Introduction to the theory of complex systems stefan thurner - The full ebook set is available with

Page 1


Introduction to the Theory of Complex Systems Stefan Thurner

Visit to download the full and correct content document: https://textbookfull.com/product/introduction-to-the-theory-of-complex-systems-stefanthurner/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Introduction to Complex Theory of Differential Equations Savin

https://textbookfull.com/product/introduction-to-complex-theoryof-differential-equations-savin/

An Introduction to Complex Systems Making Sense of a Changing World Tranquillo

https://textbookfull.com/product/an-introduction-to-complexsystems-making-sense-of-a-changing-world-tranquillo/

An Introduction to Complex Systems Society Ecology and Nonlinear Dynamics 1st Edition Paul Fieguth (Auth.)

https://textbookfull.com/product/an-introduction-to-complexsystems-society-ecology-and-nonlinear-dynamics-1st-edition-paulfieguth-auth/

Optimization of Complex Systems: Theory, Models, Algorithms and Applications Hoai An Le Thi

https://textbookfull.com/product/optimization-of-complex-systemstheory-models-algorithms-and-applications-hoai-an-le-thi/

Narratology: Introduction to the Theory of Narrative Mieke Bal

https://textbookfull.com/product/narratology-introduction-to-thetheory-of-narrative-mieke-bal/

An Introduction to the Theory of Piezoelectricity

Jiashi Yang

https://textbookfull.com/product/an-introduction-to-the-theoryof-piezoelectricity-jiashi-yang/

Individual Differences in Language Learning: A Complex Systems Theory Perspective Carol Griffiths

https://textbookfull.com/product/individual-differences-inlanguage-learning-a-complex-systems-theory-perspective-carolgriffiths/

Introduction to Complex Analysis 1st Edition Michael E. Taylor

https://textbookfull.com/product/introduction-to-complexanalysis-1st-edition-michael-e-taylor/

An Introduction to the Language of Category Theory

Steven Roman

https://textbookfull.com/product/an-introduction-to-the-languageof-category-theory-steven-roman/

IntroductiontotheTheory ofComplexSystems

MedicalUniversityofVienna,Austria

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregistered trademarkof OxfordUniversityPressintheUKandincertainothercountries

©StefanThurner,RudolfHanel,andPeterKlimek2018

Themoralrightsoftheauthorshavebeenasserted

FirstEditionpublishedin2018

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeof the aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2018947065

Dataavailable

ISBN978–0–19–882193–9

DOI:10.1093/oso/9780198821939.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibility forthematerials containedinanythirdpartywebsitereferencedinthiswork

Preface

Thisbookisforpeoplewhoareinterestedinthescienceofcomplexadaptivesystems andwishtohavemorethanjustacasualunderstandingofit.Aswithallthesciences, understandingofcomplexadaptivesystemsisreachedsolelyinaquantitative,predictive, andultimatelyexperimentallytestablemanner.Complexadaptivesystemsaredynamical systemsthatareabletochangetheirstructure,theirinteractions,and,consequently, theirdynamicsastheyevolveintime.Thisisnotabookaboutcomplicatedsystems, eventhoughmostcomplexsystemsarecomplicated.Indeed,overthelast300years, scientistshaveusuallydealtwithcomplicatedsystemsthat areneithercomplexnor adaptive.

Thetheoryofcomplexsystemsisthetheoryofgeneralizedtime-varyinginteractions betweenelementsthatarecharacterizedbystates.Interactionstypicallytakeplaceon networksthatconnectthoseelements.Theinteractionsinvolvedmaycausethestates oftheelementsthemselvestoalterovertime.Theessenceofa complexsystemisthat theinteractionnetworksmaychangeandrearrangeasaconsequenceofchangesin thestatesoftheelements.Thus,complexsystemsaresystemswhosestateschange asaresultofinteractionsandwhoseinteractionschangeconcurrentlyasaresultof states.Duetothischicken–egg-typeproblem,complexsystemsshowanextremely richspectrumofbehaviour:theyareadaptiveandco-evolutionary;theyshowpathdependence,emergence,powerlaws;theyhaverichphasediagrams;theyproduce anddestroydiversity;theyareinherentlypronetocollapse;theyareresilient,andso on.Thetheoryofcomplexsystemstriestounderstandthesepropertiesbasedonits buildingblocksandontheinteractionsbetweenthosebuildingblocksthattakeplace onnetworks.Itcombinesmathematicalandphysicalprincipleswithconceptsborrowed frombiologyandthesocialsciences;itusesnewcomputationaltechniquesand,with theadventofcomprehensivelarge-scaledatasets,isbecomingexperimentallytestable. Thegoalofthetheoryofcomplexsystemsistounderstandthedynamical systemic outcomesofinterconnectedsystems,anditsultimategoalistoeventuallycontroland designsystemicpropertiesofsystemssuchastheeconomy,thefinancialsystem,social processes,cities,theclimate,andecology.Thetheoryofcomplexsystemsbuildspartly onpreviousattemptstounderstandsystemsthatinteractinnon-trivialways,suchas gametheory,cybernetics,orsystemstheory.However,initscurrentstate,thescience ofcomplexsystemsgoeswellbeyondtheseearlierdevelopments,insomanyways, infact,thatitcanberegardedasanindependentscientificbranch,which—duetoits quantitative,predictive,andtestablenature—isanaturalscience.

Eventhoughitisfairtosaythatthetheoryofcomplexsystems isnotyetcomplete, inrecentyears,ithasbecomequiteclearjustwhatthetheoryisgoingtolooklike. Itselementsandstructureareemerging.Thecurrentstateofthetheoryofcomplex

vi Preface systemsiscomparableperhapstothestateofquantummechanicsinthe1920s,before thefamousCopenhagenmeetingsandWernerHeisenberg’sbook.Atthattime,quantum mechanicswasacollectionofexperimentalandtheoreticalbitsandpieces,which hadnotyetbeenseenwithinafullycomprehensiveframework.Nevertheless,itwas clearthat,onedaysoon,suchaframeworkwouldexist.Thepresentsituationcan becomparedtoanarchaeologicalproject,whereamosaicfloorhasbeendiscovered andisbeingexcavated.Whilethemosaicisonlypartlyvisibleandthefullpictureis stillmissing,severalfactsarebecomingclear:themosaicexists;itshowsidentifiable elements(forinstance,peopleandanimalsengagedinrecognizableactivities);there arelargepatchesmissingorstillinvisible,butexpertscanalreadytellthatthemosaic representsascenefrom,say,Homer’s Odyssey.Similarly,fordynamicalcomplexadaptive systems,itisclearthatatheoryexiststhat,eventually,canbefullydeveloped.There arethosewhosaythatcomplexsystemswillneverbeunderstoodorthat,bytheirvery nature,theyareincomprehensible.Thisbookwilldemonstratethatsuchstatementsare incorrect.Theelementsofatheoryofcomplexsystemsarebecomingclear:dynamical multilayernetworks,scaling,statisticalmechanicsofalgorithmicdynamics,evolution andco-evolution,andinformationtheory.Theessenceofthisbookistofocusonthese components,clarifytheirmeaninginthecontextofcomplex systems,andenablethe readerwithamathematicalskillsettoapplythemtoconcrete problemsintheworldof complexsystems.

Thebookiswritteninmathematicallanguagebecausethisis theonlywayto expressfactsinaquantitativeandpredictivemannerandto makestatementsthatare unambiguous.Weaimforconsistency.Thebookshouldbecomprehensiblesothatnoonewithanunderstandingofbasiccalculus,linearalgebra,andstatisticsneedrefer tootherworks.Thebookisparticularlydesignedforgraduatestudentsinphysicsor mathematics.Wetrytoavoidambiguousstatementswhile,at thesametime,beingas generalaspossible.Thehopeisthatthisworkwillserveasatextbookandasastarting pointforjourneysintonewandunexploredterritory.

Manycomplexsystemsareoftensensitivetodetailsintheir internalsetup,toinitial andtoboundaryconditions.Conceptsthatprovedtobeextremelyrobustandeffectivein non-complexsystems,suchasthecentrallimittheorem,classicalstatisticalmechanics,or informationtheory,losetheirpredictivepowerwhenconfrontedwithcomplexsystems. Extremecareisthusneededinanyattempttoapplytheseotherwisedistinguished conceptstocomplexsystems:doingsocouldendinconfusionandnonsensicalresults. Inseveralconcreteexamples,wewilldemonstratetheimportanceofunderstandingwhat thesemethodsmeaninthecontextofcomplexsystemsandwhethertheycanorcannot beapplied.Wewilldiscusshowsomeoftheseclassicalconceptscanbegeneralizedto becomeusefulforunderstandingcomplexsystems.

Thebookisalsoastatementaboutourbeliefthattheexactsciencesmaybeentering aphaseoftransitionfromatraditionalanalyticaldescriptionofnature,asusedwith tremendoussuccesssinceGalileoandNewton,towardsan algorithmic description. Whereastheanalyticaldescriptionofnatureis,conceptually,basedlargelyondifferential equationsandanalyticalequationsofmotion,thealgorithmicviewtakesintoaccount evolutionaryandco-evolutionaryaspectsofdynamics.Itprovidesaframeworkfor

Preface vii

systemsthatcanendogenouslychangetheirinternalinteractionnetworks,rulesof functioning,dynamics,andevenenvironment,astheyevolveintime.Algorithmic dynamics,whichischaracteristicofcomplexdynamicalsystems,maybeakeytothe quantitativeandpredictiveunderstandingofmanynaturalandman-madesystems.In contrasttophysicalsystems,whichtypicallyevolveanalytically,algorithmicdynamics describecertainlyhowliving,social,environmental,and economicsystemsunfold. ThisalgorithmicviewisnotnewbuthasbeenadvocatedbyauthorslikeJosephA. Schumpeter,StuartKauffman,andBrianArthur.However,ithas not,todate,been pickedupbymainstreamscience,andithasneverbeenpresentedinthecontextofthe theoryofcomplexsystems.

Thisbookisbasedonatwo-semestercourse,thathasbeenheldattheMedical UniversityofViennasince2011.WearegratefultoourstudentsandtoKathrynPlatzer andAnitaWanjekforhelpinguswiththemanuscript.

STViennaJanuary2018

1IntroductiontoComplexSystems

1.1Physics,biology,orsocialscience?

1.2Componentsfromphysics

1.2.1Thenatureofthefundamentalforces 2

1.2.2Whatdoespredictivemean? 3

1.2.3Statisticalmechanics—predictabilityonstochasticgrounds5

1.2.4Theevolutionoftheconceptofpredictabilityinphysics5

1.2.5Physicsisanalytic,complexsystemsarealgorithmic6

1.2.6Whatarecomplexsystemsfromaphysicspointofview?7

1.2.7Anoteonchemistry—thescienceofequilibria9

1.3Componentsfromthelifesciences 10

1.3.1Chemistryofsmallsystems 10

1.3.2Biologicalinteractionshappenon networks—almostexclusively 12

1.3.3Evolution 13

1.3.4Adaptiveandrobust—theconceptoftheedgeofchaos16 1.3.5Componentstakenfromthelifesciences19

1.4Componentsfromthesocialsciences 19

1.4.1Socialsystemscontinuouslyrestructuringnetworks 20

1.5WhatareComplexSystems? 21

1.5.1Whatisco-evolution? 24

1.5.2Theroleofthecomputer 25

1.6Thestructureofthebook

1.6.1Whathascomplexitysciencecontributedtothehistoryofscience?27

2ProbabilityandRandomProcesses

2.1Overview

2.1.1Basicconceptsandnotions

2.1.2Probabilityandinformation

2.2.1BasicprobabilitymeasuresandtheKolmogorovaxioms39

2.2.2Histogramsandrelativefrequencies 41

2.2.3Mean,varianceandhighermoments 41

2.2.4Morethanonerandomvariable 44

2.2.5AnoteonBayesianreasoning

2.2.6Bayesianandfrequentistthinking

x Contents

2.3Thelawoflargenumbers—addingrandomnumbers53

2.3.1Thecentrallimittheorem 55

2.3.2Generalizedlimittheoremsand α-stableprocesses59

2.4Fat-taileddistributionfunctions 65

2.4.1Distributionfunctionsthatshowpowerlawtails66

2.4.2Otherdistributionfunctions 69

2.5Stochasticprocesses 75

2.5.1Simplestochasticprocesses 76

2.5.2History-orpath-dependentprocesses84

2.5.3Reinforcementprocesses 85

2.5.4Drivendissipativesystems 86

2.6Summary 89

2.7Problems 90

3Scaling 93

3.1Overview 93

3.1.1Definitionofscaling 95

3.2Examplesofscalinglawsinstatisticalsystems96

3.2.1Anoteonnotationfordistributionfunctions98

3.3Originsofscaling 100

3.3.1Criticality 101

3.3.2Self-organizedcriticality 105

3.3.3Multiplicativeprocesses 106

3.3.4Preferentialprocesses 108

3.3.5Samplespacereducingprocesses 110

3.3.6Othermechanisms 119

3.4Powerlawsandhowtomeasurethem 120

3.4.1Maximumlikelihoodestimatorforpowerlawexponents λ< 1 120

3.4.2Maximumlikelihoodestimatorforpowerlawsforallexponents122

3.5Scalinginspace—symmetryofnon-symmetricobjects,fractals124

3.5.1Self-similarityandscale-invariance 125

3.5.2Scalinginspace:fractals 125

3.5.3Scalingintime—fractaltimeseries 129

3.6Example—understandingallometricscalinginbiology131

3.6.1Understandingthe3/4powerlaw 133

3.6.2Consequencesandextensions 136

3.7Summary 137

3.8Problems 139

4Networks 141

4.1Overview 141

4.1.1Historicaloriginofnetworkscience 143

4.1.2Fromrandommatrixtheorytorandomnetworks143

4.1.3Smallworldsandpowerlaws 144

4.1.4Networksinthebigdataera 145

4.2Networkbasics 145

4.2.1Networksorgraphs? 146

4.2.2Nodesandlinks 146

4.2.3Adjacencymatrixofundirectednetworks146

4.3Measuresonnetworks 151

4.3.1Degreeofanode 151

4.3.2Walkingonnetworks 153

4.3.3Connectednessandcomponents 154

4.3.4Fromdistancesonnetworkstocentrality155

4.3.5Clusteringcoefficient 156 4.4Randomnetworks 159

4.4.1Threesourcesofrandomness 160

4.4.2Erd˝os–Rényinetworks 161

4.4.3PhasetransitionsinErdos–Rényinetworks163

4.4.4Eigenvaluespectraofrandomnetworks165

4.5BeyondErdos–Rényi—complexnetworks167

4.5.1GeneralizedErd˝os–Rényinetworks168

4.5.2Networksuperpositionmodel 170

4.5.3Smallworlds 171

4.5.4Hubs 173 4.6Communities 178

4.6.1Graphpartitioningandminimumcuts179

4.6.2Hierarchicalclustering 180

4.6.3DivisiveclusteringintheGirvan–Newmanalgorithm181

4.6.4Modularityoptimization 182

4.7Functionalnetworks—correlationnetworkanalysis184

4.7.1Constructionofcorrelationnetworks186

4.7.2Filteringthecorrelationnetwork 190

4.8Dynamicsonandofnetworks 194

4.8.1Diffusiononnetworks 195

4.8.2Laplaciandiffusiononnetworks 196

4.8.3Eigenvectorcentrality 199

4.8.4Katzprestige 200

4.8.5PageRank 200

4.8.6Contagiondynamicsandepidemicspreading201

4.8.7Co-evolvingspreadingmodels—adaptivenetworks205

4.8.8Simplemodelsforsocialdynamics206

4.9Generalizednetworks 208

4.9.1Hypergraphs 209

4.9.2Powergraphs 209

4.9.3Multiplexnetworks 210

4.9.4Multilayernetworks 211

4.10Example—systemicriskinfinancialnetworks212

4.10.1Quantificationofsystemicrisk 213

4.10.2Managementofsystemicrisk 218

4.11Summary

5.1Overview

5.1.1Scienceofevolution 225

5.1.2Evolutionasanalgorithmicthree-stepprocess227

5.1.3Whatcanbeexpectedfromascienceofevolution?230

5.2Evidenceforcomplexdynamicsin evolutionaryprocesses 232

5.2.1Criticality,punctuatedequilibria,andtheabundanceof fat-tailedstatistics 232

5.2.2Evidenceforcombinatorialco-evolution234

5.3Fromsimpleevolutionmodelstoageneral evolutionalgorithm 236

5.3.1Traditionalapproachestoevolution—the replicatorequation 237

5.3.2Limitstothetraditionalapproach 241

5.3.3Towardsageneralevolutionalgorithm242

5.3.4Generalevolutionalgorithm 244

5.4Whatisfitness? 246

5.4.1Fitnesslandscapes? 247

5.4.2Simplefitnesslandscapemodels 247

5.4.3Evolutionarydynamicsonfitnesslandscapes249

5.4.4Co-evolvingfitnesslandscapes—TheBak–Sneppenmodel261

5.4.5Theadjacentpossibleinfitnesslandscapemodels263

5.5Linearevolutionmodels 264

5.5.1Emergenceofauto-catalyticsets—the Jain–Krishnamodel 265

5.5.2Sequentiallylinearmodelsandtheedgeofchaos271

5.5.3Systemicriskinevolutionary systems—modellingcollapse 277

5.6Non-linearevolutionmodels—combinatorialevolution 281

5.6.1Schumpetergotitright 282

5.6.2Genericcreativephasetransition 282

5.6.3Arthur–Polakmodeloftechnologicalevolution286

5.6.4Theopen-endedco-evolvingcombinatorialcritical model—CCCmodel 288

5.6.5CCCmodelinrelationtootherevolutionarymodels298

5.7Examples—evolutionarymodelsforeconomicpredictions299

5.7.1Estimationoffitnessofcountriesfromeconomicdata300

5.7.2Predictingproductdiversityfromdata304

5.8Summary 308

5.9Problems 311

6StatisticalMechanicsandInformationTheoryforComplexSystems 313

6.1Overview 313

6.1.1Thethreefacesofentropy 314

6.2Classicalnotionsofentropyforsimplesystems318

6.2.1Entropyandphysics 321

6.2.2Entropyandinformation 328

6.2.3Entropyandstatisticalinference 343

6.2.4Limitsoftheclassicalentropyconcept348

6.3Entropyforcomplexsystems 349

6.3.1Complexsystemsviolateergodicity 350

6.3.2Shannon–Khinchinaxiomsforcomplexsystems352

6.3.3Entropyforcomplexsystems 352

6.3.4Specialcases 356

6.3.5Classificationofcomplexsystemsbasedontheirentropy358

6.3.6Distributionfunctionsfromthecomplexsystemsentropy361

6.3.7Consequencesforentropywhengivingupergodicity363

6.3.8Systemsthatviolatemorethanthecompositionaxiom365

6.4Entropyandphasespaceforphysicalcomplexsystems365

6.4.1Requirementofextensivity 365

6.4.2Phasespacevolumeandentropy 366

6.4.3Someexamples 369

6.4.4Whatdoesnon-exponentialphasespacegrowthimply?373

6.5Maximumentropyprincipleforcomplexsystems374

6.5.1Path-dependentprocessesandmultivariatedistributions374

6.5.2Whendoesamaximumentropyprincipleexistfor path-dependentprocesses? 375

6.5.3Example—maximumentropyprincipleforpath-dependent randomwalks 380

6.6Thethreefacesofentropyrevisited 382

6.6.1ThethreeentropiesofthePólyaprocess383

6.6.2Thethreeentropiesofsamplespacereducingprocesses 387

6.7Summary 393

6.8Problems 395

7TheFutureoftheScienceofComplexSystems? 397

8SpecialFunctionsandApproximations 399

8.1Specialfunctions 399

8.1.1Heavisidestepfunction 399

8.1.2Diracdeltafunction 399

xiv Contents

8.1.3Kroneckerdelta

8.1.4TheLambert-Wfunction

8.1.5Gammafunction

8.1.6IncompleteGammafunction

8.1.7Deformedfactorial

8.1.8Deformedmultinomial

8.1.9Generalizedlogarithm

8.1.10Pearsoncorrelationcoefficient

8.1.11Chi-squareddistribution

8.2Approximations

8.2.1Stirling’sformula

8.2.2Expressingtheexponentialfunctionasapower404 8.3Problems

IntroductiontoComplexSystems

1.1Physics,biology,orsocialscience?

Thescienceofcomplexsystemsisnotanoffspringofphysics,biology,orthesocial sciences,butauniquemixofallthree.Beforewediscusswhatthescienceofcomplex systemsisorisnot,wefocusonthesciencesfromwhichithas emerged.Byrecalling whatphysics,biology,andthesocialsciencesare,wewilldevelopanintuitivefeelfor complexsystemsandhowthissciencediffersfromotherdisciplines.Thischapterthus aimstoshowthatthescienceofcomplexsystemscombinesphysics,biology,andthe socialsciencesinauniqueblendthatisanewdisciplineinitsownright.Thechapter willalsoclarifythestructureofthebook.

1.2Componentsfromphysics

Physicsmakesquantitativestatementsaboutnaturalphenomena.Quantitativestatementscanbeformulatedlessambiguouslythanqualitativedescriptions,whichare basedonwords.Statementscanbeexpressedintheformofpredictionsinthesense thatthetrajectoryofaparticleortheoutcomeofaprocesscanbeanticipated.If anexperimentcanbedesignedtotestthispredictionunambiguously,wesaythatthe statementisexperimentallytestable.Quantitativestatementsarevalidatedorfalsified usingquantitativemeasurementsandexperiments.

Physicsistheexperimental,quantitative,andpredictive scienceofmatterandits interactions.

Pictorially,physicsprogressesbyputtingspecificquestionstonatureintheformof experiments;surprisingly,ifthequestionsarewellposed,theyresultinconcreteanswers thatarerobustandrepeatableforanarbitrarynumberoftimesbyanyonewhocan dothesameexperiment.Thismethodofgeneratingknowledge aboutnature,byusing experimentstoaskquestionsofit,isuniqueinthehistoryofhumankindandiscalledthe scientificmethod.Thescientificmethodhasbeenatthecoreofalltechnologicalprogress sincethetimeoftheEnlightenment.

IntroductiontotheTheoryofComplexSystems.StefanThurner,RudolfHanel,andPeterKlimek, OxfordUniversityPress(2018).©StefanThurner,RudolfHanel,andPeterKlimek. DOI:10.1093/oso/9780198821939.001.0001

IntroductiontoComplexSystems

Physicsdealswithmatteratvariousscalesandlevelsofgranularity,rangingfrom macroscopicmatterlikegalaxies,stars,planets,stones, andprojectiles,tothescaleof molecules,atoms,hadrons,quarks,andgaugebosons.There arefourfundamentalforces atthecoreofallinteractionsbetweenallformsofmatter:gravity,electromagnetismand twotypesofnuclearforce:theweakandthestrong.Accordingtoquantumfieldtheory, allinteractionsinthephysicalworldaremediatedbytheexchangeofgaugebosons.The graviton,thebosonforgravity,hasnotyetbeenconfirmedexperimentally.

1.2.1Thenatureofthefundamentalforces

Thefourfundamentalforcesareverydifferentinnatureand strength.Theyare characterizedbyanumberofpropertiesthatarecrucialfor understandinghowandwhy itwaspossibletodevelopphysicswithoutcomputers.These propertiesaresetouthere.

Usually,thefourfundamentalforcesarehomogeneousandisotropicinspace(and time).Forcesthatarehomogeneousactinthesamewayeverywhereinspace;forces thatareisotropicarethesame,regardlessofthedirection inwhichtheyact.Thesetwo propertiesdrasticallysimplifythemathematicaltreatmentofinteractionsinphysics.In particular,forcescanbewrittenasderivativesofpotentials,two-bodyproblemscan effectivelybetreatedasone-bodyproblems,andtheso-calledmeanfieldapproach canbeusedformany-bodysystems.Themeanfieldapproachistheassumptionthat aparticlereactstothesinglefieldgeneratedbythemanyparticlesaroundit.Often, suchsystemscanbefullyunderstoodandsolvedevenwithout computers.Thereare importantexceptions,however;onebeingthatthestrongforceactsasifinteractionswere limitedtoa‘string’,whereflux-tubesareformedbetweeninteractingquarks,similarto typeIIsuperconductivity.

Thephysicalforcesdiffergreatlyinstrength.Comparedto thestrongforce,the electromagneticforceisaboutathousandtimesweaker,the weakforceisabout1016 timesweaker,andthegravitationalforceisonly10 41 ofthestrengthofthestrongforce [405].Whenanyphysicalphenomenonisbeingdealtwith,usuallyonlyasingleforce hastobeconsidered.Alltheothersaresmallenoughtobesafelyneglected.Effectively, thesuperpositionoffourforcesdoesnotmatter;foranyphenomenon,onlyoneforce

Characteristic MatterInteractiontypeslengthscale

macroscopicmattergravity,electromagnetismallranges moleculeselectromagnetismallranges atomselectromagnetism,weakforce ∼ 10 18

quarksandgaugebosonselectromagnetism,weakandstrongforce10

Componentsfromphysics 3 isrelevant.Wewillseethatthisisdrasticallydifferentincomplexsystems,wherea multitudeofdifferentinteractiontypesofsimilarstrengthoftenhavetobetakeninto accountsimultaneously.

Typically,physicsdoesnotspecifywhichparticlesinteractwitheachother,as theyinteractinidenticalways.Theinteractionstrengthdependsonlyontherelevant interactiontype,theformofthepotential,andtherelativedistancebetweenparticles. Incomplexsystems,interactionsareoften specific.Notallelements,onlycertainpairsor groupsofelements,interactwitheachother.Networksareusedtokeeptrackofwhich elementsinteractwithothersinacomplexsystem.

1.2.2Whatdoespredictivemean?

Physicsisanexperimentalandapredictivescience.Letusassumethatyouperforman experimentrepeatedly;forexample,youdropastoneandrecorditstrajectoryovertime. Thepredictiveortheoreticaltaskistopredictthistrajectorybasedonanunderstanding ofthephenomenon.SinceNewton’stime,understandingaphenomenoninphysics hasoftenmeantbeingabletodescribeitwithdifferentialequations.Aphenomenon isunderstooddynamicallyifitsessencecanbecapturedina differentialequation. Typically,thefollowingthree-stepprocessisthenfollowed:

1.Findthedifferentialequationstoencodeyourunderstandingofadynamical system.Intheexampleofourstone-droppingexperiment,we wouldperhapsapply Newton’sequation,

where t istime, x(t) isthetrajectory, m ismassofthestone,and F isforceonthe stone.Inourcase,wewouldhopetoidentifytheforcewithgravity,meaningthat F = gm.

2.Oncetheequationisspecified,trytosolveit.Theequationcanbesolved usingelementarycalculus,andweget, x(t) = x0 + v0t + 1 2 gt2.Tomakeatestable predictionwehavetofixtheboundaryorinitialconditions; inourcasewehave tospecifywhattheinitialposition x0 andinitialvelocity v0 areinourexperiment. Oncethisisdone,wehaveapredictionforthetrajectoryofthestone, x(t).

3.Comparetheresultwithyourexperiments.Doesthestonereallyfollowthis predictedpath x(t)?Ifitdoes,youmightclaimthatyouhaveunderstood somethingonaquantitative,predictive,andexperimental basis.Ifthestone (repeatedly)followsanothertrajectory,youhavetotryhardertofindabetter prediction.

Fixinginitialorboundaryconditionsmeanssimplytakingthesystemoutofits context,separatingitfromtherestoftheuniverse.Therearenofactors,otherthan theboundaryconditions,thatinfluencethemotionofthesystemfromtheoutside.That

IntroductiontoComplexSystems

suchaseparationofsystemsfromtheircontextisindeedpossibleisonereasonwhy physicshasbeensosuccessful,evenbeforecomputingdevicesbecameavailable.For manycomplexsystems,itisimpossibletoseparatethedynamicsfromthecontextin aclearway.Thismeansthatmanyoutsideinfluencesthatarenotunderexperimental controlwillsimultaneouslydeterminetheirdynamics.

Inprinciple,thesamethinkingusedtodescribephysicalphenomenaholdsfor arbitrarilycomplicatedsystems.Assumethatavector X (t) representsthestateofa systematagiventime(e.g.allpositionsandmomentaofitselements),wethengeta setofequationsofmotionintheform,

where G isahigh-dimensionalfunction.Predictivemeansthat,inprinciple,these equationscanbesolved.Pierre-SimonLaplacewasfollowingthisprinciplewhenhe introducedahypotheticaldaemonfamiliarwiththeNewtonianequationsofmotionand alltheinitialconditionsofalltheelementsofalargesystem(theuniverse)andthusableto solveallequations.Thisdaemoncouldthenpredicteverything.Theproblem,however, isthatsuchadaemonishardtofind.Infact,theseequationscanbedifficult,even impossible,tosolve.Alreadyforthreebodiesthatexertagravitationalforceoneachother, thefamousthree-bodyproblem(e.g.Sun,Earth,Moon),thereisnogeneralanalytical solutionprovidedbyalgebraicandtranscendentalfunctions.Thiswasfirstdemonstrated byHenriPoincaréandpavedthewayforwhatistodaycalledchaostheory.Infact, thestrictNewton–Laplaceprogramofapredictableworldin termsofunambiguously computabletrajectoriesiscompletelyuselessformostsystemscomposedofmany particles.Aretheselargesystemsnotthenpredictable?Whataboutsystemswithan extremelylargenumberofelements,suchasgases,whichcontainoftheorderof O(1023) molecules?

Imaginethatweperformthefollowingexperimentoverandoveragain:weheatand coolwater.Wegaintheinsightthatifwecoolwaterto0oCandbelow,itwillfreeze, thatifweheatitto100oCitwillstarttoboiland,understandardconditions,ultimately evaporate.Thesephasetransitionswillhappenwithcertainty.Inthatsense,theyare predictable.Wecannotpredictfromtheequationsofmotion whichmoleculewillbethe firsttoleavetheliquid.Givenappropriateinstrumentation,wecanperhapsmeasurethe velocityofafewsinglegasmoleculesatapointintime,butcertainlynotall1023.What canbemeasuredistheprobabilitydistributionthatagasmoleculeisobservedwitha specificvelocity v,

where T istemperature,and k isBoltzmann’sconstant.Giventhisprobabilitydistribution,itispossibletoderiveanumberofpropertiesofgases thatperfectlydescribetheir macroscopic behaviourandmakethempredictableonamacroscopic(orsystemic)level.

Componentsfromphysics 5

Fornon-interactingparticles,thesepredictionscanbeextremelyprecise.Thepredictions immediatelystarttodegenerateassoonastherearestronginteractionsbetweenthe particlesorifthenumberofparticlesisnotlargeenough.Notethatthetermprediction nowhasamuchweakermeaningthanintheNewton–Laplaceprogram.Themeaning hasshiftedfrombeingadescriptionbasedontheexactknowledgeofeachcomponent ofasystemtoonebasedonaprobabilisticknowledgeofthesystem.Eventhoughone canstillmakeextremelyprecisepredictionsaboutmultiparticlesystemsinaprobabilistic framework,theconceptofdeterminismisnowdiluted.Theframeworkforpredictions onamacroscopiclevelaboutsystemscomposedofmanyparticlesonaprobabilistic basisiscalledstatisticalmechanics.

1.2.3Statisticalmechanics—predictability onstochasticgrounds

Theaimofstatisticalmechanicsistounderstandthemacroscopicpropertiesofasystem onthebasisofastatisticaldescriptionofitsmicroscopic components.Theideabehind itistolinkthemicroscopicworldofcomponentswiththemacroscopicpropertiesofthe aggregatesystem.Anessentialconceptthatmakesthislink possibleisBoltzmann–Gibbs entropy.

Asystemisoftenpreparedinamacrostate,whichmeansthataggregateproperties likethetemperatureorpressureofagasareknown.Thereare typicallymanypossiblemicrostatesthatareassociatedwiththatmacrostate.Amicrostateisapossible microscopicconfigurationofasystem.Forexample,aparticularmicrostateisonefor whichallpositionsandvelocitiesofgasmoleculesinacontainerareknown.Thereare usuallymanymicrostatesthatcanleadtooneandthesamemacrostate;forexample,the temperatureandpressureinthecontainer.Instatisticalmechanics,themaintaskisto computetheprobabilitiesforthemanymicrostatesthatleadtothatsinglemacrostate.In physics,themacroscopicdescriptionisoftenrelativelysimple.Macroscopicproperties areoftenstronglydeterminedbythephaseinwhichthesystemis.Physicalsystemsoften haveveryfewphases—typicallysolid,gaseous,orliquid.

WithintheNewton–Laplaceframework,traditionalphysics workswithextreme precisionforveryfewparticlesorforextremelymanynon-interactingparticles,where thestatisticalmechanicsofBoltzmann–Gibbsapplies.Inotherwords,theclassof systemsthatcanbeunderstoodwithtraditionalphysicsisnotthatbig.Mostsystemsare composedofmanystronglyinteractingparticles.Often,theinteractionsareofmultiple types,arenon-linear,andvaryovertime.Veryoften,suchsystemsarecomplexsystems.

1.2.4Theevolutionoftheconceptofpredictabilityinphysics

Theconceptofpredictionandpredictabilityhaschangedin significantwaysoverthe pastthreecenturies.Predictionintheeighteenthcentury wasquitedifferentfromthe conceptofpredictioninthetwenty-first.Theconceptofdeterminismhasundergoneat leastthreetransitions[300].

IntroductiontoComplexSystems

Inthe classicalmechanics oftheeighteenthandnineteenthcenturies,predictionmeant theexactpredictionoftrajectories.Equationsofmotionwouldmakeexactstatements aboutthefutureevolutionofsimpledynamicalsystems.The extensiontomorethan twobodieshasbeencausingproblemssincetheverybeginningofNewtonianphysics; see,forexample,thefamousconflictbetweenIsaacNewtonandJohnFlamsteedonthe predictabilityoftheorbitoftheMoon.Byabout1900,wheninterestinunderstanding many-bodysystemsarose,theproblembecameapparent.ThetheoryofLudwigBoltzmann,referredtonowadaysasstatisticalmechanics,waseffectivelybasedonthethen speculativeexistenceofatomsandmolecules,anditdrasticallychangedtheclassical conceptofpredictability.

In statisticalmechanics,basedontheassumptionthatatomsandmoleculesfollow Newtoniantrajectories,thelawoflargenumbersallowsstochasticpredictionstobe madeaboutthemacroscopicbehaviourofgases.Statisticalmechanicsisatheoryof themacroscopicorcollectivebehaviourofnon-interactingparticles.Theconceptsof predictabilityanddeterminismweresubjecttofurtherchangeinthe1920swiththe emergenceofquantummechanicsandnon-lineardynamics.

In quantummechanics,theconceptofdeterminismdisappearsaltogetherdueto thefundamentalsimultaneousunpredictabilityofthepositionandmomentumofthe (sub-)atomiccomponentsofasystem.However,quantummechanicsstillallowsusto makeextremelyhigh-qualitypredictionsonacollectivebasis.Collectivephenomena remainpredictabletoalargeextentonamacro-orsystemiclevel.

In non-linearsystems,itbecameclearthateveninsystemsforwhichtheequationsof motioncanbesolvedinprinciple,thesensitivitytoinitialconditionscanbesoenormous thattheconceptofpredictabilitymust,forallpracticalpurposes,beabandoned.Afurther crisisintermsofpredictabilityaroseinthe1990s,wheninterestinmoregeneralforms ofinteractionsbegantoappear.

In complexsystems,thesituationisevenmoredifficultthaninquantummechanics, wherethereisuncertaintyaboutthecomponents,butnotaboutitsinteractions.For manycomplexsystems,notonlycancomponentsbeunpredictable,buttheinteractions betweencomponentscanalsobecomespecific,time-dependent,non-linear,andunpredictable.However,thereisstillhopethatprobabilisticpredictionsaboutthedynamics andthecollectivepropertiesofcomplexsystemsarepossible.Progressinthescienceof complexsystemswill,however,beimpossiblewithoutadetailedunderstandingofthe dynamicsofhowelementsspecificallyinteractwitheachother.Thisis,ofcourse,only possiblewithmassivecomputationaleffortandcomprehensivedata.

1.2.5Physicsisanalytic,complexsystemsarealgorithmic

Physicslargelyfollowsan analytical paradigm.Knowledgeofphenomenaisexpressed inanalyticalequationsthatallowustomakepredictions.Thisispossiblebecause interactionsarehomogeneous,isotropic,andofasingletype.Interactionsinphysics typicallydonotchangeovertime.Theyareusuallygivenand fixed.Thetaskistowork outspecificsolutionsregardingtheevolutionofthesystem foragivensetofinitialand boundaryconditions.

Componentsfromphysics 7

Thisisradicallydifferentforcomplexsystems,whereinteractionsthemselvescan changeovertimeasaconsequenceofthedynamicsofthesystem.Inthatsense,complex systemschangetheirinternalinteractionstructureastheyevolve.Systemsthatchange theirinternalstructuredynamicallycanbeviewedas machines thatchangetheirinternal structureastheyoperate.However,adescriptionoftheoperationofamachineusing analyticalequationswouldnotbeefficient.Indeed,todescribeasteamenginebyseeking thecorrespondingequationsofmotionforallitspartswouldbehighlyinefficient. Machinesarebestdescribedas algorithms—alistofrulesregardinghowthedynamicsof thesystemupdatesitsstatesandfutureinteractions,whichthenleadtonewconstraints onthedynamicsatthenexttimestep.First,pressurebuilds uphere,thenavalveopens there,vapourpushesthispiston,thenthisvalveclosesand opensanotherone,driving thepistonback,andsoon.

Algorithmicdescriptionsdescribenotonlytheevolutionofthestatesofthecomponentsofasystem,butalsotheevolutionofitsinternalstates(interactions)thatwill determinethenextupdateofthestatesatthenexttimestep. Manycomplexsystemswork inthisway:statesofcomponentsandtheinteractionsbetweenthemaresimultaneously updated,whichcanleadtothetremendousmathematicaldifficultiesthatmakecomplex systemssohardtounderstand.Thesedifficultiesintheirvariousformswillbeaddressed timeandagaininthisbook.Wheneveritispossibletoignorethechangesinthe interactionsinadynamicalsystem,analyticdescriptions becomemeaningful.

Physicsisgenerallyanalytic,complexsystemsarealgorithmic.Quantitativepredictionsthatcanbetestedexperimentallycanbemadewithintheanalyticorthe algorithmicparadigm.

1.2.6Whatarecomplexsystemsfromaphysicspointofview?

Fromaphysicspointofview,onecouldtrytocharacterizecomplexsystemsbythe followingextensionstophysics.

• Complexsystemsarecomposedofmanyelements,components, orparticles. Theseelementsaretypicallydescribedbytheirstate,such asvelocity,position, age,spin,colour,wealth,mass,shape,andsoon.Elementsmayhavestochastic components.

• Elementsarenotlimitedtophysicalformsofmatter;anythingthatcaninteract andbedescribedbystatescanbeseenasgeneralizedmatter.

• Interactionsbetweenelementsmaybespecific.Whointeractswithwhom,when, inwhatform,andhowstrongisdescribedbyinteractionnetworks.

• Interactionsarenotlimitedtothefourfundamentalforces,butcanbeofamore complicatedtype.Generalizedinteractionsarenotlimitedtotheexchangeof gaugebosons,butcanbemediatedthroughexchangeofmessages,objects,gifts, information,evenbullets,andsoon. continued

• Complexsystemsmayinvolvesuperpositionsofinteractionsofsimilarstrengths.

• Complexsystemsareoftenchaoticinthesensethattheydependstronglyonthe initialconditionsanddetailsofthesystem.Updateequationsthatalgorithmically describethedynamicsareoftennon-linear.

• Complexsystemsareoftendrivensystems.Someobeyconservationlaws,some donot.

• Complexsystemscanexhibitarichphasestructureandhavea hugevarietyof macrostatesthatoftencannotbeinferredfromthepropertiesoftheelements.This issometimesreferredtoas emergence.Simpleformsofemergenceare,ofcourse, alreadypresentinphysics.Thespectrumofthehydrogenatomortheliquidphase ofwaterareemergentpropertiesoftheinvolvedparticlesandtheirinteractions.

Withtheseextensions,wecanderiveaphysics-baseddefinitionforwhatthetheory ofcomplexsystemsis.

Thetheoryofcomplexsystemsisthequantitative,predictiveandexperimentally testablescienceofgeneralizedmatterinteractingthroughgeneralizedinteractions.

Generalizedinteractionsaredescribedbytheinteraction typeandwhointeractswith whomatwhattimeandatwhatstrength.Iftherearemorethantwointeractingelements involved,interactionscanbeconvenientlydescribedbytime-dependentnetworks,

Mα ij (t),

where i and j labeltheelementsinthesystem,and α denotestheinteractiontype. Mα ij (t) arematrixelementsofastructurewiththreeindices.Thevalue Mα ij (t) indicates thestrengthoftheinteractionoftype α betweenelement i and j attime t. Mα ij (t) = 0 meansnointeractionofthattype.Interactionsincomplexsystemsremainbasedonthe conceptofexchange;however,theyarenotlimitedtotheexchangeofgaugebosons.In complexsystems,interactionscanhappenthroughcommunication,wheremessagesare exchanged,throughtradewheregoodsandservicesareexchanged,throughfriendships, wherebottlesofwineareexchanged,andthroughhostility, whereinsultsandbulletsare exchanged.

Becauseofmorespecificandtime-varyinginteractionsandtheincreasedvarietyof typesofinteraction,thevarietyofmacroscopicstatesand systemicpropertiesincreases drasticallyincomplexsystems.Thisdiversityincreaseof macrostatesandphenomena emergesfromthepropertiesbothofthesystem’scomponents anditsinteractions. Thephenomenonofcollectivepropertiesarisingthatare,a priori,unexpectedfrom theelementsaloneissometimescalled emergence.Thisismainlyaconsequenceofthe presenceofgeneralizedinteractions.Systemswithtime-varyinggeneralizedinteractions canexhibitanextremelyrichphasestructureandmaybeadaptive.Phasesmayco-exist inparticularcomplexsystems.Thepluralityofmacrostatesinasystemleadstonewtypes

Componentsfromphysics 9 ofquestionsthatcanbeaddressed,suchas:whatisthenumberofmacrostates?Whatare theirco-occurrencerates?Whatarethetypicalsequencesofoccurrence?Whatarethe life-timesofmacrostates?Whataretheprobabilitiesoftransitionbetweenmacrostates? Asyet,therearenogeneralanswerstothesequestions,andtheyremainachallengefor thetheoryofcomplexsystems.Formanycomplexsystems,the frameworkofphysicsis incomplete.Someofthemissingconceptsarethoseofnon-equilibrium,evolution,and co-evolution.Theseconceptswillbeillustratedinthesectionsthatfollow.

1.2.7Anoteonchemistry—thescienceofequilibria

Inchemistry,interactionsbetweenatomsandmoleculesare specificinthesensethat noteverymoleculebindsto(interactswith)anyothermolecule.Sowhyischemistry usuallynotconsideredtobeacandidateforatheoryofcomplexsystems?Toalarge extent,chemistryisbasedonthelawofmassaction.Manyparticlesinteractinwaysthat leadtoequilibriumstates.Forexample,considertwosubstances A and B thatundergo areactiontoformsubstances S and T,

where α, β , σ , τ arethestoichiometricconstants,and k+ and k aretheforwardand backwardreactionrates,respectively.Theforwardreactionhappensataratethatis proportionalto k+{A}α {B}β ,thebackwardreactionisproportionalto k {S}σ {T }τ .The bracketsindicatetheactive(reacting)massesofthesubstances.Equilibriumisattained iftheratioofthereactionratesequalsaconstant K,

Notethatthesolutiontothisequationgivesthestationary concentrationsofthe varioussubstances.Technically,theseequationsarefixed pointequations.Incontrastto chemicalreactionsandstatisticalmechanics,manycomplexsystemsarecharacterized bybeingout-of-equilibrium.Complexsystemsareoftenso-calleddrivensystems,where thesystemis(exogenously)drivenawayfromitsequilibriumstates.Ifthereisno equilibrium,thereisnowayofusingfixed-point-typeequationstosolvetheproblems. Themathematicaldifficultiesindealingwithout-of-equilibriumornon-equilibrium systemsaretremendousandgenerallybeyondanalyticalreach.Onewaythatoffers ahandleonunderstandingdrivenout-of-equilibriumsystemsistheconceptofselforganizedcriticality,whichallowsessentialelementsof thestatisticsofcomplexsystems tobeunderstood;inparticular,theomnipresenceofpowerlaws.

Manycomplexsystemsaredrivensystemsandareout-of-equilibrium.

IntroductiontoComplexSystems

Bycomparingthenatureofcomplexsystemsandbasicequilibriumchemistry,we learnthatthemerepresenceofspecificinteractionsdoesnotautomaticallyleadus tocomplexsystems.However,cyclicalcatalyticchemicalreactions[22,113,205],are classicprototypesofcomplexsystems.

1.3Componentsfromthelifesciences

Wenowpresentseveralkeyfeaturesofcomplexsystemsthathavebeenadoptedfrom biology.Inparticular,wediscusstheconceptsofevolution,adaptation,self-organization, and,again,networks.

Thelifesciencesdescribetheexperimentalscienceoflivingmatter.Whatisliving matter?Areasonableminimalanswerhasbeenattemptedbythefollowingthree statements[223]:

• Livingmattermustbeself-replicating.

• ItmustrunthroughatleastoneCarnotcycle.

• Itmustbelocalized.

Lifewithoutself-replicationisnotsustainable.Itis,of course,conceivablethatnonself-replicatingorganismscanbecreatedthatliveforatimeandthenvanishandhaveto berecreated.However,thisisnothowweexperiencelifeontheplanet,whichisbasically asingle,continuous,livinggermlinethatoriginatedabout3.5billionyearsago,andhas existedeversince.ACarnotcycleisathermodynamiccyclicalprocessthatconverts thermalenergyintowork,orviceversa.Startingfromaninitialstate,afterthecycleis completed,thesystemreturnstothesameinitialstate.The notionthatlivingmattermust performatleastoneCarnotcycleismotivatedbythefactthatalllivingorganismsuse energygradients(usuallythermal)toperformworkofsomekind.Forexample,thiswork couldbeusedformovingorcopyingDNAmolecules.Thisviewalsopaystributetothe factthatalllivingobjectsareout-of-equilibriumandconstantlydrivenbyenergygradients.If,afterperformingwork,asystemwerenotabletoreachitspreviousstates,itwould behardtocallitalivingsystem.Bothself-replicationand Carnotcyclesrequiresome sortoflocalization.Onthisplanet,thislocalizationtypicallyhappensatthelevelofcells.

Livingmatterusesenergyandperformsworkonshorttimescaleswithoutsignificantlytransformingitself.Itisconstantlydrivenbyenergygradientsandisout-ofequilibrium.Self-replicationandCarnotcyclesrequirelocalization.

1.3.1Chemistryofsmallsystems

Livingmatter,asweknowitonthisplanet,isaself-sustainedsequenceofgeneticactivity overtime.Bygeneticactivitywemeanthatgenes(locations ontheDNA)canbeturned

Figure1.1 SchematicviewofgeneticactivityandwhatalinkMki meansinageneticregulatory network.(a)Geneiactivatesgenekifsomethinglikethefollowingprocesstakesplace:theactivityof geneimeansthataspecificsub-sequenceofthedeoxyribonucleicacid(DNA)(gene)iscopiedintoa complementarystructure,anmRNAmolecule.ThismRNAmoleculefromgenei,mightget‘translated’ (copiedagain)intoaproteinoftypei.Thisproteincanbindwithotherproteinstoformaclusterofproteins, a‘complex’.SuchcomplexescanbindtootherregionsoftheDNA,say,theregionthatisassociatedwith genek,andtherebycausetheactivationofgenek.(b)Geneicausesgenejtobecomeactive,whichactivates genesmandn.(c)Theprocess,wheretheactivityofgeneitriggerstheactivityofothergenes,canbe representedasadirectedgeneticregulatorynetwork.Complexescanalsodeactivategenes.Ifgenejis active,acomplexmightdeactivateit.

‘on’and‘off’.Ifageneison,ittriggerstheproductionofmolecularmaterial,suchas ribonucleicacid(RNA)thatcanlaterbetranslatedintoproteins.Ageneistypically turnedonbyaclusterofproteinsthatbindtoeachothertoformaso-called‘complex’. IfsuchaclusterbindstoaspecificlocationontheDNA,thiscouldcauseacopying processtobeactivatedatthisposition;thegeneisthenactiveor‘on’;seeFigure1.1. Geneticactivityisbasedonchemicalreactionsthattakeplacelocally,usuallywithin cellsortheirnuclei.However,thesechemicalreactionsarespecialinthesensethatonly afewmoleculesareinvolved[341].Intraditionalchemistry,reactionsusuallyinvolve billionsofatomsormolecules.Whathappenswithinacellis chemistrywitha few molecules.Thisimmediatelyleadstoanumberofproblems:

• Itcannolongerbeassumedthatmoleculesmeetbychancetoreact.

• Withonlyafewmoleculespresentthatmightnevermeettoreact,theconceptof equilibriumbecomesuseless.

• Withoutequilibrium,thereisnolawofmassaction.

IntroductiontoComplexSystems

Ifthereisnolawofmassaction,howcanchemistrybedone?Classicalequilibrium chemistryisinadequatefordealingwithmolecularmechanismsinlivingmatter.In cells,moleculesareoftenactivelytransportedfromthesiteofproduction(typically,the nucleus,fororganismsthathaveone)towheretheyareneededinthecell.Thismeans thatdiffusionofmoleculesnolongerfollowstheclassical diffusionequation.Instead, moleculartransportisoftendescribablebyananomalousdiffusionequationoftheform,

where p(x, t) istheprobabilityoffindingamoleculeatposition x attime t, D isthe diffusionconstant,and µ and ν areexponentsthatmakethediffusionequationnonlinear.

Chemicalbindingoftendependsonthethree-dimensionalstructureofthemolecules involved.Thisstructurecandependonthe‘state’ofthemolecules.Forexample,a moleculecanbeinanormaloraphosphorylatedstate.Phosphorylationhappensthrough theadditionofaphosphorylgroup(PO2 3 )toamolecule,whichmaychangeitsentire structure.Thismeansthatforaparticularstateofamoleculeitbindstoothers,but doesnotbindifitisintheotherstate.Afurthercomplicationinthechemistryofa fewparticlesariseswiththereactionrates.Bydefinition, thetermreactionrateonly makessenseforsufficientlylargesystems.Thespeedofreactionsdependscruciallyon thestatisticalmechanicsoftheunderlyingsmallsystemandfluctuationtheoremsmay nowbecomeimportant[122].

1.3.2Biologicalinteractionshappenon networks—almostexclusively

Geneticregulationgovernsthetemporalsequenceoftheabundanceofproteins,nucleic material,andmetaboliteswithinanylivingorganism.Toalargeextent,geneticregulation canbeviewedasadiscreteinteraction:ageneisactiveorinactive;aproteinbindsto anotheroritdoesnot;amoleculeisphosphorylatedornot.Discreteinteractionsare well-describedbynetworks.Inthecontextofthelifesciences,threewell-knownnetworks arethemetabolicnetwork,theprotein–proteinbindingnetwork,andtheBooleangeneregulatorynetwork.Themetabolicnetwork1 isthesetoflinkedchemicalreactions occurringwithinacellthatdeterminethecell’sphysiologicalandbiochemicalproperties. Themetabolicnetworkisoftenrepresentedinnetworksofchemicalreactions,where nodesrepresentsubstancesanddirectedlinks(arrows)correspondtoreactionsor catalyticinfluences.Theprotein–proteinnetworksrepresentempiricalfindingsabout protein–proteininteractions(binding)innetworkrepresentations[102].Nodesare proteins,andlinksspecifytheinteractiontypebetweenthem.Differentinteractiontypes includestable,transient,andhomo-orhetero-oligomerinteractions.

1 Foranexampleofwhatmetabolicnetworkslooklike,seehttp://biochemical-pathways.com/#/map/1

1.3.3Whatisevolution?

‘Nothinginbiologymakessenseexceptinthelightofevolution’.Theodosius Dobzhansky

Evolutionisanaturalphenomenon.Itisaprocessthatincreasesanddestroysdiversity, anditlookslikebotha‘creative’anda‘destructive’process.Evolutionappearsinbiological,technological,economical,financial,historical,andothercontexts.Inthatsense, evolutionarydynamicsisuniversal.Evolutionarysystems followcharacteristicdynamical andstatisticalpatterns,regardlessofthecontext.These patternsaresurprisinglyrobust and,asanaturalphenomenon,theydeserveaquantitativeandpredictivescientific explanation.

Whatisevolution?Geneticmaterialandtheprocessofreplicationinvolveseveral stochasticcomponentsthatmayleadtovariationsintheoffspring.Replicationand variationaretwoofthethreemainingredientsofevolutionaryprocesses.Whatevolution meansinabiologicalcontextiscapturedbytheclassicDarwiniannarrative.Consider apopulationofsomekindthatisabletoproduceoffspring.Thisoffspringhassome randomvariations(e.g.mutations).Individualswiththeoptimalvariationswithrespect toagivenenvironmenthaveaselectionadvantage(i.e.higherfitness).Fitnessmanifests itselfbyhigherreproductivesuccess.Individualswithoptimalvariationswillhavemore offspringandwillthuspasstheirparticularvariationson toanewgeneration.Inthis way‘optimal’variationsareselectedovertime.Thisiscertainlyaconvincingdescription ofwhatisgoingon;however,inthisformitmaynotbeusefulforpredictivescience. Howcanwepredictthefitnessofindividualsinfuturegenerations,giventhatlifein futureenvironmentswilllookverydifferentfromwhatitis today?Exceptoververy shorttimeperiods,thisisatrulychallengingtaskthatisfarfromunderstood.Thereisa goodprospect,however,ofthe statistics ofevolutionarysystemsbeingunderstood.The Darwinianscenariofailstoexplainessentialfeaturesaboutevolutionarysystems,suchas theexistenceofboomandcrashphases,wherethediversityofsystemsradicallychanges withinshortperiodsoftime.Anexampleisthemassivediversification(explosion)of speciesandgeneraabout500millionyearsagointheCambrianera.Itwillalmostcertainlyneverbepossibletopredictwhatspecieswillliveon Eartheven500yearsfromnow, butitmaybeperfectlypossibletounderstandthestatisticsofevolutionaryeventsandthe factorsthatdeterminethestatistics.Inparticular,statisticalstatementsaboutexpected diversity,diversificationrates,robustness,resilience,andadaptabilityarecomingwithin reach.InChapter5wewilldiscussapproachestoformulatingevolutionarydynamicsin waysthatmakethemaccessiblebothcombinatoriallyandstatistically.

Theconceptofevolutionisnotlimitedtobiology.Intheeconomy,theequivalentof biologicalevolutionisinnovation,wherenewgoodsandservicesareconstantlybeing producedbycombinationofexistinggoodsandservices.Somenewgoodswillbe selectedinmarkets,whilethemajorityofnoveltieswillnotbeviableandwillvanish. Theindustrialrevolutioncanbeseenasoneresultofevolutionarydynamics,leading, asitdid,toanongoingexplosionofdiversificationofgoods,services,andinnovations.

IntroductiontoComplexSystems

Anotherexampleofevolutionarydynamicsoutsidebiologyisthesequenceofinvention anddiscoveryofchemicalcompounds.Thehistoryofhumankinditselfisanexampleof evolutionarydynamics.Evolutionarydynamicscantakeplacesimultaneouslyatvarious scales.Inbiologicalsettings,itworksatthelevelofmolecules,cells,organisms,and populations;ineconomicsettings,itcanworkatproduct,firm,corporation,andcountry level.Afamousapplicationofevolutionarydynamicsincomputersciencearesocalledgeneticalgorithms[194].Thesealgorithmsmimicnaturalselectionbyiteratively producingcopiesofcomputercodewithslightvariations.Thosecopiesthatperform bestforagivenproblem(usuallyanoptimizationtask)areiterativelyselectedandare passedontothenext‘generation’ofcodes.

1.3.3.1Evolutionisnotphysics

Toillustratethatevolutionisnotaprocessthatcanbedescribedwithtraditionalphysics, wedefineanevolutionaryprocessasathree-stepprocess:

1.Anewthingcomesintoexistencewithinagiven environment

2.Thenewthinghasthechancetointeractwithitsenvironment.Theresultofthis interactionisthatitgets‘selected’(survives)orisdestroyed.

3.Ifthenewthinggetsselectedintheenvironment,itbecomespartofthisenvironment(boundary)andthustransformstheoldenvironmentintoanewone.New andarrivingthingsinthefuturewillexperiencethenewenvironment.Inthatsense, evolutionisanalgorithmicprocessthatco-evolvesitsboundaries.

Ifwetrytointerpretthisthree-stepprocessintermsofphysics,weimmediately seethatevenifwewereabletowritedownthedynamicsofthesystemintheform ofequationsofmotion,wewouldnotbeabletofixthesystem’s boundaryconditions. Obviously,theenvironmentplaystheroleoftheboundaryconditionswithinwhichthe interactionshappen.Theboundaryconditionsevolveasaconsequenceofthedynamics ofthesystemandchangeateveryinstant.Thedynamicsofthe boundaryconditions isdynamicallycoupledwiththeequationsofmotion.Consequently,astheboundary conditionscannotbefixed,thissetofequationscannot,ingeneral,besolvedandthe Newtonianmethodbreaksdown.Asystemofdynamicalequationsthatarecoupled dynamicallytotheirboundaryconditionsisamathematical monster.Thatiswhyan algorithmicprocesslikeevolutionishardtosolveusinganalyticalapproaches.2

Thesecondproblemassociatedwithevolutionarydynamics, fromaphysicspointof view,isthatthephasespaceisnotwell-defined.Asnewelementsmayarriveatanypointin time,itisimpossibletoprestatewhatthephasespaceofsuchsystemswillbe.Obviously, thisposesproblemsintermsofproducingstatisticswiththesesystems.Thesituation couldbecomparedtotryingtoproducestatisticsbyrolling adice,whosenumberof faceschangesfromonethrowtothenext.

2 Suchsystemscanbetreatedanalyticallywheneverthecharacteristictimescalesoftheprocessesinvolved aredifferent.Inourexample,thiswouldbethecaseifthedynamicsoftheinteractionsofthe‘newthing’with theenvironmenthappensonafasttimescale,whilechangesintheenvironmenthappenslowly.

Evolutionarydynamicsisradicallydifferentfromphysics fortwomainreasons:

• Inevolutionarysystems,boundaryconditionscannotbefixed.

• Inevolutionarysystems,thephasespaceisnotwelldefined—itchangesovertime. Newelementsmayemergethatchangetheenvironmentandthereforealsothe dynamicsforalltheexistingelementsofthesystem.

Evolutionaryaspectsareessentialformanycomplexsystemsandcannotbeignored. Agreatchallengeinthetheoryofcomplexsystemsistodevelopaconsistentframework thatisneverthelessabletodealwithevolutionaryprocessesinquantitativeandpredictive terms.Wewillseehowanumberofrecentlydevelopedmathematicalmethodscan beusedtoaddressanddealwiththesetwofundamentalproblems.Inparticular,in Chapter5,wewilldiscusscombinatorialevolutionmodels. Thesemodelsareagood exampleofhowalgorithmicapproachesleadtoquantitative andtestablepredictions.

1.3.3.2Theconceptoftheadjacentpossible

Ahelpfulsteppingstoneinaddressingtheproblemofdynamicallychangingphasespaces istheconceptofthe adjacentpossible,proposedbyStuartKauffman[223].Theadjacent possibleisthesetofallpossiblestatesoftheworldthat could potentiallyexistinthe nexttimestep,giventhepresentstateoftheworld.Itdrasticallyreducesthesizeof phasespacefromallpossiblestatestoasetofpossibilitiesthatareconditionalonthe present.Obviously,noteverythingcanbeproducedwithinthenexttimestep.Thereare manystatesthatareimpossibletoimagine,asthecomponentsrequiredtomakethem donotyetexist.Inotherwords,theadjacentpossibleisthe subsetofallpossibleworlds thatare reachable withinthenexttimestepanddependsstronglyonthepresent stateof theworld.Inthisview,evolutionisaprocessthatcontinuously‘fills’itsadjacentpossible. Theconcreterealizationoftheadjacentpossibleatonetimestepdeterminestheadjacent possibleatthenexttimestep.

Thus,inthecontextofbiologicalevolutionortechnologicalinnovation,theadjacent possibleisahugeset,inwhichthepresentstateoftheworld determinesthepotential realizationofavastnumberofpossibilitiesinthenexttimestep.Typically,thefuture statesarenotknown.Incontrast,inphysics,agivenstateoftendeterminesthenextstate withhighprecision.Thismeansthattheadjacentpossibleisaverysmallset.Forexample, theadjacentpossibleofafallingstoneisgivenbythenextposition(point)onitsparabolic trajectory.Incomparison,theadjacentpossibleofanecosystemconsistsofallorganisms thatcanbebornwithinthenexttimestep,withallpossiblemutationsandvariationsthat canpossiblyhappen—alargesetofpossibilitiesindeed.Theconceptoftheadjacent possibleintroducespath-dependenceinthestochasticdynamicsofphasespace.Wewill discussthestatisticsofpath-dependentevolutionaryprocessesinChapters5and6.

1.3.3.3Summaryevolutionaryprocesses

Evolutionaryprocessesarerelevanttothetreatmentofcomplexsystemsforthefollowing reasons.

• Forevolutionarysystems,boundaryconditionscannotusuallybefixed.This meansthatitisimpossibletotakethesystemapartandseparateitfromits contextwithoutmassivelyalteringandperhapsevendestroyingit.Theconcept ofreductionismisinadequatefordescribingevolutionary processes.

• Evolutionarycomplexsystemschangetheirboundaryconditionsastheyunfold intime.Theyco-evolvewiththeirboundaryconditions.Frequently,situationsare difficultorimpossibletosolveanalytically.

• Forcomplexsystems,theadjacentpossibleisalargesetofpossibilities.Forphysics, itistypicallyaverysmallset.

• Theadjacentpossibleitselfevolves.

• Inmanyphysicalsystems,therealizationoftheadjacentpossibledoesnot influencethenextadjacentpossible;inevolutionarysystems,itdoes.

1.3.4Adaptiveandrobust—theconceptoftheedgeofchaos

Manycomplexsystemsarerobustandadaptiveatthesametime.Theabilitytoadapt tochangingenvironmentsandtoberobustagainstchangingenvironmentsseemtobe mutuallyexclusive.However,mostlivingsystemsareclearlyadaptiveandrobustatthe sametime.Asanexplanationforhowtheseseeminglycontradictoryfeaturescouldcoexist,thefollowingviewofthe edgeofchaos wasproposed[246].Everydynamicalsystem hasamaximalLyapunovexponent,whichmeasureshowfasttwo initiallyinfinitesimally closetrajectoriesdivergeovertime.Theexponentialrate ofdivergenceistheLyapunov exponent, λ,

where |δX (t)| isthedistancebetweenthetrajectoriesattime t and |δX (0)| istheinitial separation.If λ ispositive,thesystemiscalled chaotic orstronglymixing.If λ isnegative, thesystemapproachesanattractor,meaningthattwoinitiallyinfinitesimallyseparated trajectoriesconverge.Thisattractorcanbeatrivialpoint(fixedpoint),aline(limit cycle),orafractalobject.Aninterestingcaseariseswhen theexponent λ isexactlyzero. Thesystemisthencalledquasi-periodicoratthe‘edgeofchaos’.Therearemanylowdimensionalexampleswheresystemsexhibitallthreepossibilities—theycanbechaotic, periodic,orattheedgeofchaos,dependingontheircontrol parameters.Thesimplest oftheseisthelogisticmap.

Theintuitiveunderstandingofhowasystemcanbeadaptiveandrobustatthesame timeifitoperatesattheedgeofchaos,isgivenbythefollowing.If λ isclosetozero,ittakes onlytinychangesinthesystemtomoveitfromastableandperiodicmode(λ slightly negative)tothechaoticphase(λ positive).Intheperiodicmode,thesystemisstable androbust;itreturnstotheattractorwhenperturbed.When ittransitsintothechaotic phase,say,throughastrongperturbationintheenvironment,itwillsamplelargeregions

Another random document with no related content on Scribd:

90—The Red Hermitess; or, the Caravan’s Prizes. By Paul Bibbs. Ready Dec. 4th.

91—Star-Face, the Slayer. Ready Dec. 18th.

92—The Antelope Boy. By Geo. L. Aiken. Ready Dec. 31st.

93—The Phantom Hunter; or, Love After Death. By Edwin Emerson. Ready Jan. 15th.

94—Tom Pintle, the Pilot. A Tale of the Three-Years-War. By Milnor Klapp, Esq. Ready Jan. 29th.

95—The Red Wizard; or, the Cave Captive. By Lieut. Ned Hunter. Ready Feb. 12th.

96—The Rival Trappers; or, Old Pegs the Mountaineer. By Lewis W. Carson. Ready Feb. 26th.

97—The Squaw Spy; or, the Rangers of the Lava Beds. By Capt. Chas. Howard. Ready March 12th.

☞ B’ D P N are always in print and for sale by all newsdealers; or will be sent post-paid, to any address: single numbers, ten cents; six months (13 Nos.) $1.25; one year (26 Nos.) $2.50.

Address, BEADLE AND ADAMS, Publishers, 98 William Street, New York.

Transcriber’s Notes

A number of typographical errors were corrected silently

Cover image is in the public domain.

Normalized various spellings of what would be rendered in 2022 as protégé to protege

*** END OF THE PROJECT GUTENBERG EBOOK THE GIRL AVENGER; OR, THE BEAUTIFUL TERROR OF THE MAUMEE ***

Updated editions will replace the previous one—the old editions will be renamed.

Creating the works from print editions not protected by U.S. copyright law means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg™ electronic works to protect the PROJECT GUTENBERG™ concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for an eBook, except by following the terms of the trademark license, including paying royalties for use of the Project Gutenberg trademark. If you do not charge anything for copies of this eBook, complying with the trademark license is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. Project Gutenberg eBooks may be modified and printed and given away—you may do practically ANYTHING in the United States with eBooks not protected by U.S. copyright law. Redistribution is subject to the trademark license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase “Project Gutenberg”), you agree to comply with all the terms of the Full Project Gutenberg™ License available with this file or online at www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg™ electronic works

1.A. By reading or using any part of this Project Gutenberg™ electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg™ electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg™ electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg™ electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg™ electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg™ electronic works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation (“the Foundation” or PGLAF), owns a compilation copyright in the collection of Project Gutenberg™ electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg™ mission of promoting free access to electronic works by freely sharing Project Gutenberg™ works in compliance with the terms of this agreement for keeping the Project Gutenberg™ name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg™ License when you share it without charge with others.

1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg™ work. The Foundation makes no representations concerning the copyright status of any work in any country other than the United States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg™ License must appear prominently whenever any copy of a Project Gutenberg™ work (any work on which the phrase “Project Gutenberg” appears, or with which the phrase “Project Gutenberg” is associated) is accessed, displayed, performed, viewed, copied or distributed:

This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

1.E.2. If an individual Project Gutenberg™ electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase “Project Gutenberg” associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg™ trademark as set forth in paragraphs 1.E.8 or 1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg™ License for all works posted with the permission of the copyright holder found at the beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg™ License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg™ License.

1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg™ work in a format other than “Plain Vanilla ASCII” or other format used in the official version posted on the official Project Gutenberg™ website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original “Plain Vanilla ASCII” or other form. Any alternate format must include the full Project Gutenberg™ License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg™ works unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg™ electronic works provided that:

• You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg™ works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg™ trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information about donations to the Project Gutenberg Literary Archive Foundation.”

• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt

that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.

• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.

• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.

1.F

1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner

of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be

interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY

- You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project

Gutenberg

Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of

compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary

Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.