Non Associative Normed Algebras
Volume 2 Representation Theory and the Zel manov Approach 1st Edition
Miguel Cabrera García
Visit to download the full and correct content document: https://textbookfull.com/product/non-associative-normed-algebras-volume-2-represent ation-theory-and-the-zel-manov-approach-1st-edition-miguel-cabrera-garcia/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Algebras, Rings and Modules, Volume 2: Non-commutative Algebras and Rings 1st Edition Michiel Hazewinkel
https://textbookfull.com/product/algebras-rings-and-modulesvolume-2-non-commutative-algebras-and-rings-1st-edition-michielhazewinkel/
A
Journey Through Representation Theory From Finite Groups to Quivers via Algebras Caroline Gruson
https://textbookfull.com/product/a-journey-throughrepresentation-theory-from-finite-groups-to-quivers-via-algebrascaroline-gruson/
Handbook of Sustainable Luxury Textiles and Fashion Volume 2 1st Edition Miguel Angel Gardetti
https://textbookfull.com/product/handbook-of-sustainable-luxurytextiles-and-fashion-volume-2-1st-edition-miguel-angel-gardetti/
Algebra 2 Linear Algebra Galois Theory Representation Theory Group Extensions and Schur Multiplier 1st Edition Ramji Lal
https://textbookfull.com/product/algebra-2-linear-algebra-galoistheory-representation-theory-group-extensions-and-schurmultiplier-1st-edition-ramji-lal/
Algebra 2 Linear Algebra Galois Theory Representation theory Group extensions and Schur Multiplier 1st Edition Ramji Lal
https://textbookfull.com/product/algebra-2-linear-algebra-galoistheory-representation-theory-group-extensions-and-schurmultiplier-1st-edition-ramji-lal-2/
Graphical Heritage Volume 2 Representation Analysis
Concept and Creation Luis Agustín-Hernández
https://textbookfull.com/product/graphical-heritagevolume-2-representation-analysis-concept-and-creation-luisagustin-hernandez/
Recent Advances in Operator Theory and Operator Algebras 1st Edition Bercovici
https://textbookfull.com/product/recent-advances-in-operatortheory-and-operator-algebras-1st-edition-bercovici/
Enhancing Cleanup of Environmental Pollutants Volume 2 Non Biological Approaches 1st Edition Naser A. Anjum
https://textbookfull.com/product/enhancing-cleanup-ofenvironmental-pollutants-volume-2-non-biological-approaches-1stedition-naser-a-anjum/
Representation Theory of Finite Monoids 1st Edition
Benjamin Steinberg
https://textbookfull.com/product/representation-theory-of-finitemonoids-1st-edition-benjamin-steinberg/
NON-ASSOCIATIVENORMEDALGEBRAS
Volume2:RepresentationTheoryandtheZel’manovApproach
Thisfirstsystematicaccountofthebasictheoryofnormedalgebras,without assumingassociativity,includesmanynewandunpublishedresultsandissureto becomeacentralresourceforresearchersandgraduatestudentsinthefield.
Thissecondvolumerevisits JB*-triples,coversZel’manov’scelebratedworkin Jordantheory,provestheunit-freevariantofVidav–Palmertheorem,anddevelops therepresentationtheoryofalternative C *-algebrasandnon-commutative JB*-algebras.Thiscompletestheworkbeguninthefirstvolume,whichintroduced thesealgebrasanddiscussedtheso-callednon-associativeGelfand–Naimarkand Vidav–Palmertheorems.
Thisbookinterweavespurealgebra,geometryofnormedspaces,and infinite-dimensionalcomplexanalysis.Novelproofsarepresentedincomplete detailatalevelaccessibletograduatestudents.Thebookcontainsawealthof historicalcomments,backgroundmaterial,examples,andanextensivebibliography.
EncyclopediaofMathematicsandItsApplications
Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications.
Booksinthe EncyclopediaofMathematicsandItsApplications covertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects.
EncyclopediaofMathematicsanditsApplications
AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics.
119M.DezaandM.DutourSikiri ´ c GeometryofChemicalGraphs
120T.Nishiura AbsoluteMeasurableSpaces
121M.Prest Purity,SpectraandLocalisation
122S.Khrushchev OrthogonalPolynomialsandContinuedFractions
123H.NagamochiandT.Ibaraki AlgorithmicAspectsofGraphConnectivity
124F.W.King HilbertTransformsI
125F.W.King HilbertTransformsII
126O.CalinandD.-C.Chang Sub-RiemannianGeometry
127M.Grabisch etal.AggregationFunctions
128L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.Tucker TopicsinTopological GraphTheory
129J.Berstel,D.PerrinandC.Reutenauer CodesandAutomata
130T.G.Faticoni ModulesoverEndomorphismRings
131H.Morimoto StochasticControlandMathematicalModeling
132G.Schmidt RelationalMathematics
133P.KornerupandD.W.Matula FinitePrecisionNumberSystemsandArithmetic
134Y.CramaandP.L.Hammer(eds.) BooleanModelsandMethodsinMathematics,Computer Science,andEngineering
135V.Berth ´ eandM.Rigo(eds.) Combinatorics,AutomataandNumberTheory
136A.Krist ´ aly,V.D.R ˘ adulescuandC.Varga VariationalPrinciplesinMathematicalPhysics, Geometry,andEconomics
137J.BerstelandC.Reutenauer NoncommutativeRationalSerieswithApplications
138B.CourcelleandJ.Engelfriet GraphStructureandMonadicSecond-OrderLogic
139M.Fiedler MatricesandGraphsinGeometry
140N.Vakil RealAnalysisthroughModernInfinitesimals
141R.B.Paris HadamardExpansionsandHyperasymptoticEvaluation
142Y.CramaandP.L.Hammer BooleanFunctions
143A.Arapostathis,V.S.Borkar,andM.K.Ghosh ErgodicControlofDiffusionProcesses
144N.Caspard,B.Leclerc,andB.Monjardet FiniteOrderedSets
145D.Z.ArovandH.Dym BitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations
146G.Dassios EllipsoidalHarmonics
147L.W.BeinekeandR.J.Wilson(eds.)withO.R.Oellermann TopicsinStructuralGraphTheory
148L.Berlyand,A.G.Kolpakov,andA.Novikov IntroductiontotheNetworkApproximationMethod forMaterialsModeling
149M.BaakeandU.Grimm AperiodicOrderI:AMathematicalInvitation
150J.Borwein etal.LatticeSumsThenandNow
151R.Schneider ConvexBodies:TheBrunn–MinkowskiTheory(SecondEdition)
152G.DaPratoandJ.Zabczyk StochasticEquationsinInfiniteDimensions(SecondEdition)
153D.Hofmann,G.J.Seal,andW.Tholen(eds.) MonoidalTopology
154M.CabreraGarc´ıaand ´ A.Rodr´ıguezPalacios Non-AssociativeNormedAlgebrasI:The Vidav–PalmerandGelfand–NaimarkTheorems
155C.F.DunklandY.Xu OrthogonalPolynomialsofSeveralVariables(SecondEdition)
156L.W.BeinekeandR.J.Wilson(eds.)withB.Toft TopicsinChromaticGraphTheory
157T.Mora SolvingPolynomialEquationSystemsIII:AlgebraicSolving
158T.Mora SolvingPolynomialEquationSystemsIV:BuchbergerTheoryandBeyond 159V.Berth ´ e andM.Rigo(eds.) Combinatorics,WordsandSymbolicDynamics
160B.Rubin IntroductiontoRadonTransforms:WithElementsofFractionalCalculusandHarmonic Analysis
161M.GherguandS.D.Taliaferro IsolatedSingularitiesinPartialDifferentialInequalities
162G.MolicaBisci,V.Radulescu,andR.Servadei VariationalMethodsforNonlocalFractional Problems
163S.Wagon TheBanach–TarskiParadox(SecondEdition)
164K.Broughan EquivalentsoftheRiemannHypothesisI:ArithmeticEquivalents
165K.Broughan EquivalentsoftheRiemannHypothesisII:AnalyticEquivalents
166M.BaakeandU.Grimm(eds.) AperiodicOrderII:CrystallographyandAlmostPeriodicity
167M.CabreraGarc´ıaand ´ A.Rodr´ıguezPalacios Non-AssociativeNormedAlgebrasII: RepresentationTheoryandtheZel’manovApproach
168A.Yu.Khrennikov,S.V.KozyrevandW.A.Z ´ u ˜ niga-Galindo UltrametricPseudodifferential EquationsandApplications
Non-AssociativeNormedAlgebras
Volume2:RepresentationTheoryand theZel’manovApproach
MIGUELCABRERAGARC ´ IA UniversidaddeGranada
´ ANGELRODR ´ IGUEZPALACIOS UniversidaddeGranada
UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia
314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India
79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge.
ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence.
www.cambridge.org
Informationonthistitle:www.cambridge.org/9781107043114 DOI:10.1017/9781107337817
©MiguelCabreraGarc´ıaand ´ AngelRodr´ıguezPalacios2018
Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress.
Firstpublished2018
PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary.
LibraryofCongressCataloging-in-PublicationData CabreraGarc´ıa,Miguel. Non-associativenormedalgebras/MiguelCabreraGarc´ıa,UniversidaddeGranada, ´ AngelRodr´ıguezPalacios,UniversidaddeGranada. volumescm.–(Encyclopediaofmathematicsanditsapplications)
ISBN978-1-107-04306-0(hardback)
1.Banachalgebras.2.Algebra.I.Rodr´ıguezPalacios, ´ Angel.II.Title. QA326.C332014 512 .554–dc232013045718
ISBN978-1-107-04306-0Hardback
ISBN-2VolumeSet978-1-108-67907-7Hardback
ISBN-VolumeI978-1-107-04306-0Hardback
ISBN-VolumeII978-1-107-04311-4Hardback
CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate.
ToAnaMar´ıaandIn ´ es
JBW ∗ -algebras, JB∗ -triplesrevisited,and aunit-freeVidav–Palmertypenon-associativetheorem
5.1.1Theresults
5.1.2Historicalnotesandcomments
5.2Preliminariesonanalyticmappings
5.2.1Polynomialsandhigherderivatives
5.2.4Historicalnotesandcomments
5.3Holomorphicautomorphismsofaboundeddomain
5.3.1Thetopologyofthelocaluniformconvergence53
5.3.2Holomorphicautomorphismsofaboundeddomain61
5.3.3TheCarath ´ eodorydistanceonaboundeddomain77
5.3.4Historicalnotesandcomments
5.4Completeholomorphicvectorfields
5.4.1LocallyLipschitzvectorfields
5.4.2Holomorphicvectorfields
5.4.3Completeholomorphicvectorfieldsand one-parametergroups
5.4.4Historicalnotesandcomments
5.5BanachLiestructuresforaut( ) andAut( )
5.5.1TherealBanachLiealgebraaut( )
5.5.2TherealBanachLiegroupAut( )
5.5.3Historicalnotesandcomments
5.6Kaup’sholomorphiccharacterizationof JB∗ -triples
5.6.1Boundedcirculardomains
5.6.2ThesymmetricpartofacomplexBanachspace187
5.6.3Numericalrangesrevisited
5.6.4ConcludingtheproofofKaup’stheorem
5.6.5Historicalnotesandcomments
5.7 JBW ∗ -triples
5.7.1Thebidualofa JB∗ -triple
5.7.2Themainresults
5.7.3Historicalnotesandcomments
5.8Operatorsintothepredualofa JBW ∗ -triple
5.8.1OnPełczy ´ nski’sproperty (V ∗ )
5.8.2 L-embeddedspaceshaveproperty (V ∗ )
5.8.3Applicationsto JB∗ -triples
5.8.4Historicalnotesandcomments
5.9Aholomorphiccharacterizationofnon-commutative JB∗ -algebras
5.9.1Completenormedalgebraswhosebidualsare non-commutative JB∗ -algebras
5.9.2Themainresult
5.9.3Historicalnotesandcomments
5.10Complementsonnon-commutative JB∗ -algebrasand JB∗ -triples
5.10.1Selectedtopicsinthetheoryofnon-commutative JBW ∗ -algebras
5.10.2Thestrong∗ topologyofa JBW ∗ -triple
5.10.3Isometriesofnon-commutative JB∗ -algebras
5.10.4Historicalnotesandcomments
6Representationtheoryfornon-commutative JB∗ -algebras andalternative C ∗ -algebras
6.1Themainresults
6.1.1Factorrepresentationsofnon-commutative JB∗ -algebras
6.1.2Associativityandcommutativityofnon-commutative JB∗ -algebras
6.1.3 JBW ∗ -factors
6.1.4Classifyingprime JB∗ -algebras:aZel’manovian approach
6.1.5Primenon-commutative JB∗ -algebrasarecentrally closed
6.1.6Non-commutative JBW ∗ -factorsandalternative W ∗ -factors 374
6.1.7Historicalnotesandcomments
6.2Applicationsoftherepresentationtheory
6.2.1Alternative C ∗ -and W ∗ -algebras
6.2.2Thestrongtopologyofanon-commutative JBW ∗ -algebra
6.2.3Primenon-commutative JB∗ -algebras
6.2.4Historicalnotesandcomments
6.3Afurtherapplication:commutativityofnon-commutative JB∗ -algebras
6.3.1LePage’stheorem,andsomenon-associative variants
6.3.2Themainresult
6.3.3Discussionofresultsandmethods
7Zel’manovapproach
7.1Classifyingprime JB∗ -triples
7.1.1Representationtheoryfor JB∗ -triples
7.1.2Buildingprime JB∗ -triplesfromprime C ∗ -algebras441
7.1.3Themainresults444
7.1.4Historicalnotesandcomments458
7.2AsurveyontheanalytictreatmentofZel’manov’sprime theorems461
7.2.1CompletenormedJ-primitiveJordanalgebras462
7.2.2Strong-versus-lightnormedversionsofthe Zel’manovprimetheorem467
7.2.3Thenormextensionproblem470
8Selectedtopicsinthetheoryofnon-associativenormedalgebras 477
8.1 H ∗ -algebras
8.1.1Preliminaries,andatheoremonpower-associative H ∗ -algebras
8.1.2Structuretheory
8.1.3Topologicallysimple H ∗ -algebrasare‘very’prime489
8.1.4Automaticcontinuity495
8.1.5Isomorphismsandderivationsof H ∗ -algebras502
8.1.6Jordanaxiomsforassociative H ∗ -algebras 508
8.1.7Realversuscomplex H ∗ -algebras 510
8.1.8Trace-classelementsin H ∗ -algebras 523
8.1.9Historicalnotesandcomments 545
8.2Extendingthetheoryof H ∗ -algebras:generalizedannihilator normedalgebras 561
8.2.1Themainresult 562
8.2.2Generalizedannihilatoralgebrasaremultiplicatively semiprime 571
8.2.3Generalizedcomplementednormedalgebras 577
8.2.4Historicalnotesandcomments 583
8.3Continuingthetheoryofnon-associativenormedalgebras586
8.3.1Continuityofhomomorphismsintonormedalgebras withouttopologicaldivisorsofzero 586
8.3.2CompletenormedJordanalgebraswithfinite J-spectrum 589
8.3.3Historicalnotesandcomments 595
8.3.4NormedJordanalgebrasafterAupetit’spaper[40]: asurvey
8.4Thejointspectralradiusofaboundedset
8.4.1Basicnotionsandresults
8.4.2Topologicallynilpotentnormedalgebras
8.4.3Involvingnearlyabsolute-valuedalgebras 638
8.4.4Involvingtensorproducts 642
8.4.5Historicalnotesandcomments 650
1.1.5Thecomplexificationofanormedrealalgebra
1.1.6Theunitalextensionandthecompletionofanormed
1.3.3Historicalnotesandcomments
1.4.3Discussingtheinclusion F(X , Y ) ⊆ K(X , Y ) inthe non-completesetting
1.4.4Historicalnotesandcomments
2.1.1Algebranumericalranges
2.1.2Operatornumericalranges
2.1.3Historicalnotesandcomments
2.2AnapplicationtoKadison’sisometrytheorem
2.2.1Non-associativeresults
2.2.2TheKadison–Paterson–Sinclairtheorem
2.2.3Historicalnotesandcomments
2.3TheassociativeVidav–Palmertheorem,startingfroma non-associativegerm
2.3.1Naturalinvolutionsof V -algebrasarealgebra involutions
2.3.2TheassociativeVidav–Palmertheorem
2.3.3Complementson C ∗ -algebras
2.3.4Introducingalternative C ∗ -algebras
2.3.5Historicalnotesandcomments
2.4 V -algebrasarenon-commutativeJordanalgebras
2.4.1Themainresult
2.4.2Applicationsto C ∗ -algebras
2.4.3Historicalnotesandcomments
2.5TheFrobenius–Zorntheorem,andthegeneralizedGelfand–Mazur–Kaplanskytheorem
2.5.1Introducingquaternionsandoctonions
2.5.2TheFrobenius–Zorntheorem 177
2.5.3ThegeneralizedGelfand–Mazur–Kaplanskytheorem192
2.5.4Historicalnotesandcomments
2.6Smooth-normedalgebras,andabsolute-valuedunitalalgebras203
2.6.1Determiningsmooth-normedalgebrasand absolute-valuedunitalalgebras 203
2.6.2Unit-freecharacterizationsofsmooth-normed algebras,andofabsolute-valuedunitalalgebras212
2.6.3Historicalnotesandcomments 216
2.7OtherGelfand–Mazurtypenon-associativetheorems 223
2.7.1Focusingoncomplexalgebras
2.7.2Involvingrealscalars
2.7.3Discussingtheresults
2.7.4Historicalnotesandcomments
2.8Complementsonabsolute-valuedalgebrasandalgebraicity249
2.8.1Continuityofalgebrahomomorphismsinto absolute-valuedalgebras 250
2.8.2Absolutevalueson H ∗ -algebras 251
2.8.3Freenon-associativealgebrasareabsolute-valued algebras 257
2.8.4Completenormedalgebraicalgebrasareofbounded degree 262
2.8.5Absolute-valuedalgebraicalgebrasare finite-dimensional 270
2.8.6Historicalnotesandcomments 274
2.9Complementsonnumericalranges 283
2.9.1Involvingtheuppersemicontinuityoftheduality mapping 284
2.9.2Theuppersemicontinuityofthepre-dualitymapping291
2.9.3Involvingthestrongsubdifferentiabilityofthenorm299
2.9.4Historicalnotesandcomments 310
3Concludingtheproofofthenon-associativeVidav–Palmertheorem 319
3.1Isometriesof JB-algebras 319
3.1.1Isometriesofunital JB-algebras 319
3.1.2Isometriesofnon-unital JB-algebras 324
3.1.3Ametriccharacterizationofderivationsof JB-algebras327
3.1.4 JB-algebraswhoseBanachspacesareconvex-transitive332
3.1.5Historicalnotesandcomments 336
3.2Theunitalnon-associativeGelfand–Naimarktheorem340
3.2.1Themainresult 340
3.2.2Historicalnotesandcomments 344
3.3Thenon-associativeVidav–Palmertheorem
3.3.1Themainresult
3.3.2Adualversion
3.3.3Historicalnotesandcomments 356
3.4Beginningthetheoryofnon-commutative JB∗ -algebras359
3.4.1 JB-algebrasversus JB∗ -algebras 359
3.4.2Isometriesofunitalnon-commutative JB∗ -algebras366
3.4.3Aninterlude:derivationsandautomorphismsof normedalgebras370
3.4.4Thestructuretheoremofisomorphismsof non-commutative JB∗ -algebras 381
3.4.5Historicalnotesandcomments 388
3.5TheGelfand–Naimarkaxiom a∗ a = a∗ a ,andthe non-unitalnon-associativeGelfand–Naimarktheorem392
3.5.1Quadraticnon-commutative JB∗ -algebras 393
3.5.2Theaxiom a∗ a = a∗ a onunitalalgebras397
3.5.3Aninterlude:thebidualandthespacialnumerical indexofanon-commutative JB∗ -algebra 404
3.5.4Theaxiom a∗ a = a∗ a onnon-unitalalgebras411
3.5.5Thenon-unitalnon-associativeGelfand–Naimark theorem414
3.5.6Vowden’stheorem
3.5.7Historicalnotesandcomments
3.6Jordanaxiomsfor C ∗ -algebras
3.6.1Jacobson’srepresentationtheory:preliminaries426
3.6.2Themainresult
3.6.3Jacobson’srepresentationtheorycontinued
3.6.4Historicalnotesandcomments
4Jordanspectraltheory
4.1InvolvingtheJordaninverse
4.1.1BasicspectraltheoryfornormedJordanalgebras451
4.1.2TopologicalJ-divisorsofzero
4.1.3Non-commutative JB∗ -algebrasare JB∗ -triples463
4.1.4ExtendingtheJordanspectraltheoryto Jordan-admissiblealgebras
4.1.5Theholomorphicfunctionalcalculusforcomplete normedunitalnon-commutativeJordancomplex algebras 480
4.1.6Acharacterizationofsmooth-normedalgebras487
4.1.7Historicalnotesandcomments 490
4.2Unitariesin JB∗ -triplesandinnon-commutative JB∗ -algebras497
4.2.1AcommutativeGelfand–Naimarktheoremfor JB∗ -triples 498
4.2.2Themainresults 505
4.2.3Russo–Dyetypetheoremsfornon-commutative JB∗ -algebras 518
4.2.4Atouchofreal JB∗ -triplesandofrealnoncommutative JB∗ -algebras 521
4.2.5Historicalnotesandcomments 527
4.3 C ∗ -and JB∗ -algebrasgeneratedbyanon-self-adjoint idempotent 536
4.3.1Thecaseof C ∗ -algebras 536
4.3.2Thecaseof JB∗ -algebras 552
4.3.3Anapplicationtonon-commutative JB∗ -algebras560
4.3.4Historicalnotesandcomments562
4.4Algebranormsonnon-commutative JB∗ -algebras 565
4.4.1TheJohnson–Aupetit–Ransforduniqueness-of-norm theorem 566
4.4.2Anon-completevariant 571
4.4.3Themainresults 573
4.4.4Theuniqueness-of-normtheoremforgeneral non-associativealgebras 577
4.4.5Historicalnotesandcomments 592
4.5 JB∗ -representationsandalternative C ∗ -representationsof hermitianalgebras604
4.5.1Preliminaryresults605
4.5.2Themainresults611
4.5.3Aconjectureonnon-commutative JB∗ -equivalent algebras630
4.5.4Historicalnotesandcomments632
4.6Domainsofclosedderivations636
4.6.1Stabilityundertheholomorphicfunctionalcalculus636
4.6.2Stabilityunderthegeometricfunctionalcalculus644
4.6.3Historicalnotesandcomments665
References–Papers
Preface
Thecoreofthebookrevisited
IntheprefacetoVolume1weproposedasthe‘leitmotiv’ofourworktoremoveassociativityintheabstractcharacterizationsofunital(associative) C ∗ -algebrasgiven eitherbytheGelfand–NaimarktheoremorbytheVidav–Palmertheorem,andto study(possiblynon-unital)closed ∗-subalgebrasoftheGelfand–NaimarkorVidav–Palmeralgebrasbornafterremovingassociativity.
Tobemoreprecise,foranorm-unitalcompletenormed(possiblynon-associative) complexalgebra A,weconsideredthefollowingconditions:
(GN)(Gelfand–Naimarkaxiom). Thereisaconjugate-linearvectorspaceinvolution ∗ onAsatisfying 1∗ = 1 and a∗ a = a 2 foreveryainA.
(VP)(Vidav–Palmeraxiom). A = H (A, 1) + iH (A, 1).
Inbothconditions, 1 denotestheunitof A,whereas,in(VP), H (A, 1) standsforthe closedrealsubspaceof A consistingofthoseelements h ∈ A suchthat f (h) belongs to R foreveryboundedlinearfunctional f on A satisfying f = f (1) = 1.
Contrarytowhathappensintheassociativecase[696,725,787,930],inthenonassociativesetting,(GN)and(VP)arenotequivalentconditions.Indeed,asproved inLemma2.2.5,itiseasilyseenthat(GN)implies(VP),but,asshownbyExample 2.3.65,theconverseimplicationisnottrue.Therefore,afterintroducing‘alternative C ∗ -algebras’and‘non-commutative JB∗ -algebras’,andrealizingthattheformerare particularcasesofthelatter,wespecifiedhow,bymeansofTheoremsGNandVP whichfollow,thebehaviouroftheGelfand–NaimarkandtheVidav–Palmeraxioms inthenon-associativesettingareclarified.
TheoremGN Norm-unitalcompletenormedcomplexalgebrasfulfillingtheGelfand–NaimarkaxiomarenothingotherthanunitalalternativeC ∗ -algebras.
TheoremVP Norm-unitalcompletenormedcomplexalgebrasfulfillingtheVidav–Palmeraxiomarenothingotherthanunitalnon-commutativeJB∗ -algebras.
Preface
ThenweannouncedasthemaingoalofourworktoproveTheoremsGNandVP, togetherwiththeirunit-freevariants,andto‘describe’alternative C ∗ -algebrasand non-commutative JB∗ -algebrasbymeansoftheso-calledrepresentationtheory. SinceTheoremsGNandVPandtheunit-freevariantofTheoremGNwerealready provedinTheorems3.2.5,3.3.11,and3.5.53,respectively,itremainsthemain objectiveofourworktoprovetheunit-freevariantofTheoremVP,andtodevelopthe representationtheoryofalternative C ∗ -algebrasandnon-commutative JB∗ -algebras. WenowdothisinChapters5and6respectively.Indeed,theunit-freevariantof TheoremVPisprovedinTheorem5.9.9,whereastherepresentationtheoryof alternative C ∗ -algebrasandnon-commutative JB∗ -algebrascanbesummarizedby meansofCorollaries6.1.11and6.1.12,Theorem6.1.112,andCorollary6.1.115.
ThecontentofVolume2
AswecommentedintheprefaceofVolume1,thedividinglinebetweenthetwo volumescouldbedrawnbetweenwhatcanbedonebeforeandafterinvolvingthe holomorphictheoryof JB∗ -triplesandthestructuretheoryofnon-commutative JB∗algebras.ThenthecontentofVolume1wasdescribedinsomedetail,andatentative contentofVolume2wasoutlined.Nowwearegoingtospecifywithmoreprecision thecontentofthepresentsecondvolume.
Chapter5
ThemaingoalofthisfirstchapterofVolume2istoprovewhatcanbeseenas aunit-freeversionofthenon-associativeVidav–Palmertheorem,namelythat noncommutativeJB∗ -algebrasarepreciselythosecompletenormedcomplexalgebras havinganapproximateunitboundedbyone,andwhoseopenunitballisahomogeneousdomain [365](seeTheorem5.9.9).Someingredientsinthelongproofofthis resultwerealreadyestablishedinVolume1.ThisisthecaseoftheBohnenblust–KarlinCorollary2.1.13,thenon-associativeVidav–PalmertheoremprovedinTheorem3.3.11aswellasitsdualversionshowninCorollary3.3.26,Proposition3.5.23 (thateverynon-commutative JB∗ -algebrahasanapproximateunitboundedbyone), Theorem4.1.45(thatnon-commutative JB∗ -algebrasare JB∗ -triplesinanatural way),andtheequivalence(ii)⇔(vii)intheBraun–Kaup–UpmeierTheorem4.2.24. ♣ Thenewrelevantingredientswhichareprovedinthechapterarethefollowing:
(i)Edward’sfundamentalFact5.1.42,whichdescribeshow JBW -algebrasand JBW ∗ -algebrasaremutuallydetermined,andimplies,via[738],theuniquenessofthepredualofanynon-commutative JBW ∗ -algebra(seeTheorem 5.1.29(iv)).
(ii)TheKaup–Stach ´ ocontractiveprojectiontheoremfor JB∗ -triples(seeTheorem 5.6.59).
(iii)Kaup’sholomorphiccharacterizationof JB∗ -triplesasthosecomplexBanach spaceswhoseopenunitballisahomogeneousdomain(seeTheorem5.6.68).
(iv)Dineen’scelebratedresultthatthebidualofa JB∗ -tripleisa JB∗ -triple(see Proposition5.7.10).
(v)TheBarton–Horn–Timoneybasictheoryof JBW ∗ -triplesestablishingtheseparate w∗ -continuityofthetripleproductofagiven JBW ∗ -triple(seeTheorem 5.7.20)andtheuniquenessofthepredual(seeTheorem5.7.38).
(vi)TheBarton–Timoneytheoremthatthepredualofany JBW ∗ -tripleis L-embedded(seeTheorem5.7.36).
(vii)TheChu–Iochum–Loupiasresultthatboundedlinearoperatorsfroma JB∗tripletoitsdualareweaklycompact(seeCorollary5.8.33)or,equivalently, thatallcontinuousproductsontheBanachspaceofa JB∗ -tripleareArens regular(seeFact5.8.39).
Theoriginalreferencesfortheresultsjustlistedare[222],[382,597],[381],[213], [854,979],[854],and[172],respectively.Ourproofoftheseresultsarenotalways theoriginalones,althoughsometimesthelatterunderlietheformer.Thisisthecase ofresults(ii)and(iii),whichinourdevelopmentdependonthefoundationsofthe infinite-dimensionalholomorphydonein[710,751,814,837,1113,1114,1124] (seeSections5.2to5.6),onthedesignofproofsuggestedin[710,Section2.5],and, attheend,onnumericalrangetechniquesincludedinSubsection5.6.3.Ontheother hand,ourproofofresult(v)isnew,and,contrarytowhathappensintheoriginal one,itavoidsanyBanachspaceresultonuniquenessofpreduals.Indeed,ourproof ofTheorem5.7.20involvesonlyresult(ii)andtheBarton–TimoneyTheorem5.7.18, whereasourproofofTheorem5.7.38dependsonlyonTheorem5.7.20(whoseproof hasbeenjustremarkedon),result(i),andHorn’sCorollary5.7.28(i)(b).
Concerningresult(vii),itisnoteworthythatamuchfinertheoremisprovedin [172].Namely,thateveryboundedlinearoperatorfroma JB∗ -tripletoitsdualfactors throughacomplexHilbertspace.Theproofofthismoregeneraltheorem(asketch ofwhichcanbefoundin§5.10.151)isveryinvolved,andshallnotbecompletely discussedinourwork.Asamatteroffact,were-encounterresult(vii)bycombining results(iv)and(vi)withCorollary5.8.19(assertingthat,if Y isaBanachspacesuch that Y hasproperty(V ∗ ),theneveryboundedlinearoperatorfrom Y to Y isweakly compact)andTheorem5.8.27(that L-embeddedBanachspaceshaveproperty(V ∗ )). Corollary5.8.19andTheorem5.8.27justreviewedareduetoGodefroy–Iochum [957]andPfitzner[1044],respectively.Nevertheless,theproofofCorollary5.8.19 in[957]reliesheavilyonProposition5.8.14,whoseargumentshavebeenlostin theliterature(see§5.8.42).OurproofofProposition5.8.14istakenfromPfitzner’s privatecommunication[1047].
OncethemainobjectiveofthechapterisreachedinSection5.9,thechapter concludeswithasectiondevotedtosomecomplementsonnon-commutative JB∗algebrasand JB∗ -triples.
InSubsection5.10.1weintroducethestrong∗ topologyofanon-commutative JBW ∗ -algebra[19]andapplyittobuildupafunctionalcalculusateachnormal element a ofanon-commutative JBW ∗ -algebra A,whichextendsthecontinuous
functionalcalculus(cf.Corollary4.1.72)andhasasenseforallreal-valuedbounded lowersemicontinuousfunctionsonJ-sp(A, a).Thenwefollow[366]toprovea variantfornon-commutative JBW ∗ -algebrasofKadison’sisometrytheoremfor unital C ∗ -algebras(cf.Theorem2.2.29),aconsequenceofwhichisthatlinearly isometricnon-commutative JBW ∗ -algebrasareJordan-∗-isomorphic.(Werecall thatlinearlyisometric(possiblynon-unital) C ∗ -algebrasareJordan-∗-isomorphic(a consequenceofTheorem2.2.19),butthatlinearlyisometric(evenunital)noncommutative JB∗ -algebrasneednotbeJordan-∗-isomorphic(cf.Antitheorem 3.4.34).)Wealsoprovethegeneralizationtonon-commutative JBW ∗ -algebras ofAkemann’stheorem[826]assertingthecoincidenceofthestrong∗ andMackey topologiesonboundedsubsetsofany W ∗ -algebra.
InSubsection5.10.2weintroduceandstudythestrong∗ topologyofa JBW ∗tripleasdonebyBartonandFriedman[853,60],andfollow[1061]toprovethat, whenanon-commutative JBW ∗ -algebraisviewedasa JBW ∗ -triple,itsnew(triple) strong∗ topologycoincideswiththe(algebra)strong∗ topologyintroducedinSubsection5.10.1.WealsoproveZizler’srefinement[1137]ofLindenstrauss’stheorem [1001]onnorm-densityofoperatorswhosetransposeattaintheirnorm,andapply ittoproveavariantfor JBW ∗ -triplesoftheso-calledlittleGrothendieck’stheorem [853,964,1040,1052].
InSubsection5.10.3weprovidethereaderwithafullnon-associativediscussion oftheKadison–Paterson–SinclairTheorem2.2.19onsurjectivelinearisometries of(possiblynon-unital) C ∗ -algebras[366].Tothisendweintroducethemultiplier non-commutative JB∗ -algebra M (A) ofagivennon-commutative JB∗ -algebra A, andprovethat M (A) coincideswiththe JB∗ -tripleofmultipliers[873]ofthe JB∗tripleunderlying A.ThenwealsoprovethattheKadison–Paterson–Sinclairtheorem remainstrueverbatimforsurjectivelinearisometriesfromnon-commutative JB∗algebrastoalternative C ∗ -algebras,andthatnofurtherverbatimgeneralizationis possible.
Chapter6
Implicitly,therepresentationtheoryof JB-algebrasunderliesourworksince,without providingthereaderwithaproof,wetookfromtheHanche-Olsen–Stormerbook [738]theverydeepfactthattheclosedsubalgebraofa JB-algebrageneratedbytwo elementsisa JC -algebra(cf.Proposition3.1.3).Inthatwaywewereabletodevelop thebasictheoryofnon-commutative JB∗ -algebras(includingthenon-associative Vidav–PalmerTheorem3.3.11andWright’sfundamentalFact3.4.9whichdescribes how JB-algebrasand JB∗ -algebrasaremutuallydetermined)withoutanyfurther implicitorexplicitreferencetorepresentationtheory.Infact,weavoidedanydependenceonrepresentationtheorythroughoutallofVolume1,andtotheendofChapter 5ofthepresentvolume.
Now,inChapter6,weconcludethebasictheoryofnon-commutative JB∗algebras,andfollow[19,124,125,222,481,482,641]todevelopindepththe
Preface xxi
representationtheoryofnon-commutative JB∗ -algebrasand,inparticular,that ofalternative C ∗ -algebras.Tothisend,inSubsection6.1.1weintroducenoncommutative JBW ∗ -factorsandnon-commutative JBW ∗ -factorrepresentationsofa givennon-commutative JB∗ -algebra,andprovethateverynon-commutative JB∗algebrahasafaithfulfamilyoftypeInon-commutative JBW ∗ -factorrepresentations. Whentheseresultsspecializeforclassical C ∗ -algebras,typeInon-commutative JBW ∗ -factorsarenothingotherthanthe(associative) W ∗ -factorsconsistingofall boundedlinearoperatorsonsomecomplexHilbertspace[738,Proposition7.5.2], and,consequently,typeI W ∗ -factorrepresentationsofa C ∗ -algebra A areprecisely theirreduciblerepresentationsof A oncomplexHilbertspaces.Subsection6.1.2 dealswithafirstapplicationoftherepresentationtheoryoutlinedabove,which allowsustoshowthatnon-commutative JB∗ -algebrasareassociativeandcommutativeif(andonlyif)theyhavenononzeronilpotentelement.Asaconsequence, weobtainthatalternative C ∗ -algebrasarecommutativeifandonlyiftheyhave nononzeronilpotentelement[340].ThisgeneralizesKaplansky’sassociative forerunner[761,TheoremBinAppendixIII].InSubsection6.1.3,weinvolvethe theoryof JB-algebras[738],andinvokeresult(i)in ♣ toclassifyall(commutative) JBW ∗ -factors.Thisclassificationisappliedtoprovethati-special JB∗ -algebras are JC ∗ -algebras.InSubsection6.1.4,wecombinetheresultjustreviewedwith Zel’manoviantechniques[437,662]toprovethat,if J isaprime JB∗ -algebra,and if J isneitherquadratic(cf.Corollary3.5.7)norequaltotheunique JB∗ -algebra whoseself-adjointpartis H3 (O) (cf.Example3.1.56andTheorem3.4.8),then eitherthereexistsaprime C ∗ -algebra A suchthat J isaclosed ∗-subalgebraof the JB∗ -algebra M (A)sym containing A,orthereexistsaprime C ∗ -algebra A with a ∗-involution τ suchthat J isaclosed ∗-subalgebraof M (A)sym containedin H (M (A), τ) andcontaining H (A, τ) [255].InSubsection6.1.5,weintroducetotally primenormedalgebrasandultraprimenormedalgebras,andprovethattotallyprime normedcomplexalgebrasarecentrallyclosed,andthatultraprimenormedalgebras aretotallyprime[149].Thenwecombinetheclassificationtheoremofprime JB∗ -algebrasreviewedabovewiththefactthatprime C ∗ -algebrasareultraprime [1012]toshowthatprimenon-commutative JB∗ -algebrasareultraprime,andhence centrallyclosed.InSubsection6.1.6,wecombinethecentralclosednessofprime non-commutative JB∗ -algebraswithatopologicalreadingofMcCrimmon’spaper [436]toprovethatnon-commutative JBW ∗ -factorsareeithercommutativeorsimple quadraticoroftheform B(λ) forsome(associative) W ∗ -factor B andsome0 ≤ λ ≤ 1. ThistheoremisoriginallyduetoBraun[124].Asaconsequence,alternative W ∗factorsareeitherassociativeorequaltothealternative C ∗ -algebraofcomplex octonions(cf.Proposition2.6.8).
NowthatwehavereviewedSection6.1indetail,wewillexplainthecontentof theremainingsectionsofChapter6.Section6.2dealswiththemainapplications oftherepresentationtheory,namelythestructureofalternative C ∗ -algebras[125, 331,481],thedefinitionandpropertiesofthestrongtopologyofanon-commutative JBW ∗ -algebra[482],andtheclassificationofprimenon-commutative JB∗ -algebras
[363].Finally,Section6.3dealswitharatherincidentalapplication.Indeed,we follow[860]toproveaLePagetypetheoremfornon-commutative JB∗ -algebras, anddiscussLePage’stheorem[999]inageneralnon-associativeandnon-star setting.
Chapter7
ThischapterdealswiththeanalytictreatmentofZel’manov’sprimetheoremsfor Jordanstructures,thuscontinuingtheapproachbeguninSubsection6.1.4.
InSubsection7.1wefollow[448,449]toproveasthemainresultthat,if X isa prime JB∗ -triplewhichisneitheranexceptionalCartanfactornoraspintriplefactor, theneitherthereexistaprime C ∗ -algebra A andaself-adjointidempotent e inthe C ∗algebra M (A) ofmultipliersof A suchthat X isaclosedsubtripleof M (A) contained in eM (A)(1 e) andcontaining eA(1 e),orthereexistaprime C ∗ -algebra A,aselfadjointidempotent e ∈ M (A),anda ∗-involution τ on A with e + eτ = 1 suchthat X isaclosedsubtripleof M (A) containedin H (eM (A)eτ , τ) andcontaining H (eAeτ , τ)
Amongthemanytoolsinvolvedintheproofoftheaboveclassificationtheorem, weemphasizeHorn’sdescriptionofCartanfactors[330],thecoreoftheproofof Zel’manov’sprimetheoremforJordantriples[663,1133,1134],andthecomplementaryworkbyD’AmourandMcCrimmononthetopic[920,921].Proofsofthese toolsarenotdiscussedinourdevelopment.ThemainresultsintheFriedman–Russo paper[270],whoseproofsareoutlinedinourdevelopment,arealsoinvolved.Itis noteworthythat,throughthedescriptionofprime JB∗ -algebrasprovedinSubsection 6.1.4,Zel’manov’sworkunderliesagaintheproofoftheclassificationtheoremof prime JB∗ -tripleswearedealingwith.
InSection7.2wesurveyindetailotherapplicationsofZel’manov’sprimetheoremsonJordanstructurestothestudyofnormedJordanalgebrasandtriples.
InSubsection7.2.1weincludethegeneralcompletenormedversion[146]ofthe Anquela–Montaner–Cort ´ es–SkosyrskiiclassificationtheoremofJ-primitiveJordan algebras[21,585],aswellasthemorepreciseclassificationtheoremofJ-primitive JB∗ -algebras[255,525].
InSubsection7.2.2weincludestructuretheoremsforsimplenormedJordan algebras[151](seealso[539])andnon-degeneratelyultraprimecompletenormed Jordancomplexalgebras[152](seealso[428,855]).Thissubsectiondealsalsowith thelimitsofnormedversionsofZel’manovprimetheorems,aquestionwhichwas firstconsideredin[893],andculminatesinthepaperofMoreno,Zel’manov,and theauthors[147]whereitisprovedthatanassociativepolynomial p over K isa Jordanpolynomialifandonlyif,foreveryalgebranorm · ontheJordanalgebra M∞ (K)sym ,theactionof p on M∞ (K) is · -continuous(seealso[447,1082]).
Subsection7.2.3dealswiththeso-callednormextensionproblem,whichinits rootsiscruciallyrelatedtonormedversionsofZel’manov’sprimetheorems.Thefirst significativeprogressonthisproblem(reviewedofcourseinthissubsection)is duetoRodr´ıguez,Slinko,andZel’manov[538],whoasthemainresultprovethat,
Preface
if A isarealorcomplexassociativealgebrawithlinearalgebrainvolution ∗,if A isa‘∗-tightenvelopeof H (A, ∗)’,iftheJordanalgebra H (A, ∗) issemiprime,andif · isacompletealgebranormon H (A, ∗),thenthereexistsanalgebranormon A whoserestrictionto H (A, ∗) isequivalentto · .TheappropriateversionsforJordan triplesoftheresultsof[538],duetoMoreno[1025,1026],arealsoincluded.The subsectionconcludeswithafulldiscussionofresultsonthenormextensionproblem inageneralnon-associativesetting.Themainreferenceforthistopicis[1029].Other relatedresultsin[1027,1059,1064]arealsoreviewed.
Chapter8
Wedevotethisconcludingchaptertodevelopingsomeofourfavouriteparcelsofthe theoryofnon-associativenormedalgebras,notpreviouslyincludedinourwork.
Thefirstsectionofthechapterdealswith H ∗ -algebras,incidentallyintroducedin Volume1ofourwork.Thereasonablywell-behavedco-existenceoftwostructures, namelythatofanalgebraandthatofaHilbertspace,becomestheessenceofsemiH ∗ -algebras.Indeed,theyarecompletenormedalgebras A endowedwitha(vector space)conjugate-linearinvolution ∗,andwhosenormderivesfromaninnerproduct insuchawaythat,foreach a ∈ A,theadjointoftheleftmultiplication La isprecisely La∗ ,andtheadjointoftherightmultiplication Ra is Ra∗ .SinceAmbrose’spioneering paper[20],itiswell-knownthatassociativesemi-H ∗ -algebraswithzeroannihilator are H ∗ -algebras,i.e.theirinvolutionsarealgebrainvolutions.Butthisisnolonger trueingeneral.
WebeginSubsection8.1.1byrecallingthoseresultsonsemi-H ∗ -algebras,which werealreadyprovedinVolume1ofourwork.Thenweintroducetheclassical topologicallysimpleassociativecomplex H ∗ -algebra HS (H ) ofallHilbert–SchmidtoperatorsonanonzerocomplexHilbertspace H ,andshowhowthis algebraallowsustoconstructnaturalexamplesofJordanandLie H ∗ -algebras. Aftershowinghowthenormofasemi-H ∗ -algebrawithzeroannihilatordetermines itsinvolution,weprovethatpower-associative H ∗ -algebrasarenon-commutative Jordanalgebras[714].
InSubsection8.1.2,weestablishtwofundamentalstructuretheoremsforasemiH ∗ -algebra A,which,intwosuccessivesteps,reducethegeneralcasetotheonethat A haszeroannihilator,andthecasethat A haszeroannihilatortotheonethat A is topologicallysimple[199].
Accordingtothestructuretheorycommentedintheprecedingparagraph,topologicallysimplesemi-H ∗ -algebrasmeritbeingstudiedindepth.Thisisdonein Subsection8.1.3.Tothisendweintroducetotallymultiplicativelyprimenormed algebras,showthattheyaretotallyprime,andprovethattopologicallysimplecomplexsemi-H ∗ -algebrasaretotallymultiplicativelyprime[889].Since,aswealready commentedinourreviewofSubsection6.1.5,totallyprimenormedcomplexalgebrasarecentrallyclosed,itfollowsthattopologicallysimplecomplex H ∗ -algebras arecentrallyclosed[148,149].
Preface
Thecentralclosednessoftopologicallysimplecomplex H ∗ -algebrasjustreviewed becomesthekeytoolofSubsection8.1.4,whereweprovethatderivationsofcomplexsemi-H ∗ -algebraswithzeroannihilatorarecontinuous[624],andthatdenserangealgebrahomomorphismsfromcompletenormedcomplexalgebrastocomplex H ∗ -algebraswithzeroannihilatorarealsocontinuous[526].
InSubsection8.1.5weshowthatisomorphiccomplex H ∗ -algebraswithzeroannihilatorare ∗-isomorphic,andthatbijectivealgebra ∗-homomorphismsbetweentopologicallysimplecomplex H ∗ -algebrasarepositivemultiplesofisometries(hence, essentially,atopologicallysimplecomplex H ∗ -algebrahasaunique H ∗ -algebra structure)[198].Theseresultsfollowfromastructuretheoremforbijectivealgebrahomomorphismsbetweencomplex H ∗ -algebraswithzeroannihilator,which becomestheappropriate H ∗ -variantofthestructuretheoremforbijectivealgebra homomorphismsbetweennon-commutative JB∗ -algebrasprovedinTheorem3.4.75.
InSubsection8.1.6,weprovetheappropriate H ∗ -variantoftheJordancharacterizationof C ∗ -algebrasestablishedinTheorem3.6.30[518].Amorethansatisfactory H ∗ -variantofTheorem3.6.25isalsoobtained[624].
Subsection8.1.7isdevotedtoprovidinguswiththeappropriatetoolstotransfer resultsfromcomplexsemi-H ∗ -algebrastorealones.Thebasictoolassertsthat thecomplexificationofanyreal(semi-)H ∗ -algebrabecomesacomplex(semi-)H ∗algebrainanaturalway.Thisquiteelementaryfactalreadyallowstoconvertmany complexresultsintorealones,alloftheminvolvingtheassumptionthatthealgebra haszeroannihilator.Thetreatmentoftopologicallysimplereal(semi-)H ∗ -algebras ismoreelaborated:therearenotopologicallysimplereal(semi-)H ∗ -algebrasother thantopologicallysimplecomplex(semi-)H ∗ -algebras,regardedasrealalgebras, andthereal(semi-)H ∗ -algebrasofallfixedpointsforaninvolutiveconjugate-linear algebra ∗-homomorphismonatopologicallysimplecomplex(semi-)H ∗ -algebra [142].Thisreductionoftopologicallysimplereal(semi-) H ∗ -algebrastocomplex onesallowsustotransfertheremainingresultsknowninthecomplexsettingtothe realsetting.Inparticular,weprovethatdense-rangealgebrahomomorphismsfrom H ∗ -algebraswithzeroannihilatortotopologicallysimple H ∗ -algebrasaresurjective. Then,afterintroducing H ∗ -idealsofanarbitrarynormed ∗-algebra,weprovethat topologicallysimplenormed ∗-algebrashaveatmostone H ∗ -ideal[687].
WebeginSubsection8.1.8byintroducingthecompletenormedcomplex ∗-algebra (TC (H ), · τ ) ofalltrace-classoperatorsonacomplexHilbertspace H ,aswell asthe · τ -continuoustrace-formonit.Thenweshowthat (TC (H ), · τ ) canbe intrinsicallydeterminedintothe H ∗ -algebra (HS (H ), · ) ofallHilbert–Schmidt operatorson H .Thisfactallowsustoreplace HS (H ) withanarbitraryrealor complex(possiblynon-associative)semi-H ∗ -algebra A withzeroannihilator,tobuild anappropriatesubstituteof (TC (H ), · τ ) into A,denotedby (τ c(A), · τ ),and todiscusswhetherornota · τ -continuoustrace-formon τ c(A) doesexist.We provethat,forasemi-H ∗ -algebra A withzeroannihilator, τ c(A) isa ∗-invariant idealof A, (τ c(A), · τ ) isbothanormedalgebraandadualBanachspace,andthe existenceofa · τ -continuoustrace-formon τ c(A) dependsontheexistenceof
Preface
an‘operator-bounded’approximateunitin A [424].This,togetherwithdeepresults establishedinVolume1(namelyTheorem3.5.53andProposition4.5.36(ii)),allows ustoprovethatacomplex H ∗ -algebra A withzeroannihilatorisalternativeifand onlyif (A, · ) hasanapproximateunitoperator-boundedby1,andthepredualof (τ c(A), · τ ) isanon-associative C ∗ -algebra.
IntheconcludingSubsection8.1.9,wesurveytheclassificationtheoremsof topologicallysimple H ∗ -algebrasinthemostfamiliarclassesofalgebras.Thus, startingfromthewell-knownfactthattherearenotopologicallysimpleassociativecomplex H ∗ -algebrasotherthanthoseoftheform HS (H ) foranonzero complexHilbertspace H [20,374],thecorrespondingtheoremsfortopologically simplealternative[1042],Jordanandnon-commutativeJordan[199,1118,1119], Lie[197,460,687],Malcev[141],orstructurable[140,144] H ∗ -algebrasare established.
Section8.2dealswithgeneralizedannihilatornormedalgebras,whichbecome non-stargeneralizationsof H ∗ -algebraswithzeroannihilator.Weprovethatany generalizedannihilatorcompletenormedrealorcomplexalgebrawithzeroweak radical(cf.Definition4.4.39)istheclosureofthedirectsumofitsminimal closedideals,whichareindeedtopologicallysimplenormedalgebras[259]. Wealsoshowthattheweakradicalofanyrealorcomplexsemi-H ∗ -algebra coincideswithitsannihilator,sothatthestructuretheoremforsemi-H ∗ -algebras withzeroannihilatorprovedinSubsection8.1.2isrediscovered.Weintroduce multiplicativelysemiprimealgebras(i.e.algebrassuchthatboththeyandtheir multiplicationalgebrasaresemiprime),andshowthatgeneralizedannihilator normedalgebrasaremultiplicativelysemiprime[876].Evenmore,wecharacterize generalizedannihilatornormedalgebrasamongthosenormedalgebraswhich aremultiplicativelysemiprime.Weintroducegeneralizedcomplementednormed algebras,whichareparticularcasesofgeneralizedannihilatornormedalgebras,and provethat,if A isageneralizedcomplementedcompletenormedalgebrawithzero weakradical,andif {Ai }i∈I standsforthefamilyofitsminimalclosedideals,then foreach a ∈ A thereexistsauniquesummablefamily {ai }i∈I in A suchthat ai ∈ Ai forevery i ∈ I ,and a = i∈I ai [259,846].
Section8.3dealswithothercomplementsintothetheoryofnon-associative normedalgebras.InSubsection8.3.1weprovethatalgebrahomomorphismsfrom completenormedcomplexalgebrastocompletenormedcomplexalgebraswithno nonzerotwo-sidedtopologicaldivisorofzeroarecontinuous[529].InSubsection 8.3.2weshowthatcompletenormedJ-semisimplenon-commutativeJordancomplex algebras,eachelementofwhichhasafiniteJ-spectrum,areafinitedirectsumof closedsimpleidealswhichareeitherfinite-dimensionalorquadratic,andderive thatcompletenormedsemisimplealternativecomplexalgebras,eachelementof whichhasafinitespectrum,arefinite-dimensional[91].Aftertheusualsubsection devotedtohistoricalnotesandcomments,weincludeacomprehensivesurveyonthe moresignificantresultsonnormedJordanalgebraswhichhavebeennotpreviously developedinourwork.
TheconcludingSection8.4dealswiththenon-associativediscussiondonein [452,453]oftheRota–Strangpaper[544](soinparticularofProposition4.5.2,cf. p.632ofVolume1),andofthetheoryoftopologicallynilpotentnormed(associative)algebrasdevelopedin[927,928,929,1020](seealso[786,pp.515–7],[1156, Section11],and§8.4.121).Thesectiondiscussesalsonon-associativeversionsof relatedresultspublishedin[569,615,1083](seealso[1030]),andincorporates proofsofmostauxiliaryresultsinvokedbutnotprovedin[452,453].Amongthese proofs,weemphasizethatofTheorem8.4.76,courtesyofShulmanandTurovskii.
InSubsection8.4.1weintroducethenotionof(joint)spectralradius r(S) ofa boundedsubset S ofanynormedalgebra A.Thenweproveoneofthekeyresults inthewholesection,namelythat, ifAisanormedalgebra,andifSisabounded subsetofAwith r(S)< 1,thenthemultiplicativelyclosedsubsetofAgeneratedbyS isbounded,andhasthesamespectralradiusasS.
InSubsection8.4.2,weintroducetopologicallynilpotentnormedalgebrasasthose normedalgebraswhoseclosedunitballshavezerospectralradius.Amongtheresults obtained,weemphasizethefollowing:
(i)Anormedassociativealgebra A istopologicallynilpotentifandonlyifsoisthe normedJordanalgebra Asym obtainedbysymmetrizationofitsproduct.
(ii)Everynon-topologicallynilpotentnormedalgebracanbeequivalentlyalgebrarenormedinsuchawaythatthespectralradiusofthecorrespondingclosedunit ballisarbitrarilycloseto1.
(iii)Everytopologicallynilpotentcompletenormedalgebraisequaltoitsweak radical.
InSubsection8.4.3,weshowthat,foreverymember A inalargeclassofnormed algebras(whichcontainsallcommutative C ∗ -algebras,all JB-algebras,andall absolute-valuedalgebras),theconclusioninProposition4.5.2hasthefollowing strongerform:foreachboundedandmultiplicativelyclosedsubset S of A wehave thatsup{ s : s ∈ S}≤ 1.
InSubsection8.4.4,weinvolveinourdevelopmenttensorproductsofalgebras. Thusweprovethattheprojectivetensorproductoftwonormedalgebrasistopologicallynilpotentwheneversomeofthemaretopologicallynilpotent,andthatinfact theconverseistruewheneversomeofthemareassociative.Moreover,associativity intheaboveconversecannotberemoved.Wealsoprovethatanormedalgebra A is topologicallynilpotentifandonlyifsoisthenormedalgebra C0 (E , A) forsome (equivalently,every)Hausdorfflocallycompacttopologicalspace E .Theresults obtainedabouttensorproductsofnormedalgebrasarethenappliedtoshowthat mostnotionsintroducedinthesectioncanbenon-triviallyexemplifiedintoaclass ofalgebrasalmostarbitrarilyprefixed.
Onthehistoricalnotes
AsinVolume1,eachsectionofthepresentvolumeconcludeswithasubsection devotedtohistoricalnotesandcomments.ParaphrasingDinnen[1155,p.X],inthese
Preface
notes‘weprovideinformationonthehistoryofthesubjectandreferencesforthe materialpresented.Wehavetriedtobeascarefulaspossibleinthisregardand takeresponsibilityfortheinevitableerrors.Accurateandcomprehensiverecordsof thiskindarenotaluxurybutessentialbackgroundinformationinappreciatingand understandingasubjectanditsevolution’.
Errata: AlistoferrataforVolume1canbefoundinthewebpageofVolume2: www.cambridge.org/9781107043114.WehopetocontinuethisforbothVolumes. Pleasesendcorrectionsto:cabrera@ugr.esand/orapalacio@ugr.es.
Acknowledgements
Weareindebtedtomanymathematicianswhoseencouragement,questions,suggestions,andkindly-sentreprintsgreatlyinfluenceduswhilewewerewritingthis work:M.D.Acosta,J.Alaminos,C.Aparicio,R.M.Aron,B.A.Barnes,J.Becerra, H.Behncke,G.Benkart,A.Browder,M.J.Burgos,J.C.Cabello,A.J.Cabrera, A.Ca ˜ nada,C.-H.Chu,M.J.Crabb,J.Cuntz,C.M.Edwards,F.J.Fern ´ andezPolo, J.E.Gal ´ e,E.Garc´ıa,G.Godefroy,M.G ´ omez,A.Y.Helemskii,R.Iordanescu, V.Kadets,O.Loos,G.L ´ opez,J.Mart´ınezMoreno,M.Mathieu,C.M.McGregor, P.Mellon,A.Morales,J.C.NavarroPascual,M.M.Neumann,R.Pay ´ a,J.P ´ erez Gonz ´ alez,H.P.Petersson,J.D.Poyato,A.Rochdi,A.Rueda,B.Schreiber, I.P.Shestakov,M.Siles,A.M.Sinclair,A.M.Slinko,R.M.Timoney,A.J.Urena, M.V.Velasco,M.Villegas,A.R.Villena,B.Zalar,andW.Zelazko.
SpecialthanksshouldbegiventoD.Beltita,J.A.Cuenca,H.G.Dales,R.S.Doran, A.Fern ´ andezL ´ opez,A.Kaidi,W.Kaup(RIP),M.Mart´ın,J.F.Mena,J.Mer´ı, A.MorenoGalindo,A.M.Peralta,H.Pfitzner,V.S.Shulman,Yu.V.Turovskii, H.Upmeier,J.D.M.Wright,andD.Yost,fortheirsubstantialcontributionstothe writtingofourwork.
WewouldalsoliketothankthestaffofCambridgeUniversityPressfortheir helpandkindness,andparticularlyR.Astley,C.Dennison,N.YassarArafat, R.Munnelly,N.Saxena,andthecopy-editorK.Eagan.
ThisworkhasbeenpartiallysupportedbytheSpanishgovernmentgrant MTM2016-76327-C3-2-P.
Another random document with no related content on Scribd:
Hon. Secretary
J. M T , LL.D., Advocate, 3 Grosvenor Gardens, Edinburgh.
RULES
1. The object of the Society is the discovery and printing, under selected editorship, of unpublished documents illustrative of the civil, religious, and social history of Scotland. The Society will also undertake, in exceptional cases, to issue translations of printed works of a similar nature, which have not hitherto been accessible in English.
2. The number of Members of the Society shall be limited to 400.
3. The affairs of the Society shall be managed by a Council, consisting of a Chairman, Treasurer, Secretary, and twelve elected Members, five to make a quorum. Three of the twelve elected Members shall retire annually by ballot, but they shall be eligible for re-election.
4. The Annual Subscription to the Society shall be One Guinea. The publications of the Society shall not be delivered to any Member whose Subscription is in arrear, and no Member shall be permitted to receive more than one copy of the Society’s publications.
5. The Society will undertake the issue of its own publications, i.e. without the intervention of a publisher or any other paid agent.
6. The Society will issue yearly two octavo volumes of about 320 pages each.
7. An Annual General Meeting of the Society shall be held at the end of October, or at an approximate date to be determined by the Council.
8. Two stated Meetings of the Council shall be held each year, one on the last Tuesday of May, the other on the Tuesday preceding the day upon which the Annual General Meeting shall be held. The
Secretary, on the request of three Members of the Council, shall call a special meeting of the Council.
9. Editors shall receive 20 copies of each volume they edit for the Society.
10. The owners of Manuscripts published by the Society will also be presented with a certain number of copies.
11. The Annual Balance-Sheet, Rules, and List of Members shall be printed.
12. No alteration shall be made in these Rules except at a General Meeting of the Society. A fortnight’s notice of any alteration to be proposed shall be given to the Members of the Council.
PUBLICATIONS OF THE SCOTTISH HISTORY SOCIETY
For the year 1886-1887.
1. B P ’ T S , 1747-1760. Edited by D. W. K .
2. D A B W C C , 1673-1680. Edited by the Rev. J D , D.D.
For the year 1887-1888.
3. G : an heroic poem on the Campaign of 1689, by J P of Almerieclose. Translated and edited by the Rev. A. D. M .
4. T R K -S S . A . Part . 1559-1582. Edited by D. H F .
For the year 1888-1889.
5. D R . J M , Minister in Shetland, 1740-1803. Edited by G G .
6. N M . J N , C , 1654-1709. Edited by W. G. S -M .
7. T R K -S S . A . Part . 1583-1600. Edited by D. H F .
For the year 1889-1890.
8. A L P R (1745). With a Preface by the E R . Presented to the Society by the Earl of Rosebery.
9. G P : The ‘B R ,’ a Diary written by P , E S , and other documents (1684-89). Edited by A. H. M .
10. J M ’ H G B (1521). Translated and edited by A C .
For the year 1890-1891.
11. T R C G A , 1646-47. Edited by the Rev. Professor M , D.D., and the Rev. J C , D.D.
12. C -B B U , 1604-1747. Edited by the Rev. D. G. B .
For the year 1891-1892.
13. M S J C P , Baronet. Extracted by himself from his own Journals, 1676-1755. Edited by J M. G .
14. D C . H . J E C , 16831687. Edited by the Rev. W M .
For the year 1892-1893.
15. M S H S , First Volume. T L J ., 1573-83. Edited by G. F. Warner.— D C P , 1596-98. T. G. Law. —L S T H , 1627-46. Rev. R. Paul.—C W P , 1643-50. H. F. Morland Simpson.—L C , 1660-77. Right Rev. John Dowden, D.D.— T ’ D , 1657-1704. Rev. R. Paul.—M P , 1660-1719. V. A. Noël Paton.—A E E , 1715. A. H. Millar.—R P , 1715 and 1745. H. Paton.
16. A B S J F R (16711707). Edited by the Rev. A. W. C H .
For the year 1893-1894.
17. L P R C . S 1650. Edited by S R G , D.C.L., etc.
18. S C . L P M G S , Aug. 1651-Dec. 1653. Edited by C. H. F , M.A. For the year 1894-1895.
19. T J A 1719. L J , D O . Edited by W. K. D .
20, 21. T L M , C S , L , J , ., A P C E S , by B F . 1746-1775. Edited by H P . Vols. . and .
For the year 1895-1896.
22. T L M . Vol. .
23. I P C E (Supplement to the Lyon in Mourning). Compiled by W. B. B .
24. E P R I D 1638 1688. Edited by W M .
25. R C G A (continued) for the years 1648 and 1649. Edited by the Rev. Professor M , D.D., and Rev. J C , D.D. For the year 1896-1897.
26. W ’ D P J W ’ D , 1639. Edited by G. M. Paul.—T H S , 1651-52. C. R. A. Howden.—T E M ’ L , 1722, 1726. Hon. S. Erskine.—L M . G L . J. R. N. Macphail.
Presented to the Society by Messrs T and A Constable
27. M J M B , 1740-1747. Edited by R. F B .
28. T C B D W , M D , 1587-1630. Edited by A. H. M .
For the year 1897-1898.
29, 30. T C D M D B , F A E S , 1645-1648. Edited, with Translation, by J. G. F . 2 vols.
For the year 1898-1899.
31. S P . L P M G S , J 1654 J 1659. Edited by C. H. F , M.A.
32. P H S B S U N , 1572-1782. Edited by J F . Vol. . 1572-1697.
33, 34. M ’ G C F S ; Manuscripts in the Advocates’ Library. 2 vols. Edited by J. T. C , Keeper of the Library. Presented to the Society by the Trustees of the late Sir William Fraser, K C B
For the year 1899-1900.
35. P S B H , 1572-1782. Edited by J F . Vol. 1698-1782.
36. J F T 1665 1666, ., S J L , L F . Edited by D C .
37. P N M Q S R S . Chiefly from the Vatican Archives. Edited by the Rev. J. H P , S.J.
For the year 1900-1901.
38. P S B H , 1572-1782. Edited by J F . Vol. .
39. T D A H C , 1659-60. Edited by A. G. R , F.S.A.Scot.
For the year 1901-1902.
40. N U E S 1651-53. Edited by C. S T
41. T L D . Written in 1703 by Sir Æ M . Edited by the Rev. A. D. M .
For the year 1902-1903.
42. T C L , 1195-1479. Edited by the Right Rev. J D , D.D., Bishop of Edinburgh.
43. A L M Q S D G , Jan. 1562. Reproduced in Facsimile. Edited by the Rev. J. H P , S.J.
Presented to the Society by the family of the late Mr. Scott, of Halkshill.
44. M S H S , Second Volume.—T S K ’ H , 14th Century. Edited by Mary Bateson.—T S N U O , 1336-1538. John Kirkpatrick, LL.D.— T F G D , 1563. Robert S. Rait.—D A R S , 1594. Henry D. G. Law. —A W M L , 1610. Andrew Lang.—L B G G , 1602-38. L. G. Græme.—A S J , 1641. C. H. Firth.— N D H ’ E E , 1648. C. H. Firth.—B -L P , 1648-168-. H. C. Foxcroft.—P R E , Physician to Peter the Great, 1677-1720. Rev. Robert Paul.— W D A , 1789. A. Francis Steuart.
45. L J C O G , 1727-1743. Edited by J C , D.Sc.
For the year 1903-1904.
46. M B M N M C M , 1681-1690. Edited by W. R. S
47. C F ; being the Wardlaw Manuscript entitled ‘Polichronicon seu Policratica Temporum, or, the true Genealogy of the Frasers.’ By Master J F . Edited by W M .
48. P J C 1661 1678. Vol. . 1661-1669. Edited by Sheriff S -M .
For the year 1904-1905.
49. P J C 1661 1678. Vol. . 1669-1678. Edited by Sheriff S -M .
50. R B C S , 1655-1807. Edited by C B. G , M.D., Peebles.
51. M ’ G C . Vol. . Edited by Sir A M , K.C.B.
For the year 1905-1906.
52, 53. M ’ G C . Vols. . and . Edited by Sir A M , K.C.B.
54. S E S , 1225-1559. Translated and edited by D P , LL.D. For the year 1906-1907.
55. T H B A , O , 1737-39. Edited by J C , D.Sc. (Oct. 1907.)
56. T C A I . Edited by W. A. L , K.C., the Right Rev. Bishop D , D.D., and J. M T , LL.D. (Feb. 1908.)
57. A S F E P H.M. G R H . Edited by A. H. M , LL.D. (Oct. 1909.)
For the year 1907-1908.
58. R C G A (continued), for the years 1650-52. Edited by the Rev J C , D.D. (Feb. 1909.)
59. P S P . Edited by A. F S . (Nov. 1915.)
For the year 1908-1909.
60. S T C ’ D U R B T . Edited, with an English Translation, by C. S T . (Nov. 1909.)
61. J W ’ M Q V , D 1632 1639. Edited by G. M. P , LL.D., D.K.S. (May 1911.)
S S .
For the year 1909-1910.
1. T H B L G B , 1692-1733. Edited by R. S -M , W.S. (Oct. 1911.)
2. O ’45 N . Edited by W. B. B , LL.D. (March 1916.)
3. C J , E F E S , L C S . Edited by J G , M.A., LL.B. (March 1912.)
For the year 1910-1911.
4. R S A ; C G A A C B , 1538-1546. Translated and edited by R K H .
(February 1913.)
5. H P . Vol. . Edited by J. R. N. M , K.C. (May 1914.)
For the year 1911-1912.
6. S R R M . Vol. . Edited by C. S. R , C.A. (November 1914.)
7. R E O . Edited by J. S. C . (December 1914.)
For the year 1912-1913.
8. S R R M . Vol. . Edited by C. S. R , C.A. (January 1915).
9. S L B J S , B I . Edited by W M , LL.D. (April 1915.)
For the year 1913-1914.
10. R D ; A C B D , . . 1506-1517.
Edited by R. K. H (March 1915.)
11. L E S O , H S R Q A . Edited by Professor H B . (Nov. 1915.)
For the year 1914-1915.
12. H P . Vol. . Edited by J. R. N. M , K.C. (March 1916.)
(Note. O ’45, issued for 1909-1910, is issued also for 1914-1915.)
For the year 1915-1916.
13. S R R M . Vol. . Edited by C. S. R , C.A.
14. J W ’ D . Vol. . Edited by D. H F , LL.D.
In preparation.
B T W S . Compiled by the late Sir A M , and edited by C. G. C .
R S A 1638 1650. Edited by Professor C. S T .
S C . Vol. . Edited by Major J G .
R C M E , B M , A 1653, P . Edited by the Rev. W. S , B.D.
M S H S . Third Volume.
C D G F C N H .—R I M . Edited by J. G. W -J , M.B.
A C W C M A ’ L . Edited by J. T. C .
A T H A K F .
P R 1715 1745, with other documents from the Municipal Archives of the City of Perth.
T B P .