Natural gas a basic handbook james g. speight - Get the ebook in PDF format for a complete experienc

Page 1


Natural Gas A Basic Handbook James G. Speight

Visit to download the full and correct content document: https://textbookfull.com/product/natural-gas-a-basic-handbook-james-g-speight/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Handbook of Natural Gas Analysis 1st Edition James G. Speight

https://textbookfull.com/product/handbook-of-natural-gasanalysis-1st-edition-james-g-speight/

Handbook of Industrial Hydrocarbon Processes 2nd Edition James G. Speight

https://textbookfull.com/product/handbook-of-industrialhydrocarbon-processes-2nd-edition-james-g-speight/

Handbook of Industrial Hydrocarbon Processes James

Speight

https://textbookfull.com/product/handbook-of-industrialhydrocarbon-processes-james-speight/

Ethics in the University 1st Edition James G. Speight

https://textbookfull.com/product/ethics-in-the-university-1stedition-james-g-speight/

The

Refinery of the Future 2nd Edition

James G. Speight

https://textbookfull.com/product/the-refinery-of-the-future-2ndedition-james-g-speight/

The Chemistry and Technology of Petroleum Fifth Edition

James G. Speight

https://textbookfull.com/product/the-chemistry-and-technology-ofpetroleum-fifth-edition-james-g-speight/

The Chemistry and Technology of Petroleum 5th Edition

James G. Speight

https://textbookfull.com/product/the-chemistry-and-technology-ofpetroleum-5th-edition-james-g-speight/

Rules

of thumb for petroleum engineers 1st Edition

James G. Speight

https://textbookfull.com/product/rules-of-thumb-for-petroleumengineers-1st-edition-james-g-speight/

The Chemistry and Technology of Coal 3rd Edition James G. Speight (Author)

https://textbookfull.com/product/the-chemistry-and-technology-ofcoal-3rd-edition-james-g-speight-author/

NaturalGas

NaturalGas

ABasicHandbook

SecondEdition

GulfProfessionalPublishingisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UnitedKingdom

Copyright © 2019ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: http://www.elsevier.com/permissions ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-809570-6

ForInformationonallGulfProfessionalPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

AcquisitionEditor: KatieHammon

EditorialProjectManager: PeterJardim/JoannaCollett

ProductionProjectManager: SruthiSatheesh

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

Prefacetothesecondedition

Naturalgas(alsocalledmarshgasandswampgasinoldertexts)isagaseousfossil fuelthatisfoundinoilfieldsandnaturalgasfield.Whileitiscommonlygrouped inwithotherfossilfuelsandsourcesofenergy,therearemanycharacteristicsof naturalgasthatmakeitunique.Thetermnaturalgasisoftenextendedtogasesand liquidsfromtherecentlydevelopedshaleformationsaswellasgasproducedfrom biologicalsources(biogas).However,forthepurposesofthisbook,thepetroliferousnaturalgasisplacedunderthecategoryofconventionalgas,whilepetroliferous gasfromtightformationsandthenonpetroliferousgases(suchasbiogasandlandfillgas)areplacedunderthetermnonconventionalgas.

Thelastfourdecadesofthe20thcenturyhaveseennotonlyperturbationsof energysupplysystemsbutalsochangesinattitudesofgovernmentsandvotersalike towardenvironmentalissues.Thusenvironmentalissueswillbewithusaslongas wecutdowntrees,manufactureconsumergoods,andburnfossilfuelsforenergy. Anditisthislatterissuethatisthesubjectofthistext.

ThesuppliesofcrudepetroleuminNorthAmericacontinuetodwindleandthere mustbeadefinitemovementtodevelopingcrudeoilfromtightformationsand newsourcesofenergy.Inthegeneralcontextofthepresenttext,coalandnatural gasarecontinuingsourcesofenergybutrenewableenergysourcesareneeded. However,untilrenewableenergysourcesfulfillthegoalofreplacingthefossil energysources,theenvironmentwillcontinuetobeaffectedtheresultingeffectson theenvironmentaremajorissuesthatneedtobecontinuallyaddressed.

Thecontinueduseofcoalandnaturalgasascombustiblefuelisareality.And soisthegenerationofgaseousproductsthatarenotindigenoustotheatmosphere, atleastinanygreatquantities,andtheeffectoftheseproductsonthesurrounding floraandfauna.Onthisissue,itisnecessarytoconsiderthegradualriseintemperatureoftheEarth’satmospherethathasbecomeevidentduringthepastfourdecades.Thisso-called greenhouseeffect hasmanyproponentsandmanyopponents andisthesubjectofmuchdebate.Whetherornottheissuewillberesolvedinthe nextdecaderemainsopentoquestionandspeculation.

Itisafactthattheemissionsofcarbondioxideintotheatmosphereareknownto comefromthecombustionoffossilfuelsparticularlytheheavierfuelssuchascoal. Itisbelievedthatthereisastrongneedtomovetothehigherhydrogen/carbonfossilfuelstocombatcarbondioxideproduction.Thusthereisaneednotonlytopromotetheuseofnaturalgasasafuelforcombustion,whichproduceslesscarbon dioxideperunitoffuel,butalsotounderstandthechemistryandengineeringofthe combustionoffossilfuelsandthemeansbywhichthegaseouspollutantsareproduced.Followingonfromthis,itmaythenbepossibletodesignsuitablenew

methodsbywhichtheiremissiontotheatmosphereisnotonlyreducedbutalso completelymitigated.Itisthepurposeofthisbooktooutlinethecurrentmethods andknowntechnologiesthatwillaidinthedevelopmentofprocessesbywhichthis mightbeaccomplished.

Gasprocessing,althoughgenerallyunderstandableusingchemicaland/orphysical principles,stillrequiresanattempttoalleviatesomeoftheconfusionthatarisesfrom uncertaintiesintheterminology.Thisbookcorrectsanysuchuncertainties.

ThesuccessofthefirsteditioninEuropeancountrieshaspromptedthepublicationofthisedition.However,thetextisalmostcompletelyrewrittenandupdated. Withoutassigningblametoanyparticularindustry,thereisafocusonthefossil fuelindustriesandmanygas-generatingindustriesthatwasnotevidentinthefirst edition.Descriptionsaremoredetailedonthebasisthatthebookwillserveasan educationalandproblem-solvingtext.

Asforthefirstedition,PartIofthisbookdealswiththeoriginsofprocessgases andalsocontainschaptersdealingwithrecovery,propertiesandcomposition.Part IIdealswiththechemistryandengineeringaspectsofthemethods,andprinciples involved,bywhichthegasstreamsproducedduringindustrialoperationsmightbe cleanedfromtheirnoxiousconstituents.

Thusalthoughgasprocessingemploysdifferentprocesstypes,thereisalwaysan overlapbetweenthevariousconcepts.Therefore,whennecessary,cross-referencing isemployedsothatthereaderwillnotmissanyparticularaspectoftheprocessing operations.

Thesectionsrelatingtotestingprocedurescontainreferencestotherelevant standardtestmethod.Insomecases,referenceisgiventooldermethodsaswellas tothecurrentmethods.Eventhoughsomeoftheoldertestmethodsarenolonger inuse,insofarastheyhavebeenreplacedbynewermethods,itisconsideredusefultorefertothesemethodsastheyhaveplayedanimportantroleintheevolution ofthenewermethods.Indeed,someoftheoldermethodsarestillpreferredby manylaboratories,hencetheirinclusionhere.

Thusthisbookalsopresentssomeofthemethodsthataregenerallyappliedto theanalysisofnaturalgasandothergaseousproducts.Thereare,ofcourse,many analyticalmethodsthecanbeappliedtotheanalysisofnaturalgasandotherfuel gases,buttheyvarywithsampleconditionandcomposition.Morespecifically,this bookcitesthemorecommonmethodsusedtodefinechemicalandphysicalpropertiesofthesample.Moreover,anyofthemethodsdescribedhereinmightalsobe appliedtotheanalysisofsampleforenvironmentalpurposes.

Thedataderivedfromanyone,ormore, ofthestandardtestmethodscitedin thistextgiveanindicationofthecharac teristicsofthenaturalgas(orcondensate)andproductsaswellasoptionsforg asprocessingaswellasforthepredictionofproductproperties.Otherpropertiesmayalsoberequiredfor moredetailedevaluationofthenaturalgasandforcomparisonbetweengaseous feedstocksandproductyields/proper tieseventhoughtheymaynotplayanyrole indictatingwhichgasprocessingopera tionsarenecessaryforproductionofthe products.

However,proceedingfromtherawevaluationdatatofull-scaleproductionisnot thepreferredstep.Furtherevaluationofgasprocessabilityisusuallythroughthe useofapilot-scaleoperationfollowedbyscale-uptoademonstration-sizeplant.It willthenbepossibletodevelopaccurateandrealisticrelationshipsusingthedata obtainedfromtheactualplantoperations.Afterthat,feedstockmappingcanplay animportantroletoassistinthevarious tweaks thatareneededtomaintaina healthyprocesstoproducesaleableproductswiththenecessaryproperties.

Indeed,theuseofphysicalpropertiesforfeedstockevaluationandproductslate hascontinuedinrefineriesandinprocessresearchlaboratoriestothepresenttime andwillcontinueforsometime.Itis,ofcourse,amatterofchoosingtherelevant andmeaningfulpropertiestomeetthenatureofthetask.

Finally,attemptshavebeenmadetorendereachchapterastand-alonesegment ofthebook.Whileeveryeffortismadetoensureadequatecross-referencing,sufficientinformationisincludedineachchaptertogivethereaderthenecessarybackground.Also,tobechemicallycorrect,itismustberecognizedthathydrocarbon molecules(hydrocarbonoils)containcarbonatomsandhydrogenatoms only.

Insummary,thiseditionwillalsoprovideaneasy-to-usereferencesourceto comparethescientificandtechnologicalaspectsofgas-processingoperationsand themeansbywhichtheenvironmentmightbeprotected.

Laramie,Wyoming May2018.

Historyanduse

1.1Introduction

1

Naturalgas(alsocalledmarshgasandswampgasinoldertexts)isagaseousfossil fuelthatisfoundinoilfieldsandnaturalgasfield.Whileitiscommonlygrouped inwithotherfossilfuelsandsourcesofenergy,therearemanycharacteristicsof naturalgasthatmakeitunique.Thetermnaturalgasisoftenextendedtogasesand liquidsfromtherecentlydevelopedshaleformations(KundertandMullen,2009; AguileraandRadetzki,2014;Khosrokhavaretal.,2014;Speight,2017b)aswellas gas(biogas)producedfrombiologicalsources(JohnandSingh,2011;Ramroop Singh,2011;SinghandSastry,2011).However,forthepurposesofthisbook,the petroliferousnaturalgasisplacedunderthecategoryofconventionalgas,while petroliferousgasfromtightformationsandthenonpetroliferousgases(suchasbiogasandlandfillgas)areplacedundertheterm nonconventionalgas (sometime called unconventionalgas)(Chapter3:Unconventionalgas).

Althoughtheterminologyanddefinitionsinvolvedwiththenaturalgastechnologyarequitesuccinct,theremaybethosereadersthatfindtheterminologyand definitionssomewhatconfusing. Terminology isthemeansbywhichvarioussubjectsarenamedsothatreferencecanbemadeinconversationsandinwritingsand sothatthemeaningispassedon. Definitions arethemeansbywhichscientistsand engineerscommunicatethenatureofamaterialtoeachothereitherthroughthe spokenorthroughthewrittenword.Thus,theterminologyanddefinitionsapplied tonaturalgas(and,forthatmatter,toothergaseousproductsandfuels)are extremelyimportantandhaveaprofoundinfluenceonthemannerbywhichthe technicalcommunityandthepublicperceivethatgaseousfuel.Forthepurposesof thisbook,naturalgasandthoseproductsthatareisolatedfromnaturalgasduring recovery[suchasnaturalgasliquids(NGLs),gascondensate,andnaturalgasoline] areanecessarypartofthistext.Thus:

Conventionalgas

Associatedgas

Nonassociatedgas

Gascondensate

Unconventionalgas

Gashydrates

Biogas

Coalbedmethane

Coalgas

Fluegas

Gasingeopressurizedzones

Gasintightformations

Landfillgas

Manufacturedgas

Refinerygas

Shalegas

Synthesisgas

Amoremeaningfulcategorizationofthesegaseswouldbeasfuelgaseswithathird categorythatincludesthegasesproducedinmanufacturingprocesses.Thus:

Conventionalnaturalgas

Associatedgas

Nonassociatedgas

Gascondensate

Unconventionalgas

Gashydrates

Coalbedmethane

Gasingeopressurizedzones

Gasintightformations

Shalegas

Manufacturedgas

Biogas

Coalgas

Fluegas

Landfillgas

Refinerygas

Synthesisgas

Thesecategorizationsarebasedonthesourceofthegasorthemethodofproduction ofthegaswhichalsohassomerelationshiptothecompositionofthegas.Nevertheless, whatever,thesourceororigin,naturalgasandotherfuelgasesarevitalcomponentsof theenergysupplyoftheworldandformanecessarysupplychainforenergyproduction: reservoirgas ! producedgas wellheadgas ! transportedgas ! storedgas ! salesgas

Specifically,theterm naturalgas isthegenerictermthatisappliedtothemixtureofandgaseoushydrocarbonderivativesandlow-boilingliquidhydrocarbon derivatives(typicallyuptoandincludinghydrocarbonderivativessuchas n-octane, CH3(CH2)6CH3,boilingpoint125.1 126.1 C,257.1 258.9 F)(Tables1.1and 1.2)thatiscommonlyassociatedwithpetroliferous(petroleum-producing,petroleum-containing)geologicformations(Mokhatabetal.,2006;Speight,2014a). Fromachemicalstandpoint,naturalgasisamixtureofhydrocarboncompounds andnonhydrocarboncompoundswithcrudeoilbeingmuchmorecomplexthannaturalgas(Mokhatabetal.,2006;Speight,2012,2014a).Thefuelsthatarederived fromthisnaturalproductsupplymorethanonequarterofthetotalworldenergy supply.Themoreefficientuseofnaturalgasisofparamountimportanceandthe technologyinvolvedinprocessingbothfeedstockswillsupplytheindustrialized nationsoftheworldfor(atleast)thenextfivedecadesuntilsuitablealternative formsofenergy(suchasbiogasandothernonhydrocarbonfuels)arereadilyavailable(Boyle,1996;Ramage,1997;Rasietal.,2007,2011;Speight,2011a,b,c, 2008).Anygassold,however,toanindustrialordomesticconsumermustmeet designatedspecificationthatisdesignedaccordingtotheuseofthegas.

Table1.1 Constituentsofnaturalgas

aHexane(C6H14)andhighermolecularweighthydrocarbonderivativesupto octaneaswellasbenzene(C6H6)andtoluene(C6H5CH3).

Table1.2 Differentiationoftheconstituentsofnaturalgas

Hydrocarbonconstituents

DrygasornaturalgasMethane(CH4)

Ethane(C2H6)

LiquefiedpetroleumgasPropane(C3H8)

n-Butane(C4H10)

iso-Butane(C4H10)

NaturalgasliquidsPentaneisomers(C5H15)

Hexaneisomers(C6H14)

Heptaneisomers(C7H16)

Octaneisomers(C8H18)

Condensate( $ C5H12)

Naturalgasoline( $ C5H12)

Naphtha( $ C5H12)

Nonhydrocarbonconstituents

Carbondioxide(CO2)

Hydrogensulfide(H2S)

Water(H2O)

Nitrogen(N2)

Carbonylsulfide(COS)

Typically,infieldoperations,thecompositionofnaturalgas(whichaffectsthe specificgravity),especiallyofassociatedgas,canvarysignificantlyastheproduct flowingoutofthewellcanchangewithvariabilityoftheproductionconditionsas

wellasthechangeofpressureasgasisremovedfromthereservoir(Burrussand Ryder,2003,2014).Constituentsofthegasthatwereintheliquidphaseunderthe pressureofthereservoircanreverttothegasphaseasthereservoirpressureis reducedbygasremoval.

Asaresult,itshouldnotbeasurprisethatateachstageofnaturalgasproduction,wellheadtreating,transportation,andprocessing,analysisofthegastodeterminethecompositionandpropertiesofthegasbystandardtestmethodsisan essentialpartofthechemistryandtechnologyofnaturalgas.Useofanalytical methodsoffers(Speight,2018)vitalinformationaboutthebehaviorofnaturalgas duringrecovery,wellheadprocessing,transportation,gasprocessing,anduse (Fig.1.1).Thedataproducedfromthetestmethodsarethecriteriabymeansof whichthesuitabilityofthegasforuseandthepotentialforinterferencewiththe environment.

1.2History

Naturalgasisanaturallyoccurringgaseousfossilfuelthatisfoundingas-bearing formations,oil-bearingformations—coalbedmethaneisoftenreferredto(incorrectly)asnaturalgasorascoalgasduetolackofstandardizationoftheterminology(Levine,1993;Speight,2013b,2014a).Forclarification,naturalgasisnotthe sameastowngas,althoughthehistoryofnaturalgascleaningpriortosaleshasits beginningsintowngascleaning(Speight,2013a).

Towngasisagenerictermreferringtomanufacturedgasproducedforsaleto consumersandmunicipalities.Thetermscoalgas,manufacturedgas,producergas, andsyngas[syntheticnaturalgas(SNG)]arealsousedforgasproducedfromcoal. Dependingontheprocessesusedforitscreation,towngasisamixtureof

Condensate treating Fractionation Field condensate Plant condensate Condensates
Figure1.1 Typicalgasprocessingsequence.

hydrogen,carbonmonoxide,methane,andvolatilehydrocarbonswithsmall amountsofcarbondioxideandnitrogenasimpurities.

Thus,towngasismanufacturedfromcoalandthetermscoalgas,manufactured gas,producergas,andsynthesisgas(syngas),andSNGarealsoinregularusefor gasesproducedfromcoal(Chapter3:Unconventionalgas)(Speight,2013b).Also, bywayofdefinitionandclarification,towngasisaflammablegaseousfuelmade bythedestructivedistillationofcoal.Itcontainsavarietyofcalorificgasesincludinghydrogen,carbonmonoxide,methane,andothervolatilehydrocarbonderivatives,togetherwithsmallquantitiesofnoncalorificgasessuchascarbondioxide andnitrogen.Towngas,althoughnotcurrentlyusedtoanygreatextentinthe UnitedStates,isstillgeneratedandusedinsomecountriesandisusedinasimilar waytonaturalgasintheUnitedStates.Thisisahistoricaltechnologyandisnot usuallyeconomicallyandenvironmentallycompetitivewithmodernsourcesofnaturalgas.

Mosttowngas-generatingplantslocatedintheeasternUnitedStatesinthelate 19thcenturyandearly20thcenturywereovensthatheatedbituminouscoalinairtightchamberstoproducecokethroughthecarbonizationprocess.Thegasdriven offfromthecoalwascollectedanddistributedthroughnetworksofpipesto residencesandotherbuildingswhereitwassuppliedtoindustrialanddomestic users—naturalgasdidnotcomeintowidespreaduseuntilthelasthalfofthe20th century.Thecoaltarcollectedinthebottomsofthegashouseovenswasoftenused forroofingandotherwaterproofingpurposes,andwhenmixedwithsandandgravel (aggregate)wasusedforpavingstreets(roadasphalt).Thecoaltarasphalthasbeen replacedbyasphaltproducedfromcrudeoil(Speight,2014a,2015,2018;ASTM, 2017).Thus,priortothedevelopmentofresources,virtuallyallfuelandlighting gaswasmanufacturedfromcoalandthehistoryofnaturalgashasitsrootsintown gasproductionanduse(Speight,2013b).Thus,withtheonsetofindustrialexpansionafterWorldWarII,naturalgashasbecomeoneofthemostimportantraw materialsconsumedbymodernindustriestoproviderawmaterialsfortheubiquitousplasticsandotherproductsaswellasfeedstocksfortheenergyandtransportationindustries.

1.2.1Timeline

Naturalgashasbeenknownformanycenturies,butinitialuseforthegaswas moreforreligiouspurposesratherthanasafuel.Forexample,gaswellswerean importantaspectofreligiouslifeinancientPersiabecauseoftheimportanceoffire intheirreligion.Inclassicaltimesthesewellswereoftenflaredandmusthave been,tosaytheleast,aweinspiring(Forbes,1964).

ThesetypesofgasleaksbecameprominentinthereligionsofIndia,Greece,and Persiawheretheinhabitantsoftheregionwereunabletoexplaintheoriginofthe firesandregardedtheoriginoftheflamesasdivine,orsupernatural,orboth.Asa result,theenergyvalueofnaturalgaswasnotrecognizeduntilapproximately900 BCinChinaandtheChinesedrilledthefirstknownnaturalgaswellin211BC. Crudepipelines(probablystate-of-the-artpipelinesatthetime)wereconstructed

frombamboostemstotransportthegas,whereitwasusedtoboilseawater, removingthesaltasaresidueproduct,afterwhichthewaterwascondensedand, therefore,drinkable(Abbott,2016).

Theusesofnaturalgasdidnotnecessarilyparallelitsdiscovery.Infact,thediscoveryofnaturalgasdatesfromancienttimesintheMiddleEast.Duringrecorded historicaltime,therewaslittleornounderstandingofwhatnaturalgaswas,it posedsomewhatofamysterytoman.Sometimes,suchthingsaslightningstrikes wouldignitenaturalgasthatwasescapingfromundertheEarth’scrust.Thiswould createafirecomingfromtheEarth,burningthenaturalgasasitseepedoutfrom underground.Thesefirespuzzledmostearlycivilizationsandweretherootof muchmythandsuperstition.Oneofthemostfamousofthesetypesofflameswas foundinancientGreece,onMountParnassusapproximately1000BC.Agoat herdsmancameacrosswhatlookedlikea burningspring,aflamerisingfromafissureintherock.TheGreeks,believingittobeofdivineorigin,builtatempleon theflame.ThistemplehousedapriestesswhowasknownastheOracleofDelphi, givingoutpropheciessheclaimedwereinspiredbytheflame.

InEurope,naturalgaswasunknownuntilitwasdiscoveredinGreatBritainin 1659andBritainwasthefirstcountrytocommercializetheuseofnaturalgas.In 1785,naturalgasproducedfromcoalwasusedtolighthouses,aswellasstreetlights.Manufacturednaturalgasofthistype(asopposedtonaturallyoccurringgas) wasfirstbroughttotheUnitedStatesin1816,whenitwasusedtolightthestreets ofBaltimore,Maryland.Thismanufacturedgaswasmuchlessefficient,andless environment-friendly,thanmodernnaturalgasthatcomesfromunderground.

NaturallyoccurringnaturalgaswasdiscoveredandidentifiedinAmericaas earlyas1626,whenFrenchexplorersdiscoverednativesignitinggasesthatwere seepingintoandaroundLakeErie(Table1.3).

In1821inFredonia,UnitedStates,residentsobservedgasbubblesrisingtothe surfacefromacreek.WilliamHart,consideredasAmerica’s fatherofnaturalgas, dugtherethefirstnaturalgaswellinNorthAmerica(Speight,2014a).In1859, ColonelEdwinDrake,aformerrailroadconductor(theoriginofthetitle“Colonel” isunknownbutseemedtoimpressthetownspeople),dugthefirstwell.Drakefound

Table1.3 Abbreviatedtimelinefortheuseofnaturalgas

1620FrenchmissionariesrecordedthatIndiansignitedgasesnearLakeErie 1785Naturalgasisintroducedforhomelightingandstreetlighting 1803GaslightingsystempatentedinLondonbyFrederickWinsor 1812FirstgascompanyfoundedinLondon 1815Meteringforhouseholds,inventedin1815bySamuelClegg 1816FirstUSgascompany(usingmanufacturedgas)foundedinBaltimore 1817FirstnaturalgasfromthewellheadusedinFredonia,NYforhouselighting 1840FiftyormoreUScitieswereburningpublicutilitygas 1850ThomasEdisonpostulatedreplacinggaslightingbyelectriclighting 1859CarlAuervonWelsbachinGermanydevelopedapracticalgasmantle 1885Depletedreservoirsareusedforthefirsttimetostoregas

crudeoilandnaturalgasat69ftbelowthesurfaceoftheEarth.Morerecently,naturalgaswasdiscoveredbecauseofprospectingforcrudeoil.However,thegaswas oftenanunwelcomeby-productbecause,asanygascontaininginthereservoirs weretappedduringthedrillingprocess,thedrillerswereforcedtodiscontinuethe drillingoperationsthatallowthegastoventfreelyintotheair.Currently,andparticularlyafterthecrudeoilshortagesofthe1970s,naturalgashasbecomean importantsourceofenergyintheworld.

Throughoutthe19thcentury,naturalgaswasusedalmostexclusivelyassource oflightanditsuseremainedlocalizedbecauseoflackoftransportstructures,makingdifficulttotransportlargequantitiesofnaturalgasthroughlongdistances. Therewasanimportantchangein1890withtheinventionofleakproofpipeline couplingbuttransportationofnaturalgastolongdistancecustomersdidnot becomepracticaluntilthe1920sasaresultoftechnologicaladvancesinpipelines. Moreover,itwasonlyafterWorldWarIIthattheuseofnaturalgasgrewrapidly becauseofthedevelopmentofpipelinenetworksandstoragesystems.

1.2.2Formation

Althoughcoveredinmoredetailelsewhere(Chapter2:Originandproduction),itis pertinentatthispoint,togiveabriefcoverageoftheformationofnaturalgasto placeitincontext.

Justascrudeoilisaproductofdecomposedorganicmatter(oftenreferredtoas organicdebrisordetritus),naturalgasisalsoaproductofthedecompositionof organicmatter.Theorganicmatteristheremainsofancientfloraandfaunathat wasdepositedoverthepast550millionyears.Thisorganicdebrisismixedwith mud,silt,andsandontheseafloor,graduallybecomingburiedovertime.Sealed offinanoxygen-free(anaerobic)environmentandexposedtoincreasingamounts ofpressureandanunknownamountofheat,theorganicmatterunderwentadecompositionprocessinwhichhydrocarbons(andnonhydrocarbons)weretheproducts thatconverteditintohydrocarbons.Thelowestboilingofthesehydrocarbonsexist inthegaseousstateundernormalconditionsandbecomeknowncollectivelyasnaturalgas.Inthepuresthydrocarbonform,naturalgasisacolorless,odorlessgas composedprimarilyofmethane.Thesehydrocarbonsarehighlyflammable compounds.

Thus,naturalgas,likecrudeoilandoftenoccurringinconjunctionwithcrude oil,hasbeengeneratedovergeologicaltimefromdeep-lyingsourcerock,sometimescalledthe kitchen,whichcontainsorganicdebris.Nevertheless,theactual chemicalpathsinvolvedinthematurationoftheorganicdebrisarelargely unknownand,therefore,subjecttospeculation.

Thus,ithasbeenspeculated,butnotabsolutelyaccepted(Speight,2014a),that thedeeperandhotterthesourcerock,themorelikelihoodofgasbeingproduced. However,thereisconsiderablediscussionabouttheheattowhichtheorganicprecursorshavebeensubjected.Crackingtemperatures( $ 300 C, $ 572 F)arenotby anymeanscertainashavingplayedaroleinnaturalgasformation.Maturationof theorganicdebristhroughtemperatureeffectsoccurredovergeologicaltime

(millennia)andshorteningthetimetolaboratorytimeandincreasingthetemperaturetoaboveandbeyondthecrackingtemperature(atwhichthechemistry changes)doesnotofferconclusiveproofofnaturalgas(andcrudeoil)formation involvinghightemperatures(Speight,2014a).Oncethenaturalgashasformed,its fatedependsontwocriticalcharacteristicsofthesurroundingrock:(1)porosityand (2)permeability.

Theterm porosity referstotheamountofemptyspacecontainedwithinthe grainsofarock.Highlyporousrocks,suchasasandstoneformation,typicallyhas aporosityontheorderof5% 25%v/v(percentvolumeoftherock),whichgives theformationasubstantialamountofspaceforthestorageoffluids—theterm reservoirfluids includesnaturalgas,crudeoil,andwater.Ontheotherhand,theterm permeability isameasureofthedegreetowhichtheporespacesinarockareinterconnectedand,thereforeamenabletofluidflow.Ahighlypermeablerockwillpermitgasandliquidstofloweasilythroughtherock,whilealow-permeabilityrock willnotallowfluidstopassthrough.Thislattertermischaracteristicofshaleformationsandtightformations(Chapter3:Unconventionalgas).

Afternaturalgasforms,itwilltendtorisetowardthesurfacethroughpore spacesintherockbecauseofitslowdensitycomparedtothesurroundingrock. Thus,atsomepointduringorafterthematurationprocess,thegasandcrudeoil migratedfromthesourcerockeitherupwardorsidewaysorinbothdirections(subjecttothestructureoftheaccompanyingandoverlyinggeologicalformations) throughtheundergroundsedimentsthroughfissuresandfaultsuntilthegasentersa geologicalformation(reservoir)thatretainsor traps thegasthroughthepresence ofimpermeablebasementrockandcaprock.Hasthisnotoccurred,thereisthedistinctlikelihoodthatmostofthenaturalgaswouldpercolatethroughthesurfaceformationsandescapeintotheatmosphere.

Itisrarethatthesourcerockandthereservoirwereoneandthesameandthe reservoirmaybemanymilesfromthesourcerock.Thus,anaturalgasfieldmay haveaseriesoflayersofcrudeoil/gasandgasreservoirsinthesubsurface.Insome instances,thenaturalgasandcrudeoilpartedcompanyleadingtotheoccurrenceof reservoirscontainingonlygas(nonassociatedgas).

Thetechniquestodiscovergasareessentiallythoseusedtodiscovercrudeoil (Speight,2014a).Whenusingseismictechniques,gasslowsdownthevelocityof theseismicwavestoproduceacharacteristicandstrongerreflection.Overtime,as moreknowledgeofahydrocarbonprovinceisobtained,betterrecognitionofthe characteristicsandamplitudeoftheseismicreflectionfromgascanleadtoagreater chanceofsuccess.

Thus,potentialnaturalgasreservoirscanbelocatedwithseismictestingmethodssimilartothoseusedforpetroleumexploration(Chapter2:Originandproduction)(Speight,2014a).Insuchtests,gasprospectorsuseseismictrucksormore advancedthree-dimensionaltoolsthatinvolvesettingoffaseriesofsmallcharges nearthesurfaceoftheEarthtogenerateseismicwavesthousandsoffeetbelow groundinunderlyingrockformations.Bymeasuringthetraveltimesofthesewaves throughtheEarthatacousticreceivers(geophones),geophysicistscanconstructa pictorialrepresentationofthesubsurfacestructureandidentifypotentialgas

deposits.However,toverifywhethertherockformationactuallycontainseconomicallyrecoverablequantitiesofnaturalgasorotherhydrocarbons,anexploratory wellmustbedrilled.Oncetheviabilityofasiteisdetermined,verticalwellsare drilledtopenetratetheoverlyingimpermeablecaprockandreachthereservoir. Naturalbuoyancyandreservoirpressurethenbringsthegastothesurface,whereit canbeprocessedandsenttotheconsumers.

1.3Conventionalgas

Naturalgasresources,likecrudeoilresources,aretypicallydividedintotwocategories:(1)conventionalgasand(2)unconventionalgas(Mokhatabetal.,2006; Islam,2014;Speight,2014a;AAPG,2015).Forthepurposesofthistext,theterm unconventionalgasresourcesalsoincludecoalbedmethaneandnaturalgasfrom shaleformationsandfromtightformationsaswellasbiogasandlandfillgas (Brosseau,1994;Briggs,1988;Rice,1993;JohnandSingh,2011;RamroopSingh, 2011;SinghandSastry,2011;Speight,2011a,2017b).Conventionalgasistypically foundinreservoirswithapermeabilitygreaterthan1milliDarcy( . 1mD)andcan beextractedbymeansoftraditionalrecoverymethods.Incontrast,unconventional gasisfoundinreservoirswithrelativelylowpermeability( , 1mD)andhencecannotbeextractedbyconventionalmethods(Speight,2016a,b).

1.3.1Associatedgas

Associated or dissolved naturalgasoccurseitherasfreegasinapetroleumreservoir orasgasinsolutioninthepetroleum.Gasthatoccursasasolutioninthepetroleum is dissolved gas,whereasthegasthatexistsincontactwiththepetroleum(gascap) is associated gas(Fig.1.2).

Crudeoilcannotbeproducedwithoutproducingsomeassociatedgas,which consistsoflow-boilinghydrocarbonconstituentsthatareemittedfromsolutionin

Figure1.2 Ananticlinalreservoircontainingoilandassociatedgas.

thecrudeoilasthepressureisreducedonthewayto,andon,thesurface.Designs forwellcompletionandreservoirmanagementprotocolsareusedtominimizethe productionofassociatedgastoretainthemaximumenergyinthereservoirandthus increaseultimaterecoveryofthecrudeoil(Parkash,2003;Garyetal.,2007;Hsu andRobinson,2017;Speight,2014a,2017a).

Crudeoilinthereservoirwithminimalornodissolvedassociatedgas(dead crudeoil or deadoil)israreandisoftendifficulttoproduceasthereislittlereservoirenergytodrivetheoilintotheproductionwellandtothesurface.Thus, associated or dissolved naturalgasoccurseitherasfreegasorasgasinsolutioninthe petroleum.Gasthatoccursasasolutioninthepetroleumis dissolved gaswhereas thegasthatexistsincontactwiththepetroleumis associated gas—the gascap is anexampleofassociatedgas(Parkash,2003;Mokhatabetal.,2006;Garyetal., 2007;HsuandRobinson,2017;Speight,2014a,2017a).

Aftertheproductionfluidsarebroughttothesurface,thegasistreatedtoseparateoutthehighermolecularweightNGLswhicharetreatedinaliquidpetroleum gas(LPG)processingplant(refiningplant)toprovidepropaneandbutane,either separatelyorasamixtureofthetwo.Bydefinition,NGLsincludeethane,propane, butanes,andpentanesandhighermolecularweighthydrocarbonderivatives(C61). WhileNGLsaregaseousatundergroundpressure,theseconstituentscondenseat atmosphericpressureandturnintoliquids.Thecompositionofnaturalgascanvary bygeographicregion,thegeologicalageofthedeposit,thedepthofthegas,and manyotherfactors.NaturalgasthatcontainsalotofNGLsandcondensatesis referredtoaswetgas,whilegasthatisprimarilymethane,withlittletonoliquids initwhenextracted,isreferredtoasdrygas.

Theseliquidsarehydrocarbonderivativesthatareremoved(condensed)asaliquidfromahydrocarbonstream(naturalgas)thatistypicallyinavaporphase(i.e., naturalgas).Theyarekeptinaliquidstateforstorage,shipping,andconsumption. TherehasbeenamovementtoclassifyNGLsarecomponentsofnaturalgasthatare separatedfromthegasstateintheformofliquidsonthebasisofvapor pressure,forexample:(1)lowvaporpressure—condensateand(2)highvapor pressure—liquefiednaturalgasand/orLPG.However,theboundariesdrawninthis mannerarearbitraryandcautionisadvisedwhenusingsuchaclassificationscheme.

Mixturesofthesehighermolecularweighthydrocarbonderivativesareoften referredtoasgascondensateornaturalgasolineandthemixturehasthecharacteristicsoflow-boilingnaphthaproducedinarefinerybydistillationandcrackingprocesses(Parkash,2003;Garyetal.,2007;HsuandRobinson,2017;Speight,2014a, 2017a).TheLPGstoredisreadyfortransportandthenonvolatileresidue(i.e.,nonvolatileundertheconditionsoftheseparationprocess),afterthepropaneand butaneareremoved,isgascondensate(or,simply,condensate),whichismixed withthecrudeoilorexportedasaseparateproduct(low-boilingnaphtha) (Mokhatabetal.,2006;Speight,2014a).

Thus,inthecaseofassociatedgas,crudeoilmaybeassistedupthewellboreby gaslift(Mokhatabetal.,2006;Speight,2014a)inwhichthegasiscompressedinto theannulusofthewellandtheninjectedbymeansofagasliftvalvenearthebottomofthewellintothecrudeoilcolumninthetubing.Atthetopofthewellthe

crudeoilandgasmixturepassesintoaseparationplant(consistingofhigh-pressure andlow-pressureseparators)inwhichthegaspressureisreducedconsiderablyin twostages.Thecrudeoilandwaterexitsthebottomofthelowerpressureseparator,fromwhereitispumpedtotanksforseparationofthecrudeoilandwater.The gasproducedintheseparatorsisrecompressedandthegasthatcomesoutofsolutionwiththeproducedcrudeoil(surplusgas)isthentreatedtoseparateoutthe NGLsthataretreatedinagasplanttoprovidepropaneandbutaneoramixtureof thetwo(LPG).Thehigherboilingresidue,afterthepropaneandbutaneare removed,iscondensate,whichismixedwiththecrudeoilorexportedasaseparate product.Ateachstageofthisprocess(oftenreferredtounderthecollectiveterm wellheadprocessing),thecompositionofthegaseousandliquidproductsshouldbe monitoredtodetermineseparatorefficiencyaswellasforsafetyreasons(Colborn etal.,2011).

Thegasitselfisthen dry and,aftercompression,issuitabletobeinjectedinto thenaturalgassystemwhereitsubstitutesfornaturalgasfromthenonassociated gasreservoir.Pretreatedassociatedgasfromotherfieldscanalsoenterthesystem atthisstage.Anotheruseforthegasisasfuelforthegasturbinesonsite.Thisgas istreatedinafuelgasplanttoensureitiscleanandatthecorrectpressure.The startupfuelgassupplywillbefromthemaingassystem,butfacilitiesexisttocollectandtreatlow-pressuregasfromthevariousotherplantsasamoreeconomical fuelsource.

Othercomponentssuchascarbondioxide(CO2),hydrogensulfide(H2S),mercaptans(thiols;RSH),aswellastraceamountsofotherconstituentsmayalsobe present.Thus,thereisnosinglecompositionofcomponentswhichmightbetermed typicalnaturalgas becauseofthevariationincompositionofthegasfromdifferent reservoirs,evenfromdifferentwellsfromthesamereservoir.Methaneandethane constitutethebulkofthecombustiblecomponents;carbondioxide(CO2)andnitrogen(N2)arethemajornoncombustible(inert)components.

1.3.2Nonassociatedgas

Inadditiontothenaturalgasfoundinpetroleumreservoirs,therearealsothose reservoirsinwhichnaturalgasisthesoleoccupantandisreferredtoas nonassociatedgas.Aswithassociatedgas,theprincipalconstituentofnonassociatedgasis methane—highermolecularweighthydrocarbonderivativesmayalsobepresent butinlowerquantitiesthanfoundinassociatedgas.Carbondioxideisalsoacommonconstituentofnonassociatednaturalgasandtraceamountsofraregases,such ashelium,mayalsooccur,andcertainnaturalgasreservoirsareasourceofthese raregases.

Thus, nonassociatedgas(sometimescalled gaswellgas)isproducedfromgeologicalformationsthattypicallydonotcontainmuch,ifany,crudeoil,orhigher boilinghydrocarbonderivatives(gasliquids)thanmethane.Thenonassociatedgas recoverysystemissomewhatsimplerthantheassociatedgasrecoverysystem.The gasflowsupthewellunderitsownenergy,throughthewellheadcontrolvalves andalongtheflowlinetothetreatmentplant.

Thenonassociatedgasrecoverysystemissomewhatsimplerthantheassociated gasrecoverysystem.Thegasflowsupthewellunderitsownenergy,throughthe wellheadcontrolvalvesandalongtheflowlinetothetreatmentplant.Treatment requiresthetemperatureofthegastobereducedtoapointdependentuponthe pressureinthepipelinesothatallliquidsthatwouldexistatpipelinetemperature andpressurecondenseandareremoved.

Processingofnonassociatedgasissomewhatlesscomplicatedthanprocessing associatedgas.Typically,nonassociatedgasflowsuptheproductionwellunderthe reservoirenergyandthenthroughthewellheadcontrolvalvesandalongtheflow linetothewellheadprocessingplant.Atthisstage,thefirstprocessingoptionisto reducethetemperatureofthegastoapointdependentuponthepressureinthepipelinesothatthehighermolecularweightconstituentswhichwouldexistasliquidsat thetemperatureandpressureofthepipelinecondensetoaliquidphaseandare removedinaseparator.Thetemperatureisreducedbyexpandingthegasthrougha Joule Thomsonvalve,althoughothermethodsofremovaldoalsoexist(Mokhatab etal.,2006;Speight,2014a).Briefly,theJoule Thomsoneffect(alsoknownasthe Joule Kelvineffect,theKelvin Jouleeffect,ortheJoule Thomsonexpansion) relatestothetemperaturechangeofagasorliquidwhenitisforcedthroughavalve whilekeptinsulatedsothatnoheatisexchangedwiththeenvironment.

Waterinthegasstreammustalsoberemovedtomitigatethepotentialforthe formationofgashydrates(GornitzandFung,1994;Collett,2002;Buffettand Archer,2004;Collettetal.,2009;Demirba¸s,2010a,b,c;BoswellandCollett,2011; Chongetal.,2016)whichwouldblockflowlinesandhavethepotentialforexplosivedissociation.Onemethodforwaterremovalfromthegasstream,involvesthe injectionofethyleneglycol(HOCH2CH2OH,alsoreferredtoas glycol)whichcombineswiththewaterandislaterrecoveredinaglycolplant(Mokhatabetal.,2006; Speight,2014a).Thetreatedgasthenpassesfromthetopofthetreatmentvessel andintothepipeline.Thewateristreatedinaglycolplanttorecovertheglycol andthefractionofthenaturalgasstreamthathasbeenisolatedasNGLsissent,as additionalfeedstock,totheLPGplant.Alternatively,thelowerboilingconstituents oftheNGLsmaybeusedasfeedstockfortheproductionofpetrochemicals (Parkash,2003;Garyetal.,2007;HsuandRobinson,2017;Speight,2014a, 2017a).

Finally,oneotheraspectofgasprocessingthatrequiresattention(Chapter3: Unconventionalgas)andisworthyofmentionhere,istheremovalofsulfurfrom naturalgas.Thepotentialofsulfur-containingconstituents,suchashydrogensulfide(H2S)andmercaptans(RSH)tocorrodeshippingequipment(suchaspipelines) ishigh—especiallyinthepresenceofwater(Speight,2014b).Oncethehydrogen sulfidehasbeenremovedbyasuitablewellheadtreatmentprocess—itisenvironmentallyundesirabletoflarethehydrogensulfide,sowheretherearesignificant quantitiesinthegasstream,itisconvertedintoelementalsulfurandusedforthe manufactureofsulfuricacidandotherproducts(Chapter3:Unconventionalgas). Thesulfurcanbetransportedoverlongdistancesbybeingpumpedasaliquidata temperatureontheorderof120 C(248 F)throughaninsulatedpipeline,whichis maintainedatthistemperaturebyacounterflowofhotpressurizedwater.

Finally,itwouldberemissedifothertypesofgaseswerenotincludedheresince thesegasesarebecomingablendstockfornaturalgasinmanygasprocessing operations.

1.3.3Gascondensate

Gascondensate(sometimesreferredtoas condensate)isamixtureoflow-boiling hydrocarbonliquidsobtainedbycondensationofthevaporsofthesehydrocarbon constituentseitherinthewellorasthegasstreamemitsfromthewell.Gascondensateispredominatelypentane(C5H12)withvaryingamountsofhigher-boiling hydrocarbonderivatives(uptoC8H18)butrelativelylittlemethaneorethane;propane(C3H8),butane(C4H10)maybepresentincondensatebydissolutioninthe liquids.Dependinguponthesourceofthecondensate,benzene(C6H6),toluene (C6H5CH3),xyleneisomers(CH3C6H4CH3),andethylbenzene(C6H5C2H5)may alsobepresent(Mokhatabetal.,2006;Speight,2014a).

Theterms condensate and distillate areoftenusedinterchangeablytodescribe theliquidproducedintanks,buteachtermstandsforadifferentmaterial.Along withlargevolumesofgas,somewellsproduceawater-whiteorlightstraw-colored liquidthatresembleslow-boilingnaphtha(Mokhatabetal.,2006;Speight,2014a). Theliquidhasbeencalled distillate becauseitresemblestheproductsobtained fromcrudeoilinrefineriesbydistillingthevolatilecomponentsfromcrudeoil.

Leasecondensate,so-calledbecauseitisproducedattheleaselevelfromoilor gaswells,isthemostcommontypeofgascondensateandistypicallyaclearor translucentliquid.TheAPIgravityofleasecondensaterangesbetween45and 75 APIbut,ontheotherhand,leasecondensatewithalowerAPIgravitycanbe blackornearblackcolorand,likecrudeoil,hashigherconcentrationsofhigher molecularweightconstituents.Thiscondensateisgenerallyrecoveredatatmospherictemperaturesandpressuresfromwellheadgasproductionandcanbeproducedalongwithlargevolumesofnaturalgasandleasecondensateswithhigher APIgravitycontainsmoreNGLs,whichincludeethane,propane,andbutane,but notmanyhighermolecularweighthydrocarbonderivatives.

1.3.4Otherdefinitions

Inadditiontothedefinitionspresentedearlier,thereareseveralotherdefinitions thathavebeenappliedtonaturalgasfromconventionalformationsthatcanalsobe appliedtogasfromanysource.

Richgashasahighheatingvalueandahighhydrocarbondewpoint.However, theterms richgas and leangas,asusedinthegasprocessingindustry,arenotpreciseindicatorsofgasqualitybutonlyindicatetherelativeamountofNGLsinthe gasstream.Thus, lean gasisgasinwhichmethaneisthepredominantmajorconstituentwithotherhydrocarbonconstituentsinthelowminority,while wet gascontainsconsiderableamountsofthehighermolecularweighthydrocarbonderivatives thandrygas(Table1.4).WhenreferringtoNGLsinthenaturalgasstream,the

Table1.4 Compositionofdrygas,wetgas,andgascondensate

Propane,C3H8 3.581.013.55

n-Butane, n-C4H10 0.241.45

iso-Butane, i-C4H10 1.720.280.71

n-Pentane, n-CsH12 0.080.68

iso-Pentane, i-CsH12 0.500.130.64

Hexaneisomers,C6H14 0.141.09

Heptaneisomers-plusa, $ C7H16 0.828.21

aIndicateshighermolecularweighthydrocarbons.

term gallonsperthousandcubicfeet ofgasisusedasameasureofhydrocarbon richness.

Sour gascontainshydrogensulfideandtheequallyodorousmercaptans,whereas sweet gascontainsverylittle,ifany,hydrogensulfideormercaptan. Residuegas is naturalgasfromwhichthehighermolecularweighthydrocarbonderivativeshave beenextractedand casingheadgas isderivedfromcrudeoilbutisseparatedatthe separationfacilityatthewellhead.

Thetermresidue(asin residuegas)isusedinrelationtogasasadirectopposite asitisappliedtocrudeoilinarefinery.Intherefinery,theresidueisthedistillationresidueofcrudeoilfromwhichthelowermolecularweightconstituentshave beenremoved.Innaturalgastechnology,residuegasisnaturalgasfromwhichthe highermolecularweightconstituentshavebeenremovedduringgasprocessing operations(Chapter3:UnconventionalgasandChapter7:Processclassification)to leavemethane(thelowerboilingconstituent)asresiduegas.

Othertermsappliedtonaturalgastypicallyapplytothemethodbywhichthe gasoccursinthereservoir.Bywayofexplanation,naturalgasisgeneratedbyany combinationof(1)primarythermogenicdegradationoforganicmatter,(2)secondarythermogenicdecompositionofpetroleum,and(3)biogenicdegradationof organicmatter.Gasgeneratedbythermogenicandbiogenicpathwaysmayboth existinthesameshalereservoir.

Afterproduction,thegasisstoredinthereservoirformationinthreedifferent ways:(1)byadsorption,whichrefersto adsorbedgas thatisphysicallyattached (adsorption)orchemicallyattached(chemisorption)toorganicmatterortoclay minerals,(2)nonadsorbedgas,whichrefersto freegas (alsoreferredtoas nonassociatedgas)thatoccurswithintheporespacesinthereservoirrockorinspacescreatedbytherockcracking(fracturesormicrofractures),and(3)bysolution,also referredtoas associatedgas,whichisgasthatexistsinsolutioninliquidssuchas petroleum,heavyoil,and(inthecurrentcontext)inthegascondensatethatoccurs insometightreservoirswiththegas(Speight,2014a).

Theamountofadsorbedgascomponent(whichis,typically,methane)usually increaseswithanincreaseinorganicmatterorsurfaceareaoforganicmatterand/ orclay.Onthebeneficialside,ahigherfree-gas(nonassociated)contentinunconventionaltightreservoirsgenerallyresultsinhigherinitialratesofproduction becausethefreegasresidesinfracturesandporesand,whenproductioniscommencedmoveseasierthroughthefractures(inducedchannels)relativetoany adsorbedgas.However,thehigh,initialflowratewilldeclinerapidlytoalowsteadyrateasthenonassociatedgasisproducedleavingtheadsorbedgastomoveto thewellasitisslowlyreleasedfromtheshale.

1.4Use

Naturalgasisaversatile,clean-burning,andefficientfuelthatisusedinawide varietyofapplicationsaswellasfortheproductionofavarietyofchemicals,especiallywhenthenaturalgasisusedasthestartingpointfortheproductionofsynthesisgas(amixtureofhydrogenandcarbonmonoxide)andthencetothevarious chemicals(Table1.5).

AfterthediscoverybytheChinesemorethan2000yearsagothattheenergyin naturalgascouldbeharnessedandusedasaheatsource,theuseofnaturalgashas grown(Mokhatabetal.,2006;Speight,2014a).Inthelate19thcenturyandinthe early20thcentury,naturalgasplayedasubsidiaryroletocoalgasinsofarascoal gaswasusedforstreetlightingandforbuildinglightingandprovidedwhatwas knownasgaslight(Mokhatabetal.,2006;Speight,2013b).However,asthe20th centuryprogressedandmovedintothe21stcentury,thediscoveryoflargereserves

Table1.5 Examplesofroutestochemicalsfromnaturalgasviasynthesisgas

ofnaturalgasinvariouscountriesaswellasimproveddistributionofgashasmade possibleawidevarietyofusesinhomes,businesses,factories,andpowerplants andnaturalgasisbecomingaglobalenergysource(Nersesian,2010;Hafnerand Tagliapietra,2013).

However,theusesofnaturalgasdidnotnecessarilyparallelitsdiscoveryand duringrecordedhistoricaltime,therewaslittleornounderstandingofwhatnatural gaswas,itposedsomewhatofamysterytoman.PriortothedevelopmentofnaturalgassuppliesandtransmissionintheUnitedStatesduring1940sand1950s,virtuallyallfuelandlightinggaswasmanufactured,andtheby-productcoaltarwas animportantfeedstockforthechemicalindustry.Thedevelopmentofmanufactured gasparalleledthatoftheindustrialrevolutionandurbanization.

However,inthecurrentcontact,itisperhapsatleastasawe-inspiringifnot predictableconsideringthecurrentattentiontotheenvironment—consideringthe historyoftheuseofotherfossilfuelssuchascoalandcrudeoilduringthe20th century—thattheuseofnaturalgasissupersedingtheuseofcrudeoilandcoalin manycountries.Duringthattime,naturalgaswasgenerallyflaredasaproductof limiteduseuntilthedepletionofcrudeoilreservesinthelate20thcenturycauseda back-and-forthconcernaboutthefuturelackofenergy-producingfuels(Speight, 2011a,2014a;SpeightandIslam,2016).

Oncethetransportationofnaturalgaswaspossibleoverconsiderabledistances, theincreaseduseofnaturalgasledtoinnovationsfromthediscoveryofnewuses fornaturalgaswhichincludedtheuseofnaturalgasbyindustrialconsumers.In fact,thefastestgrowinguseofnaturalgasisforthegenerationofelectricpower and,toalargeextent,hasbeenareplacementfuelmanyformerlycoal-firedpower plantsandoil-firedpowerplants.Naturalgaspowerplantsusuallygenerateelectricityingasturbines(whicharederivedfromjetengines),directlyusingthehot exhaustgasesfromthecombustionprocess.

Astheuseofnaturalgashasincreasedanddiversified,theneedforknowledge ofthecompositionofthegashasalsoincreased(Mokhatabetal.,2006;Speight, 2018).Naturalgashasmanyapplications:fordomesticuse,forindustrialuse,and fortransportation.Inaddition,naturalgasisalsoarawmaterialformanycommon productssuchaspaints,fertilizer,plastics,antifreeze,dyes,photographicfilm,medicines,andexplosives.Alongwiththeseneweruses,therehasbeenanincreased neednotonlyforthecompositionalanalysisofnaturalgasbutalsoforanalytical datathatprovideotherinformationaboutthebehaviorofnaturalgas.

Naturalgas-firedpowerplantsarecurrentlyamongthecheapestpowerplantsto constructwhichisareversalofprevioustrendswhereoperatingcostsweregenerallyhigherthanthoseofcoal-firedpowerplantsbecauseoftherelativelyhighcost ofnaturalgas.Inaddition,naturalgas-firedplantshavegreateroperationalflexibilitythancoal-firedpowerplantsbecausetheycanbefiredupandturneddownrapidly.Becauseofthis,manynaturalgasplantsintheUnitedStateswereoriginally usedtoprovideadditionalcapacity(peakcapacity)attimeswhenelectricity demandwasespeciallyhigh,suchasthesummermonthswhenairconditioningis widelyused.Duringmuchoftheyear,thesenaturalgaspeakplantswereidle, whilecoal-firedpowerplantstypicallyprovidedbase-loadpower.However,since

2008,naturalgaspricesintheUnitedStateshavefallensignificantly,andnatural gasisnowincreasinglyusedasbase-loadpoweraswellasintermediate-loadpower sourceinmanycities.Naturalgascanalsobeusedtoproducebothheatandelectricitysimultaneously[cogenerationorcombinedheatandpower(CHP)]. Cogenerationsystemsarehighlyefficient,abletoput75% 80%oftheenergyin gastouse.Trigenerationsystems,whichprovideelectricity,heating,andcooling, canreachevenhigherefficienciesusingnaturalgas.

Naturalgasalsohasabroadrangeofotherusesinindustry,notonlyasasource ofbothheatandpowerandassourceofvaluablehydrogenthatisnecessaryfor crudeoilrefiningaswellasforproducingplasticsandchemicals.Mosthydrogen gas(H2)production,forexample,comesfromreactinghightemperaturewater vapor(steam)withmethane—steam-methanereformingreactionfollowedbythe watergasshiftreaction:

Naturalgas-firedplantshavegreateroperationalflexibilitythancoalplants becausetheycanbefiredupandturneddownrapidly.Becauseofthis,manynaturalgasplantswereoriginallyusedtoprovidepeakingcapacityattimeswhenelectricitydemandwasespeciallyhigh,suchasthesummermonthswhenair conditioningiswidelyused.Duringmuchoftheyear,thenaturalgaspeak-plants wereinlowuseoridle,whilecoal-firedpowerplantstypicallyprovidedbaseload power.However,(1)withthecurrent(andprojectedprolonged)plentifulsupplies ofnaturalgas,(2)lowernaturalgasprices,and(3)theprojectedenvironmental benefitsofnaturalgasusevis-a ` -viscoal,naturalgasisnowincreasinglyusedasa baseandintermediateloadpowersourceinmanyplaces.

Theintegratedgasificationcombinedcycleplantcanbeusedasanexampleof thebenefitsofgas-firedpowergeneration.Thenaturalgasiscombustedinagas turbineunitthatisconnectedtoageneratorafterwhichthehotexhaustgasesare thenpassedthroughaheatexchangertogeneratesteamforasteamturbine.By usingthisapproach,anaturalgascombinedcyclepowerplantcanreachefficienciesatleastontheorderof50%,comparedtoalowerefficiency(30% 35%)fora similarmegawattsizecoal-firedpowerplant.

Furthermore,thehydrogenproducedfromnaturalgascanitselfbeusedasa fuel.Themostefficientwaytoconverthydrogenintoelectricityisbyusingafuel cell,whichcombineshydrogenwithoxygentoproduceelectricity,water,andheat. Althoughtheprocessofreformingnaturalgastoproducehydrogenstillhasassociatedcarbondioxideemissions,theamountreleasedforeachunitofelectricitygeneratedismuchlowerthanforacombustionturbine.

Aspartoftheindustrialuseofnaturalgas,thereistheneedforanalysisbefore theproducts(inthiscontext,thegaseousproducts)areusedbyindustrialand domesticconsumers.Detectionofeventheslightestamountsofimpuritiescanbe anindicationofprocessinefficiencyandwhetherornotthegasissuitableforthe

CH4 1 H2 O ! CO 1 3H2 steam-methanereformingreaction ðÞ
CO 1 H2 O ! CO2 1 H2 Water-gasshiftreaction ðÞ

designateduse.Infact,oneofthemostimportanttasksingastechnology,especiallyinthecontextofpetroleum-relatednaturalgasistheneedforreliablevalues ofthevolumetricandthermodynamicpropertiesforpurelow-boilinghydrocarbon derivativesandtheirmixtures.Thesepropertiesareimportantinthedesignand operationofmuchoftheprocessingequipment(Polingetal.,2001).

Forexample,reservoirengineersandprocessengineersusepressure-volumetemperaturerelationshipsandphasebehaviorofreservoirfluids(1)toestimatethe amountofoilorgasinareservoir,(2)todeveloparecoveryprocessforacrudeoil orgasfield,(3)todetermineanoptimumoperatingconditioninagas liquidseparatorunit,(4)todeterminetheneedforawellheadprocessingsystemtoprotecta pipelinefromcorrosion,and(5)todesignsuitablegasprocessingoptions. However,themostadvanceddesignapproachesorthemostsophisticatedsimulationexperimentscannotguaranteetheoptimumdesignoroperationofaunit(or protectionofapipeline)ifthephysicalpropertiesarenotknown.Forthesereasons accurateknowledgeofthepropertiesofthegasisanextremelyincreasinglyimportantaspectofgastechnology.

Naturalgascanalsobeusedtoproducebothheatandelectricitysimultaneously (CHP).Cogenerationsystemsarehighlyefficient,abletoput75% 80%ofthe energyingastouse. Trigeneration systems,whichprovideelectricity,heating,and cooling,canreachevenhigherefficiencies.

Naturalgasseesabroadrangeofotherindustrialuses,asasourceofbothheat andpowerandasaninputforproducingplasticsandchemicals.Forexample,most ofthehydrogengasproductioncomesfromreactinghightemperaturewatervapor (steam)withmethane.Theresultinghydrogenhaswideuseincrudeoilrefineries inordertoproducemarketableproductsfromheavycrudeoil,extraheavycriedoil andtarsandbitumen(Speight,2014a,2017a)aswellastoproduceammoniafor fertilizer.Althoughtheprocessofreformingnaturalgastohydrogenstillhasassociatedcarbondioxideemissions,theamountreleasedforeachunitofelectricity generatedismuchlowerthanforacombustionturbine.

Hydrogenproducedfromnaturalgascanitselfbeusedasafuel—themostefficientwaytoconverthydrogenintoelectricityisbyusingafuelcell,whichcombineshydrogenwithoxygentoproduceelectricity,water,andheat:

Compressednaturalgas(CNG)hasbeenusedasatransportationfuel (Chapter5:Recovery,storage,andtransportation),mostlyinpublictransit.Thenaturalgas,whichiscompressedatover3000psito1%ofthevolumethatthegas wouldoccupyatnormalatmosphericpressure,canbeburnedinaninternalcombustionenginethathasbeenappropriatelymodified.Approximately0.1%v/vofthe naturalgasconsumedintheUnitedStateshasbeenusedtopowervehicles,representingtheenergycontentofmorethan5millionbarrelsofoil(USEIA,2012).

Comparedtogasoline,vehiclespoweredbyCNGemitlesscarbonmonoxide, nitrogenoxides(NOx),andparticulatematter.However,adisadvantageofCNGis thelowenergydensitycomparedwiththehigherenergydensityofliquidfuels. AgallonofCNGhasapproximatelyonequarteroftheenergyinagallonof

2H2 1 O2 ! 2H2 O 1 Heat

Table1.6 Naturalgasliquids(NGLs),uses,products,andconsumers

NGLChemicalformulaUsesOtheruses

EthaneC2H6

PropaneC3H8

Butanes: n-butane and iso-butane C4H10

CondensateC5H12

Higherboiling hydrocarbons

Ethyleneproduction

Powergeneration Plastics Antifreeze Detergents

Heatingfuel

Transportation

petrochemical feedstock Plastics

Petrochemical feedstock

Refineryfeedstock

Blendstockfor gasoline Plastics

Petrochemical feedstock

Additivetogasoline

Diluentforheavy crudeoil

Synthetic rubber

Solvents

gasolineand,therefore,vehiclespoweredbyCNGrequirelargerfueltanks(comparedtovehiclespoweredbyliquidfuels).

Thus,amoresuitableusefornaturalgasinthetransportationsectormaybeasa resourcetogenerateelectricityforplug-invehiclesorhydrogenforfuelcellvehicles,whichcanreduceemissionssavingsontheorderof40%(ormore).

NGLswhichare,bydefinition,hydrocarbonderivativesalsohaveuseotherthan fuelcomponents(Table1.6)becauseofthehydrocarbonconstituents.Thus,there aremanyusesforNGLsthatspanalmostallsectionsoftheindustrialchemicals economy.NGLsareusedasfeedstocksforpetrochemicalplants,burnedforspace heatandcooking,andblendedintovehiclefuel.

ThechemicalcompositionofNGLsfromdifferentsourcesissimilar,yettheir applicationsvarywidely.Ethaneoccupiesthelargestshareofthefiledproduction ofNGLsandisusedalmostexclusivelytoproduceethylene,whichisthenconvertedintoplasticproducts.Bycontrast,themajorityofthepropane,bycontrast,is burnedforheating,althoughasubstantialamountisusedaspetrochemicalfeedstock.Ablendofpropaneandbutane,sometimesreferredtoas autogas (auto-gas), isapopularfuelinsomepartsofEurope,Turkey,andAustralia.Naturalgasoline (pentanesplus)canbeblendedintovariouskindsoffuelforcombustionengines andisusefulinenergyrecoveryfromwellsandtarsand(oilsand)deposits.

AchallengewiththeuseofNGLsisthattheyare(1)expensivetohandle,(2) store,and(3)transportcomparedtorefinedproducts.NGLsarehighlyflammable andrequirehighpressureand/orlowtemperaturetobemaintainedintheliquid stateforshippingandhandling.Theflammabilityoftheseliquidsnecessitatesthe useofspecialtrucks,ships,andstoragetanks.

References

AAPG,2015.Unconventionalenergyresources:2015Review.Nat.Resour.Res.24(4), 443 508.AmericanAssociationofPetroleumGeologists,TulsaOklahoma.

Abbott,M.,2016.TheEconomicsoftheGasSupplyIndustry.RoutledgePublishers,Taylor &FrancisGroup,NewYork.

Aguilera,R.F.,Radetzki,M.,2014.Theshalerevolution:globalgasandoilmarketsunder transformation.Miner.Econ.26(3),75 84.

ASTM,2017.AnnualBookofStandards.ASTMInternational,WestConshohocken,PA.

Boswell,R.,Collett,T.S.,2011.Currentperspectivesongashydrateresources.Energy Environ.Sci.4,1206 1215.

Boyle,G.(Ed.),1996.RenewableEnergy:PowerforaSustainableFuture.OxfordUniversity Press,Oxford.

Briggs,J.,February1988.MunicipalLandfillGasCondensate.ReportNo.EPA/600/S2-87/ 090.EnvironmentalProtectionAgencyHazardousWasteEngineeringResearch Laboratory,Cincinatti,OH.

Brosseau,J.,1994.Tracegascompoundemissionsfrommunicipallandfillsanitarysites. Atmos.Environ.28(2),285 293.

Buffett,B.,Archer,D.,2004.Globalinventoryofmethaneclathrate:sensitivitytochangesin thedeepocean.EarthPlanet.Sci.Lett.227(3 4),185.

Burruss,R.C.,Ryder,R.T.,2003.CompositionofCrudeOilandNaturalGasProducedfrom 14WellsintheLowerSilurian“Clinton”SandstoneandMedinaGroup,Northeastern OhioandNorthwesternPennsylvania.Open-FileReport03-409,UnitedStates GeologicalSurvey,Reston,VA.

Burruss,R.C.,Ryder,R.T.,2014.Compositionofnaturalgasandcrudeoilproducedfrom10 wellsinthelowerSilurian“Clinton”sandstone,TrumbullCounty,Ohio.In:Ruppert,L. F.,Ryder,R.T.(Eds.),CoalandPetroleumResourcesintheAppalachianBasin; Distribution,GeologicFramework,andGeochemicalCharacter.UnitedStates GeologicalSurvey,Reston,VA,ProfessionalPaper1708.

Chong,Z.R.,Yang,S.H.B.,Babu,P.,Linga,P.,Li,X.S.,2016.Reviewofnaturalgas hydratesasanenergyresource:prospectsandchallenges.Appl.Energy162, 1633 1652.

Colborn,T.,Kwiatkowski,C.,Schultz,K.,Bachran,M.,2011.Naturalgasoperationsfroma publichealthperspective.Hum.Ecol.RiskAssess.17,1039 1056.

Collett,T.S.,2002.Energyresourcepotentialofnaturalgashydrates.Am.Assoc.Pet.Geol. Bull.86,1971 1992.

Collett,T.S.,Johnson,A.H.,Knapp,C.C.,Boswell,R.,2009.Naturalgashydrates:areview. In:Collett,T.S.,Johnson,A.H.,Knapp,C.C.,Boswell,R.(Eds.),NaturalGas Hydrates EnergyResourcePotentialandAssociatedGeologicHazards.American AssociationofPetroleumGeologists,Tulsa,OK,pp.146 219.,AAPGMemoirNo.89.

Demirba¸s,A.,2010a.MethanefromgashydratesintheBlackSea.EnergySourcesPartA 32,165 171.

Demirba¸s,A.,2010b.Methanehydratesaspotentialenergyresource:Part1—Importance, resourceandrecoveryfacilities.EnergyConvers.Manage.51,1547 1561.

Demirba¸s,A.,2010c.Methanehydratesaspotentialenergyresource:Part2—Methaneproductionprocessesfromgashydrates.EnergyConvers.Manage.51,1562 1571.

Forbes,R.J.,1964.StudiesinAncientTechnology.E.J.Brill,Leiden.

Gary,J.G.,Handwerk,G.E.,Kaiser,M.J.,2007.PetroleumRefining:Technologyand Economics,fifthed.CRCPress,Taylor&FrancisGroup,BocaRaton,FL.

Gornitz,V.,Fung,I.,1994.Potentialdistributionofmethanehydrateintheworld’soceans. Glob.Biogeochem.Cycles8,335 347.

Hafner,M.,Tagliapietra,S.,2013.TheGlobalizationofNaturalGasMarkets:New ChallengesandOpportunitiesforEurope.Claeys&CasteelsLawPublishers,Deventer, InternationalSpecializedBookServices,PortlandOregon.

Hsu,C.S.,Robinson,P.R.(Eds.),2017.HandbookofPetroleumTechnology.Springer InternationalPublishingAG,Cham.

Islam,M.R.,2014.UnconventionalGasReservoirs.Elsevier,Amsterdam.

John,E.,Singh,K.,2011.Productionandpropertiesoffuelsfromdomesticandindustrial waste.In:Speight,J.G.(Ed.),TheBiofuelsHandbook.RoyalSocietyofChemistry, London,pp.333 376.

Khosrokhavar,R.,Griffiths,S.,Wolf,K.-H.,2014.Shalegasformationsandtheirpotential forcarbonstorage:opportunitiesandoutlook.Environ.Processes1(4),595 611.

Kundert,D.,Mullen,M.,April14 16,2009.Properevaluationofshalegasreservoirsleads toamoreeffectivehydraulic-fracturestimulation.PaperNo.SPE123586.In: Proceedings.SPERockyMountainPetroleumTechnologyConference,Denver, Colorado.

Levine,J.R.,1993.Coalification:theevolutionofcoalasasourcerockandreservoirrock foroilandgas,Stud.Geol.,38.Am.Assoc.Petrol.Geol.,pp.39 77.

Mokhatab,S.,Poe,W.A.,Speight,J.G.,2006.HandbookofNaturalGasTransmissionand Processing.Elsevier,Amsterdam.

Nersesian,R.L.,2010.Energyforthe21stCentury,seconded.M.E.Sharpe,Armonk,NY. Parkash,S.,2003.RefiningProcessesHandbook.GulfProfessionalPublishing,Elsevier, Amsterdam.

Poling,B.E.,Prausnitz,J.M.,O’Connell,J.P.,2001.ThePropertiesofGasesandLiquids, fifthed.McGraw-Hill,NewYork.

Ramage,J.,1997.Energy:AGuidebook.OxfordUniversityPress,Oxford.

RamroopSingh,N.,2011.Biofuels.In:Speight,J.G.(Ed.),TheBiofuelsHandbook.Royal SocietyofChemistry,London,pp.160 198.

Rasi,S.,Veijanen,A.,Rintala,J.,2007.Tracecompoundsofbiogasfromdifferentbiogas productionplants.Energy32,1375 1380.

Rasi,S.,Lantela,J.,Rintala,J.,2011.Tracecompoundsaffectingbiogasenergyutilization— areview.EnergyConvers.Manage.52(12),3369 3375.

Rice,D.D.,1993.Compositionandoriginsofcoalbedgas,Stud.Geol.,38.Am.Assoc. Petrol.Geol.,pp.159 184.

Singh,K.,Sastry,M.K.S.,2011.Productionoffuelsfromlandfills.In:Speight,J.G.(Ed.), TheBiofuelsHandbook.RoyalSocietyofChemistry,London,pp.408 453.

Speight,J.G.,2008.SyntheticFuelsHandbook:Properties,Processes,andPerformance. McGraw-Hill,NewYork.

Speight,J.G.,2011a.TheRefineryoftheFuture.GulfProfessionalPublishing,Elsevier, Oxford.

Speight,J.G.,2011b.AnIntroductiontoPetroleumTechnology,Economics,andPolitics. ScrivenerPublishing,Salem,MA.

Speight,J.G.(Ed.),2011c.TheBiofuelsHandbook.RoyalSocietyofChemistry,London. Speight,J.G.,2012.CrudeOilAssayDatabase.Knovel,NewYork.Availableat: http:// www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid 5 5485 &VerticalID 5 0

Another random document with no related content on Scribd:

Mechanical Toy Alligator of Wood

The Alligator is Drawn Along with a String, and the Jaws and Tail Flip Up and Down

A toy alligator that opens its mouth and wags its tail as it is pulled along can be made of wood by a boy, with a jackknife. The various parts, as shown, are cut from soft wood, ¹⁄₂ in. thick. The method of

fastening the parts is shown in the side sectional view When the wheels turn, the cams A, set on the crank portions of the wheel axles, raise and lower the jaw and tail. The upper jaw is 1 in. wide at the widest part, and 3 in. long. The lower jaw is smaller, and the same length. The body is 6 in. long, and tapering in width from 1¹⁄₂ to ³⁄₄ in. The tail is 4³⁄₄ in. long, and ³⁄₄ in. wide. Holes are drilled in each piece near the edge, at joining points, through which wires are drawn, and clamped, as at B. The legs are shown in detail. They are attached to the body by drilling a ¹⁄₁₆-in. hole in each, and a hole through the body, through which the fastenings are passed. The lower end of the legs are fastened to the base, which is 3 by 9 in. long. Square holes, 1 in. wide, near each end, are provided for the cams A. The axles and wheels are made as shown. The axles fit tightly in the wheels, so that the latter can move the axles around with each turn. The axles are made from ¹⁄₈-in. wire, bent as shown, and should be long enough, after passing through the bottom, to extend through the wheels on each side.—Charles C. Wagner, Los Angeles, Calif.

Angle Bracket Gives Leverage on Door Spring

Frequently, in placing a coil spring on a screen or other door, the casing is flush with the door, and it is difficult to give the spring the desired leverage. If it is attached to the casing directly, the surface is marred by the rubbing of the spring. A good method is to set a small iron bracket, either homemade of strap iron or one of the commercial type, on the casing and attach the end of the spring to the bracket. This prevents the spring from rubbing on the door and casing, and gives it freedom of action.—Harry L. Dixon, Chicago, Ill.

Combination Indirect-Light Reflector and

Mirror

A small mirror combined with a shaded electric lamp affords a nearly perfect shaving lamp, and facial toilet mirror. The mirror should be 1 in. smaller all around than the reflector. By soldering two lengths of stiff wire to the back of the mirror frame, it can be clamped to the reflector, as shown. The indirect light from the reflector illuminates the face without shadows or glare, adding to the comfort of shaving. The mirror can be removed, and the lamp used for other purposes.—Thomas W. Benson, Philadelphia, Pa.

C O N T E N T S

Acetylene Burner, Spray Nozzle Made of, Acid Jars, Earthen Mustard Pots Used as, Adhesive Tape, Handy Use for, Aerial Cableway, Compensated, Aerials, Wireless, Lightning Switch for, Aeroplanes, Model, Egg Beater Made into Winder for, Aid in Ruling Uniform Cards or Sheets, Air Pump, Protecting Against Denting, Alarm, Rain, with Drop-of-Water Contact, Alcohol Blowtorch for Difficult Soldering, Alcohol, Denatured, to Start Gasoline Stove, Alcohol Stove, Emergency, Alligator of Wood, Mechanical Toy, Alternating Current, Seeing in a Mirror, Aluminum Cooking Utensils, Mending, Aluminum-Ware Cleaner, Steel Wool as, Ammeter, Homemade, Ammonia-Carrying Case for Insect Bites, Anchor for Canoe or Small Boat, Anemometer, Easily Constructed Ball-Bearing, Angle Bracket Gives Leverage on Door Spring, Angle of Camera, Photo Copying Lens Increases, Annunciator Target, Recording, Apples and Other Fruit, Device Quarters and Cores, Applying and Drying Bronze Powders, Appointments and Other Events, Clock Device to Record Time of,

Aquarium, Cement Grotto for, Arc Light, Homemade, Arm, Desk Light, Folds into Pigeonhole,

Arm, Detachable Chair, Armchair, Enameled, Made of Wooden Strips, Arms of a Scarecrow, Swinging Bags on, Army in Small Box, Artistic Card Tray, Asbestos Table Mats Reinforced with Wire Netting, Ash Tray, Cheese Grater and, Made from a Tin Can, Ash Tray, Snapper Shell, Athletic Equipment Locker, Boys’, Atomizer, Bottle Economizes Spray Liquid in, Auto Horn for Child’s Play Vehicle, Auto, Play, Barrel Staves as Springs for, Auto Truck Frame, Reinforcing Strained, Automatic Fishhook, Automatic Flash Light Snaps Chicken-Coop Marauder, Automatic Lock Box for Milk Bottles, Automatic Photo-Print Washing Device, Automatic Stop for Spring-Roller Curtains, Automatic Window Closer, Automobile, Bicycle Carried on, as Tender, Automobile Seat, Porch Swing Made from, Automobile, Suitcase Holder for Running Board of,

Baby-Cab Tires, Changing Wheels Equalizes Wear on, Baby Crib, Neat and Economical, Made from a Clothes Basket,

Baby, Motor-Driven Entertainer for, Baby, Washstand for, Baby’s Play Area, Portable Fence for, Back Rest, Folding Ground Seat with, Backing Picture Frame, Plier Drives Nails in, Backstop, Knock-Down Tennis-Court, Backwoodsman’s Nutcracker, Bags, Swinging, on Arms of Scarecrow, Bait Cache, Campers’, Bait Casting for Game Fish, Bait, Catching Minnows for,

Bait, Luminous-Minnow Fish, Ball-Bearing Anemometer, Easily Constructed, Balloons, Toy Rubber, Filling with Hydrogen, Band, Metal, Stiffens Brush, Bare Spots on Lawns, Seeding, Bark-Covered Porch Light and Plant Shelf, Barnyard Gate Operated with the Foot, Barometer, Simple, Barrel, Cushioned Chair Made of, Barrel Staves as Springs for Play Auto, Base, Weighting Metal, Baseball Playing, To Practice Batting for, Basement, Signal for Lighted Lights in, Basin, Dish-Draining, Old Sink Installed as, Basin, Simple Metal Bird, Basket, Hourglass Sewing, Bathroom Kinks, Three, Battery Buzzer Converted into a Telegraph Sounder, Battery Circuits, Homemade Fuses for, Batting for Baseball Playing, To Practice, Bazaar or Fair Booth, Rustic Well for, Bearing for Playground Swings, Bearing Made of Brass Cartridge, Beating, Hanging Heavy Rug on Line for, Bed, Antique Signboard Made of Headboard of, Bed, Folding Card Table Handy for Invalid in, Bed Table, Adjustable and Pivoted, Attached to Bedpost, Bedpost, Adjustable and Pivoted Bed Table Attached to, Bedroom Night Light, Flash Light Used as, Bedroom Shade and Curtains Arranged for Thorough Ventilation,

Bedsteads, Old, Lawn Benches Made from, Bee Feeder for Winter Use, Bell, Call, Curious Support for, Bell-Circuit Wiring, Tinned Staples for, Bell-Ringing Hoop, Child’s, Bell-Ringing Mail Box,

Belt for Sprocket Drive Made of Brass Strips, Bench, Clamping a Wide Board on, Bench Receptacles for Small Articles, Bench Stop, Bench Support for a Miter Box, Bench Vise, Quick-Acting, Benches, Lawn, Made from Old Bedsteads, Berth, Train, Improved Trousers Hanger in, Bicycle Carried on Automobile as Tender, Bicycle Fitted Up to Resemble Motorcycle, Bicycle-Handle Grip on Rake Handle, Bicycle Lamp, Generator Attachment Provides Current for, Bicycle, Parcel-Delivery, Sidecar for, Bicycle Pump, Cleaning Type Cases with, Bicycle Pump, Pneumatic Door Check Made of, Bicycle, Rear Seat for Motorcycle or, Bicycle Runners for Winter Use, Bicycles Driven as Three-Wheel Tandem After Breakdown, Bilge Water Siphoned Through Water-Jacket Outlet, Billfold, Craftsman Leather, Billfold, Squirrel-Skin, Binder for Magazines, Temporary, Binding, Knife to Trim Magazines for, Birch-Bark Leggings Made in the Woods, Bird Basin, Simple Metal, Bird House Made of Kegs, Bird House Made of Old Straw Hat, Bird Photography, Camera for, Bird Table, Cat-Proof, Bites, Insect, Ammonia-Carrying Case for, Blades, Propeller, How to Make Quickly, Blind Person, Homemade Device Aids in Writing, Block Plane Converted for Use on Circular Work, Blotter Attached to Wrist Saves Time, Blotter, Trick, Blotting Paper, White, Improves Light Reflectors, Blower for a Fireplace,

Blowpipe for Gas, Blowtorch, Alcohol, for Difficult Soldering, Blue Roses Tinged by Chemicals, Board, Sliding, for Coasting, Board, Wide, Clamping on a Bench, Boat, Canoe or, Stored in Pulley Slings, Boat, Portable Folding, Boat, Small, Canoe or, Anchor for, Boats, Model Paddle-Wheel, Book and Document Protector, Book Form, Keeping Magazines in, Book Holder, Homemade, Book Rest for Music Stand, Book, Specimen, Preserving Leaves in, Bookcase and Writing Desk, Combination, Bookcase, Trunk, for Convenient Shipment, Bookmark, Leather and Silk, Bookshelf, Index for Popular Mechanics Magazine on, Bookshelf, Secret Trinket Case for, Booth, Bazaar or Fair, Rustic Well for, Bottle Carrier Made of Pipe Straps, Bottle, Die in, Bottle Economizes Spray Liquid in Atomizer, Bottle, Glass, as a Candle Lamp, Bottle, Glass, Cutting with Electricity, Bottle, To Uncork, with a String, Boughs, Springy Hammock Support Made of, Box, Automatic Lock, for Milk Bottles, Box Camera, Direct View Finder for, Box Cover, Hinged, Made Without Hinges, Box Cover Without Hinges, Box End, Scoop Made of, Box for Campers, Table, Box Farm, Fort Built of Snow Blocks Made in, Box, Hinged Window, Box, Loading, to Dispense with Dark Room, Box, Novel Covered, for Index Trays,

Box, Pasteboard, Shortening, Box, Small, Army in, Box to Protect Extra Spark Plugs, Boxes, Decorative Toys and, Made at Home, Boy Can Make Useful Periscope, Boys’ Athletic-Equipment Locker, Boys’ Motor Car, Homemade, Bracelet, One-Piece, Cut from Calling Card, Bracket, Angle, Gives Leverage on Door Spring, Bracket for Garden Hose, Practical, Bracket, Gas-Hose, for Ironing or Shop Use, Brake, Safety, Coaster with, Brass Candlestick, Repairing, Brass Cartridge, Bearing Made of, Brass Machine Screws with Nuts, Brass Strips, Belt for Sprocket Drive Made of, Brass Tip on Cartridge Fuse, Bushing Made of, Brick Walls, Wire Trellis Fastened Neatly to, Bristles in Polish or Stencil Brushes, Wire Compacts, Broken Canoe Paddle, Repairing, Broken Coffee Pot Knob, Replacing, Broken Fly-Screen Frame, Repairing, Broken Liquid Column in Thermometer, Joining, Broken Metal Cross, Repairing, Broken Places on Enamel, Filling in, Broken Reed Handle, Repairing, Broken Spade Handle Repaired with Water Pipe, Bromide Enlargements, Curved Printing Surface for Sharp Focus in, Bromide Enlargements, Test Exposure for, Bromide Enlargements, Washing, Bronze Powders, Applying and Drying, Brooder, Brooding House, Chick, Shield for Heater in, Broom, Moving Heavy Objects with, Brush and Container, Mucilage, Made of a Test Tube, Brush-Cutting Knife, Pruning and,

Brush, Metal Band Stiffens, Brushes, Polish or Stencil, Wire Compacts Bristles in, Buggy Shafts, Old, Toboggan Made of, Buggy Springs, Discarded, for Diving Board, Bulb, Light, Testing Dry Cells with, Bumpers, Door, Raise Height of Chair, Bungalow, California, for Canaries, Bunghole, Stopper for, Burns, Stove Lighter with Feeding Wick Guards Against, Bushing Made of Brass Tip on Cartridge Fuse, Button Clasps, Old, Practical Uses for, Buttonhole-Bouquet Holder to Keep Cut Flowers Fresh, Buttonhook, Fancy, How to Make, Buttonhook, Screwdriver Made from, Buttons, Miniature Push, Butts, Plain, Used as Double-Swing Hinge, Buzzer, Battery, Converted into a Telegraph Sounder,

Cabinet and Table, Combination Camp-Kitchen, Cabinet Doors, Wire Holders Keep Open, Cabinet, Homemade Talking Machine, Cabinet, Magic, Cabinet or Cellarette, Smoker’s, Cabinet, Sportsman’s, for Guns, Equipment and Books, Cabinetwork, Storage of Wood for, Cableway, Compensated Aerial, Cage, Wire-Mesh, Fisherman’s Pail with, Cakes, Pop-Corn, How to Make, Calendar, Perpetual, California Bungalow for Canaries, Calipers, Homemade, Call Bell, Curious Support for, Calling Card, One-Piece Bracelet Cut from, Camera, Box, Direct View Finder for, Camera, Enlarging, Improvised Post-Card Projector and, Camera for Bird Photography, Camera for Taking Pictures from Kite,

Camera Shutter, Simple Arrangement for Releasing from Distance, Camera, Submarine, Camera, Substitute for Ground Glass in, Camera, Photo-Copying Lens Increases Angle of, Camera Tripod, Tilting Top for, Camera View Finder, Rectangular Opening to Use Over, Cameras, Enlarging, Focusing Screen for, Camp Chest, Guarding Against Theft, Camp Equipment, Care and Storage of, Camp Fire, Utensil Rack for, Camp-Kitchen Cabinet and Table, Combination, Camp Lantern Made of a Tin Can, Camp or Kitchen, Slicing Board for, Camp, Shaving Lamp and Mirror for, Camp Shelter Affords Protection from Mosquitoes, Camp Stoves, Emergency, Quickly Made, Camp, Summer, Diving Tower for, Camp Water Bag, Camper’s Bait Cache, Camper’s Salt-and-Pepper Holder, Campers, Table Box for, Campfire, Water Wheel Turns Spit Over, Camping and Outing Trips, Memorandum List for, Camping Out, Tricks of:

Part I.—The Camping Outfit, Part II.—Cooking in the Woods, Can, Come-Back Rolling, Can, Tin, Camp Lantern Made of, Canal, Current of, Raises Irrigation Water, Canaries, California Bungalow for, Candle Lamp, Glass Bottle as, Candle, Lighting Without Touching the Wick, Candles, Magic, Explained, Candlestick, Brass, Repairing, Candlestick Mission, Candlesticks, Sectional Spun-Metal, Repairing,

Candlesticks Wired Neatly for Electric Lamps, Candy Figures, Hollow, Mold for Making, Cane Made of Tubing Contains Cigars, Cane, Turned, with Snakes Inlaid, Cannon-Shell Dinner Bell, Cannon Shell, Miniature, Match Safe of, Canoe, How to Build:

Part I.—Specifications and List of Materials,

Part II.—Sailing the Open Paddling Canoe,

Part III.—Fitting a Motor into a Paddling Canoe, Canoe or Boat Stored in Pulley Slings, Canoe or Small Boat, Anchor for, Canoe Paddle, Repairing Broken, Canoe, Paddling Your Own:

Part I.—Kinds of Canoes,

Part II.—Knack of Handling the Paddle, Canoe, Patching Canvas Bottom of, Cans, Large, Wheelbarrow for, Cans, Nail Carrier Made of, Canteen, How to Make, Canvas Bottom of a Canoe, Patching, Carbon Electric Water Heater, Card Deception, Simple, Card Frame, Enchanted, Card Index, Removal Marker for, Card or Ticket Holder, Revolving, Card Table, Folding, Handy for Invalid in Bed, Card, Tossing at Mark Accurately, Card Tray, Artistic, Card Trick, Diminishing, Card, Written, Magically Naming, Cardboard Creaser, Cardboard, Dies for Cutting, Cardboard Tubes for Electrical Coils, Making, Cardboard Writing and Drawing Pad, Cards, Feeding into Typewriter, Cards or Sheets, Uniform, Aid in Ruling,

Care and Storage of Camp Equipment, Care of Umbrellas, Kinks on, Caring for, Files, Testing and, Carrying Strap and Lock for Hand Cases, Cart for Carrying Huge Drum in Parade, Cartridge, Brass, Bearing Made of, Cartridge Fuse, Bushing Made of Brass Tip on, Case, Ammonia-Carrying, for Insect Bites, Case for Fishhooks Made of a Tin Can, Case, Waterproof Dry-Battery, Cases of Drawers, Simple Concealed Locking Device for, Caster Board for Scrubbing and Floorwork, Caster Supports, Handy Parcel Carrier with, Casting, Bait, for Game Fish, Castings, Similar Small, Making Lead Soldiers and, Castings Without Patterns, Cat-and-Bells Scarecrow, Cat-Proof Bird Table, Catch-Ail Screen Inside Hot-Air Register, Catching Large Fish with a Teaspoon, Cedar Oil, Treating Closets with, Cellarette, Smoker’s Cabinet or, Celluloid Cover for Road Maps, Cement Grotto for an Aquarium, Cement Plant, Miniature, Chain Weight Prevents Whipping of Flag, Chains, Gas-Fixture, Sleeve Aids in Distinguishing, Chair Arm, Detachable, Chair, Cushioned, Made of Barrel, Chair, Door Bumpers Raise Height of, Chair, High, Chair, Morris, with Newspaper Rack and Smoker’s Trays, Chair, Removable Headrest for, Chair Seat, Convenient Tool Drawer Under, Changing Wheels Equalizes Wear on Baby-Cab Tires, Check, Homemade Screen-Door, Checking a Rip in Tire Tubes,

Cheese Grater and Ash Tray Made from a Tin Can, Chemicals, Roses Tinged Blue by, Chest, Camp, Guarding Against Theft, Chest Expander, Comic, for Play or Stage Use, Chest, Homemade, Linoleum Panels for, Chest Lock, Making More Secure, Chests, Miniature Metal-Bound, Chick Brooding House, Shield for Heater in, Chicken-Coop Marauder, Automatic Flash Light Snaps, Child, Spoon Attachment to Prevent from Using Left Hand, Child’s Bell-Ringing Hoop, Child’s Play Vehicle, Auto Horn for, Child’s Swing Built of Pipes in Narrow Space, Chimes, Set of Electric, China Banding Wheel, Disk Talking Machine as, Choke and Pattern of a Gun, Chopping Block, Safety, Churn Attachment, Washing Machine Equipped with, Chute, Gravity Delivery, Fruit-Picking Pole with, Cigar and Pipe Lighter, Non-Blow-Out, Cigars, Cane Made of Tubing Contains, Cipher Code, Simple, Circular Swing, Circular Work, Block Plane Converted for Use on, Clamp, Tennis-Racket, Opening Springs for, Clamping a Wide Board on a Bench, Clasps, Old Button, Practical Uses for, Cleaner, Comb, Cleaning a Clock with Kerosene Fumes, Cleaning a Typewriter, Kinks in, Cleaning, Pole Supports Rug for, Cleaning Silverware, Cleaning Tinware with Milk, Cleaning Type Cases with Bicycle Pump, Cleanly Pencil Sharpener, Cleat and Pulley Fastenings to Adjust Clothesline, Climbing Ring, Mystic,

Clip Holds Flash-Lamp on Handlebar as Headlight, Clipping File Made of Envelopes, Clock, Cleaning with Kerosene Fumes, Clock Device to Record Time of Appointments and Other Events,

Clock, Electrical Device Transmits Striking of, Clock Hand, Magic, Clock, Muffling the Ticking of a Watch or, Clocks for the Craftsman, Clocks, Oiling Tool for, Clod Rake Protects Corn in Cultivating, Closet, Rigging Economizes Space in, Closets, Treating with Cedar Oil, Clothes Basket, Neat and Economical Baby Crib Made from, Clothes Drier, Umbrella Used as, Clothesline, Cleat and Pulley Fastenings to Adjust, Clothespin-Basket Hook, Coal Hod Made from Iron Pipe, Coal Hopper, Gravity Feed, on Truck, Coaster Steering Gear Made from Cream-Freezer Drive, Coaster with Safety Brake, Coasting, Sliding Board for, Coasting Toboggan, Making a, Coat Hook, Wire, To Prevent from Turning, Cocoanut-Shell Trays, Code, Simple Cipher, Coffee Can and Broom Handle, Corn Popper Made from, Coffee Grinder Repaired with Rubber Faucet Plug, Coffee Pot Knob, Replacing Broken, Coiled Springs, Winding, Coils, Electrical, Making Cardboard Tubes for, Collar Button, Emergency, Colonial Mirror Frame, Colors, Reproducing Flowers and Leaves in, Colors, Two, Writing on Plain-Ribbon Typewriter, Comb Cleaner, Combination Bookcase and Writing Desk,

Combination Indirect-Light Reflector and Mirror, Combination Laundry Tub and Dishwashing Sink, Combination Lock, Effective, Easily Made, Combination Workshop Seat, Combined Kites, How to Make: Part I.—A Dragon Kite, Part II.—Festooned Kite, Combined Label and Cover Pad for Preserve Glasses, Come-Back Rolling Can, Comic Chest Expander for Play or Stage Use, Common Mistakes in Model Making, Compact Galvanometer, Compensated Aerial Cableway, Concealing the House Key, Concrete Water Basin for Poultry, Condenser, Small Variable, Contact, Drop-of-Water, Rain Alarm with, Containers, Pouring Liquids Quickly from, Contents of Unsealed Envelopes, Safeguarding, Controller, Simple Motor, Cooker, Lamp, Cooking in the Woods, Cooking Utensils, Aluminum, Mending, Cooler for Developing Tray, Cooling Foodstuffs with a Moist Rag and a Draft, Coop for Sitting Hens, Cord, Telephone, Rubber Band Prevents Tangling of, Cord Used as Spacer for Curtain Rings, Cork Plugs Save Wear on Drafting Board, Corks, Pad for Glass Vessels Made of, Corn, Clod Rake Protects in Cultivating, Corn Popper Made from Coffee Can and Broom Handle, Corners, Diagonal, on Disk-Record Covers, Corners, Metal Floor, Correcting, Inserting or, on Typewritten Bound Sheets, Corrugating Strips, Device for, Cottage, Tuberculosis,

Couch Spring, Removing Sag from, Couches, Substitute for Rivets in, Counter, Easily Made, Countersinking a Hole Smoothly, Counterweight, Trimming Board with Foot Control, Counting Glass, Electric, for Thread Fabric, Cover, Box, Without Hinges, Cover Fastener, Key Ring Used as, Cover for Road Maps, Celluloid, Cover, Hinged Box, Made Without Hinges, Cover, Safety, for Valves on Gas Stove, Cover, Tin, Frying Pan Made of, Covering Hinge Wings, Covers’ Disk-Record, Diagonal Corners on, Covers for Jars, Removable Paraffin, Cow’s Tail, “Switchboard,” Protects Milker from, Coyotes, Trap for, Craftsman, Clocks for, Craftsman Leather Billfold, Crates and Furniture, Three-Caster Truck for Moving, Cream-Freezer Drive, Coaster Steering Gear Made from, Creaser, Cardboard, Creeper, Ice, Cross, Broken Metal, Repairing, Crossbow Magazine Gun, Cue Alley, Parlor, Cultivating, Clod Rake Protects Corn in, Cup, Trophy, Onlaying Script on, Cupboard for Kitchen Utensils, Cupboard, Summer Radiator Cover Serves as, in Winter, Curious Support for Call Bell, Curling-Iron Heater, Current, Alternating, Seeing in a Mirror, Current for Bicycle Lamp, Generator Attachment Provides, Current of Canal Raises Irrigation Water, Curtain, Raising and Lowering at a Distance, Curtain Rings, Cord Used as Spacer for,

Curtains, Automatic Stop for Spring-Roller, Curved Printing Surface for Sharp Focus in Bromide Enlargements, Cushion, Emery Needle, on Sewing Machine, Cushioned Chair Made of Barrel, Cutter, Groove, for Wood, Cutting Cardboard, Dies for, Cutting Glass Bottle with Electricity, Cylinder Reversing Switch,

Damp Walls, Shielding Picture from, Dancer, Electrical, Dark, Locating Droplight in, Dark-Room Light, Emergency, Dark Room, Loading Box to Dispense with, Dark-Room Use, Red Lens Hinged to Flash Light for, Dark Room, Window Frame and Table for, Dark, To Keep Tan Shoes from Turning, Darning Needle, Threading, Deception, Simple Card, Decorative Toys and Boxes Made at Home, Decoys, Duck, Mounted on Folding Frame, Delivery Chute, Gravity, Fruit-Picking Pole with, Delivery Routes, Order-Memo Device for, Denatured Alcohol to Start Gasoline Stove, Dent in Edge, Teakettle Cover Held by, Dental Floss, Sanitary Holder for Thread and, Denting, Protecting Air Pump Against, Deodorizing Lard Buckets, Depth, Homemade Fishing Float Adjustable to, Desk, Folding Wall, Desk, Improvised Typewriter, Desk Lamp, Small, Supported by Paper Weight, Desk-Light Arm Folds into Pigeonhole, Desk Slide in Top of Drawer, Desk Watch Holder, Desk, Writing, Combination Bookcase and,

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.