Visit to download the full and correct content document: https://textbookfull.com/product/multiple-criteria-decision-analysis-state-of-the-art-surv eys-2nd-edition-salvatore-greco/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Big Data Analytics Using Multiple Criteria DecisionMaking Models 1st Edition Ramakrishnan Ramanathan
https://textbookfull.com/product/big-data-analytics-usingmultiple-criteria-decision-making-models-1st-editionramakrishnan-ramanathan/
New Concepts and Trends of Hybrid Multiple Criteria Decision Making 1st Edition Gwo-Hshiung Tzeng
https://textbookfull.com/product/new-concepts-and-trends-ofhybrid-multiple-criteria-decision-making-1st-edition-gwo-hshiungtzeng/
New Perspectives in Multiple Criteria Decision Making Innovative Applications and Case Studies Michalis Doumpos
https://textbookfull.com/product/new-perspectives-in-multiplecriteria-decision-making-innovative-applications-and-casestudies-michalis-doumpos/
Multiple Criteria Decision Making Applications in Environmentally Conscious Manufacturing and Product Recovery 1st Edition Surendra M. Gupta
https://textbookfull.com/product/multiple-criteria-decisionmaking-applications-in-environmentally-conscious-manufacturingand-product-recovery-1st-edition-surendra-m-gupta/
Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design, Second Edition Ali
Jahan Ph.D.
https://textbookfull.com/product/multi-criteria-decisionanalysis-for-supporting-the-selection-of-engineering-materialsin-product-design-second-edition-ali-jahan-ph-d/
Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering 1st Edition Dilber Uzun Ozsahin (Editor)
https://textbookfull.com/product/application-of-multi-criteriadecision-analysis-in-environmental-and-civil-engineering-1stedition-dilber-uzun-ozsahin-editor/
Waste-to-Energy: Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking 1st Edition Jingzheng Ren
https://textbookfull.com/product/waste-to-energy-multi-criteriadecision-analysis-for-sustainability-assessment-and-ranking-1stedition-jingzheng-ren/
Analysis of Shells Plates and Beams A State of the Art Report Holm Altenbach
https://textbookfull.com/product/analysis-of-shells-plates-andbeams-a-state-of-the-art-report-holm-altenbach/
Strategic Approach in Multi Criteria Decision Making A Practical Guide for Complex Scenarios 2nd Nolberto Munier
https://textbookfull.com/product/strategic-approach-in-multicriteria-decision-making-a-practical-guide-for-complexscenarios-2nd-nolberto-munier/
Salvatore Greco
Matthias Ehrgott
José Rui Figueira Editors
Multiple Criteria Decision Analysis State of the Art Surveys
Second Edition
Volume233
SeriesEditor
CamilleC.Price
StephenF.AustinStateUniversity,TX,USA
AssociateSeriesEditor JoeZhu
WorcesterPolytechnicInstitute,MA,USA
FoundingSeriesEditor
FrederickS.Hillier
StanfordUniversity,CA,USA
Moreinformationaboutthisseriesat http://www.springer.com/series/6161
SalvatoreGreco•MatthiasEhrgott JoséRuiFigueira
Editors MultipleCriteriaDecision Analysis StateoftheArtSurveys Volume1and2
SecondEdition
Editors
SalvatoreGreco
DepartmentofEconomicsandBusiness
UniversityofCatania Catania,Italy
PortsmouthBusinessSchool
CentreofOperationsResearch andLogistics(CORL)
UniversityofPortsmouth Portsmouth,UK
JoséRuiFigueira
CEG-IST,InstitutoSuperiorTécnico UniversidadedeLisboa Lisboa,Portugal
MatthiasEhrgott
DepartmentofManagementScience
LancasterUniversity Lancaster,UK
ISSN0884-8289ISSN2214-7934(electronic)
InternationalSeriesinOperationsResearch&ManagementScience ISBN978-1-4939-3093-7ISBN978-1-4939-3094-4(eBook) DOI10.1007/978-1-4939-3094-4
LibraryofCongressControlNumber:2015957403
SpringerNewYorkHeidelbergDordrechtLondon
©SpringerScience+BusinessMedia,LLC2005
©SpringerScience+BusinessMediaNewYork2016
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.
Printedonacid-freepaper
SpringerScience+BusinessMediaLLCNewYorkispartofSpringerScience+BusinessMedia(www. springer.com)
VolumeI
PartITheHistoryandCurrentStateofMCDA
1AnEarlyHistoryofMultipleCriteriaDecisionMaking .............3
MuratKöksalan,JyrkiWallenius,andStanleyZionts
2ParadigmsandChallenges ..............................................19 BernardRoy
PartIIFoundationsofMCDA
3PreferenceModelling .....................................................43
StefanoMoretti,MeltemÖztürk,andAlexisTsoukiàs
4ConjointMeasurementToolsforMCDM ..............................97 DenisBouyssouandMarcPirlot
PartIIIOutrankingMethods
5ELECTREMethods ......................................................155
JoséRuiFigueira,VincentMousseau,andBernardRoy
6PROMETHEEMethods .................................................187
Jean-PierreBransandYvesDeSmet
7OtherOutrankingApproaches .........................................221
Jean-M.MartelandBenedettoMatarazzo
PartIVMultiattributeUtilityandValueTheories
8MultiattributeUtilityTheory(MAUT) .................................285
JamesS.Dyer
9UTAMethods .............................................................315 YannisSiskos,EvangelosGrigoroudis, andNikolaosF.Matsatsinis
10TheAnalyticHierarchyandAnalyticNetworkProcesses fortheMeasurementofIntangibleCriteriaandfor Decision-Making ..........................................................363 ThomasL.Saaty
11OntheMathematicalFoundationsofMACBETH ...................421 CarlosA.BanaeCosta,Jean-MarieDeCorte, andJean-ClaudeVansnick
PartVNon-classicalMCDAApproaches
12DealingwithUncertaintiesinMCDA ..................................467 TheodorJ.StewartandIanDurbach
13DecisionRuleApproach .................................................497 SalvatoreGreco,Benedetto Matarazzo,andRomanSłowi ´ nski
14FuzzyMeasuresandIntegralsinMCDA ..............................553 MichelGrabischandChristopheLabreuche
15VerbalDecisionAnalysis .................................................605 HelenMoshkovich,AlexanderMechitov,andDavidOlson
16AReviewofFuzzySetsinDecisionSciences: Achievements,LimitationsandPerspectives ..........................637 DidierDuboisandPatricePerny
VolumeII
PartVIMultiobjectiveOptimization
17VectorandSetOptimization ............................................695 GabrieleEichfelderandJohannesJahn
18ContinuousMultiobjectiveProgramming .............................739 MargaretM.Wiecek,MatthiasEhrgott,andAlexanderEngau
19ExactMethodsforMulti-ObjectiveCombinatorial Optimisation ..............................................................817 MatthiasEhrgott,XavierGandibleux,andAnthonyPrzybylski
20FuzzyMulti-CriteriaOptimization:Possibilistic andFuzzy/StochasticApproaches ......................................851 MasahiroInuiguchi,KosukeKato,andHidekiKatagiri
21AReviewofGoalProgramming ........................................903 DylanJonesandMehrdadTamiz
22InteractiveNonlinearMultiobjectiveOptimizationMethods .......927 KaisaMiettinen,JussiHakanen,andDmitryPodkopaev
23MCDAandMultiobjectiveEvolutionaryAlgorithms ................977 JuergenBranke
PartVIIApplications
24MulticriteriaDecision Aid/AnalysisinFinance 1011 JaapSpronk,RalphE.Steuer,andConstantinZopounidis
25Multi-ObjectiveOptimizationandMulti-CriteriaAnalysis ModelsandMethodsforProblemsintheEnergySector 1067 CarlosHenggelerAntunesandCarlaOliveiraHenriques
26MulticriteriaAnalysisinTelecommunicationNetwork PlanningandDesign:ASurvey 1167 JoãoClímaco,JoséCraveirinha,andRitaGirão-Silva
27MultipleCriteriaDecisionAnalysisandSustainable Development 1235 GiuseppeMunda
28MulticriteriaPortfolioDecisionAnalysisforProjectSelection .....1269 AlecMorton,JeffreyM.Keisler,andAhtiSalo
PartVIIIMCDMSoftware
29MultipleCriteriaDecisionAnalysisSoftware
H.RolandWeistrofferandYanLi
ListofFigures Fig.3.1Graphicalrepresentationof R
Fig.3.2Matrixrepresentationof R
Fig.3.3Graphicalrepresentationofthesemiorder
Fig.4.1Comparingthelengthoftworods ................................101
Fig.4.2Comparingthelengthofcompositerods
Fig.4.3Usingstandardsequences .........................................105
Fig.4.4Buildingastandardsequenceon X2
Fig.4.5Buildingastandardsequenceon X
Fig.4.6Thegrid ............................................................119
Fig.4.7Theentiregrid .....................................................120
Fig.4.8TheThomsencondition ...........................................121
Fig.4.9RestrictedSolvabilityon X1
Fig.4.10Valuefunctionwhen Xi isdiscrete
Fig.4.11Valuefunctionwhen Xi iscontinuous
Fig.5.1InferringparametervaluesforELECTRETRI
Fig.6.1Preferencefunction ................................................194
Fig.6.2Valuedoutrankinggraph
Fig.6.3ThePROMETHEEoutrankingflows.(a)The C .a/ outrankingflow.(b)The .a/ outrankingflow ................198
Fig.6.4Profileofanalternative ...........................................200
Fig.6.5ProjectionontheGAIAplane ....................................203
Fig.6.6AlternativesandcriteriaintheGAIAplane
Fig.6.7PROMETHEEIIranking.PROMETHEEdecision axisandstick ......................................................205
Fig.6.8PilotingthePROMETHEEdecisionstick ........................206
Fig.6.9“HumanBrain” ....................................................207
Fig.6.10Twotypesofdecisionproblems.(a)Softproblem (S1).(b)Hardproblem(S2) ......................................208
Fig.6.11ConflictbetweenDM’s
Fig.6.12OverviewPROMETHEEGDSSprocedure
Fig.6.13MainfunctionalitiesofD-Sight
Fig.6.14D-Sight:geo-localizationofthealternatives, PROMETHEEIdiamond,comparisonsofprofiles
Fig.7.1Setoffeasibleweights
Fig.7.2ORESTEflowchart ...............................................233
Fig.7.3Outrankinggraph ..................................................237
Fig.7.4Geometricalinterpretationofbasicpreferencesindices
Fig.7.5Indifferenceareas:rectangular
Fig.7.6Indifferenceareas:rhomboidal
Fig.7.7Indifferenceareas:elliptical
Fig.7.8Aggregatedsemiorderstructure
Fig.7.9Aggregatedpseudo-orderstructure
Fig.7.10Partialprofileofaction ah
Fig.7.11Partialprofilesandpartialbrokenlinesof ar , as , at
Fig.7.12Partialfrequenciesof ar , as , at
Fig.7.13Someexamplesofcompensatoryfunctions
Fig.7.14Determinationofarelationbetweenthetwo alternatives a,b 2 A onthebasisofthevaluesofglobalindices
Fig.7.15Partialpreorder ....................................................279
Fig.8.1Choicebetweentwolotteries .....................................298
Fig.8.2Additiveindependencecriterionforrisk
Fig.8.3Piecewiselinearapproximationof v1 . /
Fig.8.4Piecewiselinearapproximationof
Fig.9.1Theaggregationanddisaggregationparadigmsin MCDA[57] ........................................................318
Fig.9.2Thedisaggregation-aggregationapproach[127]. (a)Thevaluesystemapproach;(b)theoutranking relationapproach;(c)thedisaggregation-aggregation approach;(d)themultiobjectiveoptimizationapproach ........319
Fig.9.3Thenormalizedmarginalvaluefunction .........................321
Fig.9.4Post-optimalityanalysis[56] .....................................323
Fig.9.5Ordinalregressioncurve(rankingversusglobalvalue) .........325
Fig.9.6Robustnessanalysisinpreferencedisaggregation approaches[125] ..................................................328
Fig.9.7Normalizedmarginalvaluefunctions ............................332
Fig.9.8Anon-monotonicpartialutilityfunction[22] ...................335
Fig.9.9Distributionalevaluationandmarginalvaluefunction ..........338
Fig.9.10Distributionoftheactions A1 and A2 on u.g/ [56] ...............340
Fig.9.11Simplifieddecisionsupportprocessbasedon disaggregationapproach[57] .....................................348
Fig.9.12MethodologicalflowchartofMARKEX[89] ....................351
Fig.10.1Comparisonsaccordingtovolume ...............................376
Fig.10.2Tochoosethebesthospiceplan,oneconstructsa hierarchymodelingthebenefitstothepatient,to theinstitution,andtosociety.Thisisthebenefits hierarchyoftwoseparatehierarchies .............................378
Fig.10.3Tochoosethebesthospiceplan,oneconstructsa hierarchymodelingthecommunity,institutional, andsocietalcosts.Thisisthecostshierarchyoftwo separatehierarchies ................................................379
Fig.10.4Employeeevaluationhierarchy
Fig.10.5Hierarchiesforratingbenefits,costs,opportunities, andrisks ...........................................................395
Fig.10.6PrioritizingthestrategiccriteriatobeusedinratingtheBOCR 396
Fig.10.7Howahierarchycomparestoanetwork
Fig.10.8Thesupermatrixofanetworkanddetailofa componentinit ....................................................399
Fig.10.9Thesupermatrixofahierarchywiththeresultinglimit matrixcorrespondingtohierarchicalcomposition
Fig.10.10(a)Schoolchoicehierarchycomposition.(b) Supermatrixofschoolchoicehierarchygivessame resultsashierarchiccomposition .................................402
Fig.10.11Theclustersandnodesofamodeltoestimatethe relativemarketshareofWalmart,KmartandTarget ............405
Fig.10.12Theclustersandnodesofamodeltoestimatethe relativemarketshareoffootware .................................410
Fig.10.13Hierarchyforratingbenefits,opportunities,costsandrisks ....416
Fig.10.14Arrow’sfourconditions ...........................................418
Fig.11.1Exampleofsub-typebinconsistency .............................428
Fig.11.2Exampleofincompatibilitybetween(*)and(**) ...............435
Fig.11.3Procedureforallcasesofinconsistency ..........................441
Fig.11.4Suggestionofchangetoresolveinconsistency ..................443
Fig.11.5MatrixofjudgementsandbasicMACBETHscale ..............444
Fig.11.6RepresentationsoftheMACBETHscale ........................445
Fig.11.7ConsistentmatrixofMACBETHqualitative judgementswithnohesitation ....................................447
Fig.11.8FirstattempttoobtainthebasicMACBETHscale ..............448
Fig.11.9SecondattempttoobtainthebasicMACBETHscale ...........449
Fig.11.10“Greatest”closedintervalsincludedinthefreeand dependentintervals ................................................451
Fig.13.1Decisiontreerepresentingknowledgeincludedfrom Table13.1 ..........................................................523
Fig.13.2Thehierarchyofattributesandcriteriaforacar classificationproblem .............................................532
Fig.14.1Thetwovaluesthat xk ! @U @xi .x/ cantake ........................568
Fig.14.2Differentcasesofinteraction:complementarycriteria (a),substitutivecriteria(b),independentcriteria(c) ............570
Fig.16.1Interval-weightedaveragevs.intervalconvexsum ..............673
Fig.17.1(a)Minimalelement x andmaximalelement y ofaset A.(b)Stronglyminimalelement y ofaset A ....................701
Fig.17.2(a)Weaklyminimalelement y ofaset A.(b)Properly minimalelement y ofaset A ......................................701
Fig.17.3Minimalandmaximalelementsof T D f .S / ....................705
Fig.17.4Section Ay ofaset A ...............................................706
Fig.17.5(a)Arbitraryspins.(b)Parallelandanti-parallel alignedspins .......................................................715
Fig.17.6Spinprecession ....................................................715
Fig.17.7Aso-calledsagittalT1MP-RAGEimagetakenupby the3teslasystemMAGNETOMSkyraproducedby SiemensAG.WithkindpermissionofSiemensAG Healthcaresector ..................................................716
Fig.17.8Qualitativeillustrationoftheimagepointsofminimal solutionsandtheimagepointofthestandard excitationpulse ...................................................717
Fig.17.9Theelement y 2 A isaminimalelementof A w.r.t. theorderingmap D whereas y isnotanondominated elementof A w.r.t.theorderingmap D becauseof y 2fy0 gC D .y0 / nf0Y g,cf.[21,23] .............................720
Fig.17.10Illustrationoftwosets A and B with A 4s B,and a 2 max A and b 2 max B with a b and b a ................730
Fig.17.11Illustrationoftwosets A; B 2 M with A 4m B ..................731
Fig.17.12Illustrationoftwosets A; B 2 M with A 4mc B .................731
Fig.17.13Illustrationofthesets A1 , A2 , A3 , A5 and A6 inExample18 ....734
Fig.19.1FeasiblesetandEdgeworth-Paretohull ..........................819
Fig.19.2(a)Individualandlexicographicminima.(b)(Weakly) non-dominatedpoints ............................................819
Fig.19.3(a)Extremenon-dominatedpointfor T D .1;1/.(b) Supportednon-dominatedpointintherelativeinterior ofafacefor T D .2;1/ ..........................................821
Fig.19.4(a)Alowerboundset.(b)Anupperboundsetdefined byfeasiblepoints ..................................................825
Fig.19.5(a)Theweightedsumscalarisation.(b)The "-constraintscalarisation ..........................................830
Fig.19.6TheChebychevscalarisation .....................................830
Fig.19.7(a)The "-constraintscalarisation.(b)Theelastic constraintscalarisation ............................................833
Fig.19.8(a)Lexicographicallyoptimalpoints.(b)Thefirst weightedsumproblem ............................................835
Fig.19.9Phase1ofthetwophasemethod .................................836
Fig.19.10(a)Thetriangleswherenon-supportednon-dominated pointsmaybelocated.(b)Rankingnon-supported non-dominatedpoints .............................................837
Fig.19.11(a)Thenodecanbefathomedbydominance.(b)The nodecanbefathomedbydominanceassuming Y Zp .........843
Fig.20.1L-Rfuzzynumber c D .cL ; cR ;˛;ˇ/LR ..........................855
Fig.20.2Possibilityandnecessitymeasures ...............................856
Fig.20.3Example1 .........................................................860
Fig.20.4Problem(20.25) ...................................................862
Fig.20.5Problem(20.25)withtheupdatedobjectivefunction
Fig.20.6Anexampleofanecessarilyefficientsolution ...................872
Fig.20.7Anexampleofanon-necessarilyefficientsolution ..............873
Fig.20.8Exampleofatreegeneratedbytheimplicit enumerationalgorithm ............................................880
Fig.20.9Exampleofatreegeneratedbytheextendedimplicit enumeration ........................................................881
Fig.20.10Exampleofdiscretefuzzyrandomvariables
Fig.20.11Exampleofthemembershipfunction Cljsl
Fig.20.12Exampleofthemembershipfunction Clsl x
Fig.20.13Exampleofthemembershipfunctionofafuzzygoal ...........888
Fig.20.14Degreeofpossibility ˘Clsl x . Q Gl / ..................................889
Fig.23.1Basicloopofanevolutionaryalgorithm .........................979
Fig.23.2Non-dominatedsortingofsolutionsasinNSGA-II .............981
Fig.23.3Examplefor(marginal)Hypervolume ...........................982
Fig.23.4Influenceofscalingonthedistributionofsolutions alongtheParetofrontasgeneratedbyMOEAs.On theleftfigure(a),thefrontisplottedwitha1:1ratio. Ontherightfigure(b),they-axishasbeenscaledbya factorof100 .......................................................985
Fig.23.5PartoftheParetooptimalfrontthatremainsoptimal withagivenreferencepoint r andthepreference relationfrom[38].Theleftpanel(a)showsa reachablereferencepoint,whiletherightpanel (b)showsanunreachableone ....................................988
Fig.23.6EffectofthemodifieddominanceschemeusedbyG-MOEA ..991
Fig.23.7Marginalcontributioncalculatedaccordingto expectedutilityresultinaconcentrationofthe individualsinkneeareas ..........................................994
Fig.23.8Resultingdistributionofindividualswiththemarginal expectedutilityapproachandalinearlydecreasing probabilitydistributionfor ......................................994
Fig.23.9Examplefordominatedregionintheapproach from[31].Maximizationofobjectivesisassumed. The curve representsallsolutionsequivalentto B accordingtotheapproximatedvaluefunction.All solutionswithanestimatedvaluebetterthan B (above the curve)dominateallsolutionswithanestimated valueworsethan B (belowthe curve).The greyareas indicatetheareasdominatedbysolutions A and C ,respectively 998
Fig.23.10Visualizationofthepreferenceconein2D,assuming quasiconcaveutilityfunctionandmaximizationofobjectives .1000
Fig.23.11Solutions(blackpoints)andterritories(squares)with differentsizesasusedin[54].Regionswithsmaller territorieswillmaintainahigherdensityofsolutions
Fig.24.1Theneo-classicalviewontheobjectiveofthefirm .............
Fig.24.2SituationsleadingtoMCDAinthefirm ..........................
Fig.24.3Abird’s-eyeviewoftheframework
Fig.24.4Feasibleregions Z of(MC-Un)and(MC-B)forthe sameeightsecurities .............................................. 1035
Fig.24.5Unboundedbullet-shapedfeasibleregion Z createdby securitiesA,BandC .............................................. 1036
Fig.24.6Nondominatedfrontiersasafunctionofchangesin thevalueofupperboundparameter ........................... 1039
Fig.24.7Anellipsoidalfeasibleregionprojectedonto two-dimensionalrisk-returnspace ................................ 1043
Fig.25.1Criteriaconsideredinenergydecision-makingstudies .......... 1132
Fig.25.2Technicalcriteria. M miscellaneous, EE energy efficiency, SD sitingdecisions, EP energyprojects, EPP energyplansandpolicies, PGT powergeneration technologies ....................................................... 1136
Fig.25.3Economiccriteria .................................................. 1138
Fig.25.4Environmentalcriteria ............................................. 1142
Fig.25.5Socialcriteria ...................................................... 1144
Fig.25.6MCDAmethodsusedinenergydecision-makingstudies ....... 1145
Fig.25.7MCDAmethodsusedineachtypeofenergy application(numberofpapers) ................................... 1145
Fig.25.8Uncertaintyhandlingtechniquesusedwithdifferent MCDAmethods ................................................... 1150
Fig.26.1Priorityregionsandexamplein[16] ............................. 1188
Fig.27.1Asystemicvisionofsustainabilityissues ........................ 1238
Fig.27.2TheidealproblemstructuringinSMCE ......................... 1257
Fig.28.1Bubblechartfortheflatfurnishingexample ..................... 1278
Fig.28.2Coreindexdisplayfortheflatfurnishingexample .............. 1279
Fig.28.3Paretofrontdisplayfortheflatfurnishingexample ............. 1280
ListofTables Table3.1Principalt-norms,t-conormsandnegations
Table3.2Various "-representationswith " D 1 ...........................71
Table4.1Evaluationofthefiveofficesonthefiveattributes .............107
Table6.1Evaluationtable ..................................................190
Table6.2Weightsofrelativeimportance ..................................193
Table6.3Typesofgeneralizedcriteria(P.d /:preferencefunction)
Table6.4Singlecriterionnetflows ........................................202
Table7.1Rankevaluationofalternatives(impactmatrix)
Table7.2Theconcordance/discordanceindices ..........................225
Table7.3Concordancematrix .............................................227
Table7.4Rankevaluationofalternatives(impactmatrix)
Table7.5Regimematrix
Table7.6Position-matrix
Table7.7City-blockdistance
Table7.8Preferencematrixforacriterionwithordinalevaluation
Table7.9Preferencematrixforacriterion(Max)with evaluationonaquantitativescale
Table7.10Preferenceimportancetablefor gj , a; b
Table7.11Combinedpreferenceswithweightsimportance
Table7.12Evaluationofalternatives
Table7.13Criteria g1 and g3 (ordinalscales) ...............................236
Table7.14Criterion g2 (ordinalscale)
Table7.15Criterion g4 (intervalscaleMIN)
Table7.16Preferencestructureofweights .................................237
Table7.17Pairwisecomparisonbetween a1 and a4 ........................237
Table7.18AxiomaticsystemofMAPPACbasicindices
Table7.19Basicpreferencesindices ........................................250
Table7.20Tableofobservedstochasticdominances
Table7.21Explicableconcordancesindices
Table9.1CriteriavaluesandrankingoftheDM
Table9.2Marginalvaluefunctions(initialsolution)
Table9.3Linearprogrammingformulation(post-optimalityanalysis)
Table9.4Post-optimalityanalysisandfinalsolution
Table9.5Marginalvaluefunctions(finalsolution)
Table9.6LPsizeofUTAmodels ..........................................336
Table9.7IndicativeapplicationsoftheUTAmethods
Table10.1Thefundamentalscaleofabsolutenumbers
Table10.2WhichdrinkisconsumedmoreintheU.S.?An exampleofestimationusingjudgments ........................375
Table10.3Theentriesinthismatrixrespondtothequestion: whichcriterionismoreimportantwithrespectto choosingthebesthospicealternativeandhowstrongly?
Table10.4Theentriesinthismatrixrespondtothequestion: whichsubcriterionyieldsthegreaterbenefitwith respecttoinstitutionalbenefitsandhowstrongly?
Table10.5Theentriesinthismatrixrespondtothequestion: whichmodelyieldsthegreaterbenefitwithrespect todirectcareandhowstrongly?
Table10.6Theentriesinthismatrixrespondtothequestion: whichcriterionisagreaterdeterminantofcostwith respecttothecaremethodandhowstrongly?
Table10.7Theentriesinthismatrixrespondtothequestion: whichcriterionincursgreaterinstitutionalcostsand howstrongly? ....................................................382
Table10.8Theentriesinthismatrixrespondtothequestion: whichmodelincursgreatercostwithrespectto institutionalcostsforrecruitingstaffandhowstrongly? ......382
Table10.9Synthesis(P=Priorities,M=Model) ..........................383
Table10.10Rankingintensities ..............................................386
Table10.11Rankingalternatives .............................................387
Table10.12Randomindex ....................................................390
Table10.13Calculatingreturnsarithmetically ..............................391
Table10.14Normalizedcriteriaweightsandnormalized alternativeweightsfrommeasurementsinthesame scale(additivesynthesis) ........................................392
Table10.15Priorityratingsforthemerits:benefits,costs, opportunities,andrisks ..........................................396
Table10.16FourmethodsofsynthesizingBOCRusingtheidealmode ...397
Table10.17Thesupermatrix .................................................403
Table10.18Thelimitsupermatrix ............................................403
Table10.19Theunweightedsupermatrix ....................................406
Table10.20Theclustermatrix ...............................................408
Table10.21Theweightedsupermatrix .......................................408
Table10.22Thesynthesizedresultsforthealternatives .....................409
Table10.23Footwearactualstatisticsandmodelresultsalong withthecompatibilityindex ....................................413
Table10.24Priorityratingsforthemerits:benefits,opportunities, costsandrisks ....................................................417
Table10.25Overallsynthesesofthealternatives ............................417
Table12.1Descriptionofconsequencesforthesimpleexample ..........489
Table13.1Datatablepresentingexamplesofcomprehensive evaluationsofstudents ..........................................501
Table13.2QualityofclassificationandShapleyvaluefor classification Cl andsetofcriteria P ............................512
Table13.3Evaluationsofnewstudents .....................................521
Table13.4Evaluationsofnewstudents .....................................522
Table13.5Informationtableoftheillustrativeexample ...................525
Table13.6Studentswithintervalevaluations ..............................526
Table13.7Exampleofmissingvaluesintheevaluationofstudents ......529
Table13.8Substitutionofmissingvaluesintheevaluationofstudents ...530
Table13.9Decisiontablewithreferenceobjects ...........................539
Table13.10Afragmentof SPCT ..............................................540
Table13.11Rankingofwarehousesforsalebydecisionrules andtheNetFlowScoreprocedure ..............................541
Table15.1Criteriaforapplicantevaluation ................................612
Table15.2Comparisonofhypotheticalalternatives .......................614
Table15.3Anexampleofajointordinalscale .............................615
Table15.4RanksforJSQV ..................................................618
Table15.5EffectivenessofSTEP-ZAPROS ...............................620
Table15.6Presentationofa“tryad”tothedecisionmaker ................622
Table19.1ComplexityresultsforMOCOproblems
Table19.2Propertiesofpopularscalarisationmethods ....................831
Table19.3Algorithmsbasedonscalarisation ..............................834
Table19.4Two-phasealgorithms ...........................................841
Table19.5Multi-objectivebranchandboundalgorithms ..................845
Table21.1DistancemetricsusedinMCDMdistance-basedtechniques ..913
Table23.1Comparisonofsomeselectedapproachesto incorporatepartialuserpreferences ............................. 1003
Table24.1ApplicationsofMCDAapproachesinbankruptcy andcreditriskassessment ....................................... 1052
Table24.2ApplicationsofMCDAapproachesinportfolio selectionandmanagement ...................................... 1053
Table24.3ApplicationsofMCDAapproachesinthe assessmentofcorporateperformance 1054
Table24.4ApplicationsofMCDAapproachesininvestmentappraisal ..1055
Table24.5ApplicationsofMCDAapproachesinotherfinancial decision-makingproblems 1055
Table25.1Categoriesofplanningproblemsinpowersystems accordingtotheorganizationallevelandtimeframe 1071
Table25.2Studiesgroupedinpowergenerationcomparisonproblems ..1106
Table25.3Studiesgroupedinenergyplansandpoliciesproblems 1112
Table25.4Studiesgroupedinenergyprojectproblems 1122
Table25.5Studiesgroupedinsitingdecisionproblems ................... 1124
Table25.6Studiesgroupedinenergyefficiencyproblems ................ 1126
Table25.7Studiesgroupedinenergymiscellaneousproblems ........... 1127
Table27.1Impactmatrixforthefourchosencitiesaccordingto theselectedindicators ........................................... 1249
Table27.2Normalisedimpactmatrix ....................................... 1250
Table27.3Outrankingmatrixofthefourcitiesaccordingtothe nineindicators ................................................... 1250
Table27.4Weightedoutrankingmatrix ..................................... 1252
Table29.1MADAandMOOsoftware
Table29.2Multiplecriteriaevaluationmethods
Table29.3Softwarebymethodimplemented
Table29.4Softwarewithgroup
Table29.5Softwareplatforms ..............................................
Introduction JoséRuiFigueira,SalvatoreGreco,andMatthiasEhrgott
1TenYearsofSuccessofMultipleCriteriaDecisionAnalysis andReasonsforThisNewEdition
After10yearswepresentanupdatedrevisionofthecollectionofstate-of-theartsurveysonMultipleCriteriaDecisionAnalysis(MCDA).Thisisagood occasiontobrieflycommentonthelatestadvancesinthedomain.Webelieve thatinthelast10yearswehaveseengreatprogressofMCDA,frombotha theoreticalpointofviewandareal-lifeapplicationpointofview.Wehaveseen theconsolidationofthemain“traditional”methodologiessuchasmultipleattribute utilitytheory, outrankingmethods,interactivemultiobjectiveoptimization,aswell asthegrowingsuccessofnewapproachessuchasEvolutionaryMultiobjective Optimization(EMO).Thespectrumofapplicationshasbeenconstantlyexpanding withparticularemphasisonverycomplexproblemssuchasindustrialdesignorgrid optimization.Takingintoaccountthisevolutionofthedomain,wepartlymodified thestructureandthecontentofthebookgivingspacetonewmethodologies(e.g., EMOormulti-criteriaportfoliodecisionanalysisforprojectselection)orsplitting chaptersintoseveralnewones(e.g.,thechapteronmultiobjectiveprogrammingof thepreviouseditionthathasnowbeensubstitutedbythreechapters,oneonvector andsetoptimization,oneoncontinuousmultiobjective,andone onmultiobjective combinatorialoptimization).Moreover,allauthors,sometimeswiththehelpof
J.R.Figueira
CEG-IST,InstitutoSuperiorTécnico,UniversidadedeLisboa,A.RoviscoPais,1,1049-001 Lisboa,Portugal
S.Greco
UniversityofCatania,Catania,Italy
UniversityofPortsmouth,Portsmouth,UK
M.Ehrgott
DepartmentofManagementScience,LancasterUniversity,Bailrigg,LancasterLA14YX,UK
anewcolleague,haveupdatedthecontentsoftheircontributionsincorporating thenoveltiesofthelast10years.Ofcourse,manysophisticatedtechnicaldetails thatappearintheneweditionofthebook willsoonerorlaterbedestinedto besupersededbytheincessantevolutionofresearchandapplications.Wethink, however,thatthebasicprinciplesasstatedbytheexpertswhopreparedthedifferent chaptersinthebookwillremainreferencepointsfortheyearstocome.Moreover, webelievethatthespiritwithwhichexpertsonMCDAareworkingtoday,inthese sorichandfruitfulyears,willremainforeverinthisbook.Thisspiritisstrongly relatedwiththespiritwithwhich,inthelate1960sandearly1970softhelast century,the“pioneers”(manyofwhoareamongthemanyauthorsofthechapters inthisbook)outlinedthebasicprinciples ofMCDAwiththegenuineaimtogivea satisfactoryanswertoconcreterealworldproblemsforwhichtheclassicalmethods ofoperationsresearchwerenotabletofindadequateanswers.Thereforethebasic principlesofthepresentedmethodologiesandtheirrelationshipswiththeMCDA spiritarethingsthatwerecommendthereadertolookforineachchapter.After thesewordsabouttheintuitionthatguidedtherevisionofthisbook,letusenter“in mediasres”,comingbacktotheintroductionofthefirsteditionthatwasofcourse alsoupdated.
2HumanReflectionAboutDecision Decision-makinghasinspiredreflectionsofmanythinkerssinceancienttimes.The greatphilosophersAristotle,Plato,andThomasAquinas,tomentiononlyafew, discussedthecapacityofhumanstodecideandinsomemannersclaimedthatthis possibilityiswhatdistinguisheshumansfro manimals.Toillustratesomeimportant aspectsofdecision-making,letusbrieflyquotetwoimportantthinkers,Ignatiusof Loyola(1491–1556)andBenjaminFranklin(1706–1790).
Toconsider,reckoningup,howmanyadvantagesandutilitiesfollowformefromholding theproposedofficeorbenefice[ ],and,toconsiderlikewise,onthecontrary,the disadvantagesanddangerswhichthereareinhavingit.Doingthesameinthesecondpart, thatis,lookingattheadvantagesandutilitiestherearein nothavingit,andlikewise,on thecontrary,thedisadvantagesanddangersinnothavingthesame.[ ]AfterIhavethus discussedandreckoneduponallsidesaboutthethingproposed,tolookwherereasonmore inclines:andso,accordingtothegreaterinclinationofreason,[ ],deliberationshouldbe madeonthethingproposed.
Thisfragmentfromthe“SpiritualExercises”ofSt.[14]hasbeentakenfroma paperbyFortempsandSlowinski[12].
London,Sept19,l772
DearSir,
Intheaffairofsomuchimportancetoyou,whereinyouaskmyadvice,Icannot,forwant ofsufficientpremises,adviseyouwhattodetermine,butifyoupleaseIwilltellyouhow. [::: ],mywayistodividehalfasheetofpaperbyalineintotwocolumns;writingoverthe onePro,andovertheotherCon.[::: ]WhenIhavethusgotthemalltogetherinoneview, Iendeavortoestimatetheirrespectiveweights;andwhereIfindtwo,oneoneachside,that
seemequal,Istrikethembothout.IfIfindareasonproequaltosometworeasonscon, Istrikeoutthethree.IfIjudgesometworeasonscon,equaltothreereasonspro,Istrike outthefive;andthusproceedingIfindatlengthwherethebalancelies;andif,afteraday ortwooffurtherconsideration,nothingnewthatisofimportanceoccursoneitherside,I cometoadeterminationaccordingly.[ ]Ihavefoundgreatadvantagefromthiskindof equation,andwhatmightbecalledmoralorprudentialalgebra.Wishingsincerelythatyou maydetermineforthebest,Iamever,mydearfriend,yoursmostaffectionately.
B.Franklin
ThisletterfromBenjaminFranklintoJosephPrestlyhasbeentakenfromapaper byMacCrimmon[17].
Whatisinterestingintheabovetwoquotationsisthefactthatdecisionisstrongly relatedtothecomparisonofdifferentpointsofview,someinfavorandsomeagainst acertaindecision.Thismeansthatdecisionisintrinsicallyrelatedtoapluralityof pointsofview,whichcanroughlybedefinedascriteria.Contrarytothisverynatural observation,formanyyearstheonlywaytostateadecisionproblemwasconsidered tobethedefinitionofasinglecriterion,whichamalgamatesthemultidimensional aspectsofthedecisionsituationintoa singlescaleofmeasure.Forexample,even todaytextbooksofoperationsresearchsuggesttodealwithadecisionproblem asfollows:Tofirstdefineanobjectivefunction,i.e.,asinglepointofviewlike acomprehensiveprofitindex(oracomprehensivecostindex)representingthe preferability(ordis-preferability)oftheconsideredactionsandthentomaximize (minimize)thisobjective.Thisisaveryreductive,andinsomesensealsounnatural, waytolookatadecisionproblem.Thus,foratleast40years,anewwaytolook atdecisionproblemshasmoreandmoregainedtheattentionofresearchersand practitioners.ThisistheapproachconsideredbyLoyolaandFranklin,i.e.,the approachofexplicitlytakingintoaccounttheprosandtheconsofapluralityof pointsofview,inotherwordsthedomainofmultiplecriteriadecisionanalysis. Therefore,MCDAintuitioniscloselyrelatedtothewayhumanshavealways beenmakingdecisions.Consequently,despitethediversityofMCDAapproaches, methodsandtechniques,thebasicingredientsofMCDAareverysimple:Afinite orinfinitesetofactions(alternatives,solutions,coursesofaction, ),atleast twocriteria,and,obviously,atleastonedecision-maker(DM).Giventhesebasic elements,MCDAisanactivitywhichhelpsmakingdecisionsmainlyintermsof choosing,ranking,orsortingtheactions.
Ofcourse,notonlyphilosophersreasonedaboutdecision.ManyimportanttechnicalaspectsofMCDAarelinkedtoclassicworksineconomics,inparticular, welfareeconomics,utilitytheory,andvoting-orientedsocialchoicetheory(see [28]).Aggregatingtheopinionorthepreferencesofvotersorindividualsofa communityintocollectiveorsocialpreferencesisquitesimilaraproblemto
devisingcomprehensivepreferencesofadecision-makerfromasetofconflicting criteriainMCDA[7].
DespitetheimportanceofRamonLlull’s(1232–1316)andNicolausCusanus’ (1401–1464)concernsaboutandinterestsinthisverytopic,theoriginsofvoting systemsareoftenattributedtoLeChevalierJean-CharlesdeBorda(1733–1799) andMarieJeanAntoineNicolasdeCaritat(1743–1794),LeMarquisdeCondorcet. However,RamonLlullintroducedthepairwisecomparisonconceptbeforeCondorcet[13],whileNicolausCusanusintroducedthescoringmethodaboutthreeand ahalfcenturiesbeforeBorda[27].Furthermore,itshouldbenotedthataletter fromPlinytheYounger( AD105)toTitusAristoshowsthatheintroduced theternaryapprovalvotingstrategyandwasinterestedinvotingsystemsalong timebeforeRamonLlullandNicolausCusanus[18,Chapter2].Anyway,Borda’s scoringmethod[4]hassomesimilaritieswithcurrentutilityandvaluetheoriesas hasCondorcet’smethod[10]withtheoutrankingapproachofMCDA.Inthesame lineofconcerns,i.e.,theaggregationofindividualpreferencesintocollectiveones, JeremyBentham(1748–1832)introducedtheutilitariancalculustoderivethetotal utilityforthesocietyfromtheaggregationofthepersonalinterestsoftheindividuals ofacommunity[3].InspiredbyBentham’sworks,FrancisYsidroEdgeworth (1845–1926),autilitarianeconomist,wasmainlyconcernedwiththemaximization oftheutilityofthedifferent competingagentsinaneconomy.Edgeworthtriedto findthecompetitiveequilibriumpointsfor thedifferentagents.Heproposedtodraw indifferencecurves(linesofequalutility)foreachagentandthenderivethecontract curve,acurvethatcorrespondstothenotionoftheParetoorefficientset[21].Not longafterward,VilfredoFedericoDamasoPareto(1848–1923)gavethefollowing definitionofophelimity[utility]forthewholecommunity[22].
Wewillsaythatthemembersofacollectivityenjoymaximumophelimityinacertain positionwhenitisimpossibletofindawayofmovingfromthatpositionveryslightly insuchamannerthattheophelimityenjoyedbyeachoftheindividualsofthatcollectivity increasesordecreases.Thatistosay,anysmalldisplacementindepartingfromthatposition necessarilyhastheeffectofincreasingtheophelimitywhichcertainindividualsenjoy,of beingagreeabletosome,anddisagreeabletoothers.
Fromthisdefinitionitiseasytoderivetheconceptofdominance,whichtodayis oneofthefundamentalconceptsinMCDA.
MCDAalsobenefitsfromthebirthanddevelopmentofgametheory.Félix EdouardJustinEmileBorel(1871–1956)andJohnvonNeumann(1903–1957)are consideredthefoundersofgametheory[5, 6, 19, 20].Manyconceptsfromthis disciplinehadastrongimpactonthedevelopmentofMCDA.
Theconceptofefficientpointwasfirstintroducedin1951byTjallingKoopmans (1910–1985)inhispaper“Analysisofproductionasanefficientcombinationof activities”[15].
Apossiblepointinthecommodityspaceiscalledefficientwheneveranincreaseinoneof itscoordinates(thenetoutputofonegood)canbeachievedonlyatthecostofadecrease insomeothercoordinate(thenetoutputofagood).
Inthesameyear(1951)HaroldWilliamKuhn(born1925)andAlbertWilliam Tucker(1905–1995)introducedtheconceptofvectormaximumproblem[16].In the1960s,basicMCDAconceptswereexplicitlyconsideredforthefirsttime.As twoexampleswementionCharnes’andCooper’sworksongoalprogramming[8] andthepropositionofELECTREmethodsbyRoy[23].The1970ssawwhatis conventionallyconsideredthe“official”startingpointofMCDA,theconferenceon “MultipleCriteriaDecisionMaking”organizedin1972byCochraneandZeleny atColumbiaUniversityinSouthCarolina[9].SincethenMCDAhasseena tremendousgrowthwhichcontinuestoday.
4ReasonsforThisCollectionofState-of-the-ArtSurveys
TheideaofMCDAissonaturalandattractivethatthousandsofarticlesand dozensofbookshavebeendevotedtothesubject,withmanyscientificjournals regularlypublishingarticlesaboutMCDA.Toproposeanewcollectionofstateof-the-artsurveysofMCDAinsorichacontextmayseemarashenterprise. Indeed,someobjectionscometomind.Therearemanyandgoodhandbooksand reviewsonthesubject(togiveanideaconsider[1, 11, 25, 26, 29]).Themainideas arewellestablishedforsomeyearsandonemayquestionthecontributionsthis volumecanprovide.Moreover,thefieldissolargeandcomprisesdevelopments soheterogeneousthatitisalmosthopelesstothinkthatanexhaustivevisionofthe researchandpracticeofMCDAcanbegiven.
Wemustconfessthatattheendoftheworkofeditingthisvolumeweagreewith theaboveremarks.However,webelievethatanewandcomprehensivecollection ofstate-of-the-artsurveysonMCDAcanbeveryuseful.Themainreasonswhich, despiteouroriginalresistance,broughtustoproposethisbookarethefollowing:
1.Manyoftheexistinghandbooksandreviewsarenottoorecent.SinceMCDAis afieldwhichisdevelopingveryquicklythisisanimportantreason.
2.EventhoughthefieldofresearchandapplicationofMCDAissolarge,thereare somemaincentralthemesaroundwhichMCDAresearchandapplicationshave beendeveloped.Thereforeourapproachwastotrytopresentthe—atleastinour opinion—mostimportantoftheseideas.
Withreferencetothefirstpoint,wecansaythatweobservedmanytheoretical developmentswhichchangedMCDAoverthelast20years.Wetriedtoconsider thesechangesasmuchaspossibleandinthisperspectivestrongpointsofthebook arethefollowing:
1.Itpresentsthemostup-to-datediscussionsonwell-establishedmethodologies andtheoriessuchasoutranking-basedmethodsandMAUT.
2.Thebookalsocontainssurveysofnew,recentlyemergedfieldssuchasconjoint measurement,fuzzypreferences,fuzzyintegrals,roughsets,andothers.
Followingthesepointswedraftedalistoftopicsandaskedwell-known researcherstopresentthem.Weencouragedtheauthorstocooperatewiththeaim topresentdifferentperspectivesiftopicshadsomeoverlap.Weaskedtheauthors topresentacomprehensivepresentationofthemostimportantaspectsofthefield coveredbytheirchapters,asimpleyetconcisestyleofexposition,andconsiderable spacedevotedtobibliographyandsurveyofrelevantliterature.Wealsorequesteda sufficientlydidacticpresentationandatextthatisusefulforresearchersinMCDA aswellasforpeopleinterestedinreal-lifeapplications.
Theimportanceoftheserequirementsisalsorelatedtothespecificwaythe MCDAcommunitylooksatitsresearchfield.Itcanbesummarizedintheobservationthatthereisaverystrongandvitallinkbetweentheoreticalandmethodological developmentsontheonehandandrealapplicationsontheotherhand.Thus,the validityoftheoreticalandmethodologicaldevelopmentscanonlybemeasuredin termsoftheprogressgiventoreal-worldpractice.Moreover,interestofMCDA todealwithconcreteproblemsisrelatedtotheconsiderationofasoundtheoretical basiswhichensuresthecorrectapplicationofthemethodologies takenintoaccount.
Infact,notonlythechaptersofourbookbutratherallMCDAcontributions shouldsatisfytherequirementsstatedoutabovebecausetheyshouldbenottoo “esoteric”andthereforeunderstandableforstudents,theoreticallywellfounded,and applicabletosomeadvantageinreality.
5AGuidedTouroftheBook Ofcourse,thisbookcanbereadfromthefirsttothelastpage.However,wethink thatthisisnottheonlypossibilityanditmaynotevenbethemostinteresting possibility.Inthefollowingweproposea guidedtourofthebooksuggestingsome referencepointsthatarehopefullyusefulforthereader.
5.1PartI:TheHistoryandCurrentStateofMCDA ThispartisimportantbecauseMCDAisnot justacollectionoftheories,methodologies,andtechniques,butaspecificperspectivetodealwithdecisionproblems. Losingthisperspective,eventhemostrigoroustheoreticaldevelopmentsand applicationsofthemostrefinedmethodologiesareatriskofbeingmeaningless becausetheymissanadequateconsiderationoftheaimsandoftheroleofMCDA. WesharethisconvictionwithmostMCDAresearchers.
Fromthisperspectiveitisimportanttohaveaclearvisionoftheoriginof themainbasicconceptsofthedomain.Forthisreason,MuratKöksalan,Jyrki Wallenius,andStanleyZiontspresenttheearlyhistoryofMCDAandrelated areasshowinghowmanydevelopmentsin thefieldweremadebymajorcontributorstooperationsresearch,managementscience,economics,andotherareas.
ThenBernardRoydiscusses“pre-theoretical”assumptionsofMCDAandgives anoverviewofthefield.BernardRoy,besidesmakingmanyimportanttheoretical contributions,engagedhimselfinthoroughreflectionsonthemeaningandthevalue ofMCDA,proposingsomebasickeyconceptsthatareacceptedthroughoutthe MCDAcommunity.
5.2PartII:FoundationsofMCDA ThispartofthebookisrelatedtoafundamentalproblemofMCDA,therepresentationofpreferences.Classically,forexampleineconomics,itissupposedthat preferencecanberepresentedbyautilityfunctionassigninganumericalvalueto eachactionsuchthatthemorepreferablean action,thelargeritsnumericalvalue. Moreover,itisveryoftenassumedthatthecomprehensiveevaluationofanaction canbeseenasthesumofitsnumericalvaluesfortheconsideredcriteria.Letus callthistheclassicalmodel.Itisverysimplebutnottoorealistic.Indeed,there isalotofresearchstudyingunderwhich conditionstheclassicalmodelholds. Theseconditionsareveryoftenquitestrictanditisnotreasonabletoassume thattheyaresatisfiedinallreal-worldsituations.Thus,othermodelsrelaxingthe conditionsunderlyingtheclassicalmodelhavebeenproposed.Thisisaveryrich fieldofresearch,whichisfirstofallimportantforthoseinterestedinthetheoretical aspectsofMCDA.However,itisalsoofinteresttoreadersengagedinapplications ofMCDA.Infact,whenweadoptaformalmodelitisnecessarytoknowwhat conditionsaresupposedtobesatisfiedbythepreferencesoftheDM.Inthetwo chaptersofthispart,problemsrelatedto therepresentationsofpreferencesare discussed.
StefanoMoretti,MeltemÖztürk,andAlexisTsoukiàspresentaveryexhaustive reviewofpreferencemodeling,startingfromclassicalresultsbutarrivingatthe frontierofsomechallengingissuesofscientificactivityrelatedtofuzzylogicand non-classicallogic.
DenisBouyssouandMarcPirlotdiscusstheaxiomaticbasisofthedifferent modelstoaggregatemultiplecriteriapreferences.Webelievethatthischapteris veryimportantforthefutureofMCDA.Initially,theemphasisofMCDAresearch wasonproposalofnewmethods.Butgraduallythenecessitytounderstandthebasic conditionsunderlyingeachmethodanditsspecificaxiomatizationbecamemoreand moreapparent.ThisisthefirstbookonMCDAwithsomuchspacededicatedtothe subjectoffoundationsofMCDA.
5.3PartIII:OutrankingMethods Inthispartofthebooktheclassofoutranking-basedmultiplecriteriadecision methodsispresented.Givenwhatisknownaboutthedecision-maker’spreferences
andgiventhequalityoftheperformancesoftheactionsandthenatureofthe problem,anoutrankingrelationisabinaryrelation S definedonthesetofpotential actions A suchthat aSb ifthereareenoughargumentstodecidethat a isatleast asgoodas b,whereasthereisnoessentialargumenttorefutethatstatement [24].Methodswhichstrictlyapplythisdefinitionofoutrankingrelationarethe ELECTREmethods.Theyareveryimportantinmanyrespects,notleasthistorically, sinceELECTREIwasthefirstoutrankingmethod[2].
However,withintheclassofoutrankingmethodswegenerallyconsiderall methodswhicharebasedonpairwisecomparisonofactions.Thus,anotherclassof verywell-knownmultiplecriteriamethods,PROMETHEEmethods,isconsidered inthispartofthebook.BesidesELECTREandPROMETHEEmethods,many otherinterestingMCDAmethodsarebasedonthepairwisecomparisonofactions. JoséFigueira,VincentMousseau,andBernardRoypresenttheELECTREmethods; Jean-PierreBransandYvesDeSmetpresentthePROMETHEEmethods;andJeanMarcMartelandBenedettoMatarazzoreviewtherichliteratureofotheroutranking methods.
5.4PartIV:Multi-attributeUtilityandValueTheories Inthispartofthebookweconsidermultipleattributeutilitytheory(MAUT).This MCDAapproachtriestoassignautilityvaluetoeachaction.Thisutilityisareal numberrepresentingthepreferabilityoftheconsideredaction.Veryoftentheutility isthesumofthemarginalutilitiesthateachcriterionassignstotheconsidered action.Thus,thisapproachveryoftencoincideswithwhatwecalledtheclassical approachbefore.AswenotedincommentingPart I,thisapproachisverysimple atfirstglance.Itisoftenappliedinreal life,e.g.,everytimeweaggregatesome indicesbymeansofaweightedsum,weareapplyingthisapproach.Despiteits simplicity,theapproachpresentssometechnicalproblems.Thefirstisrelatedtothe axiomaticbasisandtheconstructionofmarginalutilityfunctions(i.e.,theutility functionsrelativetoeachsinglecriterion),bothincaseofdecisionundercertainty anduncertainty.TheseproblemsareconsideredbyJamesDyerinacomprehensive chapteraboutthefundamentalsofthisapproach.
YannisSiskos,VangelisGrigoroudis,andNikolaosMatsatsinispresentthevery well-knownUTAmethods,whichonthebasisofthephilosophyoftheaggregation–disaggregationapproachandusinglinearprogrammingbuildaMAUTmodelthat isasconsistentaspossiblewiththeDM’spreferencesexpressedinactualprevious decisionsorona“trainingsample”.Thephilosophyofaggregation–disaggregation canbesummarizedasfollows:Howisitpossibletoassessthedecision-maker’s preferencemodelleadingtoexactlythesamedecisionastheactualoneoratleast themost“similar”decision?
ThomasSaatypresentsaverywell-knownmethodologytobuildutilityfunctions, theAHP(AnalyticHierarchyProcess),anditsmorerecentextension,theANP (AnalyticNetworkProcess).AHPisatheoryofmeasurementthatusespairwise
comparisonsalongwithexpertjudgments todealwiththemeasurementofqualitativeorintangiblecriteria.TheANPisageneraltheoryofrelativemeasurementused toderivecompositepriorityratioscalesfromindividualratioscalesthatrepresent relativemeasurementsoftheinfluenceofelementsthatinteractwithrespectto controlcriteria.TheANPcapturestheoutcomeofdependenceandfeedbackwithin andbetweenclustersofelements.ThereforeAHPwithitsdependenceassumptions onclustersandelementsisaspecialcaseoftheANP.
CarlosBanaeCosta,Jean-ClaudeVansnick,andJean-MarieDeCortepresent anotherMCDAmethodologybasedontheadditiveutilitymodel.ThismethodologyisMACBETH(MeasuringAttractivenessbyaCategoricalBasedEvaluation Technique).ItisanMCDAapproachthat requiresonlyqualitativejudgmentsabout differencesofvaluesofattractivenessofoneactionoveranotheractiontohelpan individualoragrouptoquantifytherelativepreferabilityofdifferentactions.In simplewords,theMACBETHapproachtriestoanswerthefollowingquestions: Howcanwebuildanintervalscaleofpreferencesonasetofactionswithoutforcing evaluatorstoproducedirectnumericalrepresentationsoftheirpreferences?How canwecoherentlyaggregatethesequalitativeevaluationsusinganadditiveutility model?
5.5PartV:Non-classicalMCDAApproaches ManyapproacheshavebeenproposedinMCDAbesidesoutrankingmethodsand multi-attributeutilitytheory.Inthispartofthebookwetrytocollectinformation aboutsomeofthemostinterestingproposals.First,thequestionofuncertaintyin MCDAisconsidered.TheoStewartandIanDurbachdiscussriskanduncertainty inMCDA.Itisnecessarytodistinguishbetweeninternaluncertainties(relatedto decision-makervaluesandjudgments)andexternaluncertainties(relatedtoimperfectknowledgeconcerningconsequences ofactions).Thelatter,correspondingto themostacceptedinterpretationofuncertaintyinthespecializedliterature,has beenconsideredinthechapter.Fourbroadapproachesfordealingwithexternal uncertaintiesarediscussed.Thesearemulti-attributeutilitytheoryandsome extensions;stochasticdominanceconcepts,primarilyinthecontextofpairwise comparisonsofalternatives;theuseofsurrogateriskmeasuressuchasadditional decisioncriteria;andtheintegrationofMCDAandscenarioplanning.
SalvatoreGreco,Benedetto Matarazzo,andRomanSłowi ´ nskipresentthedecisionruleapproachtoMCDA.Thisapproachrepresentsthepreferencesintermsof “if :::,then :::”decisionrulessuchas,forexample,“ifthemaximumspeedofcar x isatleast175km/handitspriceisatmost$12000,thencar x iscomprehensively atleastmedium”.Thisapproachisrelatedtoroughsettheoryandtoartificial intelligence.Itsmainadvantagesarethefollowing.TheDMgivesinformationin theformofexamplesofdecisions,whichrequiresrelativelylowcognitiveeffortand whichisquitenatural.Thedecisionmodelisalsoexpressedinaverynaturalway bydecisionrules.Thispermitsanabsolutetransparencyofthemethodologyforthe
DM.Anotherinterestingfeatureofthedecisionruleapproachisitsflexibility,since anydecisionmodelcanbeexpressedintermsofdecisionrulesand,evenbetter, thedecisionrulemodelcanbemuchmoregeneralthanallotherexistingdecision modelsusedinMCDA.
MichelGrabischandChristopheLabreuchepresentthefuzzyintegralapproach thatisknowninMCDAforthelasttwodecades.Inverysimplewordsthis methodologypermitsaflexiblemodelingoftheimportanceofcriteria.Indeed,fuzzy integralsarebasedonacapacitywhichassignsanimportancetoeachsubsetof criteriaandnotonlytoeachsinglecriterion.Thus,theimportanceofagivensetof criteriaisnotnecessarilyequaltothesumoftheimportanceofthecriteriafromthe consideredsubset.Consequently,iftheimportanceofthewholesubsetofcriteriais smallerthanthesumoftheimportancesofitsindividualcriteria,thenweobserve aredundancybetweencriteria,whichinsomewayrepresentsoverlappingpoints ofview.Ontheotherhand,iftheimportanceofthewholesubsetofcriteriais largerthanthesumoftheimportancesofitsmembers,thenweobserveasynergy betweencriteria,theevaluationsofwhichreinforceoneanother.Onthebasisofthe importanceofcriteriameasuredbymeansofacapacity,thecriteriaareaggregated bymeansofspecificfuzzyintegrals,themostimportantofwhicharetheChoquet integral(forcardinalevaluations)andtheSugenointegral(forordinalevaluations).
HelenMoshkovich,AlexanderMechitov,andDavidOlsonpresenttheverbal decisionmethodsMCDA.Thisisaclassofmethodsoriginatedfromtheworkofone oftheMCDApioneers,thelateOlegLarichev.Theideaofverbaldecisionanalysis istobuildadecisionmodelusingmostlyqualitativeinformationexpressedinterms ofalanguagethatisnaturalfortheDM.Moreover,measurementofcriteriaand preferenceelicitationshouldbepsychologicallyvalid.Themethods,besidesbeing mathematicallysound,shouldchecktheDM’sconsistencyandprovidetransparent recommendations.
Mostreal-worlddecisionproblemstakeplaceinacomplexenvironmentwhere conflictingsystemsoflogic,uncertain,andimpreciseknowledge,andpossibly vaguepreferenceshavetobeconsidered.Tofacesuchcomplexity,preference modelingrequirestheuseofspecifictools,techniques,andconceptswhichallow theavailableinformationtoberepresentedwiththeappropriategranularity.Inthis perspective,fuzzysettheoryhasreceivedalotofattentioninMCDAforalongtime. DidierDuboisandPatricePernytrytoprovideatentativeassessmentoftheroleof fuzzysetsindecisionanalysis,takingacriticalstandpointonthestate-of-the-art,in ordertohighlighttheactualachievementsandtryingtobetterassesswhatisoften considereddebatablebydecisionscientistsobservingthefuzzydecisionanalysis literature.
5.6PartVI:MultiobjectiveOptimization Theclassicalformulationofanoperations researchmodelisbasedonthemaximizationorminimizationofanobjectivefunctionsubjecttosomeconstraints.Avery
Another random document with no related content on Scribd:
8871 Goundy Thos Sept 15
1087 Heald W, Canandaigua Apr 14
1469 Hunter Jno, Seaman May 30
2215 Hilton Jno, Johana June 20
3448 Hodges L, Norman July 17
3793 Hughes Benj, Wabash July 22
5875 Heald H H, Merchantm’n Aug 16
9284 Holas Thos, W’r Witch Sept 19 64
1432 Jones Wm, Underwriter May 28
2178 Jones Theo, “ June 19
2206 Journeay Jno, Fireman June 19
6417 Jackson J, Shawsheen Aug 22
8291
Johnson G P Sept 9
8858 James F A Sept 15
9392 Johnson M Sept 20
10218 Joseph F Oct 2
602 Keefe Jno, Housatonic Apr 18
698 Kultz A T, Ward Apr 23
1546 Kelley Jas, Underwriter June 1
3850 Kinney J, Water Witch July 24
7375 Lodi Jno Aug 31
2813 Lindersmith E, Montg’y July 3
4201
Lawton Jas, Ladona July 30