PrefacetotheFirstRussianEdition
Theprefacetothefirstpartcontainedaratherdetailedcharacterizationofthecourse asawhole,andhenceIconfinemyselfheretosomeremarksonthecontentofthe secondpartonly.
Thebasicmaterialofthepresentvolumeconsistsontheonehandofmultipleintegralsandlineandsurfaceintegrals,leadingtothegeneralizedStokes’formulaand someexamplesofitsapplication,andontheotherhandthemachineryofseriesand integralsdependingonaparameter,includingFourierseries,theFouriertransform, andthepresentationofasymptoticexpansions.
Thus,thisPart2basicallyconformstothecurriculumofthesecondyearofstudy inthemathematicsdepartmentsofuniversities.
Soasnottoimposerigidrestrictionsontheorderofpresentationofthesetwo majortopicsduringthetwosemesters,Ihavediscussedthempracticallyindependentlyofeachother.
Chapters 9 and 10,withwhichthisbookbegins,reproduceincompressedand generalizedform,essentiallyallofthemostimportantresultsthatwereobtained inthefirstpartconcerningcontinuousanddifferentiablefunctions.Thesechapters arestarredandwrittenasanappendixtoPart1.Thisappendixcontains,however, manyconceptsthatplayaroleinanyexpositionofanalysistomathematicians. Thepresenceofthesetwochaptersmakesthesecondbookformallyindependent ofthefirst,providedthereaderissufficientlywellpreparedtogetbywithoutthe numerousexamplesandintroductoryconsiderationsthat,inthefirstpart,preceded theformalismdiscussedhere.
Themainnewmaterialinthebook,whichisdevotedtotheintegralcalculusof severalvariables,beginsinChap. 11.Onewhohascompletedthefirstpartmay beginthesecondpartofthecourseatthispointwithoutanylossofcontinuityinthe ideas.
Thelanguageofdifferentialformsisexplainedandusedinthediscussionofthe theoryoflineandsurfaceintegrals.Allthebasicgeometricconceptsandanalytic constructionsthatlaterformascaleofabstractdefinitionsleadingtothegeneralized Stokes’formulaarefirstintroducedbyusingelementarymaterial.
Chapter 15 isdevotedtoasimilarsummaryexpositionoftheintegrationofdifferentialformsonmanifolds.Iregardthischapterasaverydesirableandsystematizingsupplementtowhatwasexpoundedandexplainedusingspecificobjectsin themandatoryChaps. 11–14
Thesectiononseriesandintegralsdependingonaparametergives,alongwith thetraditionalmaterial,someelementaryinformationonasymptoticseriesand
asymptoticsofintegrals(Chap. 19),since,duetoitseffectiveness,thelatterisan unquestionablyusefulpieceofanalyticmachinery.
Forconvenienceinorientation,ancillarymaterialorsectionsthatmaybeomitted onafirstreading,arestarred.
Thenumberingofthechaptersandfiguresinthisbookcontinuesthenumbering ofthefirstpart.
Biographicalinformationisgivenhereonlyforthosescholarsnotmentionedin thefirstpart.
Asbefore,fortheconvenienceofthereader,andtoshortenthetext,theendofa proofisdenotedby .Whereconvenient,definitionsareintroducedbythespecial symbols := or =: (equalitybydefinition),inwhichthecolonstandsonthesideof theobjectbeingdefined.
ContinuingthetraditionofPart1,agreatdealofattentionhasbeenpaidtoboth thelucidityandlogicalclarityofthemathematicalconstructionsthemselvesandthe demonstrationofsubstantiveapplicationsinnaturalscienceforthetheorydeveloped.
Moscow,RussiaV.Zorich 1982
10.3.4ThePartialDerivativesofaMapping...
10.4TheFinite-IncrementTheoremandSomeExamplesofItsUse..
oftheValuesofthe n thDifferential............
10.5.3SymmetryoftheHigher-OrderDifferentials
10.6Taylor’sFormulaandtheStudyofExtrema............
10.6.1Taylor’sFormulaforMappings
10.6.2MethodsofStudyingInteriorExtrema..
10.6.3SomeExamples......................
10.6.4ProblemsandExercises..................
11.1TheRiemannIntegraloveran n -DimensionalInterval
11.1.2TheLebesgueCriterionforRiemannIntegrability
11.1.4ProblemsandExercises..................
11.2TheIntegraloveraSet.......................
11.2.1AdmissibleSets......................
11.2.3TheMeasure(Volume)ofanAdmissibleSet.......
11.2.4ProblemsandExercises..................
11.3GeneralPropertiesoftheIntegral
11.3.1TheIntegralasaLinearFunctional ............
11.3.2AdditivityoftheIntegral.................
11.3.3EstimatesfortheIntegral.................
11.3.4ProblemsandExercises..................
11.4ReductionofaMultipleIntegraltoanIteratedIntegral
11.4.1Fubini’sTheorem...
11.5ChangeofVariableinaMultipleIntegral
11.5.1StatementoftheProblemandHeuristicDerivation oftheChangeofVariableFormula
11.5.2MeasurableSetsandSmoothMappings..
11.5.3TheOne-DimensionalCase
11.5.4TheCaseofanElementaryDiffeomorphismin
11.5.5CompositeMappingsandtheFormulaforChange ofVariable.........................
11.5.6AdditivityoftheIntegralandCompletionoftheProof oftheFormulaforChangeofVariableinanIntegral...
11.5.7CorollariesandGeneralizationsoftheFormula forChangeofVariableinaMultipleIntegral
11.5.8ProblemsandExercises..................
11.6ImproperMultipleIntegrals..
11.6.1BasicDefinitions......................
11.6.2TheComparisonTestforConvergenceofanImproper Integral...........................
11.6.3ChangeofVariableinanImproperIntegral
11.6.4ProblemsandExercises..................
12.1Surfacesin
12.1.1ProblemsandExercises..................
12.2OrientationofaSurface......................
12.2.1ProblemsandExercises..................
12.3TheBoundaryofaSurfaceandItsOrientation..
12.3.1SurfaceswithBoundary
12.3.2MakingtheOrientationsofaSurfaceandItsBoundary Consistent.........................
12.3.3ProblemsandExercises..................
12.4TheAreaofaSurfaceinEuclideanSpace
12.4.1ProblemsandExercises..................
12.5ElementaryFactsAboutDifferentialForms
12.5.1DifferentialForms:DefinitionandExamples
12.5.2CoordinateExpressionofaDifferentialForm......
12.5.3TheExteriorDifferentialofaForm............
12.5.4TransformationofVectorsandFormsUnderMappings.
12.5.5FormsonSurfaces...
12.5.6ProblemsandExercises..................
13LineandSurfaceIntegrals
13.1TheIntegralofaDifferentialForm................
13.1.1TheOriginalProblems,SuggestiveConsiderations, Examples..........................
13.1.2DefinitionoftheIntegralofaFormoveranOriented Surface...........................
13.2TheVolumeElement.IntegralsofFirstandSecondKind
13.2.1TheMassofaLamina...................
13.2.2TheAreaofaSurfaceastheIntegralofaForm......
13.2.3TheVolumeElement...................
13.2.4ExpressionoftheVolumeElementinCartesian Coordinates........................
13.2.5IntegralsofFirstandSecondKind
13.2.6ProblemsandExercises..................
13.3TheFundamentalIntegralFormulasofAnalysis.
13.3.1Green’sTheorem...
13.3.2TheGauss–OstrogradskiiFormula............
13.3.3Stokes’Formulain R3
13.3.4TheGeneralStokesFormula
13.3.5ProblemsandExercises..................
14.1TheDifferentialOperationsofVectorAnalysis..........
14.1.1ScalarandVectorFields
14.1.2VectorFieldsandFormsin R3
14.1.3TheDifferentialOperatorsgrad,curl,div,and ∇
14.1.4SomeDifferentialFormulasofVectorAnalysis......
14.1.5 ∗ VectorOperationsinCurvilinearCoordinates
14.1.6ProblemsandExercises..................
14.2TheIntegralFormulasofFieldTheory
14.2.1TheClassicalIntegralFormulasinVectorNotation....
14.2.2ThePhysicalInterpretationofdiv,curl,andgrad.....
14.2.3OtherIntegralFormulas..................
14.2.4ProblemsandExercises..................
14.3PotentialFields..........................
14.3.1ThePotentialofaVectorField..............
14.3.2NecessaryConditionforExistenceofaPotential
14.3.3CriterionforaFieldtobePotential............
14.3.4TopologicalStructureofaDomainandPotentials
14.3.5VectorPotential.ExactandClosedForms
14.4ExamplesofApplications.....................
14.4.1TheHeatEquation.....................
14.4.2TheEquationofContinuity................
14.4.3TheBasicEquationsoftheDynamicsofContinuous Media...........................
14.4.4TheWaveEquation....................
14.4.5ProblemsandExercises..................
15*IntegrationofDifferentialFormsonManifolds ...........
15.1ABriefReviewofLinearAlgebra
15.1.1TheAlgebraofForms.
15.1.2TheAlgebraofSkew-SymmetricForms.
15.1.3LinearMappingsofVectorSpacesandtheAdjoint MappingsoftheConjugateSpaces
15.1.4ProblemsandExercises..................
15.2Manifolds.............................
15.2.1DefinitionofaManifold
15.2.2SmoothManifoldsandSmoothMappings
15.2.3OrientationofaManifoldandItsBoundary
15.2.4PartitionsofUnityandtheRealizationofManifolds asSurfacesin R
15.2.5ProblemsandExercises..................
15.3DifferentialFormsandIntegrationonManifolds.........
15.3.1TheTangentSpacetoaManifoldataPoint
15.3.2DifferentialFormsonaManifold.............
15.3.3TheExteriorDerivative..................
15.3.4TheIntegralofaFormoveraManifold..........
15.3.5Stokes’Formula......................
15.3.6ProblemsandExercises..................
15.4ClosedandExactFormsonManifolds
15.4.1Poincaré’sTheorem..
15.4.2HomologyandCohomology
15.4.3ProblemsandExercises..................
16.1.1PointwiseConvergence
16.1.2StatementoftheFundamentalProblems.
16.1.3ConvergenceandUniformConvergenceofaFamily ofFunctionsDependingonaParameter..
16.1.4TheCauchyCriterionforUniformConvergence
16.1.5ProblemsandExercises..................
16.2UniformConvergenceofSeriesofFunctions...
16.2.1BasicDefinitionsandaTestforUniformConvergence ofaSeries.........................
16.2.2TheWeierstrass M -TestforUniformConvergence ofaSeries.........................
16.2.3TheAbel–DirichletTest..................
16.2.4ProblemsandExercises..................
16.3FunctionalPropertiesofaLimitFunction
16.3.1SpecificsoftheProblem
16.3.2ConditionsforTwoLimitingPassagestoCommute...
16.3.5DifferentiationandPassagetotheLimit.........
16.3.6ProblemsandExercises..................
16.4*CompactandDenseSubsetsoftheSpaceofContinuous
16.4.1TheArzelà–AscoliTheorem
17.1ProperIntegralsDependingonaParameter
17.1.1TheConceptofanIntegralDependingonaParameter..
17.2.1UniformConvergenceofanImproperIntegral withRespecttoaParameter
17.2.2LimitingPassageUndertheSignofanImproperIntegral andContinuityofanImproperIntegralDepending onaParameter.......................
17.2.3DifferentiationofanImproperIntegralwithRespect toaParameter.......................
17.2.4IntegrationofanImproperIntegralwithRespect toaParameter.......................
17.2.5ProblemsandExercises..................
17.4ConvolutionofFunctionsandElementaryFacts
17.4.1ConvolutioninPhysicalProblems(Introductory Considerations)......................
17.4.2GeneralPropertiesofConvolution
17.4.3ApproximateIdentitiesandtheWeierstrass ApproximationTheorem
17.4.4*ElementaryConceptsInvolvingDistributions
17.4.5ProblemsandExercises..................
17.5MultipleIntegralsDependingonaParameter... ........
17.5.1ProperMultipleIntegralsDependingonaParameter...
17.5.2ImproperMultipleIntegralsDependingonaParameter. 472
17.5.3ImproperIntegralswithaVariableSingularity
17.5.4*Convolution,theFundamentalSolution,and GeneralizedFunctionsintheMultidimensionalCase...
17.5.5ProblemsandExercises.................. 488
18FourierSeriesandtheFourierTransform
18.1BasicGeneralConceptsConnectedwithFourierSeries
18.1.1OrthogonalSystemsofFunctions
18.1.2FourierCoefficientsandFourierSeries..........
18.1.3*AnImportantSourceofOrthogonalSystems ofFunctionsinAnalysis .................. 510
18.1.4ProblemsandExercises..................
18.2TrigonometricFourierSeries. ..................
18.2.1BasicTypesofConvergenceofClassicalFourierSeries. 520
18.2.2InvestigationofPointwiseConvergence ofaTrigonometricFourierSeries ............. 524
18.2.3SmoothnessofaFunctionandtheRateofDecrease oftheFourierCoefficients................. 534
18.2.4CompletenessoftheTrigonometricSystem 539
18.2.5ProblemsandExercises.................. 545
18.3TheFourierTransform....................... 553
18.3.1RepresentationofaFunctionbyMeansofaFourier Integral........................... 553
18.3.2TheConnectionoftheDifferentialandAsymptotic PropertiesofaFunctionandItsFourierTransform 566
18.3.3TheMainStructuralPropertiesoftheFourierTransform. 569
18.3.4ExamplesofApplications................. 574
18.3.5ProblemsandExercises.................. 579
19AsymptoticExpansions
19.1AsymptoticFormulasandAsymptoticSeries........... 589
19.1.1BasicDefinitions...................... 589
19.1.2GeneralFactsAboutAsymptoticSeries.. ........ 594
19.1.3AsymptoticPowerSeries................. 598
19.1.4ProblemsandExercises.................. 600
19.2TheAsymptoticsofIntegrals(Laplace’sMethod) ........ 603
19.2.1TheIdeaofLaplace’sMethod
19.2.2TheLocalizationPrincipleforaLaplaceIntegral.....
19.2.3CanonicalIntegralsandTheirAsymptotics
19.2.4ThePrincipalTermoftheAsymptoticsofaLaplace Integral...........................
19.2.5*AsymptoticExpansionsofLaplaceIntegrals
19.2.6ProblemsandExercises..................
A.1.1TheSmallBugontheRubberRope
A.1.2IntegralandEstimationofSums..............
A.1.3FromMonkeystoDoctorsofScienceAltogetherin106
A.2TheExponentialFunction...
A.2.1PowerSeriesExpansionoftheFunctionsexp,sin,cos.. 648
A.2.2ExittotheComplexDomainandEuler’sFormula....
A.2.3TheExponentialFunctionasaLimit...
A.2.4MultiplicationofSeriesandtheBasicProperty oftheExponentialFunction 649
A.2.5ExponentialofaMatrixandtheRoleofCommutativity. 650
A.2.6ExponentialofOperatorsandTaylor’sFormula ...... 650
A.3Newton’sBinomial........................
A.3.1ExpansioninPowerSeriesoftheFunction (1 + x)α ... 651
A.3.2IntegrationofaSeriesandExpansionofln(1 + x) .... 651
A.3.3ExpansionoftheFunctions (1 + x 2 ) 1 andarctan x ... 651
A.3.4Expansionof (1 + x) 1 andComputingCuriosities... 652
A.4SolutionofDifferentialEquations................. 652
A.4.1MethodofUndeterminedCoefficients.. ........ 652
A.4.2UseoftheExponentialFunction 652
A.5TheGeneralIdeaAboutApproximationandExpansion 653
A.5.1TheMeaningofaPositionalNumberSystem.Irrational Numbers.......................... 653
A.5.2ExpansionofaVectorinaBasisandSomeAnalogies withSeries.........................
A.5.3Distance
AppendixBChangeofVariablesinMultipleIntegrals(Deduction andFirstDiscussionoftheChangeofVariablesFormula) 655
B.1FormulationoftheProblemandaHeuristicDerivation oftheChangeofVariablesFormula ................ 655
B.2SomePropertiesofSmoothMappingsandDiffeomorphisms.. 656
B.3RelationBetweentheMeasuresoftheImageandthePre-image UnderDiffeomorphisms ...................... 657
B.4SomeExamples,Remarks,andGeneralizations.. ........ 659
AppendixCMultidimensionalGeometryandFunctionsofaVery LargeNumberofVariables(ConcentrationofMeasuresandLaws ofLargeNumbers) ...........................
C.1AnObservation..........................
C.2SphereandRandomVectors..
C.3MultidimensionalSphere,LawofLargeNumbers,andCentral LimitTheorem ........................... 664
C.4MultidimensionalIntervals(MultidimensionalCubes) ...... 666
C.5GaussianMeasuresandTheirConcentration...
C.6ALittleBitMoreAbouttheMultidimensionalCube
C.7TheCodingofaSignalinaChannelwithNoise. ........ 668
AppendixDOperatorsofFieldTheoryinCurvilinearCoordinates
Introduction...
D.1RemindersofAlgebraandGeometry 671
D.1.1BilinearFormsandTheirCoordinateRepresentation... 671
D.1.2CorrespondenceBetweenFormsandVectors 672
D.1.3CurvilinearCoordinatesandMetric 673
D.2Operatorsgrad,curl,divinCurvilinearCoordinates 674
D.2.1DifferentialFormsandOperatorsgrad,curl,div..... 674
D.2.2GradientofaFunctionandItsCoordinateRepresentation 675
D.2.3DivergenceandItsCoordinateRepresentation 676
D.2.4CurlofaVectorFieldandItsCoordinateRepresentation. 680
AppendixEModernFormulaofNewton–LeibnizandtheUnity ofMathematics(FinalSurvey) .................... 683
E.1Reminders. ............................ 683
E.1.1Differential,DifferentialForm,andtheGeneralStokes’s Formula.......................... 683
E.1.2Manifolds,Chains,andtheBoundaryOperator ...... 686
E.2Pairing............................... 688
E.2.1TheIntegralasaBilinearFunctionandGeneralStokes’s Formula.......................... 688
E.2.2EquivalenceRelations(HomologyandCohomology).. 689
Chapter9
*ContinuousMappings(GeneralTheory)
Inthischapterweshallgeneralizethepropertiesofcontinuousmappingsestablished earlierfornumerical-valuedfunctionsandmappingsofthetype f : Rm → Rn and discussthemfromaunifiedpointofview.Intheprocessweshallintroduceanumber ofsimple,yetimportantconceptsthatareusedeverywhereinmathematics.
9.1MetricSpaces
9.1.1DefinitionandExamples
Definition1 Aset X issaidtobeendowedwitha metric or ametricspacestructure ortobea metricspace ifafunction
d : X × X → R
isexhibitedsatisfyingthefollowingconditions:
a) d(x1 ,x2 ) = 0 ⇔ x1 = x2 ,
b) d(x1 ,x2 ) = d(x2 ,x1 ) (symmetry),
c) d(x1 ,x3 ) ≤ d(x1 ,x2 ) + d(x2 ,x3 ) (thetriangleinequality), where x1 ,x2 ,x3 arearbitraryelementsof X .
Inthatcase,thefunction(9.1)iscalleda metric or distance on X Thusa metricspace isapair (X,d) consistingofaset X andametricdefinedon it.
Inaccordancewithgeometricterminologytheelementsof X arecalled points Weremarkthatifweset x3 = x1 inthetriangleinequalityandtakeaccountof conditionsa)andb)inthedefinitionofametric,wefindthat 0 ≤ d(x1 ,x2 ), thatis,adistancesatisfyingaxiomsa),b),andc)isnonnegative.
©Springer-VerlagBerlinHeidelberg2016 V.A.Zorich, MathematicalAnalysisII,Universitext, DOI 10.1007/978-3-662-48993-2_1
(9.1)
Letusnowconsidersomeexamples.
Example1 Theset R ofrealnumbersbecomesametricspaceifweset d(x1 ,x2 ) = |x2 x1 | foranytwonumbers x1 and x2 ,aswehavealwaysdone.
Example2 Othermetricscanalsobeintroducedon R.Atrivialmetric,forexample, isthediscretemetricinwhichthedistancebetweenanytwodistinctpointsis1.
Thefollowingmetricon R ismuchmoresubstantive.Let x → f(x) beanonnegativefunctiondefinedfor x ≥ 0andvanishingfor x = 0.Ifthisfunctionisstrictly convexupward,then,setting
,x
forpoints x1 ,x2 ∈ R,weobtainametricon R. Axiomsa)andb)obviouslyholdhere,andthetriangleinequalityfollowsfrom theeasilyverifiedfactthat f isstrictlymonotonicandsatisfiesthefollowinginequalitiesfor0 <a<b : f(a + b) f(b)<f(a) f(0) = f(a).
Inparticular,onecouldset d(x1 ,x2 ) = √|x1 x2 | or d(x1 ,x2 ) = |
| 1+|x1 x
| .In thelattercasethedistancebetweenanytwopointsofthelineislessthan1.
Example3 Besidesthetraditionaldistance
betweenpoints x1 = (x 1 1 ,...,x n 1 ) and x2 = (x 1 2 ,...,x n 2 ) in Rn ,onecanalsointroducethedistance
where p ≥ 1.Thevalidityofthetriangleinequalityforthefunction(9.4)follows fromMinkowski’sinequality(seeSect.5.4.2).
Example4 Whenweencounterawordwithincorrectletterswhilereadingatext, wecanreconstructthewordwithouttoomuchtroublebycorrectingtheerrors, providedthenumberoferrorsisnottoolarge.However,correctingtheerrorand obtainingthewordisanoperationthatissometimesambiguous.Forthatreason, otherconditionsbeingequal,onemustgivepreferencetotheinterpretationofthe incorrecttextthatrequiresthefewestcorrections.Accordingly,incodingtheory
9.1MetricSpaces3
themetric(9.4)with p = 1isusedonthesetofallfinitesequencesoflength n consistingofzerosandones.
Geometricallythesetofsuchsequencescanbeinterpretedasthesetofverticesoftheunitcube I ={x ∈ Rn | 0 ≤ x i ≤ 1,i = 1,...,n} in Rn .Thedistance betweentwoverticesisthenumberofinterchangesofzerosandonesneededto obtainthecoordinatesofonevertexfromtheother.Eachsuchinterchangerepresentsapassagealongoneedgeofthecube.Thusthisdistanceistheshortestpath alongtheedgesofthecubefromoneoftheverticesunderconsiderationtothe other.
Example5 Incomparingtheresultsoftwoseriesof n measurementsofthesame quantitythemetricmostcommonlyusedis(9.4)with p = 2.Thedistancebetween pointsinthismetricisusuallycalledtheir mean-squaredeviation
Example6 Asonecaneasilysee,ifwepasstothelimitin(9.4)as p →+∞ ,we obtainthefollowingmetricin Rn :
Example7 Theset C [a,b ] offunctionsthatarecontinuousonaclosedinterval becomesametricspaceifwedefinethedistancebetweentwofunctions f and g to be
Axiomsa)andb)forametricobviouslyhold,andthetriangleinequalityfollows fromtherelations
f(x) h(x) ≤ f(x) g(x) + g(x) h(x) ≤ d(f,g) + d(g,h), thatis, d(f,h) = max a ≤x ≤b f(x) h(x) ≤ d(f,g) + d(g,h).
Themetric(9.6)–theso-called uniform or Chebyshev metricin C [a,b ] –is usedwhenwewishtoreplaceonefunctionbyanother(forexample,apolynomial) fromwhichitispossibletocomputethevaluesofthefirstwitharequireddegreeof precisionatanypoint x ∈[a,b ].Thequantity d(f,g) ispreciselyacharacterization oftheprecisionofsuchanapproximatecomputation.
Themetric(9.6)closelyresemblesthemetric(9.5)in Rn .
Example8 Likethemetric(9.4),for p ≥ 1wecanintroducein C [a,b ] themetric
=
49*ContinuousMappings(GeneralTheory)
ItfollowsfromMinkowski’sinequalityforintegrals,whichcanbeobtainedfrom Minkowski’sinequalityfortheRiemannsumsbypassingtothelimit,thatthisis indeedametricfor p ≥ 1.
Thefollowingspecialcasesofthemetric(9.7)areespeciallyimportant: p = 1, whichistheintegralmetric; p = 2,themetricofmean-squaredeviation;and p = +∞ ,theuniformmetric.
Thespace C [a,b ] endowedwiththemetric(9.7)isoftendenoted Cp [a,b ].One canverifythat C∞ [a,b ] isthespace C [a,b ] endowedwiththemetric(9.6).
Example9 Themetric(9.7)couldalsohavebeenusedontheset R[a,b ] of Riemann-integrablefunctionsontheclosedinterval [a,b ].However,sincetheintegraloftheabsolutevalueofthedifferenceoftwofunctionsmayvanishevenwhen thetwofunctionsarenotidenticallyequal,axioma)willnotholdinthiscase.Nevertheless,weknowthattheintegralofanonnegativefunction ϕ ∈ R[a,b ] equals zeroifandonlyif ϕ(x) = 0atalmostallpointsoftheclosedinterval [a,b ].
Therefore,ifwepartition R[a,b ] intoequivalenceclassesoffunctions,regarding twofunctionsin R[a,b ] asequivalentiftheydifferonatmostasetofmeasurezero, thentherelation(9.7)reallydoesdefineametricontheset R[a,b ] ofsuchequivalenceclasses.Theset R[a,b ] endowedwiththismetricwillbedenoted Rp [a,b ] andsometimessimplyby Rp [a,b ].
Example10 Intheset C (k) [a,b ] offunctionsdefinedon [a,b ] andhavingcontinuousderivativesuptoorder k inclusiveonecandefinethefollowingmetric:
d(f,g) = max{M0 ,...,Mk },
(i) (x) g (i) (x) ,i = 0, 1,...,k.
Usingthefactthat(9.6)isametric,onecaneasilyverifythat(9.8)isalsoa metric.
Assumeforexamplethat f isthecoordinateofamovingpointconsidered asafunctionoftime.Ifarestrictionisplacedontheallowableregionwhere thepointcanbeduringthetimeinterval [a,b ] andtheparticleisnotallowed toexceedacertainspeed,and,inaddition,wewishtohavesomeassurance thattheaccelerationscannotexceedacertainlevel,itisnaturaltoconsiderthe set {maxa ≤x ≤b |f(x)|, maxa ≤x ≤b |f (x)|, maxa ≤x ≤b |f (x)|} forafunction f ∈ C (2) [a,b ] andusingthesecharacteristics,toregardtwomotions f and g asclose togetherifthequantity(9.8)forthemissmall.
Theseexamplesshowthatagivensetcanbemetrizedinvariousways.The choiceofthemetrictobeintroducedisusuallycontrolledbythestatementofthe problem.Atpresentweshallbeinterestedinthemostgeneralpropertiesofmetric spaces,thepropertiesthatareinherentinallofthem.
9.1.2OpenandClosedSubsetsofaMetricSpace
Let (X,d) beametricspace.Inthegeneralcase,aswasdoneforthecase X = Rn inSect.7.1,onecanalsointroducetheconceptofaballwithcenteratagivenpoint, openset,closedset,neighborhoodofapoint,limitpointofaset,andsoforth. Letusnowrecalltheseconcepts,whicharebasicforwhatistofollow.
Definition2 For δ> 0and a ∈ X theset
B(a,δ) = x ∈ X | d(a,x)<δ
iscalledthe ballwithcenter a ∈ X ofradius δ orthe δ -neighborhoodofthepoint a
Thisnameisaconvenientoneinageneralmetricspace,butitmustnotbeidentifiedwiththetraditionalgeometricimagewearefamiliarwithin R3 .
Example11 Theunitballin C [a,b ] withcenteratthefunctionthatisidentically0 on [a,b ] consistsofthefunctionsthatarecontinuousontheclosedinterval [a,b ] andwhoseabsolutevaluesarelessthan1onthatinterval.
Example12 Let X betheunitsquarein R2 forwhichthedistancebetweentwo pointsisdefinedtobethedistancebetweenthosesamepointsin R2 .Then X isa metricspace,whilethesquare X consideredasametricspaceinitsownrightcan beregardedastheballofanyradius ρ ≥ √2/2aboutitscenter.
Itisclearthatinthiswayonecouldconstructballsofverypeculiarshape.Hence thetermballshouldnotbeunderstoodtooliterally.
Definition3 Aset G ⊂ X is openinthemetricspace (X,d) ifforeachpoint x ∈ G thereexistsaball B(x,δ) suchthat B(x,δ) ⊂ G .
Itobviouslyfollowsfromthisdefinitionthat X itselfisanopensetin (X,d) Theemptyset ∅ isalsoopen.Bythesamereasoningasinthecaseof Rn onecan provethataball B(a,r) anditsexterior {x ∈ X : d(a,x)>r } areopensets.(See Examples3and4ofSect.7.1.)
Definition4 Aset F ⊂ X is closedin (X,d) ifitscomplement X \F isopenin (X,d) .
Inparticular,weconcludefromthisdefinitionthatthe closedball
B(a,r) := x ∈ X | d(a,x) ≤ r
isaclosedsetinametricspace (X,d) .
Thefollowingpropositionholdsforopenandclosedsetsinametricspace (X,d) .
Proposition1 a) Theunion α ∈A Gα ofthesetsinanysystem {Gα ,α ∈ A} ofsets Gα thatareopenin X isanopensetin X
b) Theintersection n i =1 Gi ofanyfinitenumberofsetsthatareopenin X isan opensetin X
a ) Theintersection α ∈A Fα ofthesetsinanysystem {Fα ,α ∈ A} ofsets Fα thatareclosedin X isaclosedsetin X .
b ) Theunion n i =1 Fi ofanyfinitenumberofsetsthatareclosedin X isaclosed setin X .
TheproofofProposition 1 isaverbatimrepetitionoftheproofofthecorrespondingpropositionforopenandclosedsetsin Rn ,andweomitit.(SeeProposition1in Sect.7.1.)
Definition5 Anopensetin X containingthepoint x ∈ X iscalleda neighborhood ofthepoint x in X .
Definition6 Relativetoaset E ⊂ X ,apoint x ∈ X iscalled aninteriorpointof E ifsomeneighborhoodofitiscontainedin X , anexteriorpointof E ifsomeneighborhoodofitiscontainedinthecomplement of E in X , aboundarypointof E ifitisneitherinteriornorexteriorto E (thatis,every neighborhoodofthepointcontainsbothapointbelongingto E andapointnot belongingto E ).
Example13 Allpointsofaball B(a,r) areinteriortoit,andtheset CX B(a,r) = X \B(a,r) consistsofthepointsexteriortotheball B(a,r) Inthecaseof Rn withthestandardmetric d the sphere S(a,r) :={x ∈ Rn | d(a,x) = r ≥ 0} isthesetofboundarypointsoftheball B(a,r) 1
Definition7 Apoint a ∈ X isa limitpoint oftheset E ⊂ X iftheset E ∩ O(a) is infiniteforeveryneighborhood O(a) ofthepoint.
Definition8 Theunionoftheset E andthesetofallitslimitpointsiscalledthe closure oftheset E in X Asbefore,theclosureofaset E ⊂ X willbedenoted E
Proposition2 Aset F ⊂ X isclosedin X ifandonlyifitcontainsallitslimit points.
Thus (F isclosedin X) ⇐⇒ (F = F in X).
1 InconnectionwithExample 13 seealsoProblem 2 attheendofthissection.
Weomittheproof,sinceitrepeatstheproofoftheanalogouspropositionforthe case X = Rn discussedinSect.7.1.
9.1.3SubspacesofaMetricSpace
If (X,d) isametricspaceand E isasubsetof X ,then,settingthedistancebetween twopoints x1 and x2 of E equalto d(x1 ,x2 ) ,thatis,thedistancebetweenthem in X ,weobtainthemetricspace (E,d),whichiscustomarilycalleda subspace of theoriginalspace (X,d) . Thusweadoptthefollowingdefinition.
Definition9 Ametricspace (X1 ,d1 ) isa subspaceofthemetricspace (X,d) if X1 ⊂ X andtheequality d1 (a,b) = d(a,b) holdsforanypairofpoints a,b in X1
Sincetheball B1 (a,r) ={x ∈ X1 | d1 (a,x)<r } inasubspace (X1 ,d1 ) ofthe metricspace (X,d) isobviouslytheintersection
B1 (a,r) = X1 ∩ B(a,r)
oftheset X1 ⊂ X withtheball B(a,r) in X ,itfollowsthateveryopensetin X1 hastheform
G1 = X1 ∩ G,
where G isanopensetin X ,andeveryclosedset F1 in X1 hastheform
F1 = X1 ∩ F,
where F isaclosedsetin X .
Itfollowsfromwhathasjustbeensaidthatthepropertiesofasetinametric spaceofbeingopenorclosedarerelativepropertiesanddependontheambient space.
Example14 Theopeninterval |x | < 1, y = 0ofthe x -axisintheplane R2 withthe standardmetricin R2 isametricspace (X1 ,d1 ) ,which,likeanymetricspace,is closedasasubsetofitself,sinceitcontainsallitslimitpointsin X1 .Atthesame time,itisobviouslynotclosedin R2 = X .
Thissameexampleshowsthatopennessisalsoarelativeconcept.
Example15 Theset C [a,b ] ofcontinuousfunctionsontheclosedinterval [a,b ] withthemetric(9.7)isasubspaceofthemetricspace Rp [a,b ].However,ifwe considerthemetric(9.6)on C [a,b ] ratherthan(9.7),thisisnolongertrue.
9.1.4TheDirectProductofMetricSpaces
If (X1 ,d1 ) and (X2 ,d2 ) aretwometricspaces,onecanintroduceametric d onthe directproduct X1 × X2 .Thecommonestmethodsofintroducingametricin X1 × X2 arethefollowing.If (x1 ,x2 ) ∈
and (x1 ,x2 ) ∈
,onemayset
or
or
Itiseasytoseethatweobtainametricon X1 × X2 inallofthesecases.
Definition10 if (X1 ,d1 ) and (X2 ,d2 ) aretwometricspaces,thespace (X1 × X2 ,d) ,where d isametricon X1 × X2 introducedbyanyofthemethodsjust indicated,willbecalledthe directproduct oftheoriginalmetricspaces.
Example16 Thespace R2 canberegardedasthedirectproductoftwocopiesof themetricspace R withitsstandardmetric,and R3 isthedirectproduct R2 × R1 of thespaces R2 and R1 = R.
9.1.5ProblemsandExercises
1. a)ExtendingExample 2,showthatif f : R+ → R+ isacontinuousfunction thatisstrictlyconvexupwardandsatisfies f(0) = 0,while (X,d) isametricspace, thenonecanintroduceanewmetric df on X bysetting df (x1 ,x2 ) = f(d(x1 ,x2 )) .
b)Showthatonanymetricspace (X,d) onecanintroduceametric d (x1 ,x2 ) = d(x1 ,x2 ) 1+d(x1 ,x2 ) inwhichthedistancebetweenthepointswillbelessthan1.
2. Let (X,d) beametricspacewiththetrivial(discrete)metricshowninExample 2,andlet a ∈ X .Forthiscase,whatarethesets B(a, 1/2) , B(a, 1) , B(a, 1) , B(a, 1) , B(a, 3/2) ,andwhatarethesets {x ∈ X | d(a,x) = 1/2} , {x ∈ X | d(a,x) = 1} , B(a, 1)\B(a, 1) , B(a, 1)\B(a, 1) ?
3. a)Isittruethattheunionofanyfamilyofclosedsetsisaclosedset?
b)Iseveryboundarypointofasetalimitpointofthatset?
c)Isittruethatinanyneighborhoodofaboundarypointofasettherearepoints inboththeinteriorandexteriorofthatset?
d)Showthatthesetofboundarypointsofanysetisaclosedset.
4. a)Provethatif (Y,dY ) isasubspaceofthemetricspace (X,dX ) ,thenforany open(resp.closed)set GY (resp. FY )in Y thereisanopen(resp.closed)set GX (resp. FX )in X suchthat GY = Y ∩ GX ,(resp. FY = Y ∩ FX ).
b)Verifythatiftheopensets GY and GY in Y donotintersect,thenthecorrespondingsets GX and GX in X canbechosensothattheyalsohavenopointsin common.
5. Havingametric d onaset X ,onemayattempttodefinethedistance d(A,B) betweensets A ⊂ X and B ⊂ X asfollows:
= inf
a)Giveanexampleofametricspaceandtwononintersectingsubsetsofit A and B forwhich d(A,B) = 0.
b)Show,followingHausdorff,thatonthesetofclosedsetsofametricspace (X,d) onecanintroducethe Hausdorffmetric D byassumingthatfor A ⊂ X and B ⊂ X
9.2TopologicalSpaces
Forquestionsconnectedwiththeconceptofthelimitofafunctionoramapping, whatisessentialinmanycasesisnotthepresenceofanyparticularmetriconthe space,butratherthepossibilityofsayingwhataneighborhoodofapointis.To convinceoneselfofthatitsufficestorecallthattheverydefinitionofalimitorthe definitionofcontinuitycanbestatedintermsofneighborhoods.Topologicalspaces arethemathematicalobjectsonwhichtheoperationofpassagetothelimitandthe conceptofcontinuitycanbestudiedinmaximumgenerality.
9.2.1BasicDefinitions
Definition1 Aset X issaidtobeendowedwiththestructureofa topologicalspace ora topology orissaidtobea topologicalspace ifasystem τ ofsubsetsof X is exhibited(called opensetsin X )possessingthefollowingproperties:
a) ∅ ∈ τ ; X ∈ τ .
b) (∀α ∈ A(τα ∈ τ)) =⇒ α ∈A τα ∈ τ .
c) (τi ∈ τ ; i = 1,...,n) =⇒ n i =1 τi ∈ τ .
Thus,atopologicalspaceisapair (X,τ) consistingofaset X andasystem τ ofdistinguishedsubsetsofthesethavingthepropertiesthat τ containstheempty setandthewholeset X ,theunionofanynumberofsetsof τ isasetof τ ,andthe intersectionofanyfinitenumberofsetsof τ isasetof τ Asonecansee,intheaxiomsystema),b),c)foratopologicalspacewehave postulatedpreciselythepropertiesofopensetsthatwealreadyprovedinthecaseof
Another random document with no related content on Scribd:
In 1804, Aaron Burr, presenting himself as a candidate for Governor of New York, but Hamilton opposed his election expressing the opinion that “Burr was a dangerous man and unfit to be trusted with power.” The election of Gen. Lewis blasted the ambitious projects of Burr, who insolently demanded an explanation of Hamilton, and finally challenged him, Hamilton accepted the challenge, was mortally wounded at Weehawken, and died July 12, 1804. His death was profoundly lamented throughout the country.
N His eldest son had been killed in a duel by a political adversary about 1802 Mr Hamilton was the principal author of the Federalist, and the real father of our financial system Immediately after adopting the constitution, he strongly advocated the establishment of a Mint, so that the New World would not be dependant on the Old for a circulating medium.