Non associative normed algebras volume 2 representation theory and the zel manov approach 1st editio

Page 1


Non Associative Normed Algebras

Volume 2 Representation Theory and the Zel manov Approach 1st Edition

Visit to download the full and correct content document: https://textbookfull.com/product/non-associative-normed-algebras-volume-2-represent ation-theory-and-the-zel-manov-approach-1st-edition-miguel-cabrera-garcia/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Algebras, Rings and Modules, Volume 2: Non-commutative Algebras and Rings 1st Edition Michiel Hazewinkel

https://textbookfull.com/product/algebras-rings-and-modulesvolume-2-non-commutative-algebras-and-rings-1st-edition-michielhazewinkel/

A

Journey Through Representation Theory From Finite Groups to Quivers via Algebras Caroline Gruson

https://textbookfull.com/product/a-journey-throughrepresentation-theory-from-finite-groups-to-quivers-via-algebrascaroline-gruson/

Handbook of Sustainable Luxury Textiles and Fashion Volume 2 1st Edition Miguel Angel Gardetti

https://textbookfull.com/product/handbook-of-sustainable-luxurytextiles-and-fashion-volume-2-1st-edition-miguel-angel-gardetti/

Algebra 2 Linear Algebra Galois Theory Representation Theory Group Extensions and Schur Multiplier 1st Edition Ramji Lal

https://textbookfull.com/product/algebra-2-linear-algebra-galoistheory-representation-theory-group-extensions-and-schurmultiplier-1st-edition-ramji-lal/

Algebra 2 Linear Algebra Galois Theory Representation theory Group extensions and Schur Multiplier 1st Edition Ramji Lal

https://textbookfull.com/product/algebra-2-linear-algebra-galoistheory-representation-theory-group-extensions-and-schurmultiplier-1st-edition-ramji-lal-2/

Graphical Heritage Volume 2 Representation Analysis

Concept and Creation Luis Agustín-Hernández

https://textbookfull.com/product/graphical-heritagevolume-2-representation-analysis-concept-and-creation-luisagustin-hernandez/

Recent Advances in Operator Theory and Operator Algebras 1st Edition Bercovici

https://textbookfull.com/product/recent-advances-in-operatortheory-and-operator-algebras-1st-edition-bercovici/

Enhancing Cleanup of Environmental Pollutants Volume 2 Non Biological Approaches 1st Edition Naser A. Anjum

https://textbookfull.com/product/enhancing-cleanup-ofenvironmental-pollutants-volume-2-non-biological-approaches-1stedition-naser-a-anjum/

Representation Theory of Finite Monoids 1st Edition

Benjamin Steinberg

https://textbookfull.com/product/representation-theory-of-finitemonoids-1st-edition-benjamin-steinberg/

NON-ASSOCIATIVENORMEDALGEBRAS

Volume2:RepresentationTheoryandtheZel’manovApproach

Thisfirstsystematicaccountofthebasictheoryofnormedalgebras,without assumingassociativity,includesmanynewandunpublishedresultsandissureto becomeacentralresourceforresearchersandgraduatestudentsinthefield.

Thissecondvolumerevisits JB*-triples,coversZel’manov’scelebratedworkin Jordantheory,provestheunit-freevariantofVidav–Palmertheorem,anddevelops therepresentationtheoryofalternative C *-algebrasandnon-commutative JB*-algebras.Thiscompletestheworkbeguninthefirstvolume,whichintroduced thesealgebrasanddiscussedtheso-callednon-associativeGelfand–Naimarkand Vidav–Palmertheorems.

Thisbookinterweavespurealgebra,geometryofnormedspaces,and infinite-dimensionalcomplexanalysis.Novelproofsarepresentedincomplete detailatalevelaccessibletograduatestudents.Thebookcontainsawealthof historicalcomments,backgroundmaterial,examples,andanextensivebibliography.

EncyclopediaofMathematicsandItsApplications

Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications.

Booksinthe EncyclopediaofMathematicsandItsApplications covertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects.

EncyclopediaofMathematicsanditsApplications

AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics.

119M.DezaandM.DutourSikiri ´ c GeometryofChemicalGraphs

120T.Nishiura AbsoluteMeasurableSpaces

121M.Prest Purity,SpectraandLocalisation

122S.Khrushchev OrthogonalPolynomialsandContinuedFractions

123H.NagamochiandT.Ibaraki AlgorithmicAspectsofGraphConnectivity

124F.W.King HilbertTransformsI

125F.W.King HilbertTransformsII

126O.CalinandD.-C.Chang Sub-RiemannianGeometry

127M.Grabisch etal.AggregationFunctions

128L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.Tucker TopicsinTopological GraphTheory

129J.Berstel,D.PerrinandC.Reutenauer CodesandAutomata

130T.G.Faticoni ModulesoverEndomorphismRings

131H.Morimoto StochasticControlandMathematicalModeling

132G.Schmidt RelationalMathematics

133P.KornerupandD.W.Matula FinitePrecisionNumberSystemsandArithmetic

134Y.CramaandP.L.Hammer(eds.) BooleanModelsandMethodsinMathematics,Computer Science,andEngineering

135V.Berth ´ eandM.Rigo(eds.) Combinatorics,AutomataandNumberTheory

136A.Krist ´ aly,V.D.R ˘ adulescuandC.Varga VariationalPrinciplesinMathematicalPhysics, Geometry,andEconomics

137J.BerstelandC.Reutenauer NoncommutativeRationalSerieswithApplications

138B.CourcelleandJ.Engelfriet GraphStructureandMonadicSecond-OrderLogic

139M.Fiedler MatricesandGraphsinGeometry

140N.Vakil RealAnalysisthroughModernInfinitesimals

141R.B.Paris HadamardExpansionsandHyperasymptoticEvaluation

142Y.CramaandP.L.Hammer BooleanFunctions

143A.Arapostathis,V.S.Borkar,andM.K.Ghosh ErgodicControlofDiffusionProcesses

144N.Caspard,B.Leclerc,andB.Monjardet FiniteOrderedSets

145D.Z.ArovandH.Dym BitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations

146G.Dassios EllipsoidalHarmonics

147L.W.BeinekeandR.J.Wilson(eds.)withO.R.Oellermann TopicsinStructuralGraphTheory

148L.Berlyand,A.G.Kolpakov,andA.Novikov IntroductiontotheNetworkApproximationMethod forMaterialsModeling

149M.BaakeandU.Grimm AperiodicOrderI:AMathematicalInvitation

150J.Borwein etal.LatticeSumsThenandNow

151R.Schneider ConvexBodies:TheBrunn–MinkowskiTheory(SecondEdition)

152G.DaPratoandJ.Zabczyk StochasticEquationsinInfiniteDimensions(SecondEdition)

153D.Hofmann,G.J.Seal,andW.Tholen(eds.) MonoidalTopology

154M.CabreraGarc´ıaand ´ A.Rodr´ıguezPalacios Non-AssociativeNormedAlgebrasI:The Vidav–PalmerandGelfand–NaimarkTheorems

155C.F.DunklandY.Xu OrthogonalPolynomialsofSeveralVariables(SecondEdition)

156L.W.BeinekeandR.J.Wilson(eds.)withB.Toft TopicsinChromaticGraphTheory

157T.Mora SolvingPolynomialEquationSystemsIII:AlgebraicSolving

158T.Mora SolvingPolynomialEquationSystemsIV:BuchbergerTheoryandBeyond 159V.Berth ´ e andM.Rigo(eds.) Combinatorics,WordsandSymbolicDynamics

160B.Rubin IntroductiontoRadonTransforms:WithElementsofFractionalCalculusandHarmonic Analysis

161M.GherguandS.D.Taliaferro IsolatedSingularitiesinPartialDifferentialInequalities

162G.MolicaBisci,V.Radulescu,andR.Servadei VariationalMethodsforNonlocalFractional Problems

163S.Wagon TheBanach–TarskiParadox(SecondEdition)

164K.Broughan EquivalentsoftheRiemannHypothesisI:ArithmeticEquivalents

165K.Broughan EquivalentsoftheRiemannHypothesisII:AnalyticEquivalents

166M.BaakeandU.Grimm(eds.) AperiodicOrderII:CrystallographyandAlmostPeriodicity

167M.CabreraGarc´ıaand ´ A.Rodr´ıguezPalacios Non-AssociativeNormedAlgebrasII: RepresentationTheoryandtheZel’manovApproach

168A.Yu.Khrennikov,S.V.KozyrevandW.A.Z ´ u ˜ niga-Galindo UltrametricPseudodifferential EquationsandApplications

Non-AssociativeNormedAlgebras

Volume2:RepresentationTheoryand theZel’manovApproach

MIGUELCABRERAGARC ´ IA UniversidaddeGranada

´ ANGELRODR ´ IGUEZPALACIOS UniversidaddeGranada

UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia

314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India

79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge.

ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence.

www.cambridge.org

Informationonthistitle:www.cambridge.org/9781107043114 DOI:10.1017/9781107337817

©MiguelCabreraGarc´ıaand ´ AngelRodr´ıguezPalacios2018

Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress.

Firstpublished2018

PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary.

LibraryofCongressCataloging-in-PublicationData CabreraGarc´ıa,Miguel. Non-associativenormedalgebras/MiguelCabreraGarc´ıa,UniversidaddeGranada, ´ AngelRodr´ıguezPalacios,UniversidaddeGranada. volumescm.–(Encyclopediaofmathematicsanditsapplications)

ISBN978-1-107-04306-0(hardback)

1.Banachalgebras.2.Algebra.I.Rodr´ıguezPalacios, ´ Angel.II.Title. QA326.C332014 512 .554–dc232013045718

ISBN978-1-107-04306-0Hardback

ISBN-2VolumeSet978-1-108-67907-7Hardback

ISBN-VolumeI978-1-107-04306-0Hardback

ISBN-VolumeII978-1-107-04311-4Hardback

CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate.

ToAnaMar´ıaandIn ´ es

JBW ∗ -algebras, JB∗ -triplesrevisited,and aunit-freeVidav–Palmertypenon-associativetheorem

5.1.1Theresults

5.1.2Historicalnotesandcomments

5.2Preliminariesonanalyticmappings

5.2.1Polynomialsandhigherderivatives

5.2.4Historicalnotesandcomments

5.3Holomorphicautomorphismsofaboundeddomain

5.3.1Thetopologyofthelocaluniformconvergence53

5.3.2Holomorphicautomorphismsofaboundeddomain61

5.3.3TheCarath ´ eodorydistanceonaboundeddomain77

5.3.4Historicalnotesandcomments

5.4Completeholomorphicvectorfields

5.4.1LocallyLipschitzvectorfields

5.4.2Holomorphicvectorfields

5.4.3Completeholomorphicvectorfieldsand one-parametergroups

5.4.4Historicalnotesandcomments

5.5BanachLiestructuresforaut( ) andAut( )

5.5.1TherealBanachLiealgebraaut( )

5.5.2TherealBanachLiegroupAut( )

5.5.3Historicalnotesandcomments

5.6Kaup’sholomorphiccharacterizationof JB∗ -triples

5.6.1Boundedcirculardomains

5.6.2ThesymmetricpartofacomplexBanachspace187

5.6.3Numericalrangesrevisited

5.6.4ConcludingtheproofofKaup’stheorem

5.6.5Historicalnotesandcomments

5.7 JBW ∗ -triples

5.7.1Thebidualofa JB∗ -triple

5.7.2Themainresults

5.7.3Historicalnotesandcomments

5.8Operatorsintothepredualofa JBW ∗ -triple

5.8.1OnPełczy ´ nski’sproperty (V ∗ )

5.8.2 L-embeddedspaceshaveproperty (V ∗ )

5.8.3Applicationsto JB∗ -triples

5.8.4Historicalnotesandcomments

5.9Aholomorphiccharacterizationofnon-commutative JB∗ -algebras

5.9.1Completenormedalgebraswhosebidualsare non-commutative JB∗ -algebras

5.9.2Themainresult

5.9.3Historicalnotesandcomments

5.10Complementsonnon-commutative JB∗ -algebrasand JB∗ -triples

5.10.1Selectedtopicsinthetheoryofnon-commutative JBW ∗ -algebras

5.10.2Thestrong∗ topologyofa JBW ∗ -triple

5.10.3Isometriesofnon-commutative JB∗ -algebras

5.10.4Historicalnotesandcomments

6Representationtheoryfornon-commutative JB∗ -algebras andalternative C ∗ -algebras

6.1Themainresults

6.1.1Factorrepresentationsofnon-commutative JB∗ -algebras

6.1.2Associativityandcommutativityofnon-commutative JB∗ -algebras

6.1.3 JBW ∗ -factors

6.1.4Classifyingprime JB∗ -algebras:aZel’manovian approach

6.1.5Primenon-commutative JB∗ -algebrasarecentrally closed

6.1.6Non-commutative JBW ∗ -factorsandalternative W ∗ -factors 374

6.1.7Historicalnotesandcomments

6.2Applicationsoftherepresentationtheory

6.2.1Alternative C ∗ -and W ∗ -algebras

6.2.2Thestrongtopologyofanon-commutative JBW ∗ -algebra

6.2.3Primenon-commutative JB∗ -algebras

6.2.4Historicalnotesandcomments

6.3Afurtherapplication:commutativityofnon-commutative JB∗ -algebras

6.3.1LePage’stheorem,andsomenon-associative variants

6.3.2Themainresult

6.3.3Discussionofresultsandmethods

7Zel’manovapproach

7.1Classifyingprime JB∗ -triples

7.1.1Representationtheoryfor JB∗ -triples

7.1.2Buildingprime JB∗ -triplesfromprime C ∗ -algebras441

7.1.3Themainresults444

7.1.4Historicalnotesandcomments458

7.2AsurveyontheanalytictreatmentofZel’manov’sprime theorems461

7.2.1CompletenormedJ-primitiveJordanalgebras462

7.2.2Strong-versus-lightnormedversionsofthe Zel’manovprimetheorem467

7.2.3Thenormextensionproblem470

8Selectedtopicsinthetheoryofnon-associativenormedalgebras 477

8.1 H ∗ -algebras

8.1.1Preliminaries,andatheoremonpower-associative H ∗ -algebras

8.1.2Structuretheory

8.1.3Topologicallysimple H ∗ -algebrasare‘very’prime489

8.1.4Automaticcontinuity495

8.1.5Isomorphismsandderivationsof H ∗ -algebras502

8.1.6Jordanaxiomsforassociative H ∗ -algebras 508

8.1.7Realversuscomplex H ∗ -algebras 510

8.1.8Trace-classelementsin H ∗ -algebras 523

8.1.9Historicalnotesandcomments 545

8.2Extendingthetheoryof H ∗ -algebras:generalizedannihilator normedalgebras 561

8.2.1Themainresult 562

8.2.2Generalizedannihilatoralgebrasaremultiplicatively semiprime 571

8.2.3Generalizedcomplementednormedalgebras 577

8.2.4Historicalnotesandcomments 583

8.3Continuingthetheoryofnon-associativenormedalgebras586

8.3.1Continuityofhomomorphismsintonormedalgebras withouttopologicaldivisorsofzero 586

8.3.2CompletenormedJordanalgebraswithfinite J-spectrum 589

8.3.3Historicalnotesandcomments 595

8.3.4NormedJordanalgebrasafterAupetit’spaper[40]: asurvey

8.4Thejointspectralradiusofaboundedset

8.4.1Basicnotionsandresults

8.4.2Topologicallynilpotentnormedalgebras

8.4.3Involvingnearlyabsolute-valuedalgebras 638

8.4.4Involvingtensorproducts 642

8.4.5Historicalnotesandcomments 650

1.1.5Thecomplexificationofanormedrealalgebra

1.1.6Theunitalextensionandthecompletionofanormed

1.3.3Historicalnotesandcomments

1.4.3Discussingtheinclusion F(X , Y ) ⊆ K(X , Y ) inthe non-completesetting

1.4.4Historicalnotesandcomments

2.1.1Algebranumericalranges

2.1.2Operatornumericalranges

2.1.3Historicalnotesandcomments

2.2AnapplicationtoKadison’sisometrytheorem

2.2.1Non-associativeresults

2.2.2TheKadison–Paterson–Sinclairtheorem

2.2.3Historicalnotesandcomments

2.3TheassociativeVidav–Palmertheorem,startingfroma non-associativegerm

2.3.1Naturalinvolutionsof V -algebrasarealgebra involutions

2.3.2TheassociativeVidav–Palmertheorem

2.3.3Complementson C ∗ -algebras

2.3.4Introducingalternative C ∗ -algebras

2.3.5Historicalnotesandcomments

2.4 V -algebrasarenon-commutativeJordanalgebras

2.4.1Themainresult

2.4.2Applicationsto C ∗ -algebras

2.4.3Historicalnotesandcomments

2.5TheFrobenius–Zorntheorem,andthegeneralizedGelfand–Mazur–Kaplanskytheorem

2.5.1Introducingquaternionsandoctonions

2.5.2TheFrobenius–Zorntheorem 177

2.5.3ThegeneralizedGelfand–Mazur–Kaplanskytheorem192

2.5.4Historicalnotesandcomments

2.6Smooth-normedalgebras,andabsolute-valuedunitalalgebras203

2.6.1Determiningsmooth-normedalgebrasand absolute-valuedunitalalgebras 203

2.6.2Unit-freecharacterizationsofsmooth-normed algebras,andofabsolute-valuedunitalalgebras212

2.6.3Historicalnotesandcomments 216

2.7OtherGelfand–Mazurtypenon-associativetheorems 223

2.7.1Focusingoncomplexalgebras

2.7.2Involvingrealscalars

2.7.3Discussingtheresults

2.7.4Historicalnotesandcomments

2.8Complementsonabsolute-valuedalgebrasandalgebraicity249

2.8.1Continuityofalgebrahomomorphismsinto absolute-valuedalgebras 250

2.8.2Absolutevalueson H ∗ -algebras 251

2.8.3Freenon-associativealgebrasareabsolute-valued algebras 257

2.8.4Completenormedalgebraicalgebrasareofbounded degree 262

2.8.5Absolute-valuedalgebraicalgebrasare finite-dimensional 270

2.8.6Historicalnotesandcomments 274

2.9Complementsonnumericalranges 283

2.9.1Involvingtheuppersemicontinuityoftheduality mapping 284

2.9.2Theuppersemicontinuityofthepre-dualitymapping291

2.9.3Involvingthestrongsubdifferentiabilityofthenorm299

2.9.4Historicalnotesandcomments 310

3Concludingtheproofofthenon-associativeVidav–Palmertheorem 319

3.1Isometriesof JB-algebras 319

3.1.1Isometriesofunital JB-algebras 319

3.1.2Isometriesofnon-unital JB-algebras 324

3.1.3Ametriccharacterizationofderivationsof JB-algebras327

3.1.4 JB-algebraswhoseBanachspacesareconvex-transitive332

3.1.5Historicalnotesandcomments 336

3.2Theunitalnon-associativeGelfand–Naimarktheorem340

3.2.1Themainresult 340

3.2.2Historicalnotesandcomments 344

3.3Thenon-associativeVidav–Palmertheorem

3.3.1Themainresult

3.3.2Adualversion

3.3.3Historicalnotesandcomments 356

3.4Beginningthetheoryofnon-commutative JB∗ -algebras359

3.4.1 JB-algebrasversus JB∗ -algebras 359

3.4.2Isometriesofunitalnon-commutative JB∗ -algebras366

3.4.3Aninterlude:derivationsandautomorphismsof normedalgebras370

3.4.4Thestructuretheoremofisomorphismsof non-commutative JB∗ -algebras 381

3.4.5Historicalnotesandcomments 388

3.5TheGelfand–Naimarkaxiom a∗ a = a∗ a ,andthe non-unitalnon-associativeGelfand–Naimarktheorem392

3.5.1Quadraticnon-commutative JB∗ -algebras 393

3.5.2Theaxiom a∗ a = a∗ a onunitalalgebras397

3.5.3Aninterlude:thebidualandthespacialnumerical indexofanon-commutative JB∗ -algebra 404

3.5.4Theaxiom a∗ a = a∗ a onnon-unitalalgebras411

3.5.5Thenon-unitalnon-associativeGelfand–Naimark theorem414

3.5.6Vowden’stheorem

3.5.7Historicalnotesandcomments

3.6Jordanaxiomsfor C ∗ -algebras

3.6.1Jacobson’srepresentationtheory:preliminaries426

3.6.2Themainresult

3.6.3Jacobson’srepresentationtheorycontinued

3.6.4Historicalnotesandcomments

4Jordanspectraltheory

4.1InvolvingtheJordaninverse

4.1.1BasicspectraltheoryfornormedJordanalgebras451

4.1.2TopologicalJ-divisorsofzero

4.1.3Non-commutative JB∗ -algebrasare JB∗ -triples463

4.1.4ExtendingtheJordanspectraltheoryto Jordan-admissiblealgebras

4.1.5Theholomorphicfunctionalcalculusforcomplete normedunitalnon-commutativeJordancomplex algebras 480

4.1.6Acharacterizationofsmooth-normedalgebras487

4.1.7Historicalnotesandcomments 490

4.2Unitariesin JB∗ -triplesandinnon-commutative JB∗ -algebras497

4.2.1AcommutativeGelfand–Naimarktheoremfor JB∗ -triples 498

4.2.2Themainresults 505

4.2.3Russo–Dyetypetheoremsfornon-commutative JB∗ -algebras 518

4.2.4Atouchofreal JB∗ -triplesandofrealnoncommutative JB∗ -algebras 521

4.2.5Historicalnotesandcomments 527

4.3 C ∗ -and JB∗ -algebrasgeneratedbyanon-self-adjoint idempotent 536

4.3.1Thecaseof C ∗ -algebras 536

4.3.2Thecaseof JB∗ -algebras 552

4.3.3Anapplicationtonon-commutative JB∗ -algebras560

4.3.4Historicalnotesandcomments562

4.4Algebranormsonnon-commutative JB∗ -algebras 565

4.4.1TheJohnson–Aupetit–Ransforduniqueness-of-norm theorem 566

4.4.2Anon-completevariant 571

4.4.3Themainresults 573

4.4.4Theuniqueness-of-normtheoremforgeneral non-associativealgebras 577

4.4.5Historicalnotesandcomments 592

4.5 JB∗ -representationsandalternative C ∗ -representationsof hermitianalgebras604

4.5.1Preliminaryresults605

4.5.2Themainresults611

4.5.3Aconjectureonnon-commutative JB∗ -equivalent algebras630

4.5.4Historicalnotesandcomments632

4.6Domainsofclosedderivations636

4.6.1Stabilityundertheholomorphicfunctionalcalculus636

4.6.2Stabilityunderthegeometricfunctionalcalculus644

4.6.3Historicalnotesandcomments665

References–Papers

Preface

Thecoreofthebookrevisited

IntheprefacetoVolume1weproposedasthe‘leitmotiv’ofourworktoremoveassociativityintheabstractcharacterizationsofunital(associative) C ∗ -algebrasgiven eitherbytheGelfand–NaimarktheoremorbytheVidav–Palmertheorem,andto study(possiblynon-unital)closed ∗-subalgebrasoftheGelfand–NaimarkorVidav–Palmeralgebrasbornafterremovingassociativity.

Tobemoreprecise,foranorm-unitalcompletenormed(possiblynon-associative) complexalgebra A,weconsideredthefollowingconditions:

(GN)(Gelfand–Naimarkaxiom). Thereisaconjugate-linearvectorspaceinvolution ∗ onAsatisfying 1∗ = 1 and a∗ a = a 2 foreveryainA.

(VP)(Vidav–Palmeraxiom). A = H (A, 1) + iH (A, 1).

Inbothconditions, 1 denotestheunitof A,whereas,in(VP), H (A, 1) standsforthe closedrealsubspaceof A consistingofthoseelements h ∈ A suchthat f (h) belongs to R foreveryboundedlinearfunctional f on A satisfying f = f (1) = 1.

Contrarytowhathappensintheassociativecase[696,725,787,930],inthenonassociativesetting,(GN)and(VP)arenotequivalentconditions.Indeed,asproved inLemma2.2.5,itiseasilyseenthat(GN)implies(VP),but,asshownbyExample 2.3.65,theconverseimplicationisnottrue.Therefore,afterintroducing‘alternative C ∗ -algebras’and‘non-commutative JB∗ -algebras’,andrealizingthattheformerare particularcasesofthelatter,wespecifiedhow,bymeansofTheoremsGNandVP whichfollow,thebehaviouroftheGelfand–NaimarkandtheVidav–Palmeraxioms inthenon-associativesettingareclarified.

TheoremGN Norm-unitalcompletenormedcomplexalgebrasfulfillingtheGelfand–NaimarkaxiomarenothingotherthanunitalalternativeC ∗ -algebras.

TheoremVP Norm-unitalcompletenormedcomplexalgebrasfulfillingtheVidav–Palmeraxiomarenothingotherthanunitalnon-commutativeJB∗ -algebras.

Preface

ThenweannouncedasthemaingoalofourworktoproveTheoremsGNandVP, togetherwiththeirunit-freevariants,andto‘describe’alternative C ∗ -algebrasand non-commutative JB∗ -algebrasbymeansoftheso-calledrepresentationtheory. SinceTheoremsGNandVPandtheunit-freevariantofTheoremGNwerealready provedinTheorems3.2.5,3.3.11,and3.5.53,respectively,itremainsthemain objectiveofourworktoprovetheunit-freevariantofTheoremVP,andtodevelopthe representationtheoryofalternative C ∗ -algebrasandnon-commutative JB∗ -algebras. WenowdothisinChapters5and6respectively.Indeed,theunit-freevariantof TheoremVPisprovedinTheorem5.9.9,whereastherepresentationtheoryof alternative C ∗ -algebrasandnon-commutative JB∗ -algebrascanbesummarizedby meansofCorollaries6.1.11and6.1.12,Theorem6.1.112,andCorollary6.1.115.

ThecontentofVolume2

AswecommentedintheprefaceofVolume1,thedividinglinebetweenthetwo volumescouldbedrawnbetweenwhatcanbedonebeforeandafterinvolvingthe holomorphictheoryof JB∗ -triplesandthestructuretheoryofnon-commutative JB∗algebras.ThenthecontentofVolume1wasdescribedinsomedetail,andatentative contentofVolume2wasoutlined.Nowwearegoingtospecifywithmoreprecision thecontentofthepresentsecondvolume.

Chapter5

ThemaingoalofthisfirstchapterofVolume2istoprovewhatcanbeseenas aunit-freeversionofthenon-associativeVidav–Palmertheorem,namelythat noncommutativeJB∗ -algebrasarepreciselythosecompletenormedcomplexalgebras havinganapproximateunitboundedbyone,andwhoseopenunitballisahomogeneousdomain [365](seeTheorem5.9.9).Someingredientsinthelongproofofthis resultwerealreadyestablishedinVolume1.ThisisthecaseoftheBohnenblust–KarlinCorollary2.1.13,thenon-associativeVidav–PalmertheoremprovedinTheorem3.3.11aswellasitsdualversionshowninCorollary3.3.26,Proposition3.5.23 (thateverynon-commutative JB∗ -algebrahasanapproximateunitboundedbyone), Theorem4.1.45(thatnon-commutative JB∗ -algebrasare JB∗ -triplesinanatural way),andtheequivalence(ii)⇔(vii)intheBraun–Kaup–UpmeierTheorem4.2.24. ♣ Thenewrelevantingredientswhichareprovedinthechapterarethefollowing:

(i)Edward’sfundamentalFact5.1.42,whichdescribeshow JBW -algebrasand JBW ∗ -algebrasaremutuallydetermined,andimplies,via[738],theuniquenessofthepredualofanynon-commutative JBW ∗ -algebra(seeTheorem 5.1.29(iv)).

(ii)TheKaup–Stach ´ ocontractiveprojectiontheoremfor JB∗ -triples(seeTheorem 5.6.59).

(iii)Kaup’sholomorphiccharacterizationof JB∗ -triplesasthosecomplexBanach spaceswhoseopenunitballisahomogeneousdomain(seeTheorem5.6.68).

(iv)Dineen’scelebratedresultthatthebidualofa JB∗ -tripleisa JB∗ -triple(see Proposition5.7.10).

(v)TheBarton–Horn–Timoneybasictheoryof JBW ∗ -triplesestablishingtheseparate w∗ -continuityofthetripleproductofagiven JBW ∗ -triple(seeTheorem 5.7.20)andtheuniquenessofthepredual(seeTheorem5.7.38).

(vi)TheBarton–Timoneytheoremthatthepredualofany JBW ∗ -tripleis L-embedded(seeTheorem5.7.36).

(vii)TheChu–Iochum–Loupiasresultthatboundedlinearoperatorsfroma JB∗tripletoitsdualareweaklycompact(seeCorollary5.8.33)or,equivalently, thatallcontinuousproductsontheBanachspaceofa JB∗ -tripleareArens regular(seeFact5.8.39).

Theoriginalreferencesfortheresultsjustlistedare[222],[382,597],[381],[213], [854,979],[854],and[172],respectively.Ourproofoftheseresultsarenotalways theoriginalones,althoughsometimesthelatterunderlietheformer.Thisisthecase ofresults(ii)and(iii),whichinourdevelopmentdependonthefoundationsofthe infinite-dimensionalholomorphydonein[710,751,814,837,1113,1114,1124] (seeSections5.2to5.6),onthedesignofproofsuggestedin[710,Section2.5],and, attheend,onnumericalrangetechniquesincludedinSubsection5.6.3.Ontheother hand,ourproofofresult(v)isnew,and,contrarytowhathappensintheoriginal one,itavoidsanyBanachspaceresultonuniquenessofpreduals.Indeed,ourproof ofTheorem5.7.20involvesonlyresult(ii)andtheBarton–TimoneyTheorem5.7.18, whereasourproofofTheorem5.7.38dependsonlyonTheorem5.7.20(whoseproof hasbeenjustremarkedon),result(i),andHorn’sCorollary5.7.28(i)(b).

Concerningresult(vii),itisnoteworthythatamuchfinertheoremisprovedin [172].Namely,thateveryboundedlinearoperatorfroma JB∗ -tripletoitsdualfactors throughacomplexHilbertspace.Theproofofthismoregeneraltheorem(asketch ofwhichcanbefoundin§5.10.151)isveryinvolved,andshallnotbecompletely discussedinourwork.Asamatteroffact,were-encounterresult(vii)bycombining results(iv)and(vi)withCorollary5.8.19(assertingthat,if Y isaBanachspacesuch that Y hasproperty(V ∗ ),theneveryboundedlinearoperatorfrom Y to Y isweakly compact)andTheorem5.8.27(that L-embeddedBanachspaceshaveproperty(V ∗ )). Corollary5.8.19andTheorem5.8.27justreviewedareduetoGodefroy–Iochum [957]andPfitzner[1044],respectively.Nevertheless,theproofofCorollary5.8.19 in[957]reliesheavilyonProposition5.8.14,whoseargumentshavebeenlostin theliterature(see§5.8.42).OurproofofProposition5.8.14istakenfromPfitzner’s privatecommunication[1047].

OncethemainobjectiveofthechapterisreachedinSection5.9,thechapter concludeswithasectiondevotedtosomecomplementsonnon-commutative JB∗algebrasand JB∗ -triples.

InSubsection5.10.1weintroducethestrong∗ topologyofanon-commutative JBW ∗ -algebra[19]andapplyittobuildupafunctionalcalculusateachnormal element a ofanon-commutative JBW ∗ -algebra A,whichextendsthecontinuous

functionalcalculus(cf.Corollary4.1.72)andhasasenseforallreal-valuedbounded lowersemicontinuousfunctionsonJ-sp(A, a).Thenwefollow[366]toprovea variantfornon-commutative JBW ∗ -algebrasofKadison’sisometrytheoremfor unital C ∗ -algebras(cf.Theorem2.2.29),aconsequenceofwhichisthatlinearly isometricnon-commutative JBW ∗ -algebrasareJordan-∗-isomorphic.(Werecall thatlinearlyisometric(possiblynon-unital) C ∗ -algebrasareJordan-∗-isomorphic(a consequenceofTheorem2.2.19),butthatlinearlyisometric(evenunital)noncommutative JB∗ -algebrasneednotbeJordan-∗-isomorphic(cf.Antitheorem 3.4.34).)Wealsoprovethegeneralizationtonon-commutative JBW ∗ -algebras ofAkemann’stheorem[826]assertingthecoincidenceofthestrong∗ andMackey topologiesonboundedsubsetsofany W ∗ -algebra.

InSubsection5.10.2weintroduceandstudythestrong∗ topologyofa JBW ∗tripleasdonebyBartonandFriedman[853,60],andfollow[1061]toprovethat, whenanon-commutative JBW ∗ -algebraisviewedasa JBW ∗ -triple,itsnew(triple) strong∗ topologycoincideswiththe(algebra)strong∗ topologyintroducedinSubsection5.10.1.WealsoproveZizler’srefinement[1137]ofLindenstrauss’stheorem [1001]onnorm-densityofoperatorswhosetransposeattaintheirnorm,andapply ittoproveavariantfor JBW ∗ -triplesoftheso-calledlittleGrothendieck’stheorem [853,964,1040,1052].

InSubsection5.10.3weprovidethereaderwithafullnon-associativediscussion oftheKadison–Paterson–SinclairTheorem2.2.19onsurjectivelinearisometries of(possiblynon-unital) C ∗ -algebras[366].Tothisendweintroducethemultiplier non-commutative JB∗ -algebra M (A) ofagivennon-commutative JB∗ -algebra A, andprovethat M (A) coincideswiththe JB∗ -tripleofmultipliers[873]ofthe JB∗tripleunderlying A.ThenwealsoprovethattheKadison–Paterson–Sinclairtheorem remainstrueverbatimforsurjectivelinearisometriesfromnon-commutative JB∗algebrastoalternative C ∗ -algebras,andthatnofurtherverbatimgeneralizationis possible.

Chapter6

Implicitly,therepresentationtheoryof JB-algebrasunderliesourworksince,without providingthereaderwithaproof,wetookfromtheHanche-Olsen–Stormerbook [738]theverydeepfactthattheclosedsubalgebraofa JB-algebrageneratedbytwo elementsisa JC -algebra(cf.Proposition3.1.3).Inthatwaywewereabletodevelop thebasictheoryofnon-commutative JB∗ -algebras(includingthenon-associative Vidav–PalmerTheorem3.3.11andWright’sfundamentalFact3.4.9whichdescribes how JB-algebrasand JB∗ -algebrasaremutuallydetermined)withoutanyfurther implicitorexplicitreferencetorepresentationtheory.Infact,weavoidedanydependenceonrepresentationtheorythroughoutallofVolume1,andtotheendofChapter 5ofthepresentvolume.

Now,inChapter6,weconcludethebasictheoryofnon-commutative JB∗algebras,andfollow[19,124,125,222,481,482,641]todevelopindepththe

Preface xxi

representationtheoryofnon-commutative JB∗ -algebrasand,inparticular,that ofalternative C ∗ -algebras.Tothisend,inSubsection6.1.1weintroducenoncommutative JBW ∗ -factorsandnon-commutative JBW ∗ -factorrepresentationsofa givennon-commutative JB∗ -algebra,andprovethateverynon-commutative JB∗algebrahasafaithfulfamilyoftypeInon-commutative JBW ∗ -factorrepresentations. Whentheseresultsspecializeforclassical C ∗ -algebras,typeInon-commutative JBW ∗ -factorsarenothingotherthanthe(associative) W ∗ -factorsconsistingofall boundedlinearoperatorsonsomecomplexHilbertspace[738,Proposition7.5.2], and,consequently,typeI W ∗ -factorrepresentationsofa C ∗ -algebra A areprecisely theirreduciblerepresentationsof A oncomplexHilbertspaces.Subsection6.1.2 dealswithafirstapplicationoftherepresentationtheoryoutlinedabove,which allowsustoshowthatnon-commutative JB∗ -algebrasareassociativeandcommutativeif(andonlyif)theyhavenononzeronilpotentelement.Asaconsequence, weobtainthatalternative C ∗ -algebrasarecommutativeifandonlyiftheyhave nononzeronilpotentelement[340].ThisgeneralizesKaplansky’sassociative forerunner[761,TheoremBinAppendixIII].InSubsection6.1.3,weinvolvethe theoryof JB-algebras[738],andinvokeresult(i)in ♣ toclassifyall(commutative) JBW ∗ -factors.Thisclassificationisappliedtoprovethati-special JB∗ -algebras are JC ∗ -algebras.InSubsection6.1.4,wecombinetheresultjustreviewedwith Zel’manoviantechniques[437,662]toprovethat,if J isaprime JB∗ -algebra,and if J isneitherquadratic(cf.Corollary3.5.7)norequaltotheunique JB∗ -algebra whoseself-adjointpartis H3 (O) (cf.Example3.1.56andTheorem3.4.8),then eitherthereexistsaprime C ∗ -algebra A suchthat J isaclosed ∗-subalgebraof the JB∗ -algebra M (A)sym containing A,orthereexistsaprime C ∗ -algebra A with a ∗-involution τ suchthat J isaclosed ∗-subalgebraof M (A)sym containedin H (M (A), τ) andcontaining H (A, τ) [255].InSubsection6.1.5,weintroducetotally primenormedalgebrasandultraprimenormedalgebras,andprovethattotallyprime normedcomplexalgebrasarecentrallyclosed,andthatultraprimenormedalgebras aretotallyprime[149].Thenwecombinetheclassificationtheoremofprime JB∗ -algebrasreviewedabovewiththefactthatprime C ∗ -algebrasareultraprime [1012]toshowthatprimenon-commutative JB∗ -algebrasareultraprime,andhence centrallyclosed.InSubsection6.1.6,wecombinethecentralclosednessofprime non-commutative JB∗ -algebraswithatopologicalreadingofMcCrimmon’spaper [436]toprovethatnon-commutative JBW ∗ -factorsareeithercommutativeorsimple quadraticoroftheform B(λ) forsome(associative) W ∗ -factor B andsome0 ≤ λ ≤ 1. ThistheoremisoriginallyduetoBraun[124].Asaconsequence,alternative W ∗factorsareeitherassociativeorequaltothealternative C ∗ -algebraofcomplex octonions(cf.Proposition2.6.8).

NowthatwehavereviewedSection6.1indetail,wewillexplainthecontentof theremainingsectionsofChapter6.Section6.2dealswiththemainapplications oftherepresentationtheory,namelythestructureofalternative C ∗ -algebras[125, 331,481],thedefinitionandpropertiesofthestrongtopologyofanon-commutative JBW ∗ -algebra[482],andtheclassificationofprimenon-commutative JB∗ -algebras

[363].Finally,Section6.3dealswitharatherincidentalapplication.Indeed,we follow[860]toproveaLePagetypetheoremfornon-commutative JB∗ -algebras, anddiscussLePage’stheorem[999]inageneralnon-associativeandnon-star setting.

Chapter7

ThischapterdealswiththeanalytictreatmentofZel’manov’sprimetheoremsfor Jordanstructures,thuscontinuingtheapproachbeguninSubsection6.1.4.

InSubsection7.1wefollow[448,449]toproveasthemainresultthat,if X isa prime JB∗ -triplewhichisneitheranexceptionalCartanfactornoraspintriplefactor, theneitherthereexistaprime C ∗ -algebra A andaself-adjointidempotent e inthe C ∗algebra M (A) ofmultipliersof A suchthat X isaclosedsubtripleof M (A) contained in eM (A)(1 e) andcontaining eA(1 e),orthereexistaprime C ∗ -algebra A,aselfadjointidempotent e ∈ M (A),anda ∗-involution τ on A with e + eτ = 1 suchthat X isaclosedsubtripleof M (A) containedin H (eM (A)eτ , τ) andcontaining H (eAeτ , τ)

Amongthemanytoolsinvolvedintheproofoftheaboveclassificationtheorem, weemphasizeHorn’sdescriptionofCartanfactors[330],thecoreoftheproofof Zel’manov’sprimetheoremforJordantriples[663,1133,1134],andthecomplementaryworkbyD’AmourandMcCrimmononthetopic[920,921].Proofsofthese toolsarenotdiscussedinourdevelopment.ThemainresultsintheFriedman–Russo paper[270],whoseproofsareoutlinedinourdevelopment,arealsoinvolved.Itis noteworthythat,throughthedescriptionofprime JB∗ -algebrasprovedinSubsection 6.1.4,Zel’manov’sworkunderliesagaintheproofoftheclassificationtheoremof prime JB∗ -tripleswearedealingwith.

InSection7.2wesurveyindetailotherapplicationsofZel’manov’sprimetheoremsonJordanstructurestothestudyofnormedJordanalgebrasandtriples.

InSubsection7.2.1weincludethegeneralcompletenormedversion[146]ofthe Anquela–Montaner–Cort ´ es–SkosyrskiiclassificationtheoremofJ-primitiveJordan algebras[21,585],aswellasthemorepreciseclassificationtheoremofJ-primitive JB∗ -algebras[255,525].

InSubsection7.2.2weincludestructuretheoremsforsimplenormedJordan algebras[151](seealso[539])andnon-degeneratelyultraprimecompletenormed Jordancomplexalgebras[152](seealso[428,855]).Thissubsectiondealsalsowith thelimitsofnormedversionsofZel’manovprimetheorems,aquestionwhichwas firstconsideredin[893],andculminatesinthepaperofMoreno,Zel’manov,and theauthors[147]whereitisprovedthatanassociativepolynomial p over K isa Jordanpolynomialifandonlyif,foreveryalgebranorm · ontheJordanalgebra M∞ (K)sym ,theactionof p on M∞ (K) is · -continuous(seealso[447,1082]).

Subsection7.2.3dealswiththeso-callednormextensionproblem,whichinits rootsiscruciallyrelatedtonormedversionsofZel’manov’sprimetheorems.Thefirst significativeprogressonthisproblem(reviewedofcourseinthissubsection)is duetoRodr´ıguez,Slinko,andZel’manov[538],whoasthemainresultprovethat,

Preface

if A isarealorcomplexassociativealgebrawithlinearalgebrainvolution ∗,if A isa‘∗-tightenvelopeof H (A, ∗)’,iftheJordanalgebra H (A, ∗) issemiprime,andif · isacompletealgebranormon H (A, ∗),thenthereexistsanalgebranormon A whoserestrictionto H (A, ∗) isequivalentto · .TheappropriateversionsforJordan triplesoftheresultsof[538],duetoMoreno[1025,1026],arealsoincluded.The subsectionconcludeswithafulldiscussionofresultsonthenormextensionproblem inageneralnon-associativesetting.Themainreferenceforthistopicis[1029].Other relatedresultsin[1027,1059,1064]arealsoreviewed.

Chapter8

Wedevotethisconcludingchaptertodevelopingsomeofourfavouriteparcelsofthe theoryofnon-associativenormedalgebras,notpreviouslyincludedinourwork.

Thefirstsectionofthechapterdealswith H ∗ -algebras,incidentallyintroducedin Volume1ofourwork.Thereasonablywell-behavedco-existenceoftwostructures, namelythatofanalgebraandthatofaHilbertspace,becomestheessenceofsemiH ∗ -algebras.Indeed,theyarecompletenormedalgebras A endowedwitha(vector space)conjugate-linearinvolution ∗,andwhosenormderivesfromaninnerproduct insuchawaythat,foreach a ∈ A,theadjointoftheleftmultiplication La isprecisely La∗ ,andtheadjointoftherightmultiplication Ra is Ra∗ .SinceAmbrose’spioneering paper[20],itiswell-knownthatassociativesemi-H ∗ -algebraswithzeroannihilator are H ∗ -algebras,i.e.theirinvolutionsarealgebrainvolutions.Butthisisnolonger trueingeneral.

WebeginSubsection8.1.1byrecallingthoseresultsonsemi-H ∗ -algebras,which werealreadyprovedinVolume1ofourwork.Thenweintroducetheclassical topologicallysimpleassociativecomplex H ∗ -algebra HS (H ) ofallHilbert–SchmidtoperatorsonanonzerocomplexHilbertspace H ,andshowhowthis algebraallowsustoconstructnaturalexamplesofJordanandLie H ∗ -algebras. Aftershowinghowthenormofasemi-H ∗ -algebrawithzeroannihilatordetermines itsinvolution,weprovethatpower-associative H ∗ -algebrasarenon-commutative Jordanalgebras[714].

InSubsection8.1.2,weestablishtwofundamentalstructuretheoremsforasemiH ∗ -algebra A,which,intwosuccessivesteps,reducethegeneralcasetotheonethat A haszeroannihilator,andthecasethat A haszeroannihilatortotheonethat A is topologicallysimple[199].

Accordingtothestructuretheorycommentedintheprecedingparagraph,topologicallysimplesemi-H ∗ -algebrasmeritbeingstudiedindepth.Thisisdonein Subsection8.1.3.Tothisendweintroducetotallymultiplicativelyprimenormed algebras,showthattheyaretotallyprime,andprovethattopologicallysimplecomplexsemi-H ∗ -algebrasaretotallymultiplicativelyprime[889].Since,aswealready commentedinourreviewofSubsection6.1.5,totallyprimenormedcomplexalgebrasarecentrallyclosed,itfollowsthattopologicallysimplecomplex H ∗ -algebras arecentrallyclosed[148,149].

Preface

Thecentralclosednessoftopologicallysimplecomplex H ∗ -algebrasjustreviewed becomesthekeytoolofSubsection8.1.4,whereweprovethatderivationsofcomplexsemi-H ∗ -algebraswithzeroannihilatorarecontinuous[624],andthatdenserangealgebrahomomorphismsfromcompletenormedcomplexalgebrastocomplex H ∗ -algebraswithzeroannihilatorarealsocontinuous[526].

InSubsection8.1.5weshowthatisomorphiccomplex H ∗ -algebraswithzeroannihilatorare ∗-isomorphic,andthatbijectivealgebra ∗-homomorphismsbetweentopologicallysimplecomplex H ∗ -algebrasarepositivemultiplesofisometries(hence, essentially,atopologicallysimplecomplex H ∗ -algebrahasaunique H ∗ -algebra structure)[198].Theseresultsfollowfromastructuretheoremforbijectivealgebrahomomorphismsbetweencomplex H ∗ -algebraswithzeroannihilator,which becomestheappropriate H ∗ -variantofthestructuretheoremforbijectivealgebra homomorphismsbetweennon-commutative JB∗ -algebrasprovedinTheorem3.4.75.

InSubsection8.1.6,weprovetheappropriate H ∗ -variantoftheJordancharacterizationof C ∗ -algebrasestablishedinTheorem3.6.30[518].Amorethansatisfactory H ∗ -variantofTheorem3.6.25isalsoobtained[624].

Subsection8.1.7isdevotedtoprovidinguswiththeappropriatetoolstotransfer resultsfromcomplexsemi-H ∗ -algebrastorealones.Thebasictoolassertsthat thecomplexificationofanyreal(semi-)H ∗ -algebrabecomesacomplex(semi-)H ∗algebrainanaturalway.Thisquiteelementaryfactalreadyallowstoconvertmany complexresultsintorealones,alloftheminvolvingtheassumptionthatthealgebra haszeroannihilator.Thetreatmentoftopologicallysimplereal(semi-)H ∗ -algebras ismoreelaborated:therearenotopologicallysimplereal(semi-)H ∗ -algebrasother thantopologicallysimplecomplex(semi-)H ∗ -algebras,regardedasrealalgebras, andthereal(semi-)H ∗ -algebrasofallfixedpointsforaninvolutiveconjugate-linear algebra ∗-homomorphismonatopologicallysimplecomplex(semi-)H ∗ -algebra [142].Thisreductionoftopologicallysimplereal(semi-) H ∗ -algebrastocomplex onesallowsustotransfertheremainingresultsknowninthecomplexsettingtothe realsetting.Inparticular,weprovethatdense-rangealgebrahomomorphismsfrom H ∗ -algebraswithzeroannihilatortotopologicallysimple H ∗ -algebrasaresurjective. Then,afterintroducing H ∗ -idealsofanarbitrarynormed ∗-algebra,weprovethat topologicallysimplenormed ∗-algebrashaveatmostone H ∗ -ideal[687].

WebeginSubsection8.1.8byintroducingthecompletenormedcomplex ∗-algebra (TC (H ), · τ ) ofalltrace-classoperatorsonacomplexHilbertspace H ,aswell asthe · τ -continuoustrace-formonit.Thenweshowthat (TC (H ), · τ ) canbe intrinsicallydeterminedintothe H ∗ -algebra (HS (H ), · ) ofallHilbert–Schmidt operatorson H .Thisfactallowsustoreplace HS (H ) withanarbitraryrealor complex(possiblynon-associative)semi-H ∗ -algebra A withzeroannihilator,tobuild anappropriatesubstituteof (TC (H ), · τ ) into A,denotedby (τ c(A), · τ ),and todiscusswhetherornota · τ -continuoustrace-formon τ c(A) doesexist.We provethat,forasemi-H ∗ -algebra A withzeroannihilator, τ c(A) isa ∗-invariant idealof A, (τ c(A), · τ ) isbothanormedalgebraandadualBanachspace,andthe existenceofa · τ -continuoustrace-formon τ c(A) dependsontheexistenceof

Preface

an‘operator-bounded’approximateunitin A [424].This,togetherwithdeepresults establishedinVolume1(namelyTheorem3.5.53andProposition4.5.36(ii)),allows ustoprovethatacomplex H ∗ -algebra A withzeroannihilatorisalternativeifand onlyif (A, · ) hasanapproximateunitoperator-boundedby1,andthepredualof (τ c(A), · τ ) isanon-associative C ∗ -algebra.

IntheconcludingSubsection8.1.9,wesurveytheclassificationtheoremsof topologicallysimple H ∗ -algebrasinthemostfamiliarclassesofalgebras.Thus, startingfromthewell-knownfactthattherearenotopologicallysimpleassociativecomplex H ∗ -algebrasotherthanthoseoftheform HS (H ) foranonzero complexHilbertspace H [20,374],thecorrespondingtheoremsfortopologically simplealternative[1042],Jordanandnon-commutativeJordan[199,1118,1119], Lie[197,460,687],Malcev[141],orstructurable[140,144] H ∗ -algebrasare established.

Section8.2dealswithgeneralizedannihilatornormedalgebras,whichbecome non-stargeneralizationsof H ∗ -algebraswithzeroannihilator.Weprovethatany generalizedannihilatorcompletenormedrealorcomplexalgebrawithzeroweak radical(cf.Definition4.4.39)istheclosureofthedirectsumofitsminimal closedideals,whichareindeedtopologicallysimplenormedalgebras[259]. Wealsoshowthattheweakradicalofanyrealorcomplexsemi-H ∗ -algebra coincideswithitsannihilator,sothatthestructuretheoremforsemi-H ∗ -algebras withzeroannihilatorprovedinSubsection8.1.2isrediscovered.Weintroduce multiplicativelysemiprimealgebras(i.e.algebrassuchthatboththeyandtheir multiplicationalgebrasaresemiprime),andshowthatgeneralizedannihilator normedalgebrasaremultiplicativelysemiprime[876].Evenmore,wecharacterize generalizedannihilatornormedalgebrasamongthosenormedalgebraswhich aremultiplicativelysemiprime.Weintroducegeneralizedcomplementednormed algebras,whichareparticularcasesofgeneralizedannihilatornormedalgebras,and provethat,if A isageneralizedcomplementedcompletenormedalgebrawithzero weakradical,andif {Ai }i∈I standsforthefamilyofitsminimalclosedideals,then foreach a ∈ A thereexistsauniquesummablefamily {ai }i∈I in A suchthat ai ∈ Ai forevery i ∈ I ,and a = i∈I ai [259,846].

Section8.3dealswithothercomplementsintothetheoryofnon-associative normedalgebras.InSubsection8.3.1weprovethatalgebrahomomorphismsfrom completenormedcomplexalgebrastocompletenormedcomplexalgebraswithno nonzerotwo-sidedtopologicaldivisorofzeroarecontinuous[529].InSubsection 8.3.2weshowthatcompletenormedJ-semisimplenon-commutativeJordancomplex algebras,eachelementofwhichhasafiniteJ-spectrum,areafinitedirectsumof closedsimpleidealswhichareeitherfinite-dimensionalorquadratic,andderive thatcompletenormedsemisimplealternativecomplexalgebras,eachelementof whichhasafinitespectrum,arefinite-dimensional[91].Aftertheusualsubsection devotedtohistoricalnotesandcomments,weincludeacomprehensivesurveyonthe moresignificantresultsonnormedJordanalgebraswhichhavebeennotpreviously developedinourwork.

TheconcludingSection8.4dealswiththenon-associativediscussiondonein [452,453]oftheRota–Strangpaper[544](soinparticularofProposition4.5.2,cf. p.632ofVolume1),andofthetheoryoftopologicallynilpotentnormed(associative)algebrasdevelopedin[927,928,929,1020](seealso[786,pp.515–7],[1156, Section11],and§8.4.121).Thesectiondiscussesalsonon-associativeversionsof relatedresultspublishedin[569,615,1083](seealso[1030]),andincorporates proofsofmostauxiliaryresultsinvokedbutnotprovedin[452,453].Amongthese proofs,weemphasizethatofTheorem8.4.76,courtesyofShulmanandTurovskii.

InSubsection8.4.1weintroducethenotionof(joint)spectralradius r(S) ofa boundedsubset S ofanynormedalgebra A.Thenweproveoneofthekeyresults inthewholesection,namelythat, ifAisanormedalgebra,andifSisabounded subsetofAwith r(S)< 1,thenthemultiplicativelyclosedsubsetofAgeneratedbyS isbounded,andhasthesamespectralradiusasS.

InSubsection8.4.2,weintroducetopologicallynilpotentnormedalgebrasasthose normedalgebraswhoseclosedunitballshavezerospectralradius.Amongtheresults obtained,weemphasizethefollowing:

(i)Anormedassociativealgebra A istopologicallynilpotentifandonlyifsoisthe normedJordanalgebra Asym obtainedbysymmetrizationofitsproduct.

(ii)Everynon-topologicallynilpotentnormedalgebracanbeequivalentlyalgebrarenormedinsuchawaythatthespectralradiusofthecorrespondingclosedunit ballisarbitrarilycloseto1.

(iii)Everytopologicallynilpotentcompletenormedalgebraisequaltoitsweak radical.

InSubsection8.4.3,weshowthat,foreverymember A inalargeclassofnormed algebras(whichcontainsallcommutative C ∗ -algebras,all JB-algebras,andall absolute-valuedalgebras),theconclusioninProposition4.5.2hasthefollowing strongerform:foreachboundedandmultiplicativelyclosedsubset S of A wehave thatsup{ s : s ∈ S}≤ 1.

InSubsection8.4.4,weinvolveinourdevelopmenttensorproductsofalgebras. Thusweprovethattheprojectivetensorproductoftwonormedalgebrasistopologicallynilpotentwheneversomeofthemaretopologicallynilpotent,andthatinfact theconverseistruewheneversomeofthemareassociative.Moreover,associativity intheaboveconversecannotberemoved.Wealsoprovethatanormedalgebra A is topologicallynilpotentifandonlyifsoisthenormedalgebra C0 (E , A) forsome (equivalently,every)Hausdorfflocallycompacttopologicalspace E .Theresults obtainedabouttensorproductsofnormedalgebrasarethenappliedtoshowthat mostnotionsintroducedinthesectioncanbenon-triviallyexemplifiedintoaclass ofalgebrasalmostarbitrarilyprefixed.

Onthehistoricalnotes

AsinVolume1,eachsectionofthepresentvolumeconcludeswithasubsection devotedtohistoricalnotesandcomments.ParaphrasingDinnen[1155,p.X],inthese

Preface

notes‘weprovideinformationonthehistoryofthesubjectandreferencesforthe materialpresented.Wehavetriedtobeascarefulaspossibleinthisregardand takeresponsibilityfortheinevitableerrors.Accurateandcomprehensiverecordsof thiskindarenotaluxurybutessentialbackgroundinformationinappreciatingand understandingasubjectanditsevolution’.

Errata: AlistoferrataforVolume1canbefoundinthewebpageofVolume2: www.cambridge.org/9781107043114.WehopetocontinuethisforbothVolumes. Pleasesendcorrectionsto:cabrera@ugr.esand/orapalacio@ugr.es.

Acknowledgements

Weareindebtedtomanymathematicianswhoseencouragement,questions,suggestions,andkindly-sentreprintsgreatlyinfluenceduswhilewewerewritingthis work:M.D.Acosta,J.Alaminos,C.Aparicio,R.M.Aron,B.A.Barnes,J.Becerra, H.Behncke,G.Benkart,A.Browder,M.J.Burgos,J.C.Cabello,A.J.Cabrera, A.Ca ˜ nada,C.-H.Chu,M.J.Crabb,J.Cuntz,C.M.Edwards,F.J.Fern ´ andezPolo, J.E.Gal ´ e,E.Garc´ıa,G.Godefroy,M.G ´ omez,A.Y.Helemskii,R.Iordanescu, V.Kadets,O.Loos,G.L ´ opez,J.Mart´ınezMoreno,M.Mathieu,C.M.McGregor, P.Mellon,A.Morales,J.C.NavarroPascual,M.M.Neumann,R.Pay ´ a,J.P ´ erez Gonz ´ alez,H.P.Petersson,J.D.Poyato,A.Rochdi,A.Rueda,B.Schreiber, I.P.Shestakov,M.Siles,A.M.Sinclair,A.M.Slinko,R.M.Timoney,A.J.Urena, M.V.Velasco,M.Villegas,A.R.Villena,B.Zalar,andW.Zelazko.

SpecialthanksshouldbegiventoD.Beltita,J.A.Cuenca,H.G.Dales,R.S.Doran, A.Fern ´ andezL ´ opez,A.Kaidi,W.Kaup(RIP),M.Mart´ın,J.F.Mena,J.Mer´ı, A.MorenoGalindo,A.M.Peralta,H.Pfitzner,V.S.Shulman,Yu.V.Turovskii, H.Upmeier,J.D.M.Wright,andD.Yost,fortheirsubstantialcontributionstothe writtingofourwork.

WewouldalsoliketothankthestaffofCambridgeUniversityPressfortheir helpandkindness,andparticularlyR.Astley,C.Dennison,N.YassarArafat, R.Munnelly,N.Saxena,andthecopy-editorK.Eagan.

ThisworkhasbeenpartiallysupportedbytheSpanishgovernmentgrant MTM2016-76327-C3-2-P.

Another random document with no related content on Scribd:

Hon. Secretary

J. M T, LL.D., Advocate, 3 Grosvenor Gardens, Edinburgh.

RULES

1. The object of the Society is the discovery and printing, under selected editorship, of unpublished documents illustrative of the civil, religious, and social history of Scotland. The Society will also undertake, in exceptional cases, to issue translations of printed works of a similar nature, which have not hitherto been accessible in English.

2. The number of Members of the Society shall be limited to 400.

3. The affairs of the Society shall be managed by a Council, consisting of a Chairman, Treasurer, Secretary, and twelve elected Members, five to make a quorum. Three of the twelve elected Members shall retire annually by ballot, but they shall be eligible for re-election.

4. The Annual Subscription to the Society shall be One Guinea. The publications of the Society shall not be delivered to any Member whose Subscription is in arrear, and no Member shall be permitted to receive more than one copy of the Society’s publications.

5. The Society will undertake the issue of its own publications, i.e. without the intervention of a publisher or any other paid agent.

6. The Society will issue yearly two octavo volumes of about 320 pages each.

7. An Annual General Meeting of the Society shall be held at the end of October, or at an approximate date to be determined by the Council.

8. Two stated Meetings of the Council shall be held each year, one on the last Tuesday of May, the other on the Tuesday preceding the day upon which the Annual General Meeting shall be held. The

Secretary, on the request of three Members of the Council, shall call a special meeting of the Council.

9. Editors shall receive 20 copies of each volume they edit for the Society.

10. The owners of Manuscripts published by the Society will also be presented with a certain number of copies.

11. The Annual Balance-Sheet, Rules, and List of Members shall be printed.

12. No alteration shall be made in these Rules except at a General Meeting of the Society. A fortnight’s notice of any alteration to be proposed shall be given to the Members of the Council.

PUBLICATIONS OF THE SCOTTISH HISTORY SOCIETY

For the year 1886-1887.

1. B P’ T S, 1747-1760. Edited by D. W. K.

2. D A B W C C, 1673-1680. Edited by the Rev. J D, D.D.

For the year 1887-1888.

3. G : an heroic poem on the Campaign of 1689, by J P of Almerieclose. Translated and edited by the Rev. A. D. M.

4. T R K-S S. A. Part . 1559-1582. Edited by D. H F.

For the year 1888-1889.

5. D R. J M, Minister in Shetland, 1740-1803. Edited by G G.

6. N M. J N, C, 1654-1709. Edited by W. G. S-M.

7. T R K-S S. A. Part . 1583-1600. Edited by D. H F.

For the year 1889-1890.

8. A L P R (1745). With a Preface by the E R. Presented to the Society by the Earl of Rosebery.

9. G P: The ‘B R,’ a Diary written by P, E S, and other documents (1684-89). Edited by A. H. M.

10. J M’ H G B (1521). Translated and edited by A C.

For the year 1890-1891.

11. T R C G A, 1646-47. Edited by the Rev. Professor M, D.D., and the Rev. J C, D.D.

12. C-B B U, 1604-1747. Edited by the Rev. D. G. B.

For the year 1891-1892.

13. M S J C P, Baronet. Extracted by himself from his own Journals, 1676-1755. Edited by J M. G.

14. D C. H. J E C, 16831687. Edited by the Rev. W M.

For the year 1892-1893.

15. M S H S, First Volume. T L J ., 1573-83. Edited by G. F. Warner.— D C P, 1596-98. T. G. Law. —L S T H, 1627-46. Rev. R. Paul.—C W P, 1643-50. H. F. Morland Simpson.—L C, 1660-77. Right Rev. John Dowden, D.D.— T’ D, 1657-1704. Rev. R. Paul.—M P, 1660-1719. V. A. Noël Paton.—A E E, 1715. A. H. Millar.—R P, 1715 and 1745. H. Paton.

16. A B S J F R (16711707). Edited by the Rev. A. W. C H.

For the year 1893-1894.

17. L P R C . S 1650. Edited by S R G, D.C.L., etc.

18. S C. L P M G S, Aug. 1651-Dec. 1653. Edited by C. H. F, M.A. For the year 1894-1895.

19. T J A 1719. L J, D O. Edited by W. K. D.

20, 21. T L M, C S, L, J, ., A P C E S, by B F. 1746-1775. Edited by H P. Vols. . and .

For the year 1895-1896.

22. T L M. Vol. .

23. I P C E (Supplement to the Lyon in Mourning). Compiled by W. B. B.

24. E P R I D 1638 1688. Edited by W M.

25. R C G A (continued) for the years 1648 and 1649. Edited by the Rev. Professor M, D.D., and Rev. J C, D.D. For the year 1896-1897.

26. W’ D P J W’ D, 1639. Edited by G. M. Paul.—T H S, 1651-52. C. R. A. Howden.—T E M’ L, 1722, 1726. Hon. S. Erskine.—L M. G L. J. R. N. Macphail.

Presented to the Society by Messrs T and A Constable

27. M J M B, 1740-1747. Edited by R. F B.

28. T C B D W, M D, 1587-1630. Edited by A. H. M.

For the year 1897-1898.

29, 30. T C D M D B, F A E S, 1645-1648. Edited, with Translation, by J. G. F. 2 vols.

For the year 1898-1899.

31. S P. L P M G S, J 1654 J 1659. Edited by C. H. F, M.A.

32. P H S B S U N, 1572-1782. Edited by J F. Vol. . 1572-1697.

33, 34. M’ G C F S; Manuscripts in the Advocates’ Library. 2 vols. Edited by J. T. C, Keeper of the Library. Presented to the Society by the Trustees of the late Sir William Fraser, K C B

For the year 1899-1900.

35. P S B H, 1572-1782. Edited by J F. Vol. 1698-1782.

36. J F T 1665 1666, ., S J L, L F. Edited by D C.

37. P N M Q S R S. Chiefly from the Vatican Archives. Edited by the Rev. J. H P, S.J.

For the year 1900-1901.

38. P S B H, 1572-1782. Edited by J F. Vol. .

39. T D A H C, 1659-60. Edited by A. G. R, F.S.A.Scot.

For the year 1901-1902.

40. N U E S 1651-53. Edited by C. S T

41. T L D. Written in 1703 by Sir Æ M. Edited by the Rev. A. D. M.

For the year 1902-1903.

42. T C L, 1195-1479. Edited by the Right Rev. J D, D.D., Bishop of Edinburgh.

43. A L M Q S D G, Jan. 1562. Reproduced in Facsimile. Edited by the Rev. J. H P, S.J.

Presented to the Society by the family of the late Mr. Scott, of Halkshill.

44. M S H S, Second Volume.—T S K’ H, 14th Century. Edited by Mary Bateson.—T S N U O, 1336-1538. John Kirkpatrick, LL.D.— T F G D, 1563. Robert S. Rait.—D A R S, 1594. Henry D. G. Law. —A W M L, 1610. Andrew Lang.—L B G G, 1602-38. L. G. Græme.—A S J, 1641. C. H. Firth.— N D H’ E E, 1648. C. H. Firth.—B-L P, 1648-168-. H. C. Foxcroft.—P R E, Physician to Peter the Great, 1677-1720. Rev. Robert Paul.— W D A, 1789. A. Francis Steuart.

45. L J C O G, 1727-1743. Edited by J C, D.Sc.

For the year 1903-1904.

46. M B M N M C M, 1681-1690. Edited by W. R. S

47. C F; being the Wardlaw Manuscript entitled ‘Polichronicon seu Policratica Temporum, or, the true Genealogy of the Frasers.’ By Master J F. Edited by W M.

48. P J C 1661 1678. Vol. . 1661-1669. Edited by Sheriff S-M.

For the year 1904-1905.

49. P J C 1661 1678. Vol. . 1669-1678. Edited by Sheriff S-M.

50. R B C S, 1655-1807. Edited by C B. G, M.D., Peebles.

51. M’ G C. Vol. . Edited by Sir A M, K.C.B.

For the year 1905-1906.

52, 53. M’ G C. Vols. . and . Edited by Sir A M, K.C.B.

54. S E S, 1225-1559. Translated and edited by D P, LL.D. For the year 1906-1907.

55. T H B A, O, 1737-39. Edited by J C, D.Sc. (Oct. 1907.)

56. T C A I. Edited by W. A. L, K.C., the Right Rev. Bishop D, D.D., and J. M T, LL.D. (Feb. 1908.)

57. A S F E P H.M. G R H . Edited by A. H. M, LL.D. (Oct. 1909.)

For the year 1907-1908.

58. R C G A (continued), for the years 1650-52. Edited by the Rev J C, D.D. (Feb. 1909.)

59. P S P. Edited by A. F S. (Nov. 1915.)

For the year 1908-1909.

60. S T C’ D U R B T. Edited, with an English Translation, by C. S T. (Nov. 1909.)

61. J W’ M Q V, D 1632 1639. Edited by G. M. P, LL.D., D.K.S. (May 1911.)

S S.

For the year 1909-1910.

1. T H B L G B, 1692-1733. Edited by R. S-M, W.S. (Oct. 1911.)

2. O ’45 N. Edited by W. B. B, LL.D. (March 1916.)

3. C J, E F E S, L C S. Edited by J G, M.A., LL.B. (March 1912.)

For the year 1910-1911.

4. R S A; C G A A C B, 1538-1546. Translated and edited by R K H.

(February 1913.)

5. H P. Vol. . Edited by J. R. N. M, K.C. (May 1914.)

For the year 1911-1912.

6. S R R M. Vol. . Edited by C. S. R, C.A. (November 1914.)

7. R E O. Edited by J. S. C. (December 1914.)

For the year 1912-1913.

8. S R R M. Vol. . Edited by C. S. R, C.A. (January 1915).

9. S L B J S, B I. Edited by W M, LL.D. (April 1915.)

For the year 1913-1914.

10. R D; A C B D, .. 1506-1517.

Edited by R. K. H (March 1915.)

11. L E S O, H S R Q A. Edited by Professor H B. (Nov. 1915.)

For the year 1914-1915.

12. H P. Vol. . Edited by J. R. N. M, K.C. (March 1916.)

(Note. O ’45, issued for 1909-1910, is issued also for 1914-1915.)

For the year 1915-1916.

13. S R R M. Vol. . Edited by C. S. R, C.A.

14. J W’ D. Vol. . Edited by D. H F, LL.D.

In preparation.

B T W S. Compiled by the late Sir A M, and edited by C. G. C.

R S A 1638 1650. Edited by Professor C. S T.

S C. Vol. . Edited by Major J G.

R C M E, B M, A 1653, P . Edited by the Rev. W. S, B.D.

M S H S. Third Volume.

C D G F C N H.—R I M. Edited by J. G. W-J, M.B.

A C W C M A’ L. Edited by J. T. C.

A T H A K F.

P R 1715 1745, with other documents from the Municipal Archives of the City of Perth.

T B P.

Transcriber’s Notes

Obvious typographical errors have been silently corrected. Variations in hyphenation and accents have been standardised but all other spelling and punctuation remains unchanged.

The Corrigenda and Errata (page vi) have been corrected in place

*** END OF THE PROJECT GUTENBERG EBOOK ORIGINS OF THE 'FORTY-FIVE ***

Updated editions will replace the previous one—the old editions will be renamed.

Creating the works from print editions not protected by U.S. copyright law means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg™ electronic works to protect the PROJECT GUTENBERG™ concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for an eBook, except by following the terms of the trademark license, including paying royalties for use of the Project Gutenberg trademark. If you do not charge anything for copies of this eBook, complying with the trademark license is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. Project Gutenberg eBooks may be modified and printed and given away—you may do practically ANYTHING in the United States with eBooks not protected by U.S. copyright law. Redistribution is subject to the trademark license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase “Project Gutenberg”), you agree to comply with all the terms of the Full Project Gutenberg™ License available with this file or online at www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg™ electronic works

1.A. By reading or using any part of this Project Gutenberg™ electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg™ electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg™ electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg™ electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg™ electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg™ electronic works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation (“the Foundation” or PGLAF), owns a compilation copyright in the collection of Project Gutenberg™ electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg™ mission of promoting free access to electronic works by freely sharing Project Gutenberg™ works in compliance with the terms of this agreement for keeping the Project Gutenberg™ name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg™ License when you share it without charge with others.

1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg™ work. The Foundation makes no representations concerning the copyright status of any work in any country other than the United States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg™ License must appear prominently whenever any copy of a Project Gutenberg™ work (any work on which the phrase “Project Gutenberg” appears, or with which the phrase “Project

Gutenberg” is associated) is accessed, displayed, performed, viewed, copied or distributed:

This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

1.E.2. If an individual Project Gutenberg™ electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase “Project Gutenberg” associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg™ trademark as set forth in paragraphs 1.E.8 or 1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg™ License for all works posted with the permission of the copyright holder found at the beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg™ License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg™ License.

1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg™ work in a format other than “Plain Vanilla ASCII” or other format used in the official version posted on the official Project Gutenberg™ website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original “Plain Vanilla ASCII” or other form. Any alternate format must include the full Project Gutenberg™ License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg™ works unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg™ electronic works provided that:

• You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg™ works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg™ trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information

about donations to the Project Gutenberg Literary Archive Foundation.”

• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.

• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.

• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.