2Dnetworkswereformed.Basedontheir experimental findingsaswellastheoreticalinvestigations,theyconcludethatthe loweractivityofAg(111)inthearyl–arylcouplingcombinedwiththehigher monomermobility(diffusion)onthissurface,bothcomparedtoCu(111),leadto betternetworkformation.Inourworkwehavebeenmostlyfocussingongold surfacesthatprovideagoodcompromisebetweenthesefeatures.Notethateven withoneandthesamemetalitssurfacereconstructionplaysanimportantroleas shownbyourownwork(seebelow)aswellasothers[40].

Inaddition,defects,stepedges,andadatomsareofutmostimportanceasthey canfacilitateactivation(seebelow)[41],stabilizeintermediates,andeveninhibit theircoupling.Thisisnicelyillustratedbythefactthatactivatedarylmonomers cannotbeconsideredastruly “freeradicals” butarestronglystabilizedbethemetal surface[39].Thisalsopreventsskeletalrearrangementstotakeplaceandthereby assuresregioselectivecouplingattheinitiallyhalide-substitutedpositions(Fig. 4). Dependingonthepresenceofadatoms,analternativecouplingmechanism involvestheformationofanaryl–metal–arylintermediate,whichcanreductively eliminatetoformthedesiredaryl–arylconnection(Fig. 4).Whilethissequencehas infactsuccessfullybeenobservedbyLinandcoworkerstotakeplaceinthe polymerizationof4,4″-dibromoterphenylonaCu(111)surface[42],inmanycases theintermediatelyformedcoppercomplexesareratherstableandcannotbeforced toeliminatethedesiredproducts[43, 44].Forexample,usinghexabenzo-coronene (HBC)dibromidemonomersonCu(111)gaveCu-bridgedHBCchains;however, onaAu(111)surfacethecorrespondinggoldcomplexeswerenotobserved andhencecovalentaryl–arylconnectionscouldsuccessfullybeobtained(Fig. 5)

Fig.4 Possiblecouplingmechanismsforarylhalidestoinitiatecovalenton-surfacepolymerization:regioselectivecoupling(a)andaryl–arylconnectionviaanintermediateformationofan aryl–metal–arylintermediate(b)

Fig.5a ChemicalstructureofBr2–HBC. b Cu-bridgedHBCchainonCu(111)(5.5 × 2.0nm2, 300mV,0.3nA). c HBCchainonAu(111)(5.5 × 2.0nm2, 300mV,0.1nA). d Heightprofiles inSTMimagesalongaHBCtrimeronCu(111)andAu(111)[43]

[43].Therefore,notonlythetypeofsurfacebutalsotheavailabilityofadatoms seemstohaveamarkedeffectonthepolymerizationoutcome.

Ingeneral,wenotethatusingtheUllmannreactionposestwoinherentlimitationstotheon-surfacepolymerizationprocess.Firstandforemost,thereactionis irreversibleundertheemployedconditions,i.e.,formeddefectscannotbehealed. Therefore,theoutcomeofthereactionsolelyreliesonkineticcontrolandequilibrationtotheglobalthermodynamicminimumstructurescannotbeusedasoften thecasefornon-covalentself-assemblyordynamiccovalentchemistry[45].Using otherconnectionssuchasboronicestersoriminesthisdrawbackcanbeovercome, however,atthecostofstability(towardhydrolysis)andfunctionality(inan optoelectroniccontext).Second,theemployedpolymerizationapproachisthatofa stepgrowth,morepreciselyapolycondensation,andthereforeintrinsiclimitation withregardtopolymerizationefficiencyandcontroloverthepolymerizationoutcomeexist.Aftersketchingthechemicalbasisformakingaryl–arylconnections, wewillnowdetailthemethodofcovalenton-surfacepolymerizationandhighlight themeansofcontrollingtheformedpolymerstructures.

4On-SurfaceSynthesisofCovalentlyBound Nanostructures

Twoalternativemethodscanbeusedfortheactivationofmolecularbuildingblocks (methodsIandII)andthegrowthofcovalentlyboundnanoarchitectures,leadingto similarresults[9].InmethodI,intactmoleculesare firstdepositedontoasurface andsubsequentlythermallyactivated.Conversely,inmethodII,theactivationof molecularspeciestakesplacealreadyintotheevaporatorcellandtheyaredeposited ontothesurface.

Inbothcases,thecovalentlinkingtakesplaceonthesupportingsurfaceupon thermaldiffusion.Asa firstcandidateforon-surfacesynthesis,aporphyrinbuilding blockwithfourbrominesubstituents(Br4TPP)hasbeenused(insetofFig. 6a).If theevaporatortemperaturewas550Korlowerduringdeposition,largeandordered islandsofintactBr4TPPwerefoundasaresultofmoleculardiffusionatthesurface

Fig.6 Molecularnanostructuresformedbydifferentapproaches(methodsIandII). a STMimage (20 × 20nm2)ofaBr4TPPmolecularislandonAu(111)afterdepositionatlowevaporator temperatureof550Kontothesubstratesurfacekeptatroomtemperature.Moleculesaredeposited intactontothesurface.The inset showsthechemicalstructureofBr4TPP. b STMimage (41nm × 41nm2)fordepositionatelevatedevaporatortemperatureof610K.Thiscausesthe activationofthemolecularspeciesintotheevaporatorandsubsequentlytheformationof covalentlyboundstructuresontothesurface.TheAu(111)samplewascleanedbyrepeatedNeion sputtering(E =1.5keV)andsubsequentannealingupto720K.Measurementswereperformed underUHVconditionswithalow-temperatureSTMoperatedatatemperatureof10K.STM imageswererecordedinconstantcurrentmodewiththebiasvoltagereferringtothesamplewith respecttotheSTMtip[9]

(methodI,Fig. 6a).Acarefulanalysisoftheouterborderofthemolecularisland revealsthatmanymoleculeshaveonlythreeBratomsconnectedwhilethereare fourontheintactmolecules.Thissuggeststhattheusedevaporatortemperatureis enoughtoinitiatetheBrdissociationofasmallamountofmolecules(morethan 90%ofthemoleculesremainintact).

Athigherevaporatortemperatures(Fig. 6b)mostofthemoleculesareactivated withthelossofseveralBrsubstituentsintheevaporator(methodII).Theactivated speciescanreactwitheachotheronthesurfaceandformnewintermolecularbonds uponthermaldiffusion,leadingtotheformationofcovalentlyboundstructureswith differentsizesandshapes(Fig. 6b).

Toinvestigatetheabilitytocontrolthearchitectureofthe finalmolecular nanostructures,differentTPP-basedmonomerbuildingblockshavebeensynthesizedwithone,two,andfourBrsubstituents(Fig. 7a–c).Intactmoleculeshave beenidentifi edbyusinglowevaporatortemperatures:theSTMimagesafterthe preparationshowclearlytheexpecteddifferentstructures(Fig. 7d–f).Allspecies havebeendepositedontoaAu(111)surfacekeptatlowtemperature(tosuppress anycarbon–halogenbonddissociation)andafterwardsannealedtothermally activatetheBrdissociation.Thus,thetopologyofthemoleculararchitecturesis intrinsicallyencodedinthedesignofthesinglemonomerbuildingblock(cf. fi rst andthirdrowsofFig. 7).

Ifthemonomerbuildingblockprovidesjustonereactiveside(BrTPP,Fig. 7a),the onlypossibleresultisadimer.Porphyrinbuildingblockscarryingtworeactivesides

Fig.7 Buildingnanoarchitecturesusingdifferentmonomerbuildingblockscarryingone(left column,preparedbymethodI),two(middlecolumn,preparedbymethodII)andfour(right column,preparedbymethodI)Brsubstituents(a–c).STMimages(3.5 × 3.5nm2)ofthesingle intactmolecules(d–f).OverviewSTMimages(30 × 30nm2)ofthenanostructuresafteractivation andconnection(g–i).DetailedSTMimagesoftheresultingnanoarchitectures(j 5 × 5nm2; k 10 × 10nm2; l 8.5 × 8.5nm2).Correspondingchemicalstructuresofthenanostructures(m–o). Measurementswereperformedunderultrahighvacuum(UHV)conditionswithalow-temperature scanningtunnelingmicroscope(STM)operatedatatemperatureof10K.Covalentlylinked molecularstructureswereproducedincaseofmethodIfrommolecularbuildingblocksvia on-surfacepolymerization[9],i.e.,dehalogenationatatypicaltemperatureof523K(bromine dissociation)for10minandsubsequentcovalentlinkingofthemolecules[9]

astrans-Br2TPP(Fig. 7b)allowsaccordinglytheformationoflongandlinearchainsas showninFig. 7h,k.WhenallfourporphyrinunitlegscarryBrsubstituents(Fig. 7c), theconstructionoftwo-dimensionalmolecularnetworkisenabled(Fig. 7i,l).This provesthatacarefulchoiceofthemoleculardesign,i.e.,thearrangementoftheactive endgroupswithinthemolecularframeworkofthesinglebuildingblock,andasuccessfulexsituorganicsynthesisoftheinitialbuildingblocksgivehighcontroloverthe finalarchitectureofthemolecularstructures.

Animportantissueistheprecisechemicalnatureofthenewlyformedintermolecularbonds(orintramolecularbondsinthe finalpolymer,respectively).The firstevidencecomesfromthedistancesbetweenthebuildingblocks,whichis characteristicforsuchabond.Thereisagoodagreementbetweentheexperimentallymeasuredneighboringporphyrincoresinterdistance(17.2 ± 0.3 Å)andthe DFT-calculateddistance(17.1 Å)calculatedforacovalentlyboundporphyrins dimer(Fig. 8d).Furthermore,thecovalentnatureoftheintermolecularbondscan beinvestigatedbySTMsingle-moleculemanipulation.Molecularislandsmadeof intactBr4TPP(Fig. 6a)areeasilydisassembledbySTM-basedlateralmanipulation [9].Incontrast,dimers,chains,andmolecularnetworks(Fig. 7)canfollowthe STMtippathwayduringapullingexperiment[30, 31]withoutundergoingfragmentationprocesses.Thisisaclearsignaturefortherobustnessoftheintermolecularbondswithinthemolecularstructuresaftertheend-grouplegsactivation. Consequently,theinterpretationasacovalentbondseemsreasonable.Other

Fig.8 Thecovalentnatureofintermolecularbonds.STMimages(5 × 5nm2)ofaTPPdimerat 0.5V(a)and3.0V(b).Thebrightprotrusioninthemiddleofthedimer(b)isasignaturerelatedto anelectronicfeatureclearlyvisibleinthedI/dV curvemarkedbya cross inpanel(c).ThelowerdI/ dV curve(markedbya circle)takenontopofaporphyrinlegisfeatureless.DFTcalculationsreveal theformationofacovalentbondbetweenthetwoneighboringphenyllegs,withcorrespondingC–C bonding(s)andantibonding(s*)orbitals. d Calculatedgeometricstructureoftheisolateddimer. e Calculatedcontributiontothelocaldensityofstatesduetothestateatabout2.8eVabovethe HOMO(at7 Å fromtheporphyrinplane). f Sideviewofathree-dimensionalcontourplotofthe orbitaldensityofthisstateatamuchhigherdensity.Scanningtunnelingspectroscopy(STS)was performedat10Kwithalock-inamplifierwith20mVpeak-to-peakmodulationamplitudeat 640Hz(frequency)(seecaptionFig. 7 forfurtherexperimentaldetails)[9]

options,i.e.,chemicalbondsasHormetal-ligandbondingand π–π stacking,canbe ruledoutbecauseofthemolecularstructureandadsorptiongeometry,andadditionallytheycouldhardlyexplainwhythenanostructureremainsstablewhenbeing pulledbyanSTMtip.

Aclearsignatureforthecovalentnatureoftheintramolecularbondwithinthe dimerisprovidedbyspectroscopyofsinglemolecules(byscanningtunneling spectroscopy,STS).Theinterconnectionsitewithinthedimerappearshomogenously atlowbiasvoltages,whileitappearsasabrightprotrusionwhenimagedat+3.0V (Fig. 8a,b).Thisprotrusionisindeedrelatedtoanelectronicbroadfeatureslocalized ataround+3.0V(upperSTScurveinFig. 8c)suggestingthepresenceofalocalized orbital[9].DFTcalculationsprovethelocalformationofacovalentC–Cintermolecularbondinfullagreementwiththeexperimentallymeasuredporphyrincores interdistance.Speci fically,thecalculationsrevealedtheformationofC–Cbonding (σ)andantibonding(σ*)orbitalsthatgiverisetothesignalinthedI/dV spectra. Hence,thepeakataround3eVisadirect fingerprintofthechemicalnatureofthe covalentbond.Itiscausedbythestronginteractionwiththetwonon-occupied antibonding π orbitalsassociatedtothetwolegs,resultinginanin-phaseandan out-of-phasecombination,whicharesplitby1.3eV.Thein-phasecombinationis responsiblefortheincreaseofthecalculatedlocaldensityofstatespreciselylocated inbetweentheporphyrincoresatabout2.8eV(Fig. 8e,f)abovethehighestoccupied molecularorbital(HOMO).Thiscalculatedelectronicfeatureisassociatedtothe experimentallyprobedelectronicfeatureatabout3.0eVshowninFig. 8 [9].

AnotherclearexampleofUllmanndehalogenationreactionthatresultsinpolymerizationonthesurfacewasreportedbythegroupofRosei[19].Theydeposited diiodobenzenemolecularspecies(1 and 2 inFig. 9a)onCu(110)andfoundat fi rst theformationofCuboundphenyleneintermediates,i.e.,notyetlinkedbyC–C

Fig.9 Formationofpolyphenylene-basedpolymersbyon-surfacepolymerization. a Ullmann couplingofdiiodobenzenemolecules. b STMimage(T =115K,19 × 19nm2, V = 1.93V, I=1.06nA)ofPPP-basedolygomers.1,3-diodobenzene(1 inpanel a)weredosedonCu(110) keptatroomtemperatureandafterwardsannealedto500K. c 0.2Lof1,3-diiodobenzenedosed ontoCu(110)heldat500K.STMtopography(11.3 × 11.3nm2, Vs = 0.57V, It =0.82nA)of oligomerbranches.AmodelofPMPisoverlaidononeoftheoligomers. Top-rightinset aforce fieldrelaxedmodelofPMPchainintheiodinematrixonaslabofCucorrespondingtothemarked regionintheSTMimage. Bottomrightinset ascaleportionoftheRTdepositedsurface,showinga protopolymerofmolecule 2 inpanel a.Reproducedfrom[19]. © 2009Wiley-VCHVerlagGmbH &Co.KGaA,Weinheim.doi:10.1002/smll.200801943

covalentbondswhendepositingmoleculesonthesurfacekeptatroomtemperature. Heatingthesampleto500Kfor5–10minisneededtoinducetheformationof straightconjugatedPPPolygomers(Fig. 9b).TheformationofzigzagPMPwires andmacrocyclesaswellwerepromotedandobservedwhenusing 1,3-diiodobenzene(Fig. 9c,kinksareascribedtothemolecularsymmetry)[19].

5ControllingNanostructuresbyHierarchicalGrowth

Theresultspresentedsofararerelatedtothegrowthofsimplehomogeneous moleculararchitectures,becausetheyarebasedonaone-stepprocess.Growing complexnanostructures,e.g.,morecomplexmolecularaggregates,requiresa fine andaccuratecontrolofthereactionpathwaythatleadstothe finalmolecular architecture.Thiscanbeachievedsplittingthereactionpathwayintoindividual connectionstepsandcontrollingtheiractivationsequence,thusrealizinga “programmedreactivity” ofthemoleculesthatallows selective activationoftheir reactivityatdifferentsites.Asequentialgrowthfashioncanbeimplementedby designingsinglemolecularbuildingblocksthatcarrydifferenttypesofhalogen substituents.Thesampletemperaturecanbeusedasan “externalknob” thatallows toenableorsuppressspecifi edhalogendissociations,i.e.,on-surfacepolymerizationprocessescanbeinitiatedandsystematicallycontrolledviathesampletemperature.ThetemperatureneededtobreakC–halogenbondsismainlydefinedby thehalogenspeciesandthecatalyticactivityofthesurface.Thecarbon–halogen bonddissociationisactivatedattemperaturesthatdecreasewiththehalogenatomic number.Inotherwords,thebindingenergytothecarbonatomcanbetunedviathe typeofhalogenatom.Iodinedissociationfrommoleculescanbeinitiatedalreadyat roomtemperatureandcompletedataround120 °C,whilethistemperaturerange goesfrom100to250 °CforBrsubstituents[35, 46].Aproperchoiceofthesurface iscrucialasithasbeenshownthattheon-surfacecovalentlinkingoccursat differenttemperaturesfordifferentnoblemetalsurfaces[39],orcanevenbesuppressedforothersurfaces.Gutzleretal.[16]reportedonthegrowthof two-dimensionalcovalentboundnetworksbyusingpolyaromaticmoleculescarryinghalogensubstituents.TheydepositedthesemolecularspeciesonCu(111)and Ag(110)andindeedveri fiedthepresenceofactivatedspeciesalreadyatroom temperature,i.e.,withouttheneedofadditionalactivationenergy.Thesameprocedurerepeatedongraphite(001)resultedintheformationofwell-ordered non-covalentlyboundnetworksstabilizedbyhalogen–hydrogenbonding.This provestheimportanceofthesurfaceinpromotingthecarbon–halogendissociation atroomtemperatureandthesubsequentmolecularassembly.

Asmentionedabove,thearchitectureofthe finalstructuresisencodedinthe singlemonomerbuildingblockbyincorporatingdistinctcarbon–halogenbonds thatdissociateandcreateactivesitesatthehalogensites.Withthispurpose,a porphyrin trans-Br2I2TPPunithasbeendesignedandsynthesizedinordertocarry twodifferenttypesofhalogen–phenylsidegroups(Fig. 10a). Trans-Br2I2TPP

Fig.10 SinglemonomerbuildingblockscarryingBrandIsubstituentsforsequentialactivation. a Chemicalstructureofthe trans-Br2I2TPP.BrandIchemicalgroupshavedifferentchemical activationtemperatures. b STMimage(0.5V,0.1nA)ofasingleintact trans-Br2I2TPPonAu (111).IsubstituentsappearbrighterthanBronesbecauseoftheirdifferentchemicalstructure. MeasurementswereperformedunderUHVconditionswithalow-temperatureSTMoperatedata temperatureof10K.Moleculesweresublimatedat593KontoAu(111)keptatroom temperature[35]

moleculeshavetwopairsofhalogensubstituents(BrandI)eachofthemina trans configurationonoppositesidesoftheporphyrinunit(seeFig. 10a).Thischemical structureintrinsicallyencodestwodifferentgrowthdirections.Asthetwosubstituentshaveapronounceddifferenceintermsofbonddissociationenergy(the bindingenergyofiodine–carbonislowerthanthatofbromine–carbon)[35],this allowstocreateactivesitesinthemoleculestep-by-step.Inthisway,newcovalent intermolecularC–Cbondsareformedwithgeometriccontrol(viathetemperature) andconsequentlysequentialgrowthofnanostructuresisachieved(seegrowth schemeinFig. 10a).Low-temperatureSTMimagingallowstoresolvewith sub-molecularresolutionthefeaturesofintact trans-Br2I2TPPmoleculesdeposited ontopofAu(111):thetypicalfour-legsstructureoftheporphyrinunitisrecognized andsubstituenthalogenscanbechemicallydistinguishedbecauseoftheirdifferent appearanceinSTM(Fig. 10b):IandBrsubstituentshavespecifi capparentheights andtheformerlookbrighterindependentofthebiasvoltageovertheinvestigated range( 1V,+1V)[35].Thus,bycomparisonwithotherporphyrinderivativesthat containeitheronlyBroronlyIsubstituents,itispossibletoassignthecharacteristic apparentheightstoiodineandbrominesubstituents.Thispreciseknowledgeofthe chemicalcompositioninanSTMimage(Fig. 10b)isimportantinthenextstepto identifywhichsubstituentsremainafteraheatingstepandwhichonesare dissociated.

Trans-Br2I2TPPmoleculeshavebeendepositedontoAu(111)whilekeepingthe substrateatatemperatureof80Ktosuppresscatalyticallydriveniodinedissociationfromthemoleculesthatoccursathighertemperatures,thustokeepthe moleculesintactwithallfourhalogensubstituents[35].Undertheseconditions, molecularunitsarepreferentiallyfoundinclose-packedarrangements(Fig. 11b).

Fig.11 Hierarchicalgrowthofhomogeneousmolecularstructures. a Schemeofthesequential activationmechanism(from left to right).Inthe firstactivationstep,Isubstituentsaredissociated andactivesitesina trans geometry(firstgrowthdirection)arecreatedenablingtheformationof linearstructures(from b to c).Inthesecondstep,Braredissociatedbyannealingathigher temperatures.Thisfurtherstepallowstocreatelateralactivesitesthatenablethegrowthalongthe secondgrowthdirection,i.e.,theformationof2Dnetworks(from c to d).STMimages(8 × 8nm2, b)of trans-Br2I2TPPmoleculesonAu(111),afterheatingupto120K(step1,8 × 8nm2, c),and afterfurtherannealingupto250K(step2,10 × 10nm2, d). e STMimage(10 × 10nm2)of close-packedporphyrinchainsafterthe firstactivationstep.Furtherexperimentaldetailsarein captionFig. 9 andRef.[35]

AnnealingofthesampleuptoroomtemperatureinducesapartialIdissociation, whileannealingupto120 °Cenablesanefficientpolymerizationacrossthe transiodinedirection(firstgrowthdirectioninpanelFig. 11a)duringthe fi rst step.Accordingtothe trans-arrangementofhalogensubstituentswithinthesingle monomer,linearchainsofporphyrinunitsaregrown(Fig. 11c).Thisisinanalogy tothe trans-Br2TPPmolecules(Fig. 7h)butatlowertemperaturesbecauseiodineis involvedhere.Therearetwoimportantcharacteristicsoftheseintermediateproducts(showninFig. 11c):(1)Thesechainsalwayshaveabrightlovesattheirend, whichreflectsaniodineatom(asinFig. 10b).Hence,allnewlyformedbondsare locatedatformeriodinesites,whichconfi rmsthesuccessfulselectiveactivationin this firststep.(2)TheBrsubstituents,whichappeardarkerthantheiodines,canbe clearlyseensidewaysatthepolymerchainandarethereforestillpresent.However, theyhavenotbeenactivatedyetandarethereforedormant,waitingtobeactivated atasuitabletemperature.

Furthermore,covalentlylinkedporphyrinchainsarrangethemselvesparallelto eachotherintoclose-packedislands(Fig. 11e).Inthenextgrowthstep,Brsubstituentsareeffi cientlydissociatedbythermalannealingupto250 °Cenablingthe polymerizationprocessalongthesecondgrowthdirection(asindicatedinFig. 8a) andtriggeringtheformationofTPP-basedtwo-dimensionalnetworks(Fig. 11d). Thisrepresentsanelegantwaytogrowtwo-dimensionalnetworksinasequential manner,anditisworthtocompareitwiththesamestructureobtainedbythe one-stepgrowthprocess(TPP-basednetworksinFig. 7i,l).Ananalysisofthe

regularityoftheTPP-basednetworksgrownfollowingbothmethodssuggeststhat thehierarchicalgrowthallowstoprepare2Darchitectureswithlessincorrectly connectedbuildingblocks,i.e.defects,andlargerspatiallyextentregularnetworks (adetailedanalysisispresentin[35]).

Heterogeneousmoleculararchitecturesmightbegrownaccordingtoahierarchicalgrowthscheme.Covalentlylinkedtwo-componentstructuresonmetalsurfacesunderUHVconditionhavealreadybeenachieved[10],althoughinaone-step growthprocessandthuslimitedcontrol.Thecapabilitytoactivatedifferentreaction pathwaysstep-by-stepallowsabettertuningofthegrowthprocess.Whilethe formationoftwo-dimensionalTPPnetworkscouldalsobeachievedinaone-step process(Fig. 7l),themixtureoftwomolecularspeciesinadditiontotheselective activationmechanismleadstomolecularnanostructuresthatcannotbeformedin onestep.Whencombining trans-Br2I2TPPandDBTFmolecules(Fig. 12a)onaAu (111)surfacethetwogrowthstepsaresequentiallyactivatedwhenheatingthe sampleat250 °C.First,iodinesof trans-Br2I2TPPmoleculesaredissociatedand linearporphyrinchainsarecreatedwhileBr-phenylgroupsremainintact(Fig. 11c). Second,BrsitesaredissociatedandDBTFmoleculesformlinearchainsthat connecttotheformerBrsiteofporphyrinbuildingblocks(Fig. 12b).Inthiswaya ladder-typestructureisformedthatcouldnotbeachievedinonestep.

Adetailedanalysisofthecovalentlinksattheactivatedphenylgroupsof porphyrinbuildingblocks(showninFig. 12c)revealsthehighselectivityofthe process:98%oftheformerIsitesof trans-Br2I2TPPmoleculesareconnection pointsforfurtherporphyrinunitsasdesiredfromthemoleculardesign.Only2%of

Fig.12 Hierarchicalgrowthofheterogenousarchitectures. a ChemicalstructureofDBTF molecules. b STMimage(T =10K,18 × 13nm2)ofheterogenousnetworksbasedonDBTFand trans-Br2I2TPPonAu(111)byhierarchicalgrowthafterheatingupto250 °C. c Statisticalanalysis ofporphyrinand fluorineattachmenttotheporphyrin trans-Br2I2TPPmonomeratformerbromine andiodinesites(numberofevaluatedsites: nI =489, nBr =269).Measurementswereperformed underUHVconditionswithalow-temperatureSTMoperatedatatemperatureof10K.AKnudsen cellwasusedtoevaporateBr4TPPmoleculesat550KandDBTFmoleculesat503KontoAu (111).Theon-surfacesynthesiswasachievedraisingthesampletemperatureto250 °C[35]

thesesitesareincorrectlyusedfor fluorineconnections.Thesecondgrowthstep determinesapronouncedoccupationoftheremainingtwoBrsitesby fluorene molecules(70%,seeFig. 11c).Thenumbersarelessimpressiveinthissecond case,becauseattheformerBrsitesalsotwoporphyrinchainscouldbelinkedside toside,whichrepresentacompetitionprocessfortheplannedladderstructure.This provesthatthehierarchicalgrowthleadstotheformationofcopolymersassistedby aremarkabledegreeofselectivityofthechemicalspeciesinvolvedintheprocess.

6Substrate-DirectedGrowthbyOn-SurfaceSynthesis

Theon-surfacesynthesisconsistsoftwoprocessesatwork:activationanddiffusion ofthesinglemonomerbuildingblocksacrossthesurface.Elevatedtemperaturesare requiredtoenabletheseprocesses,butthisalsofavorsdisorderintothemolecular assemblyandcanthereforereducetheefficiencyofthepolymerizationprocess.It shouldbenoted,however,thatthesubstratesurfaceisnotapassivesupportfor chemicalspecies[16]butcanplayanactiveroleintermsofactivationofthe molecularspeciesinvirtueofitscatalyticproperties[16, 41].

Anycrystallinesurfaceexhibitsacertaincorrugation,dependingonthecrystal structureandthesurfaceorientation,whichplaysacrucialroleformoleculardiffusion.Thisfeaturecanbeusedinordertointroduceafurtherdegreeoffreedom, thusimprovingthecovalentlinkingandvaryingthe finalorientationofananostructurecomparedtotheunderlyingsubstratesurface.Bychoosingproperlythe surfaceitispossibletorestrictthemoleculardiffusionalongthelowestcorrugation directionsandfavortheformationofspeci ficmoleculararchitectureswithapredefinedorientation.Forinstance,theAu(110)-1 × 3surfacehasbeenusedto constrainthediffusionandsubsequentpolymerizationofalkylchainsalongits missingrows[40].Theconfinementofmoleculardiffusiontoonedimension (Fig. 13)leadstointermolecularinteractionsbetweenneighboringmoleculesthat resultintheformationoflinearmolecularchains[40].

Theeffectofsurfaceanisotropyonthegrowthoftwo-dimensionalnetworkshas beenstudiedwithanAu(100)single-crystalsurface.Thereconstructedsurface showsaquasi-hexagonal(5 × 20)superstructurewithstraightrowsofvertically displacedatoms[47],asshowninFig. 14a[35]. Trans-Br2I2TPPmoleculeshave beendepositedonAu(100)atlowtemperatureinordertokeepallhalogen–phenyl groupsintact.Afterwardsthesamplewasannealedto120 °C.Afterthisprocedure, covalentlyboundporphyrinchainswithapreferentialorientationarefoundas illustratedinFig. 14a.Hence,thesurfacereconstructiondeterminestheorientation ofthe finalnanostructure.

Fig.13 Polymerizationofhydrocarbonsonananisotropicgoldsurfaces. a STMtopographic imageofDEBmolecules(12 × 12nm2, 0.5V,0.5nA)onAu(110)-1 × 2at300K. b STM topographicimage(17.5 × 6nm2, 1V,2nA)polymerizedDEBchainslocatedinthemissing rowsofAu(110)-1 × 3afterheatingat420Kfor10h. Circles denotethephenylenegroups; arrows denotethemethylsidegroups. c AsectionofDEBpolymerchainandsuperimposedthe molecularstructure(14.4 × 1.6nm2, 1V,2nA).ThenewlyformedC–Cbondsareshownin red From[40].ReprintedwithpermissionfromAmericanAssociationfortheAdvancementofScience

Ananalysisofthechainsangulardistributionrevealsapreferredangleat51° betweenchainsandatomicrows(Fig. 14b).This findingcanbeeasilyrationalized bygeometricargumentssinceallporphyrinunitsareadsorbedonequivalentsites (Fig. 14c),thusreducingthetotalenergybythisparticularangle[35].Thisisin contrasttotherather flatAu(111)surfacewheretheangulardistributionofchainsis lessdefi ned(Fig. 7 andRef.[1])andunderlinestheimportanceofthesurface corrugation.Afterheatingto250 °C(thesecondactivationstep),formationof rectangularnetworksisagainfound(Fig. 14d)withaclearorientationofftheAu (100)atomicrowsorientation[35].Smallnetworksrevealdeviationsfromthe rectangularshape(angle β =101 ± 3° insteadof90°)asshowninFig. 14d.This effectismostlikelyascribedtothereducedrelativecontributionofintermolecular bondenergycomparedtotheinteractionofthemolecularassemblywiththesurface [35]forsmallnetworks.Furthermore,alargeraveragesizeofnetworksisachieved ascomparedtotheAu(111)surface[35],whichcandirectlybeassignedtothe surfaceanisotropy.Thecorrugationrowsleadtoaparallelarrangementofthe intermediateproducts(asillustratedinFig. 14a)thatresultsinasortofzipping mechanismforthetwo-dimensionallinkinginthesecondstep:Ifthe firstlink betweentwochainsisestablished,allotherporphyrinunitsareinaperfect arrangementwithrespecttoeachotherandaratherefficientlinkingoflongchain segmentscanoccur.Asaconsequence,the finalnanostructuresarelargerfor hierarchicalgrowthonacorrugatedsurfacethaninasingle-stepprocess.

Fig.14 Substrate-directedgrowthofnetworks. a STMimage(42 × 42nm2)of trans-Br2I2TPP chainsgrownonAu(100)afterthe firstactivationprocess. b Angulardistributionforchainsshown inpanel a c AdsorptiongeometryschemeofpolymericchainonAu(100)surfacewithanangleof 55° forequivalentadsorptionsitesforallporphyrins(a0 =1.44nmand d0 =1.76nm). d STM image(20 × 20nm2)ofanapproximatelysquaredcovalentlylinkedmolecularnetworkafterthe secondactivationprocess.MeasurementswereperformedunderUHVconditionswitha low-temperaturescanningtunnelingmicroscope(STM)operatedatatemperatureof10K. AKnudsencellwasusedtoevaporateBr4TPPmoleculesat550KontoAu(100).The firstand secondactivationstepswereinducedbyheatingto120and250 °C,respectively[35]

7Summary

ThegrowthofmolecularnanostructuresonsurfacesviaUllmanncouplingcanbe controlledbyboththechemicalstructureoftheinitialbuildingblocks,whichis preciselyreflectedinthe finalproducts,aswellasthesurfaceunderneath,inparticularthepresenceofdefects,stepedges,andadatoms.Diffusionoftheactivated monomersandintermediateoligomersisanotherkeyissuesinceitdefinestherate ofpolymerizationandthepossibilityofsubstrate-directedgrowththatallows improvedlinkingreactions.Variousmoleculeshavebeenusedinthelastyearsand itturnsoutthaton-surfacepolymerizationrepresentsaveryfeasiblemethodto createstablecovalent1Dand2Dpolymersonasurfaceandtoimagethemby scanningprobemicroscopyinrealspaceassuccessfullydemonstratedinmany cases.Thecovalentnatureofthenewlycreatedbondisnotonlyevidentfromthe realspacedistancesandorientations,butcouldadditionallybeprovenbyspectroscopicdetectionofcharacteristicelectronicstates.Whenusingdifferenthalogen substituents,ahierarchicalgrowthschemecouldberealizedsinceselectiveand sequentialactivationofthedifferentsubstituentsresultsinaprogrammedreactivity ofthemolecules.Basedonthegatheredmechanisticinsightandwiththeabilityto directreactivitybydesigningpropermonomerbuildingblocksaswellasusingthe surfaceasatemplate,1Dand2Dpolymersofincreasingstructuralandcompositionalcomplexitywillemerge.Besidesthiscontinuedexplorationofon-surface polymerizationasanewmethodforgeneratingdefinednanostructures,their resultingpropertiesandfunctionswillbecomeincreasinglyimportantinthefuture.

References

1.Joachim,C.,Gimzewski,J.K.,Aviram,A.:Electronicsusinghybrid-molecularand mono-moleculardevices.Nature 408,541–548(2000)

2.Heath,J.R.,Ratner,M.A.:MolecularElectronics.Phys.Today 56,43–49(2003)

3.Wintterlin,J.,Bocquet,M.-L.:Grapheneonmetalsurfaces.Surf.Sci. 603,1841–1852(2009)

4.Nagashima,A.,Tejima,N.,Gamou,Y.,Kawai,T.,Oshima,C.:Electronicdispersionrelations ofmonolayerhexagonalboronnitrideformedontheNi(111)surface.Phys.Rev.B 51,4606–4613(1995)

5.Rabe,J.P.,Buchholz,S.:Commensurabilityandmobilityintwo-dimensionalmolecular patternsongraphite.Science 253,424–427(1991)

6.Yokoyama,T.,Yokoyama,S.,Kamikado,T.,Okuno,Y.,Mashiko,S.:Selectiveassemblyon asurfaceofsupramolecularaggregateswithcontrolledsizeandshape.Nature 413,619–621 (2001)

7.Theobald,J.A.,Oxtoby,N.S.,Phillips,M.A.,Champness,N.R.,Beton,P.H.:Controlling moleculardepositionandlayerstructurewithsupramolecularsurfaceassemblies.Nature 424, 1029–1031(2003)

8.Schlickum,U.,Decker,R.,Klappenberger,F.,Zoppellaro,G.,Klyatskaya,S.,Ruben,M., Silanes,I.,Arnau,A.,Brune,H.,Barth,J.V.:Metal-organichoneycombnanomesheswith tunablecavitysize.NanoLett. 7,3813–3817(2007)

9.Grill,L.,Dyer,M.,Lafferentz,L.,Persson,M.,Peters,M.V.,Hecht,S.:Nano-architecturesby covalentassemblyofmolecularbuildingblocks.NatureNanotech. 2,687–691(2007)

10.Weigelt,S.,Busse,C.,Bombis,C.,Knudsen,M.M.,Gothelf,K.V.,Strunskus,T.,Wöll,C., Dahlbom,M.,Hammer,B.,Lægsgaard,E.,Besenbacher,F.,Linderoth,T.R.:Covalent interlinkingofanaldehydeandanamineonanAu(111)surfaceinultrahighvacuum.Angew. Chem.Int.Ed. 46,9227–9230(2007)

11.Champness,N.R.:Surfacechemistry:buildingwithmolecules.NatureNanotech. 2,671–672 (2007)

12.Matena,M.,Riehm,T.,Stöhr,M.,Jung,T.A.,Gade,L.H.:Transformingsurfacecoordination polymersintocovalentsurfacepolymers:linkedpolycondensedaromaticsthrough oligomerizationofN-heterocycliccarbeneintermediates.Angew.Chem.Int.Ed. 47,2414–2417(2008)

13.VeldM.I.,IavicoliP.,HaqS.,AmabilinoD.B.,RavalR.:Uniqueintermolecularreactionof simpleporphyrinsatametalsurfacegivescovalentnanostructures.Chem.Commun.1536–1538(2008)

14.Zwaneveld,N.A.A.,Pawlak,R.,Abel,M.,Catalin,D.,Gigmes,D.,Bertin,D.,Porte,L.: Organizedformationof2Dextendedcovalentorganicframeworksatsurfaces.J.Am.Chem. Soc. 130,6678–6679(2008)

15.Gourdon,A.:On-surfacecovalentcouplinginultrahighvacuum.Angew.Chem.Int.Ed. 47, 6950–6953(2008)

16.Gutzler,R.,Walch,H.,Eder,G.,Kloft,S.,Heckl,W.M.,Lackinger,M.:Surfacemediated synthesisof2Dcovalentorganicframeworks:1,3,5-tris(4-bromophenyl)benzeneongraphite (001),Cu(111),andAg(110).Chem.Commun.4456–4458(2009)

17.Perepichka,D.F.,Rosei,F.:Extendingpolymerconjugationintotheseconddimension. Science 323,216–217(2009)

18.Sakamoto,J.,VanHeijst,J.,Lukin,O.,Schlüter,A.D.:Two-dimensionalpolymers:Justa dreamofsyntheticchemists?Angew.Chem.Int.Ed. 48,1030–1069(2009)

19.Lipton-Duffin,J.A.,Ivasenko,O.,Perepichka,D.F.,Rosei,F.:Synthesisofpolyphenylene molecularwiresbysurface-confinedpolymerization.Small 5,592–597(2009)

20.Bartels,L.:Tailoringmolecularlayersatmetalsurfaces.NatureChem. 2,87–95(2010)

21.Lipton-Duffin,J.A.,Miwa,J.A.,Kondratenko,M.,Cicoira,F.,Sumpter,B.G.,Meunier,V., Perepichka,D.F.,Rosei,F.:Step-by-stepgrowthofepitaxiallyalignedpolythiopheneby surface-con finedreaction.Proc.Natl.Acad.Sci. 107,11200–11204(2010)

22.Lackinger,M.,Heckl,W.M.:ASTMperspectiveoncovalentintermolecularcoupling reactionsonsurfaces.J.Phys.DAppl.Phys. 44,464011(2011)

23.Mendez,J.,Lopez,M.F.,Martin-Gago,J.A.:On-surfacesynthesisofcyclicorganic molecules.Chem.Sov.Rev. 40,4578–4590(2011)

24.Ouchi,M.,Badi,N.,Lutz,J.-F.,Sawamoto,M.:Single-chaintechnologyusingdiscrete syntheticmacromolecules.NatureChem. 3,917–924(2011)

25.Palma,C.-A.,Samorì,P.:Blueprintingmacromolecularelectronics.NatureChem. 3,431–436 (2011)

26.Colson,J.W.,Dichtel,W.R.:Rationallysynthesizedtwo-dimensionalpolymers.Nat.Chem. 5 (6),453–465(2013)

27.ElGarah,M.,MacLeod,J.M.,Rosei,F.:Covalentlybondednetworksthrough surface-con finedpolymerization.Surf.Sci. 613,6–14(2013)

28.Grill,L.:FunctionalizedmoleculesstudiedbySTM:motion,switchingandreactivity. J.Phys.:Condens.Matter 20,053001(2008)

29.Nitzan,A.,Ratner,M.A.:Electrontransportinmolecularwirejunctions.Science 300,1384–1389(2003)

30.Lafferentz,L.,Ample,F.,Yu,H.,Hecht,S.,Joachim,C.,Grill,L.:Conductanceofasingle conjugatedpolymerasacontinuousfunctionofitslength.Science 323,1193–1197(2009)

31.Koch,M.,Ample,F.,Joachim,C.,Grill,L.:Voltage-dependentconductanceofasingle graphenenanoribbon.NatureNanotech. 7,713–717(2012)

32.Ullmann,F.,Bielecki,J.:UebersyntheseninderBiphenylreihe.Chem.Ber. 34,2174(1901)

33.Barth,J.V.,Costantini,G.,Kern,K.:Engineeringatomicandmolecularnanostructuresat surfaces.Nature 437,671–679(2005)

34.DeGreef,T.F.A.,Smulders,M.M.J.,Wollfs,M.,Schenning,A.P.H.J.,Sijbesma,R.P.,Meijer, E.W.:Supramolecularpolymerization.Chem.Rev. 109,5687–5754(2009)

35.Lafferentz,L.,Eberhardt,V.,Dri,C.,Africh,C.,Comelli,G.,Esch,F.,Hecht,S.,Grill,L.: Controllingon-surfacepolymerizationbyhierarchicalandsubstrate-directedgrowth.Nature Chem. 4,215–220(2012)

36.Hla,S.-W.,Bartels,L.,Meyer,G.,Rieder,K.H.:Inducingallstepsofachemicalreactionwith thescanningtunnelingmicroscopetip:towardssinglemoleculeengineering.Phys.Rev.Lett. 85(13),2777–2780(2000)

37.Kittelmann,M.,Rahe,P.,Nimmrich,M.,Hauke,C.M.,Gourdon,A.,Kühnle,A.:On-surface covalentlinkingoforganicbuildingblocksonabulkinsulator.ACSNano 5,8420–8425 (2011)

38.Hassan,J.,Sévignon,M.,Gozzi,C.,Schulz,E.,Lemaire,M.:Aryl-arylbondformationone centuryafterthediscoveryoftheUllmannreaction.Chem.Rev. 102,1359–1470(2002)

39.Bieri,M.,Nguyen,M.-T.,Gröning,O.,Cai,J.,Treier,M.,Aїt-Mansour,K.,Ruffieux,P., Pignedoli,C.A.,Passerone,D.,Kastler,M.,Müllen,K.,Fasel,R.:Two-dimensionalpolymer formationonsurfaces:insightintotherolesofprecursormobilityandreactivity.J.Am.Chem. Soc. 132,16669–16676(2010)

40.Zhong,D.,Franke,J.H.,Podiyanachari,S.K.,Blömker,T.,Zhang,H.,Kehr,G.,Erker,G., Fuchs,H.,Chi,L.:Linearalkanepolymerizationonagoldsurface.Science 334,213–216 (2011)

41.Saywell,A.,Schwarz,J.,Hecht,S.,Grill,L.:Polymerizationonsteppedsurfaces:alignmentof polymersandidentificationofcatalyticsites.Angew.Chem.Int.Ed. 51,5096–5100(2012)

42.Wang,W.,Shi,X.,Wang,S.,VanHove,M.A.,Lin,N.:Single-moleculeresolutionofan organometallicintermediateinasurface-supportedUllmanncouplingreaction.J.Am.Chem. Soc. 133,13264–13267(2011)

43.Koch,M.,Gille,M.,Viertel,A.,Hecht,S.,Grill,L.:Substrate-controlledlinkingofmolecular buildingblocks:Au(111)vs.Cu(111).Surf.Sci. 627,70–74(2014)

44.Villagomez,C.J.,Sasaki,T.,Tour,J.M.,Grill,L.:Bottom-upassemblyofmolecularwagons onasurface.J.Am.Chem.Soc. 132,16848(2010)

45.Rowan,S.J.,Cantrill,S.J.,Cousins,G.R.,Stoddart,J.K.,Sanders,J.F.:Dynamiccovalent chemistry.Angew.Chem.Int.Ed. 41,898–952(2002)

Another random document with no related content on Scribd:

CAPITULO XX

Como fue convertido en rana y lo que le sucedio de allí.

G —Yo ahogado á la verdad no me pesó, por dejar tanto trabajo y mala compañia que me llevaba. Plugo á Dios que me dieron por complida la penitencia por las deudas de Epulon é fuí convertido allí en rana.

M.—Cuentame ¡oh Pitágoras! qué vida hacias cuando eras rana.

G.—Muy buena, porque luego hice amistad con todos los géneros de peces que alli andaban é todos me trataban bien; mi comer era de las ovas del rio, é salida á la orilla saltando y holgando con mis compañeras pasciamos unas yerbecitas delicadas é tiernas que eran buenas para nuestro comer; no teníamos fortuna, ni fuego ni

tempestad ni otro género de acaescimiento que nos perjudicase. Pasado ansi algun tiempo...

CAPITULO XXI

Como fue convertido en ramera mujer llamada Clarichea.

Pasado así algun tiempo en aquel rio fue convertido en Clarichea, ramera famosa.

M.—¡Oh! qué admirable transformacion; de asno en rana; de rana en ramera galana.

G.—Pues quién bastara á te contar lo que siendo rana me acontecio y siendo ramera la solicitud que tenía, si no fuera por sernos ya el dia tan cercano para te lo contar muy por extenso, lo qual no me da lugar; y aquel cuidado que tenía de en adquerir los enamorados y el trabajo que sufria en conservar los servidores y el astucia con que los robaba su moneda; aquella manera de los despedir y aquella industria de los volver y el contino hastío que tenia de mis afeites y

composturas de atavíos y el martirio que pasaba mi rostro y manos con las mudas; aquel sufrir de pelar las cejas, que con cada pelo que sacaba se me arrancaba el alma de dolor, y con los afeites y adobos, pues todo mi cuerpo con los baños y ungüentos y otras muchas cosas que aplaciese á todos los que me querian; y aquel sufrir de malas noches y malos días, no tengo ya fuerza para te lo contar por extenso. Despues...

CAPITULO XXII

Como fue convertido en gañan del campo como servio á un avariento y despues fue tornado pavon é otras muchas cosas.

Después desto fue convertido en gañan del campo, adonde de contino con mucho trabajo sin reposo ninguno ni nunca entrar en poblado pasaba muy triste vida. Vine á servir y ser criado de un mísero avariento que me mataba de hambre, de lo cual no te doy entera cuenta lo que en este caso me sucedio, y fue transformado en pavon y agora gallo. ¡Oh! Micillo, si particularmente te hobiese de decir la vida y trabajos que he pasado en cada uno destos míseros estados no bastarían cien mill años que no hiciese sino contártelo. Por eso ya viene la mañana, por lo qual

quiero concluir porque vayas al trabajo, porque en esperanza de tu sueño no moramos de hambre, que creo que desde las diez encomenzamos la prática sin nada nos estorbar y son dadas cinco horas.

M.—Admirado me tienen los trabajos desta vida, ¡oh Gallo! Pues dime ahora lo que me prometiste, que deseo mucho saber: ¿cual estado te paresció mejor?

G.—Entre los brutos cuando era rana; entre los hombres siendo un pobre hombre como tú, porque tú no tienes que temer próspera ni adversa fortuna, ni te pueden perjudicar, no estás á la luz del mundo porque nadie te calunie; solo vives sin perjuicio de otro, comiendo de tu sudor ganado á tu placer, sin usuras ni daño de tu ánima; duermes sueño seguro, sin temer que por tu hacienda te hayan de matar ni robar; si hay guerra no hacen cuenta de tí; si préstamos ó censuras no temes que te ha de caber nada. En conclusion que bienaventurado el que vive en pobleza si es prudente en la saber sollevar.

M.—¡Oh! mi buen Gallo, yo conozco que tienes mucha razon y pues es venido el día quiero ir al

trabajo y por el buen consuelo que me has dado en tu comer te lo agradeceré, como por la obra lo verás. Quédate con Dios, que yo me voy á trabajar.

FIN DEL DIALOGO DE LAS TRANSFORMACIONES

EL CROTALON

DE

CHRISTOPHORO GNOSOPHO

Natural de la insula Eutrapelia, una de las insulas Fortunadas.

PROLOGO DEL AUCTOR

AL LECTOR CURIOSO

Porque cualquiera persona en cuyas manos cayere este nuestro trabajo (si por ventura fuere digno de ser de alguno leydo) tenga entendida la intincion del auctor, sepa que por ser enemigo de la oçiosidad, por tener esperiençia ser el oçio causa de toda maliçia; queriendose ocupar en algo que fuesse digno del tiempo que en ello se pudiesse consumir; pensó escreuir cosa que en apazible

estilo pudiesse aprouechar Y ansi imaginó como debajo de vna corteça apazible y de algun sabor diesse á entender la maliçia en que los hombres emplean el dia de oy su viuir. Porque en ningun tiempo se pueden más á la verdad que en el presente verificar aquellas palabras que escriuió Moysen en el Genessi[294]: «Que toda carne mortal tiene corrompida y errada la carrera y regla de su viuir». Todos tuerçen la ley de su obligaçion. Y porque tengo entendido el comun gusto de los hombres, que les aplaze más leer cosas del donayre; coplas, chançonetas y sonetos de placer, antes que oyr cosas graues, prinçipalmente si son hechas en reprehension, porque á ninguno aplaze que en sus flaquezas le digan la verdad; por tanto procuré darles esta manera de doctrinal abscondida y solapada debajo de façeçias, fabulas, nouelas y donayres: en los quales tomando sabor para leer vengan á aprouecharse de aquello que quiere mi intincion. Este estilo y orden tuuieron en sus obras muchos sabios antiguos endereçados en este mesmo fin; Como Ysopo y Caton, Aulo gelio, Juan bocacio, Juan pogio florentin; y otros muchos que

seria largo contar Hasta Aristoteles, Plutarco, Platon. Y Cristo enseñó con parábolas y exemplos al pueblo y á sus discípulos la dotrina celestial. El título de la obra es Crotalon[295]: que es vocablo griego; que en castellano quiere decir; juego de sonajas, ó terreñuelas, conforme á la intinçion del auctor.

Contrahaze el estilo y inuençion de Luciano; famoso orador griego en el su gallo: donde hablando vn gallo con vn su amo çapatero llamado Miçilo reprehendió los viçios de su tiempo: y en otros muchos libros y dialogos que escriuió. Tambien finge el auctor ser sueño imitando al mesmo Luçiano que al mesmo dialogo del gallo llama sueño. Y hazelo el auctor porque en esta su obra pretende escreuir de diuersidad de cosas y sin orden: lo qual es proprio de sueño: porque cada vez que despierta tornandose á dormir sueña cosas diversas de las que antes soñó. Y es de notar que por no ser traduçion a la letra ni al sentido le llama contrahecho: porque solamente se imita el estilo. Llama a los libros o diversidad de dialogos, canto: porque es lenguage de gallo cantar. O porque son todos hechos al canto del gallo en el

postrero sueño a la mañana: donde el estomago hace la verdadera digestion: y entonces los vapores que suben al çerebro causan los sueños: y aquellos son los que quedan despues. En las transformaciones de que en diuersos estados de hombres y brutos se escriuen en el proceso del libro imita el auctor al heroico poeta Ouidio en su libro del Methamorphoseos: donde el poeta finge muchas transformaciones de vestias, piedras y arboles en que son conuertidos los malos en pago de sus viçios y peruerso viuir.

En el primero canto el auctor propone de lo que ha de tratar en la presente obra: narrando el primer nacimiento del gallo, y el suceso de su vida.

En el segundo canto el auctor imita á Plutarco en vn dialogo que hizo entre Ulixes y vn griego llamado grilo: el qual hauia cyrçes conuertido en puerco: y no quiso ser buelto a la naturaleza de hombre, teniendo por mas feliçe el estado y naturaleza de puerco. En esto el auctor quiere dar a entender que quando los hombres estan ençenagados en los vicios, y principalmente en el de la carne son muy peores que brutos. Y avn hay muchas fieras que sin

comparaçion los exceden en el vso de la virtud.

En el tercero y quarto cantos el auctor trata vna mesma materia: porque en ellos imita a Luçiano en todos sus dialogos: en los quales siempre muerde a los philosophos y hombres religiosos de su tiempo.

Y en el quarto canto espresamente le imita en el libro que hizo llamado Pseudomantis: en el qual descriue marauillosamente grandes tacañerias, embaymientos y engaños de vn falso religioso llamado Alexandro: el qual en Maçedonia (Traçia), Bitinia y parte de la Asia fingio ser propheta de esculapio, fingiendo dar respuestas ambiguas y industriosas para adquirir con el vulgo credito y moneda.

En el quinto, sexto y septimo cantos el auctor debajo de una graciosa historia imita la parabola que Cristo dixo por san Lucas en el capitulo quinze del hijo prodigo. Alli se verá en agraciado estilo vn vicioso mancebo en poder de malas mugeres, bueltas las espaldas a su honra, a los hombres y a dios, disipar todos los doctes del alma que son los thesoros que de su padre dios heredó, y veráse tambien los

hechizos, engaños y encantamientos de que las malas mugeres usan por gozar de sus laciuos deleites por satisfacer a sola su sensualidad.

En el octauo canto por auer el auctor hablado en los cantos precedentes de los religiosos, prosigue hablando de algunos intereses que en daño de sus conciencias tienen mugeres que en titulo de religion estan en los monesterios dedicadas al culto divino[296] . Y en la fabula de las ranas imita a Homero.

En el nono y decimo cantos el auctor imitando a Luciano en el dialogo llamado Toxaris en el qual trata de la amistad. El auctor trata de dos amigos fidelissimos, que en casos muy arduos aprobaron bien su intincion y en Roberto y Beatriz imita el auctor la fuerça que hizo la muger de Putifar a Joseph.

En el honceno canto el auctor imitando a

Luçiano en el libro que intitulo de luctus, habla de la superfluidad y vanidad que entre los cristianos se acostumbra hazer en la muerte entierro y sepultura, y descriuesse el entierro del marques del Gasto Capitan general del Emperador en la ytalia: cosa muy de notar.

En el duodeçimo canto el auctor imitando a Luçiano en el dialogo que intituló Icaromenipo finge subir al cielo y descriue lo que allá vio açerca del asiento de dios, y orden y bienauenturança de los angeles y santos y de otras muchas cosas que agudamente se tratan del estado celestial.

En el deçimo terçio canto prosiguiendo el auctor la subida del cielo finge auer visto en los ayres la pena que se da a los ingratos y hablando marauillosamente de la ingratitud cuenta vn admirable aconteçimiento digno de ser oydo en la materia.

En el deçimo quarto canto el auctor concluye la subida del cielo: y propone tratar la bajada del infierno declarando lo que acerca del tuuieron los gentiles: y escriuieron sus historiadores y poetas.

En el deçimo quinto y deçimo sexto cantos imitando el auctor á Luçiano en el libro que intituló Necromançia finge desçender al infierno, donde descriue las estancias, lugares y penas de los condenados.

En el deçimo sexto canto el auctor en Rosicler hija del Rey de Syria descriue la feroçidad con

que vna muger acomete qualquiera cosa que le venga al pensamiento si es lisiada de vn lasçiuo interes. y concluye con el desçendimiento del infierno imitando a Luçiano en los libros que varios dialogos intituló.

En el deçimo septimo canto el autor sueña auerse hallado en vna missa nueua: en la qual descriue grandes acontecimientos que comunmente en semejantes lugares suelen passar entre sacerdotes.

En el deçimo octauo canto el auctor sueña vn acontecimiento graçioso: por el qual muestra los grandes daños que se siguen por faltar la verdad del mundo dentre los hombres.

En el decimo nono canto el auctor trata del trabajo y miseria que hay en el palacio y servicio de los principes y señores, y reprehende á todos aquellos que teniendo algun offiçio en que ocupar su vida se privan de su bienaventurada libertad que naturaleza les dió, y por vivir en vicios y profanidad se subjetan al servicio de algun señor[297] .

En el vigesimo y vltimo canto el auctor describe la muerte del gallo.

NOTAS:

[294] Nota al margen: genes. cap. 6.

[295] Nota al margen Crotalon idem est quod instrumentum musicum quo in deorum ceremoniis vtebantur antiqui

[296] En el códice que fué de Gayangos se añade, á modo de aclaración, monjas.

[297] En el códice de Gayangos esta rúbrica está muy abreviada: «y reprehende a aquellos que pudiendo ser señores, viviendo de algun offiçio, se privan de su libertad».

SIGUESSE EL «CROTALON DE CHRISTOPHORO

GNOSOPHO:» EN EL QUAL SE CONTRAHAZE EL SUEÑO, O GALLO DE LUÇIANO FAMOSO ORADOR GRIEGO.

ARGUMENTO DEL PRIMER CANTO DEL GALLO

En el primer canto que se sigue el auctor propone lo que ha de tratar en la presente obra: narrando el primer naçimiento del gallo y el suceso de su vida.

DIALOGO.—INTERLOCUTORES

MIÇILO çapatero pobre y vn GALLO suyo.

O líbreme Dios de gallo tan maldito y tan bozinglero. Dios te sea aduerso en tu deseado mantenimiento, pues con tu ronco y importuno bozear me quitas y estorbas mi sabroso y bienauenturado sueño, holganza tan apazible de todas las cosas.

Ayer en todo el dia no leuanté cabeça trabajando con el alesna y cerda: y avn con dificultad es passada la media noche y ya me desasosiegas en mi dormir. Calla, sino en verdad que te dé con esta horma en la cabeça; que mas prouecho me harás en la olla quando amanezca, que hazes ay bozeando.

G.—Marauillome de tu ingratitud, Miçilo, pues a mí que tanto prouecho te hago en despertarte por ser ya hora conveniente al trabajo, con tanta cólera me maldizes y blasfemas. No era eso lo que ayer dezias renegando de la pobreza, sino que querias trabajar de noche y de dia por auer alguna riqueza.

M.—O Dios inmortal, ¿qué es esto que oyo? ¿El gallo habla? ¿Qué mal aguero o monstruoso prodigio es este?

G —¿Y deso te escandalizas, y con tanta turbasion te marauillas, o Miçilo?

M.—¿Pues, cómo y no me tengo de marauillar de vn tan prodigioso aconteçimiento? ¿Qué tengo de pensar sino que algun demonio habla en ti? Por lo qual me conuiene que te corte la cabeça, porque acaso en algun tiempo no me hagas otra mas peligrosa ylusion. ¿Huyes? ¿Por qué no esperas?

G.—Ten paçiençia, Miçilo, y oye lo que te diré: que te quiero mostrar quán poca razon tienes de escandalizarte, y avn confio que despues no te pessará oyrme.

M.—Agora siendo gallo, dime ¿tu quién eres?

G.—¿Nunca oyste dezir de aquel gran philosopho Pithagoras, y de su famosa opinion que tenia?

M —Pocos çapateros has visto te entender con filosofos. A mi alo menos, poco me vaga para entender con ellos.

G.—Pues mira que este fué el hombre mas sabio que huuo en su tiempo, y este afirmo y tuvo por çierto que las almas después de criadas por Dios passauan de cuerpos en cuerpos. Probaua con

gran efficaçia de argumentos: que en qualquiera tiempo que vn animal muere, está aparejado otro cuerpo en el vientre de alguna hembra en dispusiçion de reçibir alma, y que a este se passa el alma del que agora murió. De manera, que puede ser que una mesma alma auiendo sido criada de largo tiempo haya venido en infinitos cuerpos, y que agora quinientos años huuiese sido rey, y despues vn miserable azacan[298] , y ansi en vn tiempo vn hombre sabio, y en otro vn neçio, y en otro rana, y en otro asno, cauallo o puerco. ¿Nunca tu oyste dezir esto?

M.—Por çierto, yo nunca oy cuentos ni musicas mas agraçiadas que aquellas que hazen entre si quando en mucha priesa se encuentran las hormas y charanbiles con el tranchete.

G.—Ansi parece ser eso. Porque la poca esperiençia que tienes de las cosas te es ocasion que agora te escandalizes de ver cosa tan comun a los que leen.

M.—Por çierto que me espantas de oyr lo que dizes.

G.—Pues dime agora, de dónde piensas que les viene á muchos brutos animales hazer cosas tan agudas y tan

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.