LectureNotesinComputerScience9516
CommencedPublicationin1973
FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen
EditorialBoard
DavidHutchison
LancasterUniversity,Lancaster,UK
TakeoKanade
CarnegieMellonUniversity,Pittsburgh,PA,USA
JosefKittler UniversityofSurrey,Guildford,UK
JonM.Kleinberg
CornellUniversity,Ithaca,NY,USA
FriedemannMattern
ETHZurich,Zürich,Switzerland
JohnC.Mitchell
StanfordUniversity,Stanford,CA,USA
MoniNaor
WeizmannInstituteofScience,Rehovot,Israel
C.PanduRangan
IndianInstituteofTechnology,Madras,India
BernhardSteffen TUDortmundUniversity,Dortmund,Germany
DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA
DougTygar UniversityofCalifornia,Berkeley,CA,USA
GerhardWeikum
MaxPlanckInstituteforInformatics,Saarbrücken,Germany
Moreinformationaboutthisseriesathttp://www.springer.com/series/7409
QiTian • NicuSebe
Guo-JunQi • BenoitHuet
RichangHong • XueliangLiu(Eds.)
MultiMediaModeling
22ndInternationalConference,MMM2016
Miami,FL,USA,January4–6,2016
Proceedings,PartI
Editors
QiTian
UniversityofTexasatSanAntonio SanAntonio,TX USA
NicuSebe
DepartmentofInformationEngineering UniversityofTrento Povo,Trento Italy
Guo-JunQi
EECS UniversityofCentralFlorida Orlando,FL USA
BenoitHuet EURECOM
Sophia-Antipolis
France
RichangHong
HefeiUniversityofTechnology
Hefei,Anhui
China
XueliangLiu
SchoolofComputingandInformation
HefeiUniversityofTechnology
Hefei,Anhui
China
ISSN0302-9743ISSN1611-3349(electronic)
LectureNotesinComputerScience
ISBN978-3-319-27670-0ISBN978-3-319-27671-7(eBook) DOI10.1007/978-3-319-27671-7
LibraryofCongressControlNumber:2015957238
LNCSSublibrary:SL3 – InformationSystemsandApplications,incl.Internet/Web,andHCI
© SpringerInternationalPublishingSwitzerland2016
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.
Printedonacid-freepaper
ThisSpringerimprintispublishedbySpringerNature
TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland
Preface
The22ndInternationalConferenceonMultimediaModeling(MMM2016)washeldin Miami,USA,January4–6,2016,andwashostedbytheUniversityofCentralFlorida atOrlando,USA.MMMisaleadinginternationalconferenceforresearchersand industrypractitionerstosharetheirnewideas,originalresearchresults,andpractical developmentexperiencesfromallmultimedia-relatedareas.UniversityofCentral FloridaisaSpace-Grantuniversityandhasmadenotedresearchcontributionstodigital media,engineering,andcomputerscience.
MMM2016featuredacomprehensiveprogramincludingthreekeynotetalks,eight oralpresentationsessions,twopostersessions,onedemosession, fivespecialsessions, andtheVideoBrowserShowdown(VBS).The168submissionsfromauthorsof20 countriesincludedalargenumberofhigh-qualitypapersinmultimediacontentanalysis,multimediasignalprocessingandcommunications,andmultimediaapplications andservices.Wethankour130TechnicalProgramCommitteememberswhospent manyhoursreviewingpapersandprovidingvaluablefeedbacktotheauthors.Fromthe totalof117submissionstothemainconferenceandbasedonatleastthreereviewsper submission,theprogramchairsdecidedtoaccept32regularpapers(27.8%)and30 posterpapers(25.6%).Intotal,38paperswerereceivedfor5specialsessions,with20 beingselected,and11submissionswerereceivedforademosession,with7being selected.Videobrowsingsystemsofnineteamswereselectedforparticipationinthe VBS.Theauthorsofacceptedpaperscomefrom17countries.Thisvolumeofthe conferenceproceedingscontainstheabstractsofthreeinvitedtalksandalltheregular, poster,specialsession,anddemopapers,aswellasspecialdemopapersoftheVBS. MMM2016includedthefollowingawards:theBestPaperAward,theBestStudent PaperAward,andthewinneroftheVBScompetition.
Thetechnicalprogramisanimportantaspectbutonlyprovidesitsfullimpactif complementedbychallengingkeynotes.Wewereextremelypleasedandgratefulto havethreeexceptionalkeynotespeakers,WenGao(ACM/IEEEFellow),ChangWen Chen(IEEEFellow),andChangshengXu(IEEEFellow),acceptourinvitationand presentinterestingideasandinsightsatMMM2016.
Weareheavilyindebtedtomanyindividualsfortheirsignificantcontributions.We thanktheMMMSteeringCommitteefortheirinvaluableinputandguidanceoncrucial decisions.Wewishtoacknowledgeandexpressourdeepestappreciationtothe organizingchairs,XueliangLiuandLumingZhang,thespecialsessionchairs,WenHuangChen,HaojieLiandRongrongJi,thepanelchair,Tat-SengChua,thedemo chairs,CathalGurrinandBjörn ÞórJónsson,theVBSchairs,KlausSchöffmannand WernerBailer,thepublicitychairs,Yu-GangJiang,ShuichengYan,HengtaoShen, ZhengjunZha,andShengWu,thepublicationchairs,NaZhaoandZechaoLi,andlast butnotleasttheWebmaster,JunHe.Withouttheireffortsandenthusiasm,MMM2016 wouldnothavebecomeareality.Moreover,wewanttothankoursponsorthe
UniversityofCentralFlorida.Finally,wewishtothankallcommitteemembers, reviewers,sessionchairs,studentvolunteers,andsupporters.Theircontributionsare muchappreciated.
January2016Guo-JunQi
BenoitHuet
RichangHong
NicuSebe
QiTian
Organization
MMM2016wasorganizedbytheUniversityofCentralFlorida,USA.
MMM2016SteeringCommittee
PhoebeChenLaTrobeUniversity,Australia Tat-SengChuaNationalUniversityofSingapore
ShiqiangYangTsinghuaUniversity,China
KiyoharuAizawaUniversityofTokyo,Japan
NoelE.O’ConnorDublinCityUniversity,Ireland
CessG.M.SnoekUniversityofAmsterdam,TheNetherlands
MengWangHefeiUniversityofTechnology,China R.ManmathaUniversityofMassachusetts,USA CathalGurrinDublinCityUniversity,Ireland KlausSchoeffmannKlagenfurtUniversity,Austria BenoitHuetEurecom,France
MMM2016OrganizingCommittee
GeneralCo-chairs
QiTianUniversityofTexasatSanAntonio,USA NicuSebeUniversityofTrento,Italy
ProgramCo-chairs
GuojunQiUniversityofCentralFlorida,USA BenoitHuetEurecom,France
RichangHongHefeiUniversityofTechnology,China
OrganizingCo-chairs
XueliangLiuHefeiUniversityofTechnology,China Luming,ZhangNationalUniversityofSingapore,Singapore
SpecialSessionCo-chairs
Wen-HuangChengAcademiaSinica,Taiwan
HaojieLiDalianUniversityofTechnology,China RongrongJiXiamenUniversity,China
DemoSessionCo-chairs
CathalGurrinDublinCityUniversity,Ireland
Björn ÞórJónssonReykjavíkUniversity,Iceland
PublicationCo-chairs
NaZhaoNationalUniversityofSingapore,Singapore ZechaoLiNanjingUniversityofScienceandTechnology,China
PublicityCo-chairs
Yu-GangJiangFudanUniversity,China ShuichengYanNationalUniversityofSingapore,Singapore HengtaoShenUniversityofQueensland,Australia ZhengjunZhaChineseAcademyofSciences,China ShengWuGoogle,USA
PanelChair
Tat-SengChuaNationalUniversityofSingapore,Singapore
VideoSearchShowcaseCo-chairs
WernerBailerJoanneumResearch,Graz,Austria KlausSchoeffmannKlagenfurtUniversity,Austria
WebMaster
JunHeHefeiUniversityofTechnology,China
TechnicalProgramCommittee
SelimBalcisoySabanciUniversity,Turkey YingboLiEcoleNormaleSuperieure,France LifengSunTsinghuaUniversity,China CathalGurrinDublinCityUniversity,Ireland HaojieLiDalianUniversityofTechnology,China RainerLienhartUniversityofAugsburg,Germany RossanaDamianoUniversityofTurin,Italy Zheng-JunZhaInstituteofIntelligentMachines,CAS,China VincentCharvillatUniversityofToulouse,France LiqiangNieNationalUniversityofSingapore,Singapore WolfgangHurstUtrechtUniversity,TheNetherlands Wei-GuangTengNationalChengKungUniversity,Taiwan BoYanFudanUniversity,China
WernerBailerJoanneumResearch,Austria Mei-LingShyuUniversityofMiami,USA LuizFernandoGomes
Soares CatholicUniversityofRiodeJaneiro,Brazil
JoemonJoseUniversityofGlasgow,UK MyleneFariasUniversityofBrasilia,Brazil WolfgangHuerstUtrechtUniversity,TheNetherlands
XuranZhaoZhejiangGongshangUniversity,China NaokoNittaOsakaUniversity,Japan JunYuHangdianUniversity,China
GeorgThallingerJoanneumResearch,Austria Yu-GangJiangFudanUniversity,China MarkusKoskelaUniversityofHelsinki,Finland JingdongWangMicrosoftResearchAsia,China ZiyuGuanWestNorthUniversity,China WilliamGroskyUniversityofMichigan,USA GeorgesQuenotLIG/IMAG,France
Duy-DinhLeNationalInstituteofInformatics,Japan HenningMullerTheUniversityofAppliedSciencesandArts ofWesternSwitzerland Wen-HsiangTsaiNationalChiaoTungUniversity,Taiwan AnantBaijalSamsung,Korea
KuiyuanYangMicrosoftResearchAsia,China ShengTangChineseAcademyofSciences,China ShinIchiSatohNationalInstituteofInformatics,Japan MarcelWorringUniversityofAmsterdam,TheNetherlands AjayDivakaranSarnoffCorporation,USA PengCuiTsinghuaUniversity,China HanwangZhangNationalUniversityofSingapore,Singapore JitaoSangChineseAcademyofSciences,China RichangHongHefeiUniversityofTechnology,China HaraldKoschUniversityofPassau,Germany ShikuiWeiBeijingJiaotongUniversity,China BoLiuUniversityofRutgers,USA WolfgangEffelsbergUniversityofMannheim,Germany NoelE.O.ConnorDublinCityUniversity,Ireland LuFangUniversityofScienceandTechnology,China XiaoWuWestSouthJiaotongUniversity,China XinmeiTianUniversityofScienceandTechnology,China XueliangLiuHefeiUniversityofTechnology,China RuiMinCognitec,Germany
JiroKattoWasedaUniversity,Japan JianChengChineseAcademyofSciences,China VincentOriaNewJerseyInstituteofTechnology,USA DaliborMitrovicViennaUniversityofTechnology,Austria MilanBjelicaUniversityofBelgrade,Serbia AndreasHenrichUniversityofBamberg,Germany ShijieHaoHefeiUniversityofTechnology,China PhivosMylonasNationalTechnicalUniversityofAthens,Greece FengWangEastChinaNormalUniversity,China AllanHanburyViennaUniversityofTechnology,Austria JinqiaoWangChineseAcademyofSciences,China TianzhuZhangChineseAcademyofSciences,China
YifanZhangChineseAcademyofSciences,China Wei-TaChuNationalChungChengUniversity,Taiwan WesleyDeNeveJoanneumResearch,Austria JeanMartinetUniversityofLille,France
OgnjenArandjelovicTrinityCollegeCambridge,UK
KeijiYanaiUniversityofElectro-Communications,Japan
RongrongJiXiamenUniversity,China
JinhuiTangNanjingUniversityofScienceandTechnology,China MaiaZaharievaViennaUniversityofTechnology,Austria ChaZhangMicrosoftResearch,USA
ShiyuChangUniversityofIllinoisUrbana-Champaign,USA
LeAnUniversityofNorthCarolinaatChapelHill,USA MohanKankanhalliNationalUniversityofSingapore,Singapore ShiaiZhuUniversityofWaterloo,USA
VasileiosMezarisCERTH/ITI,Greece
YannickPrieUniversityClaudeBernardLyon1,France MichelCrucianuCNAM,France
XiaoyiJiangUniversityofMünster,Germany
Sponsors
UniversityofCentralFlorida
Contents – PartI
RegularPapers
VideoEventDetectionUsingKernelSupportVectorMachine withIsotropicGaussianSampleUncertainty(KSVM-iGSU).............3 ChristosTzelepis,VasileiosMezaris,andIoannisPatras
VideoContentRepresentationUsingRecurringRegionsDetection........16 LukasDiemandMaiaZaharieva
GroupFeatureSelectionforAudio-BasedVideoGenreClassification......29 GerhardSageder,MaiaZaharieva,andChristianBreiteneder
ComputationalCartoonist:AComic-StyleVideoSummarization SystemforAnimeFilms.....................................42 TsukasaFukusato,TatsunoriHirai,ShunyaKawamura, andShigeoMorishima
ExploringtheLongTailofSocialMediaTags......................51 SvetlanaKordumova,JanvanGemert,andCeesG.M.Snoek
VisualAnalysesofMusicDownloadHistory:UserStudies.............63 DongLiuandJingxianZhang
PersonalizedAnnotationforMobilePhotosBasedonUser ’sSocialCircle...76 YanhuiHong,TiandiChen,KangZhang,andLifengSun
UtilizingSensor-SocialCuestoLocalizeObjects-of-Interest inOutdoorUGVs..........................................88 YingjieXia,LumingZhang,LiqiangNie,andWenjingGeng
NEWSMAN:UploadingVideosoverAdaptiveMiddleboxestoNews ServersinWeakNetworkInfrastructures..........................100 RajivRatnShah,MohamedHefeeda,RogerZimmermann, KhaledHarras,Cheng-HsinHsu,andYiYu
ComputationalFaceReader...................................114 XiangboShu,LiyanZhang,JinhuiTang,Guo-SenXie, andShuichengYan
PosedandSpontaneousExpressionRecognitionThroughRestricted BoltzmannMachine.........................................127 ChongliangWuandShangfeiWang
DFRS:ALarge-ScaleDistributedFingerprintRecognitionSystem BasedonRedis............................................138 BingLi,ZhenHuang,JinbangChen,YifanYuan,andYuxingPeng
LogoRecognitionviaImprovedTopologicalConstraint................150 PanpanTangandYuxinPeng
CompoundFigureSeparationCombiningEdgeandBandSeparator Detection................................................162 MarioTaschwerandOgeMarques
CameraNetworkBasedPersonRe-identificationbyLeveraging Spatial-TemporalConstraintandMultipleCamerasRelations............174 WenxinHuang,RuiminHu,ChaoLiang,YiYu,ZhengWang, XianZhong,andChunjieZhang
GlobalContrastBasedSalientRegionBoundarySampling forActionRecognition......................................187 ZengminXu,RuiminHu,JunChen,HuafengChen,andHongyangLi
ElasticEdgeBoxesforObjectProposalonRGB-DImages.............199 JingLiu,TongweiRen,andJiaBei
PairingContourFragmentsforObjectRecognition...................212 WeiZheng,QianZhang,ZhixuanLi,andJunjunXiong
InstanceSearchwithWeakGeometricCorrelationConsistency...........226 ZhenxingZhang,RamiAlbatal,CathalGurrin,andAlanF.Smeaton
Videopedia:LectureVideoRecommendationforEducationalBlogs UsingTopicModeling.......................................238 SubhasreeBasu,YiYu,VivekK.Singh,andRogerZimmermann
TowardsTraining-FreeRefinementforSemanticIndexingofVisual Media..................................................251 PengWang,LifengSun,ShiqangYang,andAlanF.Smeaton
DeepLearningGenericFeaturesforCross-MediaRetrieval.............264 XindiShang,HanwangZhang,andTat-SengChua
Cross-MediaRetrievalviaSemanticEntityProjection.................276 LeiHuangandYuxinPeng
VisualRe-rankingThroughGreedySelectionandRankFusion..........289 BinLin,AiWei,andXinmeiTian
No-referenceImageQualityAssessmentBasedonStructural andLuminanceInformation...................................301 QiaohongLi,WeisiLin,JingtaoXu,YumingFang, andDanielThalmann
LearningMultipleViewswithOrthogonalDenoisingAutoencoders........313 TengQiYe,TianchunWang,KevinMcGuinness,YuGuo, andCathalGurrin
FastNearestNeighborSearchintheHammingSpace.................325 ZhanshengJiang,LingxiXie,XiaotieDeng,WeiweiXu, andJingdongWang
SOMH:ASelf-OrganizingMapBasedTopologyPreservingHashing Method.................................................337 Xiao-LongLiang,Xin-ShunXu,LizhenCui,ShanqingGuo, andXiao-LinWang
DescribingImageswithOntology-AwareDictionaryLearning...........349 ChengyueZhangandYahongHan
QualityAnalysisonMobileDevicesforReal-TimeFeedback............359 StefanieWechtitsch,HannesFassold,MarcusThaler, KrzysztofKozłowski,andWernerBailer
InteractiveSearchinVideo:NavigationWithFlick Gesturesvs.Seeker-Bars.....................................370 KlausSchoeffmann,MarcoA.Hudelist,BonifazKaufmann, andKevinChromik
Second-LayerNavigationinMobileHypervideoforMedicalTraining......382 BrittaMeixnerandMatthiasGold
PosterPapers
ReverseTestingImageSetModelBasedMulti-viewHumanAction Recognition..............................................397 Z.Gao,Y.Zhang,H.Zhang,G.P.Xu,andY.B.Xue
FaceImageSuper-ResolutionThroughImprovedNeighborEmbedding.....409 KebinHuang,RuiminHu,JunjunJiang,ZhenHan,andFengWang
AdaptiveMultichannelReductionUsingConvexPolyhedralLoudspeaker Array...................................................421 LingkunZhang,RuiminHu,DengshiLi,XiaochenWang, andWeipingTu
DominantSetBasedDataClusteringandImageSegmentation...........432 JianHou,ChunshiSha,HongxiaCui,andLeiChi
AnR-CNNBasedMethodtoLocalizeSpeechBalloonsinComics........444 YongtaoWang,XichengLiu,andZhiTang
FacialAgeEstimationwithImagesintheWild.....................454
MingZou,JianweiNiu,JinpengChen,YuLiu,andXiaokeZhao
FastVisualVocabularyConstructionforImageRetrievalUsing Skewed-Splitk-dTrees......................................466
IliasGialampoukidis,StefanosVrochidis,andIoannisKompatsiaris
OGB:ADistinctiveandEfficientFeatureforMobileAugmented Reality..................................................478
XinYang,XinggangWang,andKwang-Ting(Tim)Cheng
LearningRelativeAestheticQualitywithaPairwiseApproach...........493 HaoLvandXinmeiTian
RobustCrowdSegmentationandCountinginIndoorScenes............505
RenYang,HuazhongXu,andJinqiaoWang
RobustSketch-BasedImageRetrievalbySaliencyDetection............515 XiaoZhangandXuejinChen
ImageClassificationUsingSpatialDifferenceDescriptorUnderSpatial PyramidMatchingFramework.................................527 YuhuiLi,JiuchengXu,YifanZhang,ChunjieZhang,HongshengYin, andHanqingLu
ExploringRelationshipBetweenFaceandTrustworthyImpressionUsing Mid-levelFacialFeatures.....................................540
YanYan,JieNie,LeiHuang,ZhenLi,QingleiCao,andZhiqiangWei
Edit-BasedFontSearch......................................550
KenIshibashiandKazunoriMiyata
PrivateVideoForegroundExtractionThroughChaoticMappingBased EncryptionintheCloud......................................562
XinJin,KuiGuo,ChenggenSong,XiaodongLi,GengZhao,JingLuo, YuzhenLi,YingyaChen,YanLiu,andHuaichaoWang
EvaluatingAccessMechanismsforMultimodalRepresentations ofLifelogs...............................................574
ZhengweiQiu,CathalGurrin,andAlanF.Smeaton
AnalysisandComparisonofInter-ChannelLevelDifferenceandInteraural LevelDifference...........................................586
TingzhaoWu,RuiminHu,LiGao,XiaochenWang,andShanfaKe
AutomaticScribbleSimulationforInteractiveImageSegmentation Evaluation...............................................596
BingjieJiang,TongweiRen,andJiaBei
Multi-modalImageRe-rankingwithAutoencodersandClickSemantics....609 ChaohuiTang,QingxinZhu,ChaoqunHong,andJunYu
Sketch-BasedImageRetrievalwithaNovelBoVWRepresentation........621 ChengJin,ChenjieLi,ZhemingWang,YuejieZhang,andTaoZhang
Symmetry-AwareHumanShapeCorrespondenceUsingSkeleton.........632 ZongyiXuandQianniZhang
XTemplate4.0:ProvidingAdaptiveLayoutsandNestedTemplates forHypermediaDocuments...................................642
GlaucoF.Amorim,JoelA.F.dosSantos, andDéboraC.Muchaluat-Saade
LevelRatioBasedInterandIntraChannelPredictionwithApplication toStereoAudioFrameLossConcealment.........................654 YuhongYang,YanyeWang,RuiminHu,HongjiangYu,LiGao, andSongWang
DepthMapCodingbyModelingtheLocalityandLocalCorrelation ofViewSynthesisDistortionin3-DVideo........................662 QiongXue,XuguangLan,andMengYang
DiscriminativeFeatureLearningwithanOptimalPatternModelforImage Classification.............................................675 LijuanLiu,YuBao,HaojieLi,XinFan,andZhongxuanLuo
SignLanguageRecognitionBasedonTrajectoryModelingwithHMMs....686 JunfuPu,WengangZhou,JihaiZhang,andHouqiangLi
MusicMixer:AutomaticDJSystemConsideringBeatandLatentTopic Similarity................................................698 TatsunoriHirai,HironoriDoi,andShigeoMorishima
AdaptiveSynopsisofNon-HumanPrimates’ SurveillanceVideoBasedon BehaviorClassification......................................710 DongqiCai,FeiSu,andZhichengZhao
APacketSchedulingMethodforMultimediaQoSProvisioning..........722 JinbangChen,ZhenHuang,MartinHeusse, andGuillaumeUrvoy-Keller
RobustObjectTrackingUsingValidFragmentsSelection..............738 JinZheng,BoLi,PengTian,andGangLuo
SpecialSessionPosterPapers
ExploringDiscriminativeViewsfor3DObjectRetrieval...............755 DongWang,BinWang,SichengZhao,HongxunYao,andHongLiu
WhatCatchesYourEyesasYouMoveAround?OntheDiscovery ofInterestingRegionsintheStreet..............................767 Heng-YuChi,Wen-HuangCheng,Chuang-WenYou, andMing-SyanChen
BagDetectionandRetrievalinStreetShots........................780 ChongCao,YuningDu,andHaizhouAi
TVCommercialDetectionUsingSuccessBasedLocallyWeightedKernel Combination..............................................793
RaghvendraKannaoandPrithwijitGuha
Frame-WiseContinuity-BasedVideoSummarizationandStretching.......806 TatsunoriHiraiandShigeoMorishima
RespirationMotionStateEstimationon4DCTRibCageImages.........818 ChaoXie,WengangZhou,WeipingDing,HouqiangLi,andWeipingLi
Location-AwareImageClassification.............................829 XinggangWang,XinYang,WenyuLiu,ChenDuan, andLonginJanLatecki
EnhancementforDust-SandStormImages.........................842 JianWang,YanweiPang,YuqingHe,andChangshuLiu
UsingInstagramPictureFeaturestoPredictUsers’ Personality...........850 BruceFerwerda,MarkusSchedl,andMarkoTkalcic
ExtractingVisualKnowledgefromtheInternet:MakingSenseofImage Data...................................................862 YazhouYao,JianZhang,Xian-ShengHua,FuminShen, andZhenminTang
OrderingofVisualDescriptorsinaClassifierCascadeTowardsImproved VideoConceptDetection.....................................874 FoteiniMarkatopoulou,VasileiosMezaris,andIoannisPatras
SpatialConstrainedFine-GrainedColorNameforPerson Re-identification...........................................886
YangYang,YuhongYang,MangYe,WenxinHuang,ZhengWang, ChaoLiang,LeiYao,andChunjieZhang
DealingwithAmbiguousQueriesinMultimodalVideoRetrieval.........898 LucaRossetto,ClaudiuTănase,andHeikoSchuldt
CollaborativeQ-LearningBasedRoutingControlinUnstructuredP2P Networks................................................910 Xiang-JunShen,QingChang,Jian-PingGou,Qi-RongMao, Zheng-JunZha,andKeLu
AuthorIndex ............................................923
Contents – PartII
SpecialSessionPosterPapers(continued)
TransferNonnegativeMatrixFactorizationforImageRepresentation.......3 TianchunWang,TengQiYe,andCathalGurrin
SentimentAnalysisonMulti-ViewSocialData......................15 TengNiu,ShiaiZhu,LeiPang,andAbdulmotalebElSaddik
SingleImageSuper-ResolutionviaConvolutionalNeuralNetwork andTotalVariationRegularization..............................28 YanyunQu,CuitingShi,JunranLiu,LiyingPeng,andXiaofengDu
AnEffectiveFaceVerificationAlgorithmtoFuseCompleteFeatures inConvolutionalNeuralNetwork...............................39 YukunMa,JiaoyuHe,LifangWu,andWeiQi
DriverFatigueDetectionSystemBasedonDSPPlatform..............47 ZiboLi,FanZhang,GuangminSun,DequnZhao,andKunZheng
Real-TimeGrayscale-ThermalTrackingviaLaplacianSparse Representation............................................54 ChenglongLi,ShiyiHu,SihanGao,andJinTang
EfficientPerceptualRegionDetectorBasedonObjectBoundary..........66 GangWang,KeGao,YongdongZhang,andJintaoLi
1DBarcodeRegionDetectionBasedontheHoughTransform andSupportVectorMachine..................................79 ZhihuiWang,AiChen,JianjunLi,YeYao,andZhongxuanLuo
SpecialSessionPapers
Client-DrivenStrategyofLarge-ScaleSceneStreaming................93 LaixiangWen,NingXie,andJinyuanJia
SELSH:AHashingSchemeforApproximateSimilaritySearch withEarlyStopCondition....................................104 JieChen,ChengkunHe,GangHu,andJieShao
LearningHoughTransformwithLatentStructuresforJointObject DetectionandPoseEstimation.................................116 HanxiLi,XumingHe,NickBarnes,andMingwenWang
ConsensusGuidedMultipleMatchRemovalforGeometryVerification inImageRetrieval..........................................130 HongWu,XingHeng,andZenglinXu
LocalityConstrainedSparseRepresentationforCatRecognition..........140 Yu-ChenChen,ShintamiC.Hidayati,Wen-HuangCheng, Min-ChunHu,andKai-LungHua
UserProfilingbyCombiningTopicModelingandPointwiseMutual Information(TM-PMI).......................................152 LifangWu,DanWang,ChengGuo,JiananZhang, andChangwenChen
ImageRetrievalUsingColor-AwareTagonProgressiveImageSearch andRecommendationSystem..................................162 Shih-YuKu,Kai-HsiangChen,Jen-WeiHuang,andYuTsao
AdvancingIterativeQuantizationHashingUsingIsotropicPrior..........174 LaiLi,GuangcanLiu,andQingshanLiu
AnImprovedRANSACImageStitchingAlgorithmBased SimilarityDegree..........................................185 YuleGe,ChunxiaoGao,andGuoDongLiu
ANovelEmotionalSaliencyMaptoModelEmotionalAttention Mechanism...............................................197 XinmiaoDing,LuluHuang,BingLi,CongyanLang,ZhenHua, andYulingWang
AutomaticEndmemberExtractionUsingPixelPurityIndex forHyperspectralImagery....................................207 QianlanZhou,JingZhang,QiTian,LiZhuo,andWenhaoGeng
AFast3DIndoor-LocalizationApproachBasedonVideoQueries........218 GuoyuLu,YanYan,AbhishekKolagunda,andChandraKambhamettu
SmartAmbientSoundAnalysisviaStructuredStatisticalModeling........231 JialieShen,LiqiangNie,andTat-SengChua
DiscriminantManifoldLearningviaSparseCodingforImageAnalysis.....244 MengPang,BinghuiWang,XinFan,andChuangLin
AVeryDeepSequencesLearningApproachforHuman ActionRecognition.........................................256 ZhihuiLinandChunYuan
AttributeDiscoveryforPersonRe-Identification.....................268 TakayukiUmeda,YongqingSun,GoIrie,KyokoSudo, andTetsuyaKinebuchi
WhataretheLimitstoTimeSeriesBasedRecognition ofSemanticConcepts?.......................................277
PengWang,LifengSun,ShiqiangYang,andAlanF.Smeaton
TenResearchQuestionsforScalableMultimediaAnalytics.............290
Björn ÞórJónsson,MarcelWorring,JanZahálka,StevanRudinac, andLaurentAmsaleg
Shaping-UpMultimediaAnalytics:NeedsandExpectationsofMedia Professionals.............................................303
GuillaumeGravier,MartinRagot,LaurentAmsaleg,RémiBois, GrégoireJadi, ÉricJamet,LauraMonceaux,andPascaleSébillot
InformedPerspectivesonHumanAnnotationUsingNeuralSignals........315 GrahamF.Healy,CathalGurrin,andAlanF.Smeaton
DemoSessionPapers
GrillCam:AReal-TimeEatingActionRecognitionSystem.............331
KoichiOkamotoandKeijiYanai
SearchinginVideoCollectionsUsingSketchesandSampleImages –TheCineastSystem.........................................336
LucaRossetto,IvanGiangreco,SilvanHeller,ClaudiuTănase, andHeikoSchuldt
LoggerMan,aComprehensiveLoggingandVisualizationTool toCaptureComputerUsage...................................342
ZaherHinbarji,RamiAlbatal,NoelO’Connor,andCathalGurrin
E 2 SGM :EventEnrichmentandSummarizationbyGraphModel..........348 XueliangLiu,FeifeiWang,BenoitHuet,andFengWang
METU-MMDS:AnIntelligentMultimediaDatabaseSystem forMultimodalContentExtractionandQuerying....................354 AdnanYazici,SaeidSattari,TurgayYilmaz,MustafaSert, MuratKoyuncu,andElvanGulen
ApplyingVisualUserInterestProfilesforRecommendation andPersonalisation.........................................361
JiangZhou,RamiAlbatal,andCathalGurrin
Cross-ModalFashionSearch..................................367
SusanaZoghbi,GeertHeyman,JuanCarlosGomez, andMarie-FrancineMoens
VideoBrowserShowdown
IMOTION – SearchingforVideoSequencesUsingMulti-Shot SketchQueries............................................377
LucaRossetto,IvanGiangreco,SilvanHeller,ClaudiuTănase, HeikoSchuldt,StéphaneDupont,OmarSeddati,MetinSezgin, OzanCanAltıok,andYusufSahillioğlu
iAutoMotion – anAutonomousContent-BasedVideoRetrievalEngine.....383
LucaRossetto,IvanGiangreco,ClaudiuTănase,HeikoSchuldt, StéphaneDupont,OmarSeddati,MetinSezgin,andYusufSahillioğlu
SelectingUserGeneratedContentforUseinMediaProductions..........388 WernerBailer,WolfgangWeiss,andStefanieWechtitsch
VERGE:AMultimodalInteractiveSearchEngineforVideoBrowsing andRetrieval.............................................394
AnastasiaMoumtzidou,TheodorosMironidis,EvlampiosApostolidis, FoteiniMarkatopoulou,AnastasiaIoannidou,IliasGialampoukidis, KonstantinosAvgerinakis,StefanosVrochidis,VasileiosMezaris, IoannisKompatsiaris,andIoannisPatras
CollaborativeVideoSearchCombiningVideoRetrievalwithHuman-Based VisualInspection..........................................400
MarcoA.Hudelist,ClaudiuCobârzan,ChristianBeecks, RobvandeWerken,SabrinaKletz,WolfgangHürst, andKlausSchoeffmann
Multi-sketchSemanticVideoBrowser............................406
DavidKuboň,AdamBlažek,JakubLokoč,andTomáš Skopal
FacetedNavigationforBrowsingLargeVideoCollection..............412 ZhenxingZhang,WeiLi,CathalGurrin,andAlanF.Smeaton
NavigatingaGraphofScenesforExploringLargeVideoCollections......418 KaiUweBarthel,NicoHezel,andRadekMackowiak
MentalVisualBrowsing.....................................424
JunHe,XindiShang,HanwangZhang,andTat-SengChua
AuthorIndex ............................................429
RegularPapers
ChristosTzelepis1,2(B) ,VasileiosMezaris1 ,andIoannisPatras2
1 InformationTechnologiesInstitute(ITI),CERTH,57001Thermi,Greece {tzelepis,bmezaris}@iti.gr
2 QueenMaryUniversityofLondon,MileEndCampus,LondonE14NS,UK i.patras@qmul.ac.uk
Abstract. Inthispaper,weproposeanalgorithmthatlearnsfrom uncertaindataandexploitsrelatedvideosfortheproblemofeventdetection;relatedvideosarethosethatarecloselyassociated,thoughnotfully depictingtheeventofinterest.Inparticular,twoextensionsofthelinear SVMwithGaussianSampleUncertaintyarepresented,which(a)leadto non-lineardecisionboundariesand(b)incorporaterelatedclasssamples intheoptimizationproblem.Theresultinglearningmethodsareespeciallyusefulinproblemswhereonlyalimitednumberofpositiveand relatedtrainingobservationsareprovided,e.g.,forthe10Exsubtask ofTRECVIDMED,whereonlytenpositiveandfiverelatedsamples areprovidedforthetrainingofacomplexeventdetector.Experimental resultsontheTRECVIDMED2014datasetverifytheeffectivenessof theproposedmethods.
Keywords: Videoeventdetection · Veryfewpositivesamples · Related samples · Learningwithuncertainty · Kernelmethods · Relevancedegree SVMs
1Introduction
High-levelvideoeventdetectionisconcernedwithdeterminingwhetheracertainvideodepictsagiveneventornot.Typically,ahigh-level(orcomplex) eventisdefinedasaninteractionamonghumans,orbetweenhumansandphysicalobjects[16].Sometypicalexamplesofcomplexeventsarethoseprovided intheMultimediaEventDetection(MED)taskoftheTRECVIDbenchmarkingactivity[22].Forinstance,indicativecomplexeventsdefinedinMED2014 include“Attemptingabiketrick”,“Cleaninganappliance”,or“Beekeeping”, tonameafew.
Therearenumerouschallengesassociatedwithbuildingeffectivevideoevent detectors.Oneofthemisthatoftenthereisonlyalimitednumberofpositive videoexamplesavailablefortraining.Anotherchallengeisthatvideorepresentationtechniquesusuallyintroduceuncertaintyintheinputthatisfedto c SpringerInternationalPublishingSwitzerland2016 Q.Tianetal.(Eds.):MMM2016,PartI,LNCS9516,pp.3–15,2016. DOI:10.1007/978-3-319-27671-7 1
4C.Tzelepisetal.
theclassifiers,andthisalsoneedstobetakenintoconsiderationduringclassifiertraining.Inthisworkwedealwiththeproblemoflearningvideoevent detectorswhenalimitednumberofpositiveandrelated(i.e.,videosthatare closelyrelatedwiththeevent,butdonotmeettheexactrequirementsforbeing apositiveeventinstance[22])eventvideosareprovided.Forthis,weexploit theuncertaintyofthetrainingvideosbyextendingthelinearSupportVector MachinewithGaussianSampleUncertainty(LSVM-GSU),presentedin[27], inordertoarriveatnon-lineardecisionfunctions.Specifically,weextendthis versionofLSVM-GSUthatassumesisotropicuncertainty(hereafterdenoted LSVM-iGSU)intoanewkernel-basedalgorithm,whichwecallKSVM-iGSU. WealsofurtherextendKSVM-iGSU,drawinginspirationfromtheRelevance DegreekernelSVM(RD-KSVM)proposedin[28],suchthatrelatedsamples canbeeffectivelyexploitedaspositiveornegativeexampleswithautomatic weighting.WerefertothisalgorithmasRD-KSVM-iGSU.Weshowthatthe RD-KSVM-iGSUalgorithmresultsinmoreaccurateeventdetectorsthanthe stateofthearttechniquesusedinrelatedworks,suchasthestandardkernel SVMandRD-KSVM.
Thepaperisorganizedasfollows.InSect. 2 wereviewrelatedwork.In Sect. 3 thetwoproposedSVMextensionsarepresented.Videoeventdetection results,byapplicationoftheproposedKSVM-iGSUandRD-KSVM-iGSUto theTRECVIDMED2014dataset,areprovidedinSect. 4,whileconclusionsare drawnandfutureworkisdiscussedinSect. 5.
2RelatedWork
Therearemanyworksdealingwitheventdetectioninvideo(e.g.[2, 5, 7, 9, 11–15, 19, 21]),severalofthembeinginthecontextoftheTRECVIDMEDtask. Despitetheattentionthatvideoeventdetectionhasreceived,though,there isonlyalimitednumberofstudiesthathaveexplicitlyexaminedtheproblemoflearningeventdetectorsfromveryfew(e.g.10)positivetrainingexamples[13, 28],anddevelopedmethodsforaddressingthisexactproblem.In[13], forinstance,theauthorspresentVideoStory,avideorepresentationschemefor learningeventdetectorsfromafewtrainingexamplesbyexploitingfreelyavailableWebvideostogetherwiththeirtextualdescriptions.Severalotherworks (e.g.[2])treatthefew-exampleprobleminthesamewaythattheydealwith eventdetectionwhenmoreexamplesareavailable(e.g.trainingstandardkernel SVMs).Learningvideoeventdetectorsfromafewexamplesisaproblemthat issimulatedintheTRECVIDMEDtask[22]bythe10Exsubtask,whereonly 10positivesamplesareavailablefortraining.
Inthecaseoflearningfromveryfewpositivesamples,itisofhighinterest tofurtherexploitvideosamplesthatdonotexactlymeettherequirementsfor beingcharacterizedastruepositiveexamplesofanevent,butneverthelessare closelyrelatedtoaneventclassandcanbeseenas“related”examplesofit.This issimulatedintheTRECVIDMEDtask[22]bythe“near-miss”videoexamples providedforeachtargeteventclass.Exceptfor[28],noneoftheaboveworks
takesfulladvantageoftheserelatedvideosforlearningfromfewpositivesamples; instead,the“related”samplesareeitherexcludedfromthetrainingprocedure [2, 11],ortheyaremistreatedastruepositiveortruenegativeinstances[7]. Incontrast,in[28]theauthorsexploitrelatedsamplesbyhandlingthemas weightedpositiveornegativeones,applyinganautomaticweightingtechnique duringthetrainingstage.Tothisend,arelevancedegreein(0, 1]isautomatically assignedtoalltherelatedsamples,indicatingthedegreeofrelevanceofthese observationswiththeclasstheyarerelatedto.Itwasshownthatthisweighting resultedinlearningmoreaccurateeventdetectors.
Regardlessofwhethertheaboveworksaddresstheproblemoflearningfrom afewpositiveexamplesorassumethatanabundanceofsuchexamplesisavailable,theyalltreatthetrainingvideorepresentationsasnoise-freeobservationsin theSVMinputspace.Lookingbeyondtheeventdetectionapplications,though, assuminguncertaintyininputundertheSVMparadigmisnotunusualandhas beenshowntoleadtobetterlearning.Lanckrietetal.[18]consideredabinary classificationproblemwherethemeanandcovariancematrixofeachclassare assumedtobeknown.Xuetal.[29, 30]consideredtherobustclassificationproblemforaclassofnon-box-typeduncertaintysets,incontrastto[1, 18, 25],who robustifiedregularizedclassificationusingbox-typeuncertainty.Finally,in[27], Tzelepisetal.proposedalinearmaximum-marginclassifier,calledSVMwith GaussianSampleUncertainty,dealingwithuncertaininputdata.Theuncertaintyin[27]canbemodeledeitherisotropicallyoranisotropically,arrivingat aconvexoptimizationproblemthatissolvedusingagradientdescentapproach. Tothebestofourknowledge,therehasbeennostudydealingwithuncertaintyinthevideoeventdetectionproblem,exceptfor[27].However,[27]introduceslinearclassifiers,whichintheeventdetectionproblemarenotexpectedto performinparwithtraditionalkernelSVMsthataretypicallyused(e.g.[11, 31]), despitetheadvantagesofconsideringdatauncertaintyinthelearningprocess. Inthiswork,weextendtheabovestudyandkernelizetheLSVM-iGSUof[27], undertheassumptionofisotropicsampleuncertainty.Weapplytheresulting KSVM-iGSUtotheeventdetectionproblemwhenonlyafewpositivesamples areavailablefortraining.Moreover,weproposeafurtherextensionofKSVMiGSU,namelyRelevanceDegreeKSVM-iGSU(RD-KSVM-iGSU),inspiredby [28],suchthatrelatedsamplescanalsobeexploitedasweightedpositiveor negativeones,basedonanautomaticweightingscheme.
3KernelSVM-iGSU
3.1OverviewofLSVM-iGSU
LSVM-iGSU[27]isaclassifierthattakesainputtrainingdatathataredescribed notsolelybyasetoffeaturerepresentations,i.e.asetofvectors xi insome n-dimensionalspace,butratherbyasetofmultivariateisotropicGaussiandistributionswhichmodeltheuncertaintyofeachtrainingexample.Thatis,every
trainingdatumischaracterizedbyameanvector xi ∈ Rn andanisotropiccovariancematrix,i.e.ascalarmultipleoftheidentitymatrix,Σi = σ 2 i In ∈ Sn ++ 1 . LSVM-iGSUisobtainedbyminimizing,withrespectto w , b,theobjective function J : Rn × R → R givenby
where l isthenumberoftrainingdata, w · x + b =0denotestheseparating hyperplane,andtheloss L :(Rn × R) × (Rn × Sn ++ ×{±1}) → R isgivenby
where xi and σ 2 i In denotethemeanvectorandthecovariancematrixofthe i-th inputentity(Gaussiandistribution),respectively, yi denotesitsground-truth label,anderf(x)= 2 √π x 0 e t2 dt denotestheerrorfunction.
Asdiscussedin[27],(1)isconvexandthusa(global)optimalsolution(w ,b) canbeobtainedusingagradientdescentalgorithm.Theresulting(linear)decisionfunction f (x)= w · x + b isusedinthetestingphaseforclassifyinganunseen samplesimilarlytothestandardlinearSVMalgorithm[4];thatis,accordingto thedistancebetweenthetestingsampleandtheseparatinghyperplane,without takingintoaccountanyuncertaintyestimatesthatcouldbemadeforthetesting samplerepresentation.
3.2KernelizingLSVM-iGSU(KSVM-iGSU)
Theoptimizationproblemdiscussedintheprevioussectioncanberecasted asavariationalcalculusproblemoffindingthefunction f thatminimizesthe functionalΦ[f ]:
wherethefunctionalΦ[f ]isgivenby
1 Sn ++ denotestheconvexconeofallsymmetricpositivedefinite n × n matriceswith entriesin R In denotestheidentitymatrixoforder n
where λ =1/C isaregularizationparameterand f belongstoaReproducing KernelHilbertSpace(RKHS), H,withassociatedkernel k .Usingageneralized semi-parametricversion[24]oftherepresentertheorem[17],itcanbeshown thattheminimizeroftheabovefunctionaladmitsasolutionoftheform
where b ∈ R, αi ∈ R, ∀i. Usingthereproducingproperty,wehave
2 H = f,f H =
,
where K isthekernelmatrix,i.e.thesymmetricpositivedefinite l × l matrix definedas K =(k (xi , xj ))l i,j =1 ,and α =(α1 , ··· ,αl ) .Moreover,weobserve that f (xi )= l j =1 αj k (xi , xj )= Ki · α,where Ki denotesthe i-thcolumnof thekernelmatrix K .Then,theobjectivefunction JH : Rl × R → R isgivenby
wheretheabovesumgivesthetotalloss.We(jointly)minimizetheaboveconvex2 objectivefunctionwithrespectto α, b similarlyto[27]usingtheLimitedmemoryBFGS(L-BFGS)algorithm[20].L-BFGSisaquasi-NewtonoptimizationalgorithmthatapproximatestheBroyden-Fletcher-Goldfarb-Shanno (BFGS)[3]algorithmusingalimitedamountofcomputermemory.Itrequires thefirstorderderivativesoftheobjectivefunctionwithrespecttotheoptimizationvariables α, b.Theyaregiven3 ,respectively,asfollows
2 ConvexitycanbeshownusingTheorem2provedin[27]. 3 Theirderivationisomitted,asitistechnicalbutstraightforward.
Another random document with no related content on Scribd:
—— (Dr. G.), 1020, 1032
Macfarren (Sir G. A.), 1030
Mackail (J. W.), 1018
Mackinnon (J.), 1006
Macleod (H. D.), 1016
Macpherson (Rev. H. A.), 1012
Madden (D. H.), 1013
Maher (Rev. M.), 1016
Malleson (Col. G. B.), 1005
Marbot (Baron de), 1007
Marquand (A.), 1030
Marshman (J. C.), 1007
Martineau (Dr. James), 1032
Maskelyne (J. N.), 1013
Maunder (S.), 1025
Max Müller (F.), 1007, 1008, 1015, 1016, 1022, 1030, 1032
—— (Mrs.), 1009
May (Sir T. Erskine), 1006
Meade (L. T.), 1026
Melville (G. J. Whyte), 1022
Merivale (Dean), 1006
Merriman (H. S.), 1022
Mill (James), 1015
—— (John Stuart), 1015, 1017
Milner (G.), 1031
Miss Molly (Author of), 1026
Moffat (D.), 1013
Molesworth (Mrs.), 1026
Monck (W. H. S.), 1015
Montague (F. C.), 1006
Montagu (Hon. John Scott), 1012
Moore (T.), 1025
—— (Rev. Edward), 1014
Morgan (C. Lloyd), 1017
Morris (W.), 1020, 1022, 1031
—— (Mowbray), 1011
Mulhall (M. G.), 1017
Nansen (F.), 1009
Nesbit (E.), 1020
Nettleship (R. L.), 1014
Newdigate - Newdegate (Lady), 1008
Newman (Cardinal), 1022
Ogle (W.), 1018
Oliphant (Mrs.), 1022
Oliver (W. D.), 1009
Onslow (Earl of), 1011
Orchard (T. N.), 1031
Osbourne (L.), 1023
Park (W.), 1013
Parr (Louisa), 1026
Payne-Gallwey (Sir R.), 1011, 1013
Peek (Hedley), 1011
Pembroke (Earl of), 1011
Phillipps-Wolley (C.), 1010, 1022
Pitman (C. M.), 1011
Pleydell-Bouverie (E. O.), 1011
Pole (W.), 1013
Pollock (W. H.), 1011
Poole (W. H. and Mrs.), 1029
Poore (G. V.), 1031
Potter (J.), 1016
Praeger (S. Rosamond), 1026
Prevost (C.), 1011
Pritchett (R. T.), 1011
Proctor (R. A.), 1013, 1024, 1028
Quill (A. W.), 1018
Raine (Rev. James), 1004
Ransome (Cyril), 1003, 1006
Rauschenbusch-Clough (Emma), 1008
Rawlinson (Rev. Canon), 1008
Rhoades (J.), 1018
Rhoscomyl (O.), 1023
Ribblesdale (Lord), 1013
Rich (A.), 1018
Richardson (C.), 1012
Richman (I. B.), 1006
Richmond (Ennis), 1031
Richter (J. Paul), 1031
Rickaby (Rev. John), 1016
—— (Rev. Joseph), 1016
Ridley (Sir E.), 1018
Riley (J. W.), 1020
Roget (Peter M.), 1016, 1025
Rolfsen (N.), 1008
Romanes (G. J.), 1008, 1015, 1017, 1020, 1032
—— (Mrs.), 1008
Ronalds (A.), 1013
Roosevelt (T.), 1004
Rossetti (Maria Francesca), 1031
—— (W. M.), 1020
Rowe (R. P. P.), 1011
Russell (Bertrand), 1017
—— (Alys), 1017
—— (Rev. M.), 1020
Saintsbury (G.), 1012
Samuels (E.), 1020
Sandars (T. C.), 1014
Sargent (A. J.), 1017
Schreiner (S. C. Cronwright), 1010
Seebohm (F.), 1006, 1008
Selous (F. C.), 1010
Sewell (Elizabeth M.), 1023
Shakespeare, 1020
Shand (A. I.), 1012
Sharpe (R. R.), 1006
Shearman (M.), 1010, 1011
Sinclair (A.), 1011
Smith (R. Bosworth), 1006
Smith (T. C.), 1004
Smith (W. P. Haskett), 1009
Solovyoff (V. S.), 1031
Sophocles, 1018
Soulsby (Lucy H.), 1026, 1031
Spedding (J.), 1007, 1014
Sprigge (S. Squire), 1008
Stanley (Bishop), 1024
Steel (A. G.), 1010
—— (J. H.), 1010
Stephen (Leslie), 1009
Stephens (H. Morse), 1006
Stevens (R. W.), 1031
Stevenson (R. L.), 1023, 1026
‘Stonehenge’, 1010
Storr (F.), 1014
Stuart-Wortley (A. J.), 1011, 1012
Stubbs (J. W.), 1006
Suffolk & Berkshire (Earl of), 1011
Sullivan (Sir E.), 1011
—— (J. F.), 1026
Sully (James), 1015
Sutherland (A. and G.), 1006
—— (Alex.), 1015, 1031
Suttner (B. von), 1023
Swinburne (A. J.), 1015
Symes (J. E.), 1017
Tacitus, 1018
Taylor (Col. Meadows), 1006
Tebbutt (C. G.), 1011
Thornhill (W. J.), 1018
Thornton (T. H.), 1008
Todd (A.), 1006
Toynbee (A.), 1017
Trevelyan (Sir G. O.), 1006, 1007
—— (C. P.), 1017
—— (G. M.), 1006
Trollope (Anthony), 1023
Tupper (L.), 1020
Turner (H. G.), 1031
Tyndall (J.), 1007, 1009
Tyrrell (R. Y.), 1018
Tyszkiewicz (M.), 1031
Upton (F. K. and Bertha), 1026
Van Dyke (J. C.), 1031
Verney (Frances P. and Margaret M.), 1008
Virgil, 1018
Vivekananda (Swami), 1032
Vivian (Herbert), 1009
Wakeman (H. O.), 1006
Walford (L. B.), 1023
Walker (Jane H.), 1029
Wallas (Graham), 1008
Walpole (Sir Spencer), 1006
Walrond (Col. H.), 1010
Walsingham (Lord), 1011
Walter (J.), 1008
Warwick (Countess of), 1031
Watson (A. E. T.), 1010, 1011, 1012, 1013, 1023
Webb (Mr. and Mrs. Sidney), 1017
—— (T. E.), 1015, 1019
Weber (A.), 1015
Weir (Capt. R.), 1011
Weyman (Stanley), 1023
Whately (Archbishop), 1014, 1015
—— (E. Jane), 1016
Whishaw (F.), 1023
White (W. Hale), 1020, 1031
Whitelaw (R.), 1018
Wilcocks (J. C.), 1013
Wilkins (G.), 1018
Willard (A. R.), 1031
Willich (C. M.), 1025
Witham (T. M.), 1011
Wood (Rev. J. G.), 1025
Wood-Martin (W. G.), 1006
Woods (Margaret L.), 1023
Wordsworth (Elizabeth), 1026
—— (William), 1020
Wyatt (A. J.), 1020
Wylie (J. H.), 1006
Youatt (W.), 1010
Zeller (E.), 1015
History, Politics, Polity, Political Memoirs, &c.
Abbott.—A H G .
By E A , M.A., LL.D.
Part I.—From the Earliest Times to the Ionian Revolt. Crown 8vo., 10s. 6d.
Part II.—500–445 B.C. Crown 8vo., 10s. 6d.
Acland and Ransome. A H O P H E 1896. Chronologically Arranged. By the Right Hon. A. H. D A , M.P., and C R , M.A. Crown 8vo., 6s.
Amos.—P E C G . For the Use of Colleges, Schools, and Private Students. By S A , M.A. Cr. 8vo., 6s.
ANNUAL REGISTER (THE). A Review of Public Events at Home and Abroad, for the year 1897. 8vo., 18s.
Volumes of the A R for the years 1863–1896 can still be had. 18s. each.
Arnold. I L M H . By T A , D.D., formerly Head Master of Rugby School. 8vo., 7s. 6d.
Ashbourne. P : S C H L T . By the Right Hon. E G , L A , Lord Chancellor of Ireland. With 11 Portraits. 8vo., 21s.
Baden-Powell.—T I V C . Examined with Reference to the Physical, Ethnographic, and Historical Conditions of the Provinces; chiefly on the Basis of the RevenueSettlement Records and District Manuals. By B. H. B P , M.A., C.I.E. With Map. 8vo., 16s.
Bagwell. I T . By R B , LL.D. (3 vols.) Vols. I. and II. From the first invasion of the Northmen to the year 1578. 8vo., 32s. Vol. III. 1578–1603. 8vo., 18s.
Ball.—H R L S I , from the Invasion of Henry the Second to the Union (1172–1800). By the Rt. Hon. J. T. B . 8vo., 6s.
Besant.—T H L . By Sir W B . With 74 Illustrations. Crown 8vo., 1s. 9d. Or bound as a School Prize Book, 2s. 6d.
Brassey (L ).—P A .
N M . 1872–1893. 2 vols. Crown 8vo., 10s.
M M N , 1871–1894. Crown 8vo., 5s.
I F C 1880–1894. Cr. 8vo., 5s.
P M . 1861–1894. Crown 8vo., 5s.
Bright. A H E . By the Rev. J. F B , D.D.
Period I. M M : A.D. 449–1485. Crown 8vo., 4s. 6d.
Period II. P M . 1485–1688. Crown 8vo., 5s.
Period III. C M . 1689–1837. Crown 8vo., 7s. 6d.
Period IV. T G D . 1837–1880. Crown 8vo., 6s.
Buckle.—H C E . By H T B . 3 vols. Crown 8vo., 24s.
Burke. A H S from the Earliest Times to the Death of Ferdinand the Catholic. By U R B , M.A. 2 vols. 8vo., 32s.
Chesney. I P : a View of the System of Administration in India. By General Sir G C , K.C.B. With Map showing all the Administrative Divisions of British India. 8vo., 21s.
Corbett.—D T N , with a History of the Rise of England as a Maritime Power. By J S. C . With Portraits, Illustrations and Maps. 2 vols. 8vo., 36s.
Creighton.—A H P G S S R , 1378–1527. By M. C , D.D., Lord Bishop of London. 6 vols. Crown 8vo., 6s. each.
Cuningham.—A S I F : a Senate for the Empire. By G C. C , of Montreal, Canada. With an Introduction by Sir F Y , K.C.M.G. Crown 8vo., 3s. 6d.
Curzon. P P Q . By the Right Hon. L C of Kedleston. With 9 Maps, 96 Illustrations, Appendices, and an Index. 2 vols. 8vo., 42s.
De Tocqueville. D A . By A T . Translated by H R , C.B., D.C.L. 2 vols.
Crown 8vo., 16s.
Dickinson. T D P N C . By G. L D , M.A. 8vo., 7s. 6d.
Froude (J A.).
T H E , from the Fall of Wolsey to the Defeat of the Spanish Armada.
Popular Edition. 12 vols. Crown 8vo., 3s. 6d. each.
‘Silver Library’ Edition. 12 vols. Crown 8vo., 3s. 6d. each.
T D C A . Crown 8vo., 3s. 6d.
T S S A , and other Essays. Cr. 8vo., 3s. 6d.
T E I E C . 3 vols. Cr. 8vo., 10s. 6d.
E S S C . Cr. 8vo., 6s.
T C T . Crown 8vo., 3s. 6d.
S S G S . 4 vols. Cr. 8vo., 3s. 6d. each.
C : a Sketch. Cr. 8vo, 3s. 6d.
Gardiner (S R , D.C.L., LL.D.).
H E , from the Accession of James I. to the Outbreak of the Civil War, 1603–1642. 10 vols. Crown 8vo., 6s. each.
A H G C W , 1642–1649. 4 vols. Cr. 8vo., 6s. each.
A H C P . 1649–1660. Vol.I. 1649–1651. With 14 Maps. 8vo., 21s. Vol. II. 1651–1654. With 7 Maps. 8vo., 21s.
W G P W . With 8 Illustrations. Crown 8vo., 5s.
C ’ P H . Founded on Six Lectures delivered in the University of Oxford. Cr. 8vo., 3s. 6d.
T S ’ H E . With 378 Illustrations. Crown 8vo., 12s.
Also in Three Volumes, price 4s. each.
Vol. I. B.C. 55–A.D. 1509. 173 Illustrations. Vol. II. 1509–1689. 96 Illustrations. Vol. III. 1689–1885. 109 Illustrations.
Greville.—A J R K G IV., K W IV., Q V . By C C. F. G , formerly Clerk of the Council. 8 vols. Crown 8vo., 3s. 6d. each.
HARVARD HISTORICAL STUDIES.
T S A S T U S A , 1638–1870. By W. E. B. D B , Ph.D. 8vo., 7s. 6d.
T C R F
C M . By S. B. H , A.M. 8vo., 6s.
A C S N S C . By D. F. H , A.M. 8vo., 6s.
N E O U S . By F W. D , A.M. 8vo., 7s. 6d.
A B B M H , G P R . By C G , Ph.D. 8vo., 12s.
T L F S P N W . By T C. S , Ph.D. 8vo, 7s. 6d.
T P G E C N A . By E B G . 8vo., 7s. 6d.
⁂ Other Volumes are in preparation.
Hammond. A W ’ P R . By Mrs. J H H . Crown 8vo., 2s. 6d.
Historic Towns.—Edited by E. A. F , D.C.L., and Rev. W H , M.A. With Maps and Plans. Crown 8vo., 3s. 6d. each.
Bristol. By Rev. W. Hunt. Carlisle. By Mandell Creighton, D.D. Cinque Ports. By Montagu Burrows. Colchester. By Rev. E. L. Cutts. Exeter. By E. A. Freeman. London. By Rev. W. J. Loftie. Oxford. By Rev. C. W. Boase. Winchester. By G. W. Kitchin, D.D. York. By Rev. James Raine. New York. By Theodore Roosevelt. Boston (U.S.) By Henry Cabot Lodge.
Hunter. A H B I . By Sir W W
H , K.C.S.I., M.A., LL. D.; a Vice-President of the Royal Asiatic Society. In 5 vols. Vol. I.—Introductory to the Overthrow of the English in the Spice Archipelago, 1623. 8vo., 18s.
Joyce (P. W., LL.D.).
A S H I , from the Earliest Times to 1603. Crown 8vo., 10s. 6d.
A C ’ H I . From the Earliest Times to the Death of O’Connell. With specially constructed Map and 160 Illustrations, including Facsimile in full colours of an illuminated page of the Gospel Book of MacDurnan, A.D. 850. Fcp. 8vo., 3s. 6d.
Kaye and Malleson. H I M , 1857–1858. By Sir J W. K and Colonel G. B. M . With Analytical Index and Maps and Plans. 6 vols. Crown 8vo., 3s. 6d. each.
Lang (A ).
P S : or, The Incognito of Prince Charles. With 6 Portraits. 8vo., 18s.
T C P : Being a Sequel to ‘Pickle the Spy’. With 4 Plates. 8vo., 16s.
S . A . With 8 Plates and 24 Illustrations in the Text by T. Hodge. 8vo., 15s. net.
Lecky (The Rt. Hon. W E. H.)
H E E C .
Library Edition. 8 vols. 8vo. Vols. I. and II., 1700–1760, 36s.; Vols. III. and IV., 1760–1784, 36s.; Vols. V. and VI., 1784–1793, 36s.; Vols. VII. and VIII., 1793–1800, 36s.
Cabinet Edition. E . 7 vols. Crown 8vo., 6s. each. I . 5 vols. Crown 8vo., 6s. each.
H E M A
C . 2 vols. Crown 8vo., 12s.
H R I S
R E . 2 vols. Crown 8vo., 12s.
D L .
Library Edition. 2 vols. 8vo., 36s.
Cabinet Edition. 2 vols. Cr. 8vo., 12s.
Lowell. G P C E . By
A. L L . 2 vols. 8vo., 21s.
Macaulay (L ).
T L W L M . ‘Edinburgh’ Edition. 10 vols. 8vo., 6s. each.
C W .
Cabinet Edition. 16 vols. Post 8vo. £4 16s.
Library Edition. 8 vols. 8vo., £5 5s.
‘Edinburgh’ Edition. 8 vols. 8vo., 6s. each.
‘Albany’ Edition. With 12 Portraits. 12 vols. Large Crown 8vo., 3s. 6d. each.
H E A J S .
Popular Edition. 2 vols. Cr. 8vo., 5s.
Student’s Edition. 2 vols. Cr. 8vo., 12s.
People’s Edition. 4 vols. Cr. 8vo., 16s.
‘Albany’ Edition. With 6 Portraits. 6 vols. Large Crown 8vo., 3s. 6d. each.
Cabinet Edition. 8 vols. Post 8vo., 48s.
‘Edinburgh’ Edition. 4 vols. 8vo., 6s. each.
Library Edition. 5 vols. 8vo., £4.
C H E , L R , etc., in 1 volume.
Popular Edition. Crown 8vo., 2s. 6d.
Authorised Edition. Crown 8vo., 2s. 6d., or gilt edges, 3s. 6d.
‘Silver Library’ Edition. With Portrait and 4 Illustrations to the ‘Lays’. Cr. 8vo., 3s. 6d.
C H E .
Student’s Edition. 1 vol. Cr. 8vo., 6s.
People’s Edition. 2 vols. Cr. 8vo., 8s.
‘Trevelyan’ Edition. 2 vols. Cr. 8vo., 9s.
Cabinet Edition. 4 vols. Post 8vo., 24s.
‘Edinburgh’ Edition. 3 vols. 8vo., 6s. each.
Library Edition. 3 vols. 8vo., 36s.
E , which may be had separately, sewed, 6d. each; cloth, 1s. each.
Addison and Walpole.
Croker’s Boswell’s Johnson.
Hallam’s Constitutional History.
Warren Hastings.
The Earl of Chatham (Two Essays).
Frederick the Great.
Ranke and Gladstone.
Milton and Machiavelli.
Lord Byron.
Lord Clive.
Lord Byron, and The Comic Dramatists of the Restoration.
M W
People’s Edition. 1 vol. Cr. 8vo., 4s. 6d.
Library Edition. 2 vols. 8vo., 21s.
S P .
Popular Edition. Crown 8vo., 2s. 6d.
Cabinet Edition. 4 vols. Post 8vo., 24s.
S W L M . Edited, with Occasional Notes, by the Right Hon. Sir G. O. Trevelyan, Bart.
Crown 8vo., 6s.
MacColl. T S P . By the Rev. M
M C , M.A., Canon of Ripon. 8vo., 10s. 6d.
Mackinnon. T U E S : S I H . By J M . Ph.D. Examiner in History to the University of Edinburgh. 8vo., 16s.
May. T C H E since the Accession of George III. 1760–1870. By Sir T E M , K.C.B. (Lord Farnborough). 3 vols. Cr. 8vo., 18s.
Merivale (C , D.D.), sometime Dean of Ely.
H R E . 8 vols. Crown 8vo., 3s. 6d. each.
T F R R : a Short History of the Last Century of the Commonwealth. 12mo., 7s. 6d.
G H R , from the Foundation of the City to the Fall of Augustulus, B.C. 753–A.D. 476. With 5 Maps. Crown 8vo, 7s. 6d.
Montague. T E E C H . By F. C. M , M.A. Crown 8vo., 3s. 6d.
Ransome. T R C G
E : being a Series of Twenty Lectures on the History of the English Constitution delivered to a Popular Audience. By C
R , M.A. Crown 8vo., 6s.
Richman.—A : P D P L
I -R . A Swiss Study. By I B. R , ConsulGeneral of the United States to Switzerland. With Maps. Crown 8vo., 5s.
Seebohm (F ).
T E V C . Examined in its Relations to the Manorial and Tribal Systems, etc. With 13 Maps and Plates. 8vo., 16s.
T T S W : Being Part of an Inquiry into the Structure and Methods of Tribal Society. With 3 Maps. 8vo.,
12s.
Sharpe. L K : a History derived mainly from the Archives at Guildhall in the custody of the Corporation of the City of London. By R R. S , D.C.L., Records Clerk in the Office of the Town Clerk of the City of London. 3 vols. 8vo. 10s. 6d. each.
Smith. C C . By R. B S , M.A., With Maps, Plans, etc. Cr. 8vo., 3s. 6d.
Stephens. A H F R . By H. M S . 8vo. Vols. I. and II. 18s. each.
Stubbs. H U D , from its Foundation to the End of the Eighteenth Century. By J. W. S . 8vo., 12s. 6d.
Sutherland. T H A N Z , from 1606–1890. By A S , M.A., and G S , M.A. Crown 8vo., 2s. 6d.
Taylor. A S ’ M H I . By Colonel M T , C.S.I., etc. Cr. 8vo., 7s. 6d.
Todd. P G B C . By A T , LL.D. 8vo., 30s. net.
Trevelyan. T A R . Part I. 1766–1776. By the Rt. Hon. Sir G. O. T , Bart. 8vo., 16s.
Trevelyan. E T W . By G M T , M.A. 8vo.
[In the Press.
Wakeman and Hassall. E I S E C H . By Resident Members of the University of Oxford. Edited by H O W , M.A., and A H , M.A. Crown 8vo., 6s.
Walpole.—H E C G W 1815 1858. By Sir S W , K.C.B. 6 vols. Crown 8vo., 6s. each.
Wood-Martin. P I : A S . A Handbook of Irish Pre-Christian Antiquities. By W. G. W M , M.R.I.A. With 512 Illustrations. Crown 8vo., 15s. Wylie. H E H IV. By J H W , M.A., one of H.M. Inspectors of Schools. 4 vols. Crown 8vo. Vol. I., 1399–1404, 10s. 6d. Vol. II., 1405–1406, 15s. Vol. III., 1407–1411, 15s. Vol. IV., 1411–1413, 21s.
Biography, Personal Memoirs, &c.
Armstrong. T L L E J. A .
Edited by G. F. S A . Fcp. 8vo., 7s. 6d.
Bacon. T L L F B , O W . Edited by J S . 7 Vols. 8vo., £4 4s.
Bagehot. B S . By W B . Crown 8vo., 3s. 6d.
Boevey.—‘T P W ’: being passages from the Life of Catharina, wife of William Boevey, Esq., of Flaxley Abbey, in the County of Gloucester. Compiled by A W. C B , M.A. With Portraits. 4to., 42s. net.
Carlyle. T C : A History of his Life. By J A F .
1795–1835. 2 vols. Crown 8vo., 7s. 1834–1881. 2 vols. Crown 8vo., 7s.
Crozier. M I L : being a Chapter in Personal Evolution and Autobiography. By J B C , Author of ‘Civilisation and Progress,’ etc. 8vo., 14s.
Digby. T L S K D , by one of his Descendants, the Author of ‘Falklands,’ etc. With 7 Illustrations. 8vo., 16s.
Duncan. A D . By T E C . With 3 Portraits. 8vo., 16s.
Erasmus. L L E . By J A F . Crown 8vo., 6s.
FALKLANDS. By the Author of ‘The Life of Sir Kenelm Digby,’ etc. With 6 Portraits and 2 other Illustrations. 8vo., 10s. 6d.