Multimedia modeling 22nd international conference mmm 2016 miami fl usa january 4 6 2016 proceedings

Page 1


Visit to download the full and correct content document: https://textbookfull.com/product/multimedia-modeling-22nd-international-conferencemmm-2016-miami-fl-usa-january-4-6-2016-proceedings-part-i-1st-edition-qi-tian/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

MultiMedia Modeling 23rd International Conference MMM 2017 Reykjavik Iceland January 4 6 2017 Proceedings Part II 1st Edition Laurent Amsaleg

https://textbookfull.com/product/multimedia-modeling-23rdinternational-conference-mmm-2017-reykjavik-icelandjanuary-4-6-2017-proceedings-part-ii-1st-edition-laurent-amsaleg/

MultiMedia Modeling 20th Anniversary International Conference MMM 2014 Dublin Ireland January 6 10 2014 Proceedings Part II 1st Edition Sema Alaçam

https://textbookfull.com/product/multimedia-modeling-20thanniversary-international-conference-mmm-2014-dublin-irelandjanuary-6-10-2014-proceedings-part-ii-1st-edition-sema-alacam/

MultiMedia Modeling 21st International Conference MMM 2015 Sydney NSW Australia January 5 7 2015 Proceedings Part I 1st Edition Xiangjian He

https://textbookfull.com/product/multimedia-modeling-21stinternational-conference-mmm-2015-sydney-nsw-australiajanuary-5-7-2015-proceedings-part-i-1st-edition-xiangjian-he/

Logical Foundations of Computer Science International Symposium LFCS 2016 Deerfield Beach FL USA January 4 7 2016 Proceedings 1st Edition Sergei Artemov

https://textbookfull.com/product/logical-foundations-of-computerscience-international-symposium-lfcs-2016-deerfield-beach-fl-usajanuary-4-7-2016-proceedings-1st-edition-sergei-artemov/

MultiMedia Modeling 21st International Conference MMM

2015 Sydney NSW Australia January 5 7 2015 Proceedings Part II 1st Edition Xiangjian He

https://textbookfull.com/product/multimedia-modeling-21stinternational-conference-mmm-2015-sydney-nsw-australiajanuary-5-7-2015-proceedings-part-ii-1st-edition-xiangjian-he/

Advances in Multimedia Information Processing PCM 2016

17th Pacific Rim Conference on Multimedia Xi an China

September 15 16 2016 Proceedings Part I 1st Edition

Enqing Chen

https://textbookfull.com/product/advances-in-multimediainformation-processing-pcm-2016-17th-pacific-rim-conference-onmultimedia-xi-an-china-september-15-16-2016-proceedingspart-i-1st-edition-enqing-chen/

Web Information Systems Engineering WISE 2015 16th

International Conference Miami FL USA November 1 3 2015

Proceedings Part II 1st Edition Jianyong Wang

https://textbookfull.com/product/web-information-systemsengineering-wise-2015-16th-international-conference-miami-fl-usanovember-1-3-2015-proceedings-part-ii-1st-edition-jianyong-wang/

Haptics

Perception Devices Control and Applications

10th International Conference EuroHaptics 2016 London

UK July 4 7 2016 Proceedings Part I 1st Edition

Fernando Bello

https://textbookfull.com/product/haptics-perception-devicescontrol-and-applications-10th-international-conferenceeurohaptics-2016-london-uk-july-4-7-2016-proceedings-part-i-1stedition-fernando-bello/

HCI International 2016 Posters Extended Abstracts 18th

International Conference HCI International 2016 Toronto Canada July 17 22 2016 Proceedings Part I 1st Edition

Constantine Stephanidis (Eds.)

https://textbookfull.com/product/hci-international-2016-postersextended-abstracts-18th-international-conference-hciinternational-2016-toronto-canada-july-17-22-2016-proceedingspart-i-1st-edition-constantine-stephanidis-eds/

Qi Tian · Nicu Sebe · Guo-Jun Qi

Benoit Huet · Richang Hong

Liu (Eds.)

MultiMedia Modeling

22nd International Conference, MMM 2016 Miami, FL, USA, January 4–6, 2016 Proceedings, Part I

LectureNotesinComputerScience9516

CommencedPublicationin1973

FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen

EditorialBoard

DavidHutchison

LancasterUniversity,Lancaster,UK

TakeoKanade

CarnegieMellonUniversity,Pittsburgh,PA,USA

JosefKittler UniversityofSurrey,Guildford,UK

JonM.Kleinberg

CornellUniversity,Ithaca,NY,USA

FriedemannMattern

ETHZurich,Zürich,Switzerland

JohnC.Mitchell

StanfordUniversity,Stanford,CA,USA

MoniNaor

WeizmannInstituteofScience,Rehovot,Israel

C.PanduRangan

IndianInstituteofTechnology,Madras,India

BernhardSteffen TUDortmundUniversity,Dortmund,Germany

DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA

DougTygar UniversityofCalifornia,Berkeley,CA,USA

GerhardWeikum

MaxPlanckInstituteforInformatics,Saarbrücken,Germany

Moreinformationaboutthisseriesathttp://www.springer.com/series/7409

QiTian • NicuSebe

Guo-JunQi • BenoitHuet

RichangHong • XueliangLiu(Eds.)

MultiMediaModeling

22ndInternationalConference,MMM2016

Miami,FL,USA,January4–6,2016

Proceedings,PartI

Editors

QiTian

UniversityofTexasatSanAntonio SanAntonio,TX USA

NicuSebe

DepartmentofInformationEngineering UniversityofTrento Povo,Trento Italy

Guo-JunQi

EECS UniversityofCentralFlorida Orlando,FL USA

BenoitHuet EURECOM

Sophia-Antipolis

France

RichangHong

HefeiUniversityofTechnology

Hefei,Anhui

China

XueliangLiu

SchoolofComputingandInformation

HefeiUniversityofTechnology

Hefei,Anhui

China

ISSN0302-9743ISSN1611-3349(electronic)

LectureNotesinComputerScience

ISBN978-3-319-27670-0ISBN978-3-319-27671-7(eBook) DOI10.1007/978-3-319-27671-7

LibraryofCongressControlNumber:2015957238

LNCSSublibrary:SL3 – InformationSystemsandApplications,incl.Internet/Web,andHCI

© SpringerInternationalPublishingSwitzerland2016

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature

TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland

Preface

The22ndInternationalConferenceonMultimediaModeling(MMM2016)washeldin Miami,USA,January4–6,2016,andwashostedbytheUniversityofCentralFlorida atOrlando,USA.MMMisaleadinginternationalconferenceforresearchersand industrypractitionerstosharetheirnewideas,originalresearchresults,andpractical developmentexperiencesfromallmultimedia-relatedareas.UniversityofCentral FloridaisaSpace-Grantuniversityandhasmadenotedresearchcontributionstodigital media,engineering,andcomputerscience.

MMM2016featuredacomprehensiveprogramincludingthreekeynotetalks,eight oralpresentationsessions,twopostersessions,onedemosession, fivespecialsessions, andtheVideoBrowserShowdown(VBS).The168submissionsfromauthorsof20 countriesincludedalargenumberofhigh-qualitypapersinmultimediacontentanalysis,multimediasignalprocessingandcommunications,andmultimediaapplications andservices.Wethankour130TechnicalProgramCommitteememberswhospent manyhoursreviewingpapersandprovidingvaluablefeedbacktotheauthors.Fromthe totalof117submissionstothemainconferenceandbasedonatleastthreereviewsper submission,theprogramchairsdecidedtoaccept32regularpapers(27.8%)and30 posterpapers(25.6%).Intotal,38paperswerereceivedfor5specialsessions,with20 beingselected,and11submissionswerereceivedforademosession,with7being selected.Videobrowsingsystemsofnineteamswereselectedforparticipationinthe VBS.Theauthorsofacceptedpaperscomefrom17countries.Thisvolumeofthe conferenceproceedingscontainstheabstractsofthreeinvitedtalksandalltheregular, poster,specialsession,anddemopapers,aswellasspecialdemopapersoftheVBS. MMM2016includedthefollowingawards:theBestPaperAward,theBestStudent PaperAward,andthewinneroftheVBScompetition.

Thetechnicalprogramisanimportantaspectbutonlyprovidesitsfullimpactif complementedbychallengingkeynotes.Wewereextremelypleasedandgratefulto havethreeexceptionalkeynotespeakers,WenGao(ACM/IEEEFellow),ChangWen Chen(IEEEFellow),andChangshengXu(IEEEFellow),acceptourinvitationand presentinterestingideasandinsightsatMMM2016.

Weareheavilyindebtedtomanyindividualsfortheirsignificantcontributions.We thanktheMMMSteeringCommitteefortheirinvaluableinputandguidanceoncrucial decisions.Wewishtoacknowledgeandexpressourdeepestappreciationtothe organizingchairs,XueliangLiuandLumingZhang,thespecialsessionchairs,WenHuangChen,HaojieLiandRongrongJi,thepanelchair,Tat-SengChua,thedemo chairs,CathalGurrinandBjörn ÞórJónsson,theVBSchairs,KlausSchöffmannand WernerBailer,thepublicitychairs,Yu-GangJiang,ShuichengYan,HengtaoShen, ZhengjunZha,andShengWu,thepublicationchairs,NaZhaoandZechaoLi,andlast butnotleasttheWebmaster,JunHe.Withouttheireffortsandenthusiasm,MMM2016 wouldnothavebecomeareality.Moreover,wewanttothankoursponsorthe

UniversityofCentralFlorida.Finally,wewishtothankallcommitteemembers, reviewers,sessionchairs,studentvolunteers,andsupporters.Theircontributionsare muchappreciated.

January2016Guo-JunQi

BenoitHuet

RichangHong

NicuSebe

QiTian

Organization

MMM2016wasorganizedbytheUniversityofCentralFlorida,USA.

MMM2016SteeringCommittee

PhoebeChenLaTrobeUniversity,Australia Tat-SengChuaNationalUniversityofSingapore

ShiqiangYangTsinghuaUniversity,China

KiyoharuAizawaUniversityofTokyo,Japan

NoelE.O’ConnorDublinCityUniversity,Ireland

CessG.M.SnoekUniversityofAmsterdam,TheNetherlands

MengWangHefeiUniversityofTechnology,China R.ManmathaUniversityofMassachusetts,USA CathalGurrinDublinCityUniversity,Ireland KlausSchoeffmannKlagenfurtUniversity,Austria BenoitHuetEurecom,France

MMM2016OrganizingCommittee

GeneralCo-chairs

QiTianUniversityofTexasatSanAntonio,USA NicuSebeUniversityofTrento,Italy

ProgramCo-chairs

GuojunQiUniversityofCentralFlorida,USA BenoitHuetEurecom,France

RichangHongHefeiUniversityofTechnology,China

OrganizingCo-chairs

XueliangLiuHefeiUniversityofTechnology,China Luming,ZhangNationalUniversityofSingapore,Singapore

SpecialSessionCo-chairs

Wen-HuangChengAcademiaSinica,Taiwan

HaojieLiDalianUniversityofTechnology,China RongrongJiXiamenUniversity,China

DemoSessionCo-chairs

CathalGurrinDublinCityUniversity,Ireland

Björn ÞórJónssonReykjavíkUniversity,Iceland

PublicationCo-chairs

NaZhaoNationalUniversityofSingapore,Singapore ZechaoLiNanjingUniversityofScienceandTechnology,China

PublicityCo-chairs

Yu-GangJiangFudanUniversity,China ShuichengYanNationalUniversityofSingapore,Singapore HengtaoShenUniversityofQueensland,Australia ZhengjunZhaChineseAcademyofSciences,China ShengWuGoogle,USA

PanelChair

Tat-SengChuaNationalUniversityofSingapore,Singapore

VideoSearchShowcaseCo-chairs

WernerBailerJoanneumResearch,Graz,Austria KlausSchoeffmannKlagenfurtUniversity,Austria

WebMaster

JunHeHefeiUniversityofTechnology,China

TechnicalProgramCommittee

SelimBalcisoySabanciUniversity,Turkey YingboLiEcoleNormaleSuperieure,France LifengSunTsinghuaUniversity,China CathalGurrinDublinCityUniversity,Ireland HaojieLiDalianUniversityofTechnology,China RainerLienhartUniversityofAugsburg,Germany RossanaDamianoUniversityofTurin,Italy Zheng-JunZhaInstituteofIntelligentMachines,CAS,China VincentCharvillatUniversityofToulouse,France LiqiangNieNationalUniversityofSingapore,Singapore WolfgangHurstUtrechtUniversity,TheNetherlands Wei-GuangTengNationalChengKungUniversity,Taiwan BoYanFudanUniversity,China

WernerBailerJoanneumResearch,Austria Mei-LingShyuUniversityofMiami,USA LuizFernandoGomes

Soares CatholicUniversityofRiodeJaneiro,Brazil

JoemonJoseUniversityofGlasgow,UK MyleneFariasUniversityofBrasilia,Brazil WolfgangHuerstUtrechtUniversity,TheNetherlands

XuranZhaoZhejiangGongshangUniversity,China NaokoNittaOsakaUniversity,Japan JunYuHangdianUniversity,China

GeorgThallingerJoanneumResearch,Austria Yu-GangJiangFudanUniversity,China MarkusKoskelaUniversityofHelsinki,Finland JingdongWangMicrosoftResearchAsia,China ZiyuGuanWestNorthUniversity,China WilliamGroskyUniversityofMichigan,USA GeorgesQuenotLIG/IMAG,France

Duy-DinhLeNationalInstituteofInformatics,Japan HenningMullerTheUniversityofAppliedSciencesandArts ofWesternSwitzerland Wen-HsiangTsaiNationalChiaoTungUniversity,Taiwan AnantBaijalSamsung,Korea

KuiyuanYangMicrosoftResearchAsia,China ShengTangChineseAcademyofSciences,China ShinIchiSatohNationalInstituteofInformatics,Japan MarcelWorringUniversityofAmsterdam,TheNetherlands AjayDivakaranSarnoffCorporation,USA PengCuiTsinghuaUniversity,China HanwangZhangNationalUniversityofSingapore,Singapore JitaoSangChineseAcademyofSciences,China RichangHongHefeiUniversityofTechnology,China HaraldKoschUniversityofPassau,Germany ShikuiWeiBeijingJiaotongUniversity,China BoLiuUniversityofRutgers,USA WolfgangEffelsbergUniversityofMannheim,Germany NoelE.O.ConnorDublinCityUniversity,Ireland LuFangUniversityofScienceandTechnology,China XiaoWuWestSouthJiaotongUniversity,China XinmeiTianUniversityofScienceandTechnology,China XueliangLiuHefeiUniversityofTechnology,China RuiMinCognitec,Germany

JiroKattoWasedaUniversity,Japan JianChengChineseAcademyofSciences,China VincentOriaNewJerseyInstituteofTechnology,USA DaliborMitrovicViennaUniversityofTechnology,Austria MilanBjelicaUniversityofBelgrade,Serbia AndreasHenrichUniversityofBamberg,Germany ShijieHaoHefeiUniversityofTechnology,China PhivosMylonasNationalTechnicalUniversityofAthens,Greece FengWangEastChinaNormalUniversity,China AllanHanburyViennaUniversityofTechnology,Austria JinqiaoWangChineseAcademyofSciences,China TianzhuZhangChineseAcademyofSciences,China

YifanZhangChineseAcademyofSciences,China Wei-TaChuNationalChungChengUniversity,Taiwan WesleyDeNeveJoanneumResearch,Austria JeanMartinetUniversityofLille,France

OgnjenArandjelovicTrinityCollegeCambridge,UK

KeijiYanaiUniversityofElectro-Communications,Japan

RongrongJiXiamenUniversity,China

JinhuiTangNanjingUniversityofScienceandTechnology,China MaiaZaharievaViennaUniversityofTechnology,Austria ChaZhangMicrosoftResearch,USA

ShiyuChangUniversityofIllinoisUrbana-Champaign,USA

LeAnUniversityofNorthCarolinaatChapelHill,USA MohanKankanhalliNationalUniversityofSingapore,Singapore ShiaiZhuUniversityofWaterloo,USA

VasileiosMezarisCERTH/ITI,Greece

YannickPrieUniversityClaudeBernardLyon1,France MichelCrucianuCNAM,France

XiaoyiJiangUniversityofMünster,Germany

Sponsors

UniversityofCentralFlorida

Contents – PartI

RegularPapers

VideoEventDetectionUsingKernelSupportVectorMachine withIsotropicGaussianSampleUncertainty(KSVM-iGSU).............3 ChristosTzelepis,VasileiosMezaris,andIoannisPatras

VideoContentRepresentationUsingRecurringRegionsDetection........16 LukasDiemandMaiaZaharieva

GroupFeatureSelectionforAudio-BasedVideoGenreClassification......29 GerhardSageder,MaiaZaharieva,andChristianBreiteneder

ComputationalCartoonist:AComic-StyleVideoSummarization SystemforAnimeFilms.....................................42 TsukasaFukusato,TatsunoriHirai,ShunyaKawamura, andShigeoMorishima

ExploringtheLongTailofSocialMediaTags......................51 SvetlanaKordumova,JanvanGemert,andCeesG.M.Snoek

VisualAnalysesofMusicDownloadHistory:UserStudies.............63 DongLiuandJingxianZhang

PersonalizedAnnotationforMobilePhotosBasedonUser ’sSocialCircle...76 YanhuiHong,TiandiChen,KangZhang,andLifengSun

UtilizingSensor-SocialCuestoLocalizeObjects-of-Interest inOutdoorUGVs..........................................88 YingjieXia,LumingZhang,LiqiangNie,andWenjingGeng

NEWSMAN:UploadingVideosoverAdaptiveMiddleboxestoNews ServersinWeakNetworkInfrastructures..........................100 RajivRatnShah,MohamedHefeeda,RogerZimmermann, KhaledHarras,Cheng-HsinHsu,andYiYu

ComputationalFaceReader...................................114 XiangboShu,LiyanZhang,JinhuiTang,Guo-SenXie, andShuichengYan

PosedandSpontaneousExpressionRecognitionThroughRestricted BoltzmannMachine.........................................127 ChongliangWuandShangfeiWang

DFRS:ALarge-ScaleDistributedFingerprintRecognitionSystem BasedonRedis............................................138 BingLi,ZhenHuang,JinbangChen,YifanYuan,andYuxingPeng

LogoRecognitionviaImprovedTopologicalConstraint................150 PanpanTangandYuxinPeng

CompoundFigureSeparationCombiningEdgeandBandSeparator Detection................................................162 MarioTaschwerandOgeMarques

CameraNetworkBasedPersonRe-identificationbyLeveraging Spatial-TemporalConstraintandMultipleCamerasRelations............174 WenxinHuang,RuiminHu,ChaoLiang,YiYu,ZhengWang, XianZhong,andChunjieZhang

GlobalContrastBasedSalientRegionBoundarySampling forActionRecognition......................................187 ZengminXu,RuiminHu,JunChen,HuafengChen,andHongyangLi

ElasticEdgeBoxesforObjectProposalonRGB-DImages.............199 JingLiu,TongweiRen,andJiaBei

PairingContourFragmentsforObjectRecognition...................212 WeiZheng,QianZhang,ZhixuanLi,andJunjunXiong

InstanceSearchwithWeakGeometricCorrelationConsistency...........226 ZhenxingZhang,RamiAlbatal,CathalGurrin,andAlanF.Smeaton

Videopedia:LectureVideoRecommendationforEducationalBlogs UsingTopicModeling.......................................238 SubhasreeBasu,YiYu,VivekK.Singh,andRogerZimmermann

TowardsTraining-FreeRefinementforSemanticIndexingofVisual Media..................................................251 PengWang,LifengSun,ShiqangYang,andAlanF.Smeaton

DeepLearningGenericFeaturesforCross-MediaRetrieval.............264 XindiShang,HanwangZhang,andTat-SengChua

Cross-MediaRetrievalviaSemanticEntityProjection.................276 LeiHuangandYuxinPeng

VisualRe-rankingThroughGreedySelectionandRankFusion..........289 BinLin,AiWei,andXinmeiTian

No-referenceImageQualityAssessmentBasedonStructural andLuminanceInformation...................................301 QiaohongLi,WeisiLin,JingtaoXu,YumingFang, andDanielThalmann

LearningMultipleViewswithOrthogonalDenoisingAutoencoders........313 TengQiYe,TianchunWang,KevinMcGuinness,YuGuo, andCathalGurrin

FastNearestNeighborSearchintheHammingSpace.................325 ZhanshengJiang,LingxiXie,XiaotieDeng,WeiweiXu, andJingdongWang

SOMH:ASelf-OrganizingMapBasedTopologyPreservingHashing Method.................................................337 Xiao-LongLiang,Xin-ShunXu,LizhenCui,ShanqingGuo, andXiao-LinWang

DescribingImageswithOntology-AwareDictionaryLearning...........349 ChengyueZhangandYahongHan

QualityAnalysisonMobileDevicesforReal-TimeFeedback............359 StefanieWechtitsch,HannesFassold,MarcusThaler, KrzysztofKozłowski,andWernerBailer

InteractiveSearchinVideo:NavigationWithFlick Gesturesvs.Seeker-Bars.....................................370 KlausSchoeffmann,MarcoA.Hudelist,BonifazKaufmann, andKevinChromik

Second-LayerNavigationinMobileHypervideoforMedicalTraining......382 BrittaMeixnerandMatthiasGold

PosterPapers

ReverseTestingImageSetModelBasedMulti-viewHumanAction Recognition..............................................397 Z.Gao,Y.Zhang,H.Zhang,G.P.Xu,andY.B.Xue

FaceImageSuper-ResolutionThroughImprovedNeighborEmbedding.....409 KebinHuang,RuiminHu,JunjunJiang,ZhenHan,andFengWang

AdaptiveMultichannelReductionUsingConvexPolyhedralLoudspeaker Array...................................................421 LingkunZhang,RuiminHu,DengshiLi,XiaochenWang, andWeipingTu

DominantSetBasedDataClusteringandImageSegmentation...........432 JianHou,ChunshiSha,HongxiaCui,andLeiChi

AnR-CNNBasedMethodtoLocalizeSpeechBalloonsinComics........444 YongtaoWang,XichengLiu,andZhiTang

FacialAgeEstimationwithImagesintheWild.....................454

MingZou,JianweiNiu,JinpengChen,YuLiu,andXiaokeZhao

FastVisualVocabularyConstructionforImageRetrievalUsing Skewed-Splitk-dTrees......................................466

IliasGialampoukidis,StefanosVrochidis,andIoannisKompatsiaris

OGB:ADistinctiveandEfficientFeatureforMobileAugmented Reality..................................................478

XinYang,XinggangWang,andKwang-Ting(Tim)Cheng

LearningRelativeAestheticQualitywithaPairwiseApproach...........493 HaoLvandXinmeiTian

RobustCrowdSegmentationandCountinginIndoorScenes............505

RenYang,HuazhongXu,andJinqiaoWang

RobustSketch-BasedImageRetrievalbySaliencyDetection............515 XiaoZhangandXuejinChen

ImageClassificationUsingSpatialDifferenceDescriptorUnderSpatial PyramidMatchingFramework.................................527 YuhuiLi,JiuchengXu,YifanZhang,ChunjieZhang,HongshengYin, andHanqingLu

ExploringRelationshipBetweenFaceandTrustworthyImpressionUsing Mid-levelFacialFeatures.....................................540

YanYan,JieNie,LeiHuang,ZhenLi,QingleiCao,andZhiqiangWei

Edit-BasedFontSearch......................................550

KenIshibashiandKazunoriMiyata

PrivateVideoForegroundExtractionThroughChaoticMappingBased EncryptionintheCloud......................................562

XinJin,KuiGuo,ChenggenSong,XiaodongLi,GengZhao,JingLuo, YuzhenLi,YingyaChen,YanLiu,andHuaichaoWang

EvaluatingAccessMechanismsforMultimodalRepresentations ofLifelogs...............................................574

ZhengweiQiu,CathalGurrin,andAlanF.Smeaton

AnalysisandComparisonofInter-ChannelLevelDifferenceandInteraural LevelDifference...........................................586

TingzhaoWu,RuiminHu,LiGao,XiaochenWang,andShanfaKe

AutomaticScribbleSimulationforInteractiveImageSegmentation Evaluation...............................................596

BingjieJiang,TongweiRen,andJiaBei

Multi-modalImageRe-rankingwithAutoencodersandClickSemantics....609 ChaohuiTang,QingxinZhu,ChaoqunHong,andJunYu

Sketch-BasedImageRetrievalwithaNovelBoVWRepresentation........621 ChengJin,ChenjieLi,ZhemingWang,YuejieZhang,andTaoZhang

Symmetry-AwareHumanShapeCorrespondenceUsingSkeleton.........632 ZongyiXuandQianniZhang

XTemplate4.0:ProvidingAdaptiveLayoutsandNestedTemplates forHypermediaDocuments...................................642

GlaucoF.Amorim,JoelA.F.dosSantos, andDéboraC.Muchaluat-Saade

LevelRatioBasedInterandIntraChannelPredictionwithApplication toStereoAudioFrameLossConcealment.........................654 YuhongYang,YanyeWang,RuiminHu,HongjiangYu,LiGao, andSongWang

DepthMapCodingbyModelingtheLocalityandLocalCorrelation ofViewSynthesisDistortionin3-DVideo........................662 QiongXue,XuguangLan,andMengYang

DiscriminativeFeatureLearningwithanOptimalPatternModelforImage Classification.............................................675 LijuanLiu,YuBao,HaojieLi,XinFan,andZhongxuanLuo

SignLanguageRecognitionBasedonTrajectoryModelingwithHMMs....686 JunfuPu,WengangZhou,JihaiZhang,andHouqiangLi

MusicMixer:AutomaticDJSystemConsideringBeatandLatentTopic Similarity................................................698 TatsunoriHirai,HironoriDoi,andShigeoMorishima

AdaptiveSynopsisofNon-HumanPrimates’ SurveillanceVideoBasedon BehaviorClassification......................................710 DongqiCai,FeiSu,andZhichengZhao

APacketSchedulingMethodforMultimediaQoSProvisioning..........722 JinbangChen,ZhenHuang,MartinHeusse, andGuillaumeUrvoy-Keller

RobustObjectTrackingUsingValidFragmentsSelection..............738 JinZheng,BoLi,PengTian,andGangLuo

SpecialSessionPosterPapers

ExploringDiscriminativeViewsfor3DObjectRetrieval...............755 DongWang,BinWang,SichengZhao,HongxunYao,andHongLiu

WhatCatchesYourEyesasYouMoveAround?OntheDiscovery ofInterestingRegionsintheStreet..............................767 Heng-YuChi,Wen-HuangCheng,Chuang-WenYou, andMing-SyanChen

BagDetectionandRetrievalinStreetShots........................780 ChongCao,YuningDu,andHaizhouAi

TVCommercialDetectionUsingSuccessBasedLocallyWeightedKernel Combination..............................................793

RaghvendraKannaoandPrithwijitGuha

Frame-WiseContinuity-BasedVideoSummarizationandStretching.......806 TatsunoriHiraiandShigeoMorishima

RespirationMotionStateEstimationon4DCTRibCageImages.........818 ChaoXie,WengangZhou,WeipingDing,HouqiangLi,andWeipingLi

Location-AwareImageClassification.............................829 XinggangWang,XinYang,WenyuLiu,ChenDuan, andLonginJanLatecki

EnhancementforDust-SandStormImages.........................842 JianWang,YanweiPang,YuqingHe,andChangshuLiu

UsingInstagramPictureFeaturestoPredictUsers’ Personality...........850 BruceFerwerda,MarkusSchedl,andMarkoTkalcic

ExtractingVisualKnowledgefromtheInternet:MakingSenseofImage Data...................................................862 YazhouYao,JianZhang,Xian-ShengHua,FuminShen, andZhenminTang

OrderingofVisualDescriptorsinaClassifierCascadeTowardsImproved VideoConceptDetection.....................................874 FoteiniMarkatopoulou,VasileiosMezaris,andIoannisPatras

SpatialConstrainedFine-GrainedColorNameforPerson Re-identification...........................................886

YangYang,YuhongYang,MangYe,WenxinHuang,ZhengWang, ChaoLiang,LeiYao,andChunjieZhang

DealingwithAmbiguousQueriesinMultimodalVideoRetrieval.........898 LucaRossetto,ClaudiuTănase,andHeikoSchuldt

CollaborativeQ-LearningBasedRoutingControlinUnstructuredP2P Networks................................................910 Xiang-JunShen,QingChang,Jian-PingGou,Qi-RongMao, Zheng-JunZha,andKeLu

AuthorIndex ............................................923

Contents – PartII

SpecialSessionPosterPapers(continued)

TransferNonnegativeMatrixFactorizationforImageRepresentation.......3 TianchunWang,TengQiYe,andCathalGurrin

SentimentAnalysisonMulti-ViewSocialData......................15 TengNiu,ShiaiZhu,LeiPang,andAbdulmotalebElSaddik

SingleImageSuper-ResolutionviaConvolutionalNeuralNetwork andTotalVariationRegularization..............................28 YanyunQu,CuitingShi,JunranLiu,LiyingPeng,andXiaofengDu

AnEffectiveFaceVerificationAlgorithmtoFuseCompleteFeatures inConvolutionalNeuralNetwork...............................39 YukunMa,JiaoyuHe,LifangWu,andWeiQi

DriverFatigueDetectionSystemBasedonDSPPlatform..............47 ZiboLi,FanZhang,GuangminSun,DequnZhao,andKunZheng

Real-TimeGrayscale-ThermalTrackingviaLaplacianSparse Representation............................................54 ChenglongLi,ShiyiHu,SihanGao,andJinTang

EfficientPerceptualRegionDetectorBasedonObjectBoundary..........66 GangWang,KeGao,YongdongZhang,andJintaoLi

1DBarcodeRegionDetectionBasedontheHoughTransform andSupportVectorMachine..................................79 ZhihuiWang,AiChen,JianjunLi,YeYao,andZhongxuanLuo

SpecialSessionPapers

Client-DrivenStrategyofLarge-ScaleSceneStreaming................93 LaixiangWen,NingXie,andJinyuanJia

SELSH:AHashingSchemeforApproximateSimilaritySearch withEarlyStopCondition....................................104 JieChen,ChengkunHe,GangHu,andJieShao

LearningHoughTransformwithLatentStructuresforJointObject DetectionandPoseEstimation.................................116 HanxiLi,XumingHe,NickBarnes,andMingwenWang

ConsensusGuidedMultipleMatchRemovalforGeometryVerification inImageRetrieval..........................................130 HongWu,XingHeng,andZenglinXu

LocalityConstrainedSparseRepresentationforCatRecognition..........140 Yu-ChenChen,ShintamiC.Hidayati,Wen-HuangCheng, Min-ChunHu,andKai-LungHua

UserProfilingbyCombiningTopicModelingandPointwiseMutual Information(TM-PMI).......................................152 LifangWu,DanWang,ChengGuo,JiananZhang, andChangwenChen

ImageRetrievalUsingColor-AwareTagonProgressiveImageSearch andRecommendationSystem..................................162 Shih-YuKu,Kai-HsiangChen,Jen-WeiHuang,andYuTsao

AdvancingIterativeQuantizationHashingUsingIsotropicPrior..........174 LaiLi,GuangcanLiu,andQingshanLiu

AnImprovedRANSACImageStitchingAlgorithmBased SimilarityDegree..........................................185 YuleGe,ChunxiaoGao,andGuoDongLiu

ANovelEmotionalSaliencyMaptoModelEmotionalAttention Mechanism...............................................197 XinmiaoDing,LuluHuang,BingLi,CongyanLang,ZhenHua, andYulingWang

AutomaticEndmemberExtractionUsingPixelPurityIndex forHyperspectralImagery....................................207 QianlanZhou,JingZhang,QiTian,LiZhuo,andWenhaoGeng

AFast3DIndoor-LocalizationApproachBasedonVideoQueries........218 GuoyuLu,YanYan,AbhishekKolagunda,andChandraKambhamettu

SmartAmbientSoundAnalysisviaStructuredStatisticalModeling........231 JialieShen,LiqiangNie,andTat-SengChua

DiscriminantManifoldLearningviaSparseCodingforImageAnalysis.....244 MengPang,BinghuiWang,XinFan,andChuangLin

AVeryDeepSequencesLearningApproachforHuman ActionRecognition.........................................256 ZhihuiLinandChunYuan

AttributeDiscoveryforPersonRe-Identification.....................268 TakayukiUmeda,YongqingSun,GoIrie,KyokoSudo, andTetsuyaKinebuchi

WhataretheLimitstoTimeSeriesBasedRecognition ofSemanticConcepts?.......................................277

PengWang,LifengSun,ShiqiangYang,andAlanF.Smeaton

TenResearchQuestionsforScalableMultimediaAnalytics.............290

Björn ÞórJónsson,MarcelWorring,JanZahálka,StevanRudinac, andLaurentAmsaleg

Shaping-UpMultimediaAnalytics:NeedsandExpectationsofMedia Professionals.............................................303

GuillaumeGravier,MartinRagot,LaurentAmsaleg,RémiBois, GrégoireJadi, ÉricJamet,LauraMonceaux,andPascaleSébillot

InformedPerspectivesonHumanAnnotationUsingNeuralSignals........315 GrahamF.Healy,CathalGurrin,andAlanF.Smeaton

DemoSessionPapers

GrillCam:AReal-TimeEatingActionRecognitionSystem.............331

KoichiOkamotoandKeijiYanai

SearchinginVideoCollectionsUsingSketchesandSampleImages –TheCineastSystem.........................................336

LucaRossetto,IvanGiangreco,SilvanHeller,ClaudiuTănase, andHeikoSchuldt

LoggerMan,aComprehensiveLoggingandVisualizationTool toCaptureComputerUsage...................................342

ZaherHinbarji,RamiAlbatal,NoelO’Connor,andCathalGurrin

E 2 SGM :EventEnrichmentandSummarizationbyGraphModel..........348 XueliangLiu,FeifeiWang,BenoitHuet,andFengWang

METU-MMDS:AnIntelligentMultimediaDatabaseSystem forMultimodalContentExtractionandQuerying....................354 AdnanYazici,SaeidSattari,TurgayYilmaz,MustafaSert, MuratKoyuncu,andElvanGulen

ApplyingVisualUserInterestProfilesforRecommendation andPersonalisation.........................................361

JiangZhou,RamiAlbatal,andCathalGurrin

Cross-ModalFashionSearch..................................367

SusanaZoghbi,GeertHeyman,JuanCarlosGomez, andMarie-FrancineMoens

VideoBrowserShowdown

IMOTION – SearchingforVideoSequencesUsingMulti-Shot SketchQueries............................................377

LucaRossetto,IvanGiangreco,SilvanHeller,ClaudiuTănase, HeikoSchuldt,StéphaneDupont,OmarSeddati,MetinSezgin, OzanCanAltıok,andYusufSahillioğlu

iAutoMotion – anAutonomousContent-BasedVideoRetrievalEngine.....383

LucaRossetto,IvanGiangreco,ClaudiuTănase,HeikoSchuldt, StéphaneDupont,OmarSeddati,MetinSezgin,andYusufSahillioğlu

SelectingUserGeneratedContentforUseinMediaProductions..........388 WernerBailer,WolfgangWeiss,andStefanieWechtitsch

VERGE:AMultimodalInteractiveSearchEngineforVideoBrowsing andRetrieval.............................................394

AnastasiaMoumtzidou,TheodorosMironidis,EvlampiosApostolidis, FoteiniMarkatopoulou,AnastasiaIoannidou,IliasGialampoukidis, KonstantinosAvgerinakis,StefanosVrochidis,VasileiosMezaris, IoannisKompatsiaris,andIoannisPatras

CollaborativeVideoSearchCombiningVideoRetrievalwithHuman-Based VisualInspection..........................................400

MarcoA.Hudelist,ClaudiuCobârzan,ChristianBeecks, RobvandeWerken,SabrinaKletz,WolfgangHürst, andKlausSchoeffmann

Multi-sketchSemanticVideoBrowser............................406

DavidKuboň,AdamBlažek,JakubLokoč,andTomáš Skopal

FacetedNavigationforBrowsingLargeVideoCollection..............412 ZhenxingZhang,WeiLi,CathalGurrin,andAlanF.Smeaton

NavigatingaGraphofScenesforExploringLargeVideoCollections......418 KaiUweBarthel,NicoHezel,andRadekMackowiak

MentalVisualBrowsing.....................................424

JunHe,XindiShang,HanwangZhang,andTat-SengChua

AuthorIndex ............................................429

RegularPapers

ChristosTzelepis1,2(B) ,VasileiosMezaris1 ,andIoannisPatras2

1 InformationTechnologiesInstitute(ITI),CERTH,57001Thermi,Greece {tzelepis,bmezaris}@iti.gr

2 QueenMaryUniversityofLondon,MileEndCampus,LondonE14NS,UK i.patras@qmul.ac.uk

Abstract. Inthispaper,weproposeanalgorithmthatlearnsfrom uncertaindataandexploitsrelatedvideosfortheproblemofeventdetection;relatedvideosarethosethatarecloselyassociated,thoughnotfully depictingtheeventofinterest.Inparticular,twoextensionsofthelinear SVMwithGaussianSampleUncertaintyarepresented,which(a)leadto non-lineardecisionboundariesand(b)incorporaterelatedclasssamples intheoptimizationproblem.Theresultinglearningmethodsareespeciallyusefulinproblemswhereonlyalimitednumberofpositiveand relatedtrainingobservationsareprovided,e.g.,forthe10Exsubtask ofTRECVIDMED,whereonlytenpositiveandfiverelatedsamples areprovidedforthetrainingofacomplexeventdetector.Experimental resultsontheTRECVIDMED2014datasetverifytheeffectivenessof theproposedmethods.

Keywords: Videoeventdetection · Veryfewpositivesamples · Related samples · Learningwithuncertainty · Kernelmethods · Relevancedegree SVMs

1Introduction

High-levelvideoeventdetectionisconcernedwithdeterminingwhetheracertainvideodepictsagiveneventornot.Typically,ahigh-level(orcomplex) eventisdefinedasaninteractionamonghumans,orbetweenhumansandphysicalobjects[16].Sometypicalexamplesofcomplexeventsarethoseprovided intheMultimediaEventDetection(MED)taskoftheTRECVIDbenchmarkingactivity[22].Forinstance,indicativecomplexeventsdefinedinMED2014 include“Attemptingabiketrick”,“Cleaninganappliance”,or“Beekeeping”, tonameafew.

Therearenumerouschallengesassociatedwithbuildingeffectivevideoevent detectors.Oneofthemisthatoftenthereisonlyalimitednumberofpositive videoexamplesavailablefortraining.Anotherchallengeisthatvideorepresentationtechniquesusuallyintroduceuncertaintyintheinputthatisfedto c SpringerInternationalPublishingSwitzerland2016 Q.Tianetal.(Eds.):MMM2016,PartI,LNCS9516,pp.3–15,2016. DOI:10.1007/978-3-319-27671-7 1

4C.Tzelepisetal.

theclassifiers,andthisalsoneedstobetakenintoconsiderationduringclassifiertraining.Inthisworkwedealwiththeproblemoflearningvideoevent detectorswhenalimitednumberofpositiveandrelated(i.e.,videosthatare closelyrelatedwiththeevent,butdonotmeettheexactrequirementsforbeing apositiveeventinstance[22])eventvideosareprovided.Forthis,weexploit theuncertaintyofthetrainingvideosbyextendingthelinearSupportVector MachinewithGaussianSampleUncertainty(LSVM-GSU),presentedin[27], inordertoarriveatnon-lineardecisionfunctions.Specifically,weextendthis versionofLSVM-GSUthatassumesisotropicuncertainty(hereafterdenoted LSVM-iGSU)intoanewkernel-basedalgorithm,whichwecallKSVM-iGSU. WealsofurtherextendKSVM-iGSU,drawinginspirationfromtheRelevance DegreekernelSVM(RD-KSVM)proposedin[28],suchthatrelatedsamples canbeeffectivelyexploitedaspositiveornegativeexampleswithautomatic weighting.WerefertothisalgorithmasRD-KSVM-iGSU.Weshowthatthe RD-KSVM-iGSUalgorithmresultsinmoreaccurateeventdetectorsthanthe stateofthearttechniquesusedinrelatedworks,suchasthestandardkernel SVMandRD-KSVM.

Thepaperisorganizedasfollows.InSect. 2 wereviewrelatedwork.In Sect. 3 thetwoproposedSVMextensionsarepresented.Videoeventdetection results,byapplicationoftheproposedKSVM-iGSUandRD-KSVM-iGSUto theTRECVIDMED2014dataset,areprovidedinSect. 4,whileconclusionsare drawnandfutureworkisdiscussedinSect. 5.

2RelatedWork

Therearemanyworksdealingwitheventdetectioninvideo(e.g.[2, 5, 7, 9, 11–15, 19, 21]),severalofthembeinginthecontextoftheTRECVIDMEDtask. Despitetheattentionthatvideoeventdetectionhasreceived,though,there isonlyalimitednumberofstudiesthathaveexplicitlyexaminedtheproblemoflearningeventdetectorsfromveryfew(e.g.10)positivetrainingexamples[13, 28],anddevelopedmethodsforaddressingthisexactproblem.In[13], forinstance,theauthorspresentVideoStory,avideorepresentationschemefor learningeventdetectorsfromafewtrainingexamplesbyexploitingfreelyavailableWebvideostogetherwiththeirtextualdescriptions.Severalotherworks (e.g.[2])treatthefew-exampleprobleminthesamewaythattheydealwith eventdetectionwhenmoreexamplesareavailable(e.g.trainingstandardkernel SVMs).Learningvideoeventdetectorsfromafewexamplesisaproblemthat issimulatedintheTRECVIDMEDtask[22]bythe10Exsubtask,whereonly 10positivesamplesareavailablefortraining.

Inthecaseoflearningfromveryfewpositivesamples,itisofhighinterest tofurtherexploitvideosamplesthatdonotexactlymeettherequirementsfor beingcharacterizedastruepositiveexamplesofanevent,butneverthelessare closelyrelatedtoaneventclassandcanbeseenas“related”examplesofit.This issimulatedintheTRECVIDMEDtask[22]bythe“near-miss”videoexamples providedforeachtargeteventclass.Exceptfor[28],noneoftheaboveworks

takesfulladvantageoftheserelatedvideosforlearningfromfewpositivesamples; instead,the“related”samplesareeitherexcludedfromthetrainingprocedure [2, 11],ortheyaremistreatedastruepositiveortruenegativeinstances[7]. Incontrast,in[28]theauthorsexploitrelatedsamplesbyhandlingthemas weightedpositiveornegativeones,applyinganautomaticweightingtechnique duringthetrainingstage.Tothisend,arelevancedegreein(0, 1]isautomatically assignedtoalltherelatedsamples,indicatingthedegreeofrelevanceofthese observationswiththeclasstheyarerelatedto.Itwasshownthatthisweighting resultedinlearningmoreaccurateeventdetectors.

Regardlessofwhethertheaboveworksaddresstheproblemoflearningfrom afewpositiveexamplesorassumethatanabundanceofsuchexamplesisavailable,theyalltreatthetrainingvideorepresentationsasnoise-freeobservationsin theSVMinputspace.Lookingbeyondtheeventdetectionapplications,though, assuminguncertaintyininputundertheSVMparadigmisnotunusualandhas beenshowntoleadtobetterlearning.Lanckrietetal.[18]consideredabinary classificationproblemwherethemeanandcovariancematrixofeachclassare assumedtobeknown.Xuetal.[29, 30]consideredtherobustclassificationproblemforaclassofnon-box-typeduncertaintysets,incontrastto[1, 18, 25],who robustifiedregularizedclassificationusingbox-typeuncertainty.Finally,in[27], Tzelepisetal.proposedalinearmaximum-marginclassifier,calledSVMwith GaussianSampleUncertainty,dealingwithuncertaininputdata.Theuncertaintyin[27]canbemodeledeitherisotropicallyoranisotropically,arrivingat aconvexoptimizationproblemthatissolvedusingagradientdescentapproach. Tothebestofourknowledge,therehasbeennostudydealingwithuncertaintyinthevideoeventdetectionproblem,exceptfor[27].However,[27]introduceslinearclassifiers,whichintheeventdetectionproblemarenotexpectedto performinparwithtraditionalkernelSVMsthataretypicallyused(e.g.[11, 31]), despitetheadvantagesofconsideringdatauncertaintyinthelearningprocess. Inthiswork,weextendtheabovestudyandkernelizetheLSVM-iGSUof[27], undertheassumptionofisotropicsampleuncertainty.Weapplytheresulting KSVM-iGSUtotheeventdetectionproblemwhenonlyafewpositivesamples areavailablefortraining.Moreover,weproposeafurtherextensionofKSVMiGSU,namelyRelevanceDegreeKSVM-iGSU(RD-KSVM-iGSU),inspiredby [28],suchthatrelatedsamplescanalsobeexploitedasweightedpositiveor negativeones,basedonanautomaticweightingscheme.

3KernelSVM-iGSU

3.1OverviewofLSVM-iGSU

LSVM-iGSU[27]isaclassifierthattakesainputtrainingdatathataredescribed notsolelybyasetoffeaturerepresentations,i.e.asetofvectors xi insome n-dimensionalspace,butratherbyasetofmultivariateisotropicGaussiandistributionswhichmodeltheuncertaintyofeachtrainingexample.Thatis,every

trainingdatumischaracterizedbyameanvector xi ∈ Rn andanisotropiccovariancematrix,i.e.ascalarmultipleoftheidentitymatrix,Σi = σ 2 i In ∈ Sn ++ 1 . LSVM-iGSUisobtainedbyminimizing,withrespectto w , b,theobjective function J : Rn × R → R givenby

where l isthenumberoftrainingdata, w · x + b =0denotestheseparating hyperplane,andtheloss L :(Rn × R) × (Rn × Sn ++ ×{±1}) → R isgivenby

where xi and σ 2 i In denotethemeanvectorandthecovariancematrixofthe i-th inputentity(Gaussiandistribution),respectively, yi denotesitsground-truth label,anderf(x)= 2 √π x 0 e t2 dt denotestheerrorfunction.

Asdiscussedin[27],(1)isconvexandthusa(global)optimalsolution(w ,b) canbeobtainedusingagradientdescentalgorithm.Theresulting(linear)decisionfunction f (x)= w · x + b isusedinthetestingphaseforclassifyinganunseen samplesimilarlytothestandardlinearSVMalgorithm[4];thatis,accordingto thedistancebetweenthetestingsampleandtheseparatinghyperplane,without takingintoaccountanyuncertaintyestimatesthatcouldbemadeforthetesting samplerepresentation.

3.2KernelizingLSVM-iGSU(KSVM-iGSU)

Theoptimizationproblemdiscussedintheprevioussectioncanberecasted asavariationalcalculusproblemoffindingthefunction f thatminimizesthe functionalΦ[f ]:

wherethefunctionalΦ[f ]isgivenby

1 Sn ++ denotestheconvexconeofallsymmetricpositivedefinite n × n matriceswith entriesin R In denotestheidentitymatrixoforder n

where λ =1/C isaregularizationparameterand f belongstoaReproducing KernelHilbertSpace(RKHS), H,withassociatedkernel k .Usingageneralized semi-parametricversion[24]oftherepresentertheorem[17],itcanbeshown thattheminimizeroftheabovefunctionaladmitsasolutionoftheform

where b ∈ R, αi ∈ R, ∀i. Usingthereproducingproperty,wehave

2 H = f,f H =

,

where K isthekernelmatrix,i.e.thesymmetricpositivedefinite l × l matrix definedas K =(k (xi , xj ))l i,j =1 ,and α =(α1 , ··· ,αl ) .Moreover,weobserve that f (xi )= l j =1 αj k (xi , xj )= Ki · α,where Ki denotesthe i-thcolumnof thekernelmatrix K .Then,theobjectivefunction JH : Rl × R → R isgivenby

wheretheabovesumgivesthetotalloss.We(jointly)minimizetheaboveconvex2 objectivefunctionwithrespectto α, b similarlyto[27]usingtheLimitedmemoryBFGS(L-BFGS)algorithm[20].L-BFGSisaquasi-NewtonoptimizationalgorithmthatapproximatestheBroyden-Fletcher-Goldfarb-Shanno (BFGS)[3]algorithmusingalimitedamountofcomputermemory.Itrequires thefirstorderderivativesoftheobjectivefunctionwithrespecttotheoptimizationvariables α, b.Theyaregiven3 ,respectively,asfollows

2 ConvexitycanbeshownusingTheorem2provedin[27]. 3 Theirderivationisomitted,asitistechnicalbutstraightforward.

Another random document with no related content on Scribd:

—— (Dr. G.), 1020, 1032

Macfarren (Sir G. A.), 1030

Mackail (J. W.), 1018

Mackinnon (J.), 1006

Macleod (H. D.), 1016

Macpherson (Rev. H. A.), 1012

Madden (D. H.), 1013

Maher (Rev. M.), 1016

Malleson (Col. G. B.), 1005

Marbot (Baron de), 1007

Marquand (A.), 1030

Marshman (J. C.), 1007

Martineau (Dr. James), 1032

Maskelyne (J. N.), 1013

Maunder (S.), 1025

Max Müller (F.), 1007, 1008, 1015, 1016, 1022, 1030, 1032

—— (Mrs.), 1009

May (Sir T. Erskine), 1006

Meade (L. T.), 1026

Melville (G. J. Whyte), 1022

Merivale (Dean), 1006

Merriman (H. S.), 1022

Mill (James), 1015

—— (John Stuart), 1015, 1017

Milner (G.), 1031

Miss Molly (Author of), 1026

Moffat (D.), 1013

Molesworth (Mrs.), 1026

Monck (W. H. S.), 1015

Montague (F. C.), 1006

Montagu (Hon. John Scott), 1012

Moore (T.), 1025

—— (Rev. Edward), 1014

Morgan (C. Lloyd), 1017

Morris (W.), 1020, 1022, 1031

—— (Mowbray), 1011

Mulhall (M. G.), 1017

Nansen (F.), 1009

Nesbit (E.), 1020

Nettleship (R. L.), 1014

Newdigate - Newdegate (Lady), 1008

Newman (Cardinal), 1022

Ogle (W.), 1018

Oliphant (Mrs.), 1022

Oliver (W. D.), 1009

Onslow (Earl of), 1011

Orchard (T. N.), 1031

Osbourne (L.), 1023

Park (W.), 1013

Parr (Louisa), 1026

Payne-Gallwey (Sir R.), 1011, 1013

Peek (Hedley), 1011

Pembroke (Earl of), 1011

Phillipps-Wolley (C.), 1010, 1022

Pitman (C. M.), 1011

Pleydell-Bouverie (E. O.), 1011

Pole (W.), 1013

Pollock (W. H.), 1011

Poole (W. H. and Mrs.), 1029

Poore (G. V.), 1031

Potter (J.), 1016

Praeger (S. Rosamond), 1026

Prevost (C.), 1011

Pritchett (R. T.), 1011

Proctor (R. A.), 1013, 1024, 1028

Quill (A. W.), 1018

Raine (Rev. James), 1004

Ransome (Cyril), 1003, 1006

Rauschenbusch-Clough (Emma), 1008

Rawlinson (Rev. Canon), 1008

Rhoades (J.), 1018

Rhoscomyl (O.), 1023

Ribblesdale (Lord), 1013

Rich (A.), 1018

Richardson (C.), 1012

Richman (I. B.), 1006

Richmond (Ennis), 1031

Richter (J. Paul), 1031

Rickaby (Rev. John), 1016

—— (Rev. Joseph), 1016

Ridley (Sir E.), 1018

Riley (J. W.), 1020

Roget (Peter M.), 1016, 1025

Rolfsen (N.), 1008

Romanes (G. J.), 1008, 1015, 1017, 1020, 1032

—— (Mrs.), 1008

Ronalds (A.), 1013

Roosevelt (T.), 1004

Rossetti (Maria Francesca), 1031

—— (W. M.), 1020

Rowe (R. P. P.), 1011

Russell (Bertrand), 1017

—— (Alys), 1017

—— (Rev. M.), 1020

Saintsbury (G.), 1012

Samuels (E.), 1020

Sandars (T. C.), 1014

Sargent (A. J.), 1017

Schreiner (S. C. Cronwright), 1010

Seebohm (F.), 1006, 1008

Selous (F. C.), 1010

Sewell (Elizabeth M.), 1023

Shakespeare, 1020

Shand (A. I.), 1012

Sharpe (R. R.), 1006

Shearman (M.), 1010, 1011

Sinclair (A.), 1011

Smith (R. Bosworth), 1006

Smith (T. C.), 1004

Smith (W. P. Haskett), 1009

Solovyoff (V. S.), 1031

Sophocles, 1018

Soulsby (Lucy H.), 1026, 1031

Spedding (J.), 1007, 1014

Sprigge (S. Squire), 1008

Stanley (Bishop), 1024

Steel (A. G.), 1010

—— (J. H.), 1010

Stephen (Leslie), 1009

Stephens (H. Morse), 1006

Stevens (R. W.), 1031

Stevenson (R. L.), 1023, 1026

‘Stonehenge’, 1010

Storr (F.), 1014

Stuart-Wortley (A. J.), 1011, 1012

Stubbs (J. W.), 1006

Suffolk & Berkshire (Earl of), 1011

Sullivan (Sir E.), 1011

—— (J. F.), 1026

Sully (James), 1015

Sutherland (A. and G.), 1006

—— (Alex.), 1015, 1031

Suttner (B. von), 1023

Swinburne (A. J.), 1015

Symes (J. E.), 1017

Tacitus, 1018

Taylor (Col. Meadows), 1006

Tebbutt (C. G.), 1011

Thornhill (W. J.), 1018

Thornton (T. H.), 1008

Todd (A.), 1006

Toynbee (A.), 1017

Trevelyan (Sir G. O.), 1006, 1007

—— (C. P.), 1017

—— (G. M.), 1006

Trollope (Anthony), 1023

Tupper (L.), 1020

Turner (H. G.), 1031

Tyndall (J.), 1007, 1009

Tyrrell (R. Y.), 1018

Tyszkiewicz (M.), 1031

Upton (F. K. and Bertha), 1026

Van Dyke (J. C.), 1031

Verney (Frances P. and Margaret M.), 1008

Virgil, 1018

Vivekananda (Swami), 1032

Vivian (Herbert), 1009

Wakeman (H. O.), 1006

Walford (L. B.), 1023

Walker (Jane H.), 1029

Wallas (Graham), 1008

Walpole (Sir Spencer), 1006

Walrond (Col. H.), 1010

Walsingham (Lord), 1011

Walter (J.), 1008

Warwick (Countess of), 1031

Watson (A. E. T.), 1010, 1011, 1012, 1013, 1023

Webb (Mr. and Mrs. Sidney), 1017

—— (T. E.), 1015, 1019

Weber (A.), 1015

Weir (Capt. R.), 1011

Weyman (Stanley), 1023

Whately (Archbishop), 1014, 1015

—— (E. Jane), 1016

Whishaw (F.), 1023

White (W. Hale), 1020, 1031

Whitelaw (R.), 1018

Wilcocks (J. C.), 1013

Wilkins (G.), 1018

Willard (A. R.), 1031

Willich (C. M.), 1025

Witham (T. M.), 1011

Wood (Rev. J. G.), 1025

Wood-Martin (W. G.), 1006

Woods (Margaret L.), 1023

Wordsworth (Elizabeth), 1026

—— (William), 1020

Wyatt (A. J.), 1020

Wylie (J. H.), 1006

Youatt (W.), 1010

Zeller (E.), 1015

History, Politics, Polity, Political Memoirs, &c.

Abbott.—A H G.

By E A, M.A., LL.D.

Part I.—From the Earliest Times to the Ionian Revolt. Crown 8vo., 10s. 6d.

Part II.—500–445 B.C. Crown 8vo., 10s. 6d.

Acland and Ransome. A H O P H E 1896. Chronologically Arranged. By the Right Hon. A. H. D A, M.P., and C R, M.A. Crown 8vo., 6s.

Amos.—P E C G. For the Use of Colleges, Schools, and Private Students. By S A, M.A. Cr. 8vo., 6s.

ANNUAL REGISTER (THE). A Review of Public Events at Home and Abroad, for the year 1897. 8vo., 18s.

Volumes of the A R for the years 1863–1896 can still be had. 18s. each.

Arnold. I L M H. By T A, D.D., formerly Head Master of Rugby School. 8vo., 7s. 6d.

Ashbourne. P: S C H L T. By the Right Hon. E G, L A, Lord Chancellor of Ireland. With 11 Portraits. 8vo., 21s.

Baden-Powell.—T I V C. Examined with Reference to the Physical, Ethnographic, and Historical Conditions of the Provinces; chiefly on the Basis of the RevenueSettlement Records and District Manuals. By B. H. BP, M.A., C.I.E. With Map. 8vo., 16s.

Bagwell. I T. By R B, LL.D. (3 vols.) Vols. I. and II. From the first invasion of the Northmen to the year 1578. 8vo., 32s. Vol. III. 1578–1603. 8vo., 18s.

Ball.—H R L S I, from the Invasion of Henry the Second to the Union (1172–1800). By the Rt. Hon. J. T. B. 8vo., 6s.

Besant.—T H L. By Sir W B. With 74 Illustrations. Crown 8vo., 1s. 9d. Or bound as a School Prize Book, 2s. 6d.

Brassey (L).—P A.

N M. 1872–1893. 2 vols. Crown 8vo., 10s.

M M N, 1871–1894. Crown 8vo., 5s.

I F C 1880–1894. Cr. 8vo., 5s.

P M. 1861–1894. Crown 8vo., 5s.

Bright. A H E. By the Rev. J. F B, D.D.

Period I. M M: A.D. 449–1485. Crown 8vo., 4s. 6d.

Period II. P M. 1485–1688. Crown 8vo., 5s.

Period III. C M. 1689–1837. Crown 8vo., 7s. 6d.

Period IV. T G D. 1837–1880. Crown 8vo., 6s.

Buckle.—H C E. By H T B. 3 vols. Crown 8vo., 24s.

Burke. A H S from the Earliest Times to the Death of Ferdinand the Catholic. By U R B, M.A. 2 vols. 8vo., 32s.

Chesney. I P: a View of the System of Administration in India. By General Sir G C, K.C.B. With Map showing all the Administrative Divisions of British India. 8vo., 21s.

Corbett.—D T N, with a History of the Rise of England as a Maritime Power. By J S. C. With Portraits, Illustrations and Maps. 2 vols. 8vo., 36s.

Creighton.—A H P G S S R, 1378–1527. By M. C, D.D., Lord Bishop of London. 6 vols. Crown 8vo., 6s. each.

Cuningham.—A S I F: a Senate for the Empire. By G C. C, of Montreal, Canada. With an Introduction by Sir F Y, K.C.M.G. Crown 8vo., 3s. 6d.

Curzon. P P Q. By the Right Hon. L C of Kedleston. With 9 Maps, 96 Illustrations, Appendices, and an Index. 2 vols. 8vo., 42s.

De Tocqueville. D A. By A T. Translated by H R, C.B., D.C.L. 2 vols.

Crown 8vo., 16s.

Dickinson. T D P N C. By G. L D, M.A. 8vo., 7s. 6d.

Froude (J A.).

T H E, from the Fall of Wolsey to the Defeat of the Spanish Armada.

Popular Edition. 12 vols. Crown 8vo., 3s. 6d. each.

‘Silver Library’ Edition. 12 vols. Crown 8vo., 3s. 6d. each.

T D C A. Crown 8vo., 3s. 6d.

T S S A, and other Essays. Cr. 8vo., 3s. 6d.

T E I E C. 3 vols. Cr. 8vo., 10s. 6d.

E S S C. Cr. 8vo., 6s.

T C T. Crown 8vo., 3s. 6d.

S S G S. 4 vols. Cr. 8vo., 3s. 6d. each.

C: a Sketch. Cr. 8vo, 3s. 6d.

Gardiner (S R, D.C.L., LL.D.).

H E, from the Accession of James I. to the Outbreak of the Civil War, 1603–1642. 10 vols. Crown 8vo., 6s. each.

A H G C W, 1642–1649. 4 vols. Cr. 8vo., 6s. each.

A H C P. 1649–1660. Vol.I. 1649–1651. With 14 Maps. 8vo., 21s. Vol. II. 1651–1654. With 7 Maps. 8vo., 21s.

W G P W. With 8 Illustrations. Crown 8vo., 5s.

C’ P H. Founded on Six Lectures delivered in the University of Oxford. Cr. 8vo., 3s. 6d.

T S’ H E. With 378 Illustrations. Crown 8vo., 12s.

Also in Three Volumes, price 4s. each.

Vol. I. B.C. 55–A.D. 1509. 173 Illustrations. Vol. II. 1509–1689. 96 Illustrations. Vol. III. 1689–1885. 109 Illustrations.

Greville.—A J R K G IV., K W IV., Q V. By C C. F. G, formerly Clerk of the Council. 8 vols. Crown 8vo., 3s. 6d. each.

HARVARD HISTORICAL STUDIES.

T S A S T U S A, 1638–1870. By W. E. B. D B, Ph.D. 8vo., 7s. 6d.

T C R F

C M. By S. B. H, A.M. 8vo., 6s.

A C S N S C. By D. F. H, A.M. 8vo., 6s.

N E O U S. By F W. D, A.M. 8vo., 7s. 6d.

A B B M H, G P R. By C G, Ph.D. 8vo., 12s.

T L F S P N W. By T C. S, Ph.D. 8vo, 7s. 6d.

T P G E C N A. By E B G. 8vo., 7s. 6d.

⁂ Other Volumes are in preparation.

Hammond. A W’ P R. By Mrs. J H H. Crown 8vo., 2s. 6d.

Historic Towns.—Edited by E. A. F, D.C.L., and Rev. W H, M.A. With Maps and Plans. Crown 8vo., 3s. 6d. each.

Bristol. By Rev. W. Hunt. Carlisle. By Mandell Creighton, D.D. Cinque Ports. By Montagu Burrows. Colchester. By Rev. E. L. Cutts. Exeter. By E. A. Freeman. London. By Rev. W. J. Loftie. Oxford. By Rev. C. W. Boase. Winchester. By G. W. Kitchin, D.D. York. By Rev. James Raine. New York. By Theodore Roosevelt. Boston (U.S.) By Henry Cabot Lodge.

Hunter. A H B I. By Sir W W

H, K.C.S.I., M.A., LL. D.; a Vice-President of the Royal Asiatic Society. In 5 vols. Vol. I.—Introductory to the Overthrow of the English in the Spice Archipelago, 1623. 8vo., 18s.

Joyce (P. W., LL.D.).

A S H I, from the Earliest Times to 1603. Crown 8vo., 10s. 6d.

A C’ H I. From the Earliest Times to the Death of O’Connell. With specially constructed Map and 160 Illustrations, including Facsimile in full colours of an illuminated page of the Gospel Book of MacDurnan, A.D. 850. Fcp. 8vo., 3s. 6d.

Kaye and Malleson. H I M, 1857–1858. By Sir J W. K and Colonel G. B. M. With Analytical Index and Maps and Plans. 6 vols. Crown 8vo., 3s. 6d. each.

Lang (A).

P S: or, The Incognito of Prince Charles. With 6 Portraits. 8vo., 18s.

T C P: Being a Sequel to ‘Pickle the Spy’. With 4 Plates. 8vo., 16s.

S. A. With 8 Plates and 24 Illustrations in the Text by T. Hodge. 8vo., 15s. net.

Lecky (The Rt. Hon. W E. H.)

H E E C.

Library Edition. 8 vols. 8vo. Vols. I. and II., 1700–1760, 36s.; Vols. III. and IV., 1760–1784, 36s.; Vols. V. and VI., 1784–1793, 36s.; Vols. VII. and VIII., 1793–1800, 36s.

Cabinet Edition. E. 7 vols. Crown 8vo., 6s. each. I. 5 vols. Crown 8vo., 6s. each.

H E M A

C. 2 vols. Crown 8vo., 12s.

H R I S

R E. 2 vols. Crown 8vo., 12s.

D L.

Library Edition. 2 vols. 8vo., 36s.

Cabinet Edition. 2 vols. Cr. 8vo., 12s.

Lowell. G P C E. By

A. L L. 2 vols. 8vo., 21s.

Macaulay (L).

T L W L M. ‘Edinburgh’ Edition. 10 vols. 8vo., 6s. each.

C W.

Cabinet Edition. 16 vols. Post 8vo. £4 16s.

Library Edition. 8 vols. 8vo., £5 5s.

‘Edinburgh’ Edition. 8 vols. 8vo., 6s. each.

‘Albany’ Edition. With 12 Portraits. 12 vols. Large Crown 8vo., 3s. 6d. each.

H E A J S.

Popular Edition. 2 vols. Cr. 8vo., 5s.

Student’s Edition. 2 vols. Cr. 8vo., 12s.

People’s Edition. 4 vols. Cr. 8vo., 16s.

‘Albany’ Edition. With 6 Portraits. 6 vols. Large Crown 8vo., 3s. 6d. each.

Cabinet Edition. 8 vols. Post 8vo., 48s.

‘Edinburgh’ Edition. 4 vols. 8vo., 6s. each.

Library Edition. 5 vols. 8vo., £4.

C H E, L R, etc., in 1 volume.

Popular Edition. Crown 8vo., 2s. 6d.

Authorised Edition. Crown 8vo., 2s. 6d., or gilt edges, 3s. 6d.

‘Silver Library’ Edition. With Portrait and 4 Illustrations to the ‘Lays’. Cr. 8vo., 3s. 6d.

C H E.

Student’s Edition. 1 vol. Cr. 8vo., 6s.

People’s Edition. 2 vols. Cr. 8vo., 8s.

‘Trevelyan’ Edition. 2 vols. Cr. 8vo., 9s.

Cabinet Edition. 4 vols. Post 8vo., 24s.

‘Edinburgh’ Edition. 3 vols. 8vo., 6s. each.

Library Edition. 3 vols. 8vo., 36s.

E, which may be had separately, sewed, 6d. each; cloth, 1s. each.

Addison and Walpole.

Croker’s Boswell’s Johnson.

Hallam’s Constitutional History.

Warren Hastings.

The Earl of Chatham (Two Essays).

Frederick the Great.

Ranke and Gladstone.

Milton and Machiavelli.

Lord Byron.

Lord Clive.

Lord Byron, and The Comic Dramatists of the Restoration.

M W

People’s Edition. 1 vol. Cr. 8vo., 4s. 6d.

Library Edition. 2 vols. 8vo., 21s.

S P.

Popular Edition. Crown 8vo., 2s. 6d.

Cabinet Edition. 4 vols. Post 8vo., 24s.

S W L M. Edited, with Occasional Notes, by the Right Hon. Sir G. O. Trevelyan, Bart.

Crown 8vo., 6s.

MacColl. T S P. By the Rev. M

MC, M.A., Canon of Ripon. 8vo., 10s. 6d.

Mackinnon. T U E S: S I H. By J M. Ph.D. Examiner in History to the University of Edinburgh. 8vo., 16s.

May. T C H E since the Accession of George III. 1760–1870. By Sir T E M, K.C.B. (Lord Farnborough). 3 vols. Cr. 8vo., 18s.

Merivale (C, D.D.), sometime Dean of Ely.

H R E. 8 vols. Crown 8vo., 3s. 6d. each.

T F R R: a Short History of the Last Century of the Commonwealth. 12mo., 7s. 6d.

G H R, from the Foundation of the City to the Fall of Augustulus, B.C. 753–A.D. 476. With 5 Maps. Crown 8vo, 7s. 6d.

Montague. T E E C H. By F. C. M, M.A. Crown 8vo., 3s. 6d.

Ransome. T R C G

E: being a Series of Twenty Lectures on the History of the English Constitution delivered to a Popular Audience. By C

R, M.A. Crown 8vo., 6s.

Richman.—A: P D P L

I-R. A Swiss Study. By I B. R, ConsulGeneral of the United States to Switzerland. With Maps. Crown 8vo., 5s.

Seebohm (F).

T E V C. Examined in its Relations to the Manorial and Tribal Systems, etc. With 13 Maps and Plates. 8vo., 16s.

T T S W: Being Part of an Inquiry into the Structure and Methods of Tribal Society. With 3 Maps. 8vo.,

12s.

Sharpe. L K: a History derived mainly from the Archives at Guildhall in the custody of the Corporation of the City of London. By R R. S, D.C.L., Records Clerk in the Office of the Town Clerk of the City of London. 3 vols. 8vo. 10s. 6d. each.

Smith. C C. By R. B S, M.A., With Maps, Plans, etc. Cr. 8vo., 3s. 6d.

Stephens. A H F R. By H. M S. 8vo. Vols. I. and II. 18s. each.

Stubbs. H U D, from its Foundation to the End of the Eighteenth Century. By J. W. S. 8vo., 12s. 6d.

Sutherland. T H A N Z, from 1606–1890. By A S, M.A., and G S, M.A. Crown 8vo., 2s. 6d.

Taylor. A S’ M H I. By Colonel M T, C.S.I., etc. Cr. 8vo., 7s. 6d.

Todd. P G B C. By A T, LL.D. 8vo., 30s. net.

Trevelyan. T A R. Part I. 1766–1776. By the Rt. Hon. Sir G. O. T, Bart. 8vo., 16s.

Trevelyan. E T W. By G M T, M.A. 8vo.

[In the Press.

Wakeman and Hassall. E I S E C H. By Resident Members of the University of Oxford. Edited by H O W, M.A., and A H, M.A. Crown 8vo., 6s.

Walpole.—H E C G W 1815 1858. By Sir S W, K.C.B. 6 vols. Crown 8vo., 6s. each.

Wood-Martin. P I: A S. A Handbook of Irish Pre-Christian Antiquities. By W. G. WM, M.R.I.A. With 512 Illustrations. Crown 8vo., 15s. Wylie. H E H IV. By J H W, M.A., one of H.M. Inspectors of Schools. 4 vols. Crown 8vo. Vol. I., 1399–1404, 10s. 6d. Vol. II., 1405–1406, 15s. Vol. III., 1407–1411, 15s. Vol. IV., 1411–1413, 21s.

Biography, Personal Memoirs, &c.

Armstrong. T L L E J. A.

Edited by G. F. S A. Fcp. 8vo., 7s. 6d.

Bacon. T L L F B, O W. Edited by J S. 7 Vols. 8vo., £4 4s.

Bagehot. B S. By W B. Crown 8vo., 3s. 6d.

Boevey.—‘T P W’: being passages from the Life of Catharina, wife of William Boevey, Esq., of Flaxley Abbey, in the County of Gloucester. Compiled by A W. CB, M.A. With Portraits. 4to., 42s. net.

Carlyle. T C: A History of his Life. By J A F.

1795–1835. 2 vols. Crown 8vo., 7s. 1834–1881. 2 vols. Crown 8vo., 7s.

Crozier. M I L: being a Chapter in Personal Evolution and Autobiography. By J B C, Author of ‘Civilisation and Progress,’ etc. 8vo., 14s.

Digby. T L S K D, by one of his Descendants, the Author of ‘Falklands,’ etc. With 7 Illustrations. 8vo., 16s.

Duncan. A D. By T E C. With 3 Portraits. 8vo., 16s.

Erasmus. L L E. By J A F. Crown 8vo., 6s.

FALKLANDS. By the Author of ‘The Life of Sir Kenelm Digby,’ etc. With 6 Portraits and 2 other Illustrations. 8vo., 10s. 6d.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.