IFRS 9 and CECL Credit Risk
Modelling and Validation
A Practical Guide with Examples
Worked in R and SAS
Tiziano Bellini
TizianoBellini
AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom
Copyright©2019ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchas theCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenoted herein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changes inresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/or damagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-814940-9
ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: CandiceJanco
AcquisitionEditor: ScottBentley
EditorialProjectManager: SusanIkeda
ProductionProjectManager: BharatwajVaratharajan
Designer: MarkRogers
TypesetbyVTeX
Amiopapà, aduneroesilenzioso, allasuaencomiabilemoralità.
1.4 ECLandCapitalRequirements
1.4.1InternalRating-BasedCreditRisk-WeightedAssets................17
2.2 DefaultDefinitionandDataPreparation.
2.3 GeneralisedLinearModels(GLMs)
2.3.1GLM(Scorecard)Development..
2.4 MachineLearning(ML)Modelling
2.5 LowDefaultPortfolio,Market-Based,andScarceDataModelling
2.5.1LowDefaultPortfolioModelling.
2.5.2Market-BasedModelling
2.6
2.5.3ScarceDataModelling..
2.5.4HintsonLowDefaultPortfolio,Market-Based,andScarceDataModel Validation...............................................75
2.8 AppendixA.FromLinearRegressiontoGLM
2.9 AppendixB.DiscriminatoryPowerAssessment
3.1
3.2 DataPreparation...
3.2.1DefaultFlagCreation......................................93
3.2.2Account-Level(Panel)DatabaseStructure
3.3 LifetimeGLMFramework........................................98
3.3.1Portfolio-LevelGLMAnalysis...............................99
3.3.2Account-LevelGLMAnalysis
3.3.3LifetimeGLMValidation...................................108
3.4 SurvivalModelling.
3.4.1KMSurvivalAnalysis......................................112
3.4.2CPHSurvivalAnalysis.....................................116
3.4.3AFTSurvivalAnalysis.....................................121
3.4.4SurvivalModelValidation
3.5 LifetimeMachineLearning(ML)Modelling
3.5.1Bagging,RandomForest,andBoostingLifetimePD
3.5.2RandomSurvivalForestLifetimePD ..........................129
3.5.3LifetimeMLValidation.....................................133
3.6 TransitionMatrixModelling... ...................................134
3.6.1NaïveMarkovChainModelling
3.6.2Merton-LikeTransitionModelling..
3.6.3Multi-StateModelling...
3.6.4TransitionMatrixModelValidation..
3.7 SASLaboratory ................................................144 3.8 Summary.....................................................147 SuggestionsforFurtherReading ...................................148
4.1 Introduction
4.2 LGDDataPreparation
4.2.1LGDDataConceptualCharacteristics ..........................158
4.2.2LGDDatabaseElements ....................................160
4.3 LGDMicro-StructureApproach ...................................161
4.3.1ProbabilityofCure.. ......................................164
4.3.2Severity................................................167
4.3.3DefaultedAssetLGD......................................170
4.3.4Forward-LookingMicro-StructureLGDModelling ................173
4.3.5Micro-StructureRealEstateLGDModelling.
4.3.6Micro-StructureLGDValidation..............................178
4.4 LGDRegressionMethods.. ......................................182 4.4.1TobitRegression..........................................182
4.4.2BetaRegression..........................................186
4.4.3MixtureModelsandForward-LookingRegression ................189
4.4.4RegressionLGDValidation..................................190
4.5 LGDMachineLearning(ML)Modelling
4.5.1RegressionTreeLGD......................................191
4.5.2Bagging,RandomForest,andBoostingLGD
4.5.3Forward-LookingMachineLearningLGD..
4.5.4MachineLearningLGDValidation
4.6 HintsonLGDSurvivalAnalysis...................................203
4.7 ScarceDataandLowDefaultPortfolioLGDModelling
4.7.1ExpertJudgementLGDProcess. .............................204
4.7.2LowDefaultPortfolioLGD..................................207
4.7.3HintsonHowtoValidateScarceDataandLowDefaultPortfolioLGDs208
4.8 SASLaboratory. ...............................................208
4.9 Summary.....................................................212 SuggestionsforFurtherReading ...................................213
5.1 Introduction
5.2 DataPreparation ...............................................217
5.2.1HowtoOrganizeData......................................217
5.3 FullPrepaymentModelling. ......................................219
5.3.1FullPrepaymentviaGLM ...................................220
5.3.2MachineLearning(ML)FullPrepaymentModelling
5.3.3HintsonSurvivalAnalysis..................................227
5.3.4FullPrepaymentModelValidation
5.4 CompetingRiskModelling. ......................................231
5.4.1MultinomialRegressionCompetingRisksModelling...
5.4.2FullEvaluationProcedure ...................................239
5.4.3CompetingRiskModelValidation .............................243
5.5 EADModelling. ...............................................245
5.5.1ACompeting-Risk-LikeEADFramework.......................246
5.5.2HintsonEADEstimationviaMachineLearning(ML)
5.5.3EADModelValidation..
5.6 SASLaboratory ................................................252 5.7 Summary.....................................................254
6.1
6.2 ScenarioAnalysis..
6.2.1VectorAuto-RegressionandVectorError-CorrectionModelling
6.2.2VARandVECForecast..
6.2.3HintsonGVARModelling ..................................269
6.3 ECLComputationinPractice......................................270
6.3.1ScenarioDesignandSatelliteModels
6.3.2LifetimeECL............................................273
6.3.3IFRS9StagingAllocation...................................277
6.4 ECLValidation................................................280
6.4.1HistoricalandForward-LookingValidation
6.4.2CreditPortfolioModellingandECLEstimation.
TizianoBellini’sBiography
TizianoBellinireceivedhisPhDdegreeinstatisticsfromtheUniversityofMilanafterbeingavisiting PhDstudentattheLondonSchoolofEconomicsandPoliticalScience.HeisaQualifiedChartered AccountantandRegisteredAuditor.HegainedwideriskmanagementexperienceacrossEurope(includinginLondon)andinNewYork.HeiscurrentlyDirectoratBlackRockFinancialMarketAdvisory (FMA)inLondon.PreviouslyheworkedatBarclaysInvestmentBank,EYFinancialAdvisoryServices inLondon,HSBC’sheadquarters,PrometeiainBologna,andotherleadingItaliancompanies.Heis aguestlectureratImperialCollegeinLondon,andattheLondonSchoolofEconomicsandPolitical Science.Formerly,heservedasalecturerattheUniversityofBolognaandtheUniversityofParma. Tizianoistheauthorof StressTestingandRiskIntegrationinBanks,AStatisticalFrameworkandPracticalSoftwareGuide(inMatlabandR) editedbyAcademicPress.Hehaspublishedinthe European JournalofOperationalResearch, ComputationalStatisticsandDataAnalysis,andothertop-reviewed journals.Hehasgivennumeroustrainingcourses,seminars,andconferencepresentationsonstatistics, riskmanagement,andquantitativemethodsinEurope,Asia,andAfrica.
Preface
Aseriesofconcernshavebeenexpressedsincetheadoptionoftheincurredlossesparadigmbyboth theInternationalAccountingStandardBoard(IASB)andtheFinancialAccountingStandardBoard (FASB).Therecent(2007–2009)financialcrisisuncoveredthisissuebyinducingareviewofaccountingstandardswhichculminatedwiththeInternationalFinancialReportingStandardnumber9(IFRS9) andCurrentExpectedCreditLoss(CECL).
ThisbookprovidesacomprehensiveguideoncreditriskmodellingandvalidationforIFRS9and CECLexpectedcreditloss(ECL)estimates.Itisaimedatgraduate,masterstudentsandpractitioners. Asadistinctivepracticalimprint,softwareexamplesinRandSASaccompanythereaderthroughthe journey.Thechoiceofthesetoolsisdrivenbytheirwideusebothinbanksandacademia.
Despitethenon-prescriptivenatureofaccountingstandards,commonpracticesuggeststorelyon theso-calledprobabilityofdefault(PD),lossgivendefault(LGD),andexposureatdefault(EAD) framework.Othernon-complexmethodsbasedonloss-rate,vintage,cashflowsareconsideredasa corollary.Inpractice,banksestimatetheirECLsasthepresentvalueoftheabovethreeparameters’ productoveraone-yearorlifetimehorizon.Basedonthis,adistinctionarisesbetweenCECLand IFRS9.Iftheformerfollowsalifetimeperspectiveforallcredits,thelatterclassifiesaccountsinthree mainbuckets:stage1(one-yearECL),stage2(lifetimeECL),stage3(impairedcredits).Thekey innovationintroducedbythenewaccountingstandardssubsumesashifttowardsaforward-lookingand lifetimeperspective.Thereforealinkbetweenmacroeconomicvariables(MVs),behaviouralvariables (BVs),andtheabovethreeparametersiscrucialforourdissertation.Suchaframeworkisalsoanatural candidateforstresstestingprojections.
Fromanorganizationalstandpoint,Chapter 1 servesthepurposetointroduceIFRS9andCECL. Itpointsouttheirsimilaritiesanddifferences.Thenthefocusisonthelinkconnectingexpectedcredit lossestimatesandcapitalrequirements.Abookoverviewisprovidedasaguideforthereaderwilling tograspahigh-levelpictureoftheentireECLmodellingandvalidationjourney.
Chapter 2 focusesonone-yearPDmodelling.Twomainreasonssuggestourtreatingone-yearand lifetimeseparately.Firstly,bankshavebeendevelopingone-yearPDmodelsoverthelasttwodecades forBaselIIregulatoryrequirements.Secondly,abuilding-block-structuresplitinone-yearandlifetime PDfacilitatesthelearningprocess.Asastartingpoint,thischapterfocusesonhowdefaulteventsare definedforaccountingpurposesandhowtobuildaconsistentPDdatabase.Movingtowardsmodellingfeatures,firstly,generalizedlinearmodels(GLMs)areexploredasaparadigmforone-yearPD estimates.Secondly,machinelearning(ML)algorithmsarestudied.Classificationandregressiontrees (CARTs),bagging,randomforest,andboostingareinvestigatedbothtochallengeexistingmodels, andexplorenewPDmodellingsolutions.Inlinewiththemostrecentliterature,thechoiceofthese approachesisdrivenbothbytheireffectivenessandeasyimplementation.Ifawidedataavailability encouragestheuseofdatadrivenmethods,lowdefaultportfoliosanddatascarcityareotherchallenges onemayneedtoface.Bespokemethodsarescrutinizedtoaddressissuesrelatedtolimitednumberof defaults,andadhocproceduresareexploredtodealwithlackofdeephistoricaldata.
Oneofthekeyinnovationintroducedbythenewaccountingstandardsreferstolifetimelosses. Eventhoughthisconceptisnotnewinriskmanagement,itsimplementationinthefinancialindustry xiii
isextremelycontemporaryasdiscussedinChapter 3.Account-levelinformationisusuallyrequired todevelopacomprehensivemodellingframework.Basedondataavailability,onemayconsiderfew alternativemethods.Asafirstwaytotacklethechallenge,generalizedlinearmodels(GLMs)areexplored.Asasecondstep,survivalmodellingisintroducedbymeansofthreemaintechniques.The pioneeringKaplan–Meier(KP)framepavesthewaytolifetimePDmodellingbymeansofCoxProportionalHazard(CPH)andacceleratedfailuretime(AFT)models.Thirdly,machinelearning(ML) proceduresarescrutinized.Bagging,randomforestandboostingaredirectlyappliedonpaneldatato capturetherelationshipwithbothBVsandMVsovertime.Then,asanalternative,randomsurvival forestisexploredbyembeddingsurvivalmodellingintoaMLstructure.Fourthly,transitionmatrices arestudiedbyconsideringbothbespokeapproaches,basedontransitionmatrixadjustmentsovera multi-periodhorizonandmultistateMarkovmodels.
Chapter 4 focusesonlossgivendefault(LGD)representingtheportionofanon-recoveredcreditin caseofdefault.AsastartingpointtodevelopanLGDmodel,oneneedstorelyonasuitabledatabase. Itsgoalistocollectallinformationneededtoassessrecoveriesthroughouttheso-called“workout process”untilanaccountisfullycuredorwritten-off.Fromamodellingstandpoint,firstlyamicrostructureLGDmodellingisintroducedtoprovideacomprehensiveviewofthepost-defaultrecovery process.Thefocusisontwokeycomponents:probabilityofcureandseverity.Asanextstep,thefocus isonregressiontechniques.Tobit,betaandothermethodsarefirststudiedassilosapproaches,andthen combinedinmixturemodelstoimprovebothgoodness-of-fitandmodelpredictivepower.Thirdly,machinelearning(ML)modellingisexplored.Classificationandregressiontreesarenaturalcandidates tofitLGDs.Bagging,randomforestandboostingarealsostudiedasavalidenhancementofthemost traditionalMLmethods.SomehintsareprovidedonhowtoapplyCoxproportionalhazard(CPH),and acceleratedfailuretime(AFT)modelstoLGDs.Scarcedataissuesandlowdefaultportfoliosarethen investigatedbypointingouttheneedforsimplerapproaches.Qualitativeassessmentsplayakeyrole insuchasetting.
Chapter 5 isdevotedtoexposureatdefault(EAD)analysis.Akeydistinctionoperatesbetween committedproducts(forexample,loans)anduncommittedfacilities(forinstance,overdrafts).Loantypeproductsusuallycoveramulti-yearhorizon.Consequently,economicconditionsmaycausea deviationfromtheoriginallyagreedrepaymentscheme.Fullprepaymentsandoverpayments(partial prepayments)arefirstinvestigatedbymeansofgeneralizedlinearmodels(GLMs)andmachinelearning(ML).Hintsonsurvivalanalysisarealsoprovidedtoestimateandprojectprepaymentoutcomes. Growingattentionisdevotedbothbyresearchersandpractitionerstocompetingrisks.Asasecond stepofourinvestigation,thefocusisonaframeworktojointlymodelfullprepayments,defaults,and overpayments.Ontheonehand,wemodeltheseeventsbymeansofamultinomialregression.Inthis case,whentheoutcomeisnotbinary(forexample,overpayment)asecondstepisneeded.Tobitand betaregressionsareusedtocaptureoverpaymentspecificfeatures.Ontheotherhand,fullprepayments andoverpaymentsarejointlyinvestigatedbymeansofMLmodels.Asathirdfocusarea,uncommitted facilitiesareinspectedbymeansofabespokeframework.Oneneedstodealwithadditionalchallenges, comprisingaccountswithzeroornegativeutilizationatreportingdateandpositiveexposureatdefault. AllstatesoftheworldrelevantforECLcomputationarescrutinizedfromdifferentangles.
Finally,Chapter 6 bringstogetherallECLingredientsstudiedthroughoutthebook.Giventherole ofscenarios,multivariatetimeseriesareinvestigatedbymeansofvectorauto-regression(VAR)and vectorerror-correction(VEC)models.Informationregardingglobalvectorauto-regression(GVAR) modellingisalsoprovided.CasestudiesallowustograsphowtocomputeECLinpractice.Emphasis
Preface xv isplacedonIFRS9andCECLcomparison.Finally,fullECLvalidationisscrutinized.Indeed,the presumedindependencebetweenriskparametersandlackofconcentrationeffectsischallengedby meansofhistoricalvalidationandforward-lookingportfolioanalysis.
London,August2018
TizianoBellini
CREDITLOSSMODELLINGAND
VALIDATION
Asaresponsetoincurredlossescriticisms,boththeInternationalAccountingStandardBoard(IASB) andFinancialAccountingStandardBoard(FASB)workedtoredesignaccountingstandardstowards anexpectedcreditlossparadigm.Theaimwastoanticipatelossrecognitionbyavoidingissues experienced—inparticular—duringthe2007–2009financialcrisis.
Startingfromaninitialjointeffortforauniquesolution,IASBandFASBagreedoncommonprinciples,butthenissuedtwoseparatedstandards.IASB’sInternationalFinancialReportingStandard number9(IFRS9),issuedin2014,reliesonathree-bucketclassification,whereone-yearorlifetime expectedcreditlossesarecomputed.Onthecontrary,FASB’sCurrentExpectedCreditLoss(CECL) accountingstandardupdate2016–13(topic326:creditlosses)followsalifetimeperspectiveasageneralrule.
IFRS9andCECLareseparatelyintroducedinSections 1.2 and 1.3 topointouttheirsimilarities anddifferences.Thenthefocusisonthelinkconnectingexpectedcreditlossestimatesandcapital requirements,asdetailedinSection 1.4.Asafinalstep,abookoverviewisprovidedinSection 1.5 asaguideforthereaderwillingtograsponoverviewoftheentireexpectedcreditlossmodellingand validationjourney.
KEYABBREVIATIONSANDSYMBOLS
CECL Currentexpectedcreditloss
EADi,s,t Exposureatdefaultforaccount i insub-portfolio s attime t
ECL Expectedcreditloss
FASB FinancialAccountingStandardBoard
IASB InternationalAccountingStandardBoard
IFRS Internationalfinancialreportingstandard
LGDi,s,t Lossgivendefaultforaccount i insub-portfolio s attime t
PDi,s,t Probabilityofdefaultforaccount i insub-portfolio s attime t
PIT Point-in-time
RWA Riskweightedasset
TTC Throughthecycle
UL Unexpectedloss
IFRS9andCECLCreditRiskModellingandValidation. https://doi.org/10.1016/B978-0-12-814940-9.00009-8
Copyright©2019ElsevierInc.Allrightsreserved.
FIGURE1.1
ECLengine:topicsexploredthroughoutthechapter.
1.1 INTRODUCTION
SincetheadoptionoftheincurredlossesarchetypebybothIASBandFASB,aseriesofconcernshave beenexpressedabouttheinappropriatenessofdelayingtherecognitionofcreditlossesandbalance sheetfinancialassetsoverstatement.Therecent(2007–2009)financialcrisisuncoveredthisissuetoits broaderextentbyforcingaprofoundreviewofaccountingstandards,culminatingwiththeInternational FinancialReportingStandardnumber9(IFRS9)(IASB, 2014)andCurrentExpectedCreditLoss (CECL)(FASB, 2016).IFRS9goeslivein2018byconsideringnotonlyexpectedcreditloss(ECL) rules,butalsoclassificationmechanicsandhedgeaccounting.Hereafter,ourfocusislimitedtoECLs. Ontheotherhand,FASB’snewimpairmentstandardwillbeeffectiveforSECfilersforyearsbeginning onorafterDecember15,2019(withearlyadoptionpermittedoneyearearlier),andoneyearlaterfor otherentities.
Thekeyinnovationintroducedbynewaccountingstandardssubsumesashiftfromabackwardincurred-lossesperspectivetowardsaforward-lookingECLrepresentation.Thischangeimpliesadeep reviewintermsofbusinessinterpretation,computationalskillsandITinfrastructures.Furthermore, adeeperseniormanagementinvolvementisattheveryheartofnewaccountingstandardspractical implementation.Aholisticperspectiveisrequiredinsuchacomplexframeworkinvolvingwidespread competencestobealignedonacommongoal.
Figure 1.1 summarisesthekeyareastouchedinthischapterasanintroductiontothemaintopics discussedthroughoutthebook.
• IFRS9. Despitethenon-prescriptivenatureoftheaccountingprinciple,commonpracticesuggests relyingontheso-calledprobabilityofdefault(PD),lossgivendefault(LGD)andexposureatdefault (EAD)framework.BanksestimateECLasthepresentvalueoftheabovethreeparameters’product overaone-yearorlifetimehorizon,dependinguponexperiencingasignificantincreaseincredit risksinceorigination.Section 1.2 startsbydescribingthekeyprinciplesinformingthestaging allocationprocess.Threemainbucketsareconsidered:stage1(one-yearECL),stage2(lifetime
ECL),stage3(impairedcredits).Thefocus,then,movesonECLkeyingredients,thatis,PD,LGD, EAD.Aforward-lookingperspectiveinspiresIFRS9byemphasisingtheroleofeconomicscenarios asakeyingredientforECLcomputation.Basedonthis,aneasyparallelcanbedrawnbetweenECL andstresstesting.
• CECL. FewmethodologiesarementionedunderFASB(2016)tocomputeECLs.Inthisregard, Section 1.3 providesanoverviewofapproachesonemayadopttoalignwithCECLrequirements. Loss-rate,vintageandcashflowmethodsareinspectedbymeansofillustrativeexamples.These non-complexapproachesarenotfurtherinvestigatedthroughoutthebook.Indeed,thefocusof thebookisonmorecomplexmethodsbasedonPD,LGDandEADtoleveragesimilaritieswith IFRS9.
• ECLandcapitalrequirements. Section 1.4 highlightssomeofthekeyconnectionslinkingaccountingstandardsandregulatorycapitalrequirements.Firstly,internalrisk-based(IRB)weighted assetsareintroduced.Secondly,expectedcreditlossesarescrutinisedinthecontextofregulatory capitalquantification.IFRS9andCECLimpactoncommonequityTier1,Tier2andtotalcapital ratiosispointedoutbymeansofafewillustrativeexamples.
• Bookstructureataglance. BothIFRS9andCECLrequireanoutstandingeffortintermsofdata, modellingandinfrastructure.AdeepintegrationisrequiredtocoherentlyestimateECLs.Forthis reasonSection 1.5 providesaguideforthereaderthroughthejourney.Anintroductiontoeach chapterisprovidedtogetherwithanarrativehighlightingthekeychoicesmadeinpresentingeach topic.
1.2 IFRS9
Therecent(2007–2009)financialcrisisurgedaresponsenotonlyfromacapitalperspective,butalso fromanaccountingpointofview.Indeed,BIS(2011)introducednewconstraintstobankingactivity andenforcedexistingrules.Capitalratioswerestrengthenedbydefiningaconsistentsetofrules. Leverageratiowasintroducedasameasuretopreventbanksexpandingtheirassetswithoutlimit. Liquidityratios(thatis,liquiditycoverageratioandnetstablefundingratio)constitutedaresponseto liquidityproblemsexperiencedduringthecrisis.Finally,stresstestingwasusedasakeytooltoassess potentialrisksonawiderperspectivebyencompassingeconomic,liquidityandcapitalperspectivesall atonce.
Fromanaccountingperspective,IASBintroducedthenewprinciple,IFRS9(IASB, 2014).Itsmost importantinnovationreferstocreditlossesestimation.Intermsofscope,thenewmodelappliesto:
• Instrumentsmeasuredatamortisedcost. Assetsaremeasuredattheamountrecognisedatinitial recognitionminusprincipalrepayments,plusorminusthecumulativeamortisationofanydifferencebetweenthatinitialamountandthematurityamount,andanylossallowance.Interestincome iscalculatedusingtheeffectiveinterestmethodandisrecognisedinprofitandloss.
• Instrumentsmeasuredatfairvaluethroughothercomprehensiveincome(FVOCI). Loansand receivables,interestrevenue,impairmentgainsandlosses,andaportionofforeignexchangegains andlossesarerecognisedinprofitandlossonthesamebasisasforamortisedcostassets.Changes infairvaluearenotrecognisedinprofitandloss,butinothercomprehensiveincome(OCI).
AnecessaryconditionforclassifyingaloanorreceivableatamortisedcostorFVOCIiswhether theassetispartofagrouporportfoliothatisbeingmanagedwithinabusinessmodel,whoseobjective istocollectcontractualcashflows(thatis,amortisedcost),ortobothcollectcontractualcashflows andtosell(thatis,FVOCI).Otherwise,theassetismeasuredatfairvaluesprofitandloss,andECL modeldoesnotapplytoinstrumentsmeasuredatfairvalueprofitandloss(forexample,tradingbook assets).
Figure 1.2 summarisesthekeytopicsinvestigatedthroughoutSection 1.2.
FIGURE1.2 WorkflowdiagramforSection 1.2.
Section 1.2.1 introducesthestagingallocationprocess.Indeed,IASB(2014)reliesontheconcept ofsignificantincreaseincreditrisktodistinguishbetweenstage1andstage2credits.Forstage1, one-yearECLholds,whereasforstage2lifetimeECLneedstobecomputed.Stage3referstoimpaired creditsandlifetimeECLapplies.Section 1.2.2 providesanoverviewofthekeyingredientscommonly usedtocomputeECL.Indeed,apartfromsimplifiedapproaches,probabilityofdefault(PD),lossgiven default(LGD)andexposureatdefault(EAD)arekeyelementsforECLestimate.
1.2.1STAGINGALLOCATION
IFRS9standard(IASB, 2014)outlinesathree-stagemodelforimpairmentbasedonthefollowing:
• Stage1. Thisbucketincludesfinancialinstrumentsthathavenothadasignificantincreaseincredit risksinceinitialrecognitionorthathavelowcreditriskatthereportingdate.Fortheseassets, one-yearECLisrecognisedandinterestrevenueiscalculatedonthegrosscarryingamountofthe asset(thatis,withoutdeductionforcreditallowance).One-yearECListheexpectedlossthatresults fromdefaulteventsthatarepossiblewithinoneyearafterthereportingdate.
• Stage2. Financialinstrumentsthatexperiencedasignificantincreaseincreditrisksinceinitial recognition,butthatdonothaveobjectiveevidenceofimpairmentareallocatedtostage2.For theseassets,lifetimeECLisrecognised.Interestrevenueisstillcalculatedonthegrosscarrying amountoftheasset.LifetimeECLreferstoallpossibledefaulteventsovertheexpectedlifeofthe financialinstrument.
• Stage3. Assetsthathaveobjectiveevidenceofimpairmentatreportingdateareallocatedtostage3. Fortheseassets,lifetimeECLisrecognisedandinterestrevenueiscalculatedonthenetcarrying amount(thatis,netofcreditallowance).
Inlinewiththeabove,thedefinitionofsignificantincreaseincreditriskplaysakeyrolethroughout theentireIFRS9process.Indeed,thisisthetriggercausingECLtobecomputedoveraone-year insteadoflifetimehorizon.Reasonableandsupportableinformation—availablewithoutunduecost oreffort—includingpastandforward-lookinginformation,areattheveryrootofthedecision.Few presumptionsinformthisprocessaslistedbelow:
• Lowcreditrisk. Nosignificantincreaseincreditriskispresumedinthecaseoflowcreditriskatthe reportingdate.Asanexample,onemayconsideranexternallyratedinvestmentgradeinstrument. Abankcanuseinternalmethodstoidentifywhetheraninstrumenthasalowcreditrisk.
• Presumption30dayspastdue. Thereisarebuttablepresumptionthatthecreditriskhasincreased significantly,whencontractualpaymentsaremorethan30dayspastdue.
Abankcomparestheriskofadefaultoccurringovertheexpectedlifeofthefinancialinstrument, suchasatthereportingdatewiththeriskofdefaultandatthedateofinitialrecognition.Inlinewith IASB(2014),theassessmentofsignificantincreaseincreditriskreliesonarelativecomparison.Nevertheless,anabsolutecomparison(example,absolutethreshold)isviablewhenitprovidesaconsistent outcome,asunderarelativeapproach.Factorstoconsiderindeterminingtheoccurrenceofasignificantincreaseincreditriskinclude,butarenotlimitedto,thefollowing:
• Quantitativeindicators. Probabilityofdefaultisthemostcommonindicatoradoptedinpracticeto assesscreditriskincrease.AresiduallifetimePDshouldbeused.Itimpliesthatthesameremaining periodisconsideredforbothPDatoriginationandreportingdate.Asapracticalexpedient,aoneyearPDcanbeusedifchangesinone-yearPDareareasonableapproximationtochangesinthe lifetimePD.
• Qualitativeindicators. IFRS9providessomeexamples,including:creditspread,creditdefault swapprice,marketinformationrelatedtotheborrower,significantchangeinthecreditrating,internalcreditratingdowngradeandsignificantchangeinthevalueofthecollateral.Qualitativefactors shouldbeconsideredseparately,whentheyhavenotalreadybeenincludedinthequantitativeassessment.
Judgementisappliedindeterminingwhatthresholdwouldbeconsideredasignificantincrease increditrisk.Theriskofrecognisingexpectedlossestoolateshouldbebalancedagainstdefininga narrowbandtoavoidinstrumentsfrequentlymovinginandoutofthedifferentstageswithoutthis reflectingasignificantchangeincreditrisk.Whatisasignificantchangevaries,basedonaseries ofcircumstances.Thesameabsolutechangeintheriskofdefaultwillbemoresignificantforan instrumentwithalowerinitialcreditrisk,comparedtoaninstrumentwithahigherinitialriskof default.Asanexample,iforiginationPDis0.10%andreportingdatePDis0.20%,arelativeincrease of100.00%occurred.However,itaccountsforarelativelysmallchange,0.10%.Onthecontrary,if thePDatinitialrecognitionwas1.00%andthisincreasedbythesameabsoluteamountof0.10%to 1.10%,thisisanincreaseofonly10%.Thereforestagingmechanicsneedspecificbalancetoaccount forbothrelativeandabsolutefeatures.
Itisevidentthatakeyissueinmeasuringexpectedlossesistospecifywhenadefaultoccurs.IFRS 9doesnotprovideaspecificdefinition.Nevertheless,anentitymustapplyadefinitionthatisconsistent withinternalcreditriskmanagementpurposes.Thereisarebuttablepresumptionthatadefaultdoes notoccurlaterthan90dayspastdue.
Thefollowingsectionprovidesahigh-leveldescriptionofthekeyECLingredients:PD,LGD,and EAD.
1.2.2ECLINGREDIENTS
InlinewithIFRS9principles,ECLmustreflectanunbiasedevaluationofarangeofpossibleoutcomes andtheirprobabilitiesofoccurrence.Reasonableandsupportableinformationneedstobeusedwithout unduecostoreffortatthereportingdateaboutpastevents,currentconditionsandforecastsoffuture economicconditions.Estimatesalsoneedtoreflectthetimevalueofmoneybymeansofrelevant discounting.
Basedonwhatwasdescribedintheprevioussection,defaultdefinitionplaysacrucialrole.Sucha concept,togetherwithdatatouseforitspracticalimplementation,willbeinvestigatedthroughoutall chaptersofthebook.Inwhatfollows,ahigh-leveldescriptionofthemainingredientstouseforECL estimateisprovided.Itallowsustofamiliarisewiththeircharacteristicsandunderstandthereasonwhy adequatemodelsarenecessary.
• Probabilityofdefault(PD). Defaulteventscanbeinterpretedasrealisationsofarandomvariable.PDrepresentstheexpectationoftheseoccurrencesoveragiventimeframe.Whenapplied toafinancialinstrument,PDprovidesthelikelihoodthataborrowerwillbeunabletomeetdebt obligationswithinacertainperiod.OneofthekeyinnovationsintroducedbyIFRS9isextending toalifetimetimeframecreditriskestimates.Thedistinctionbetweenone-yearandlifetimeECL, referredtoasstage1and2,respectively,needstobereflectedintermsofone-yearandlifetime PDs.Inthisregard,startingfromalifetimeperspective,PDsmaybebrokendownintosub-period withintheremaininglifeterm.One-yearPDrelatestoaone-yearinterval. Itisworthnotingthatfromacreditriskmanagementorganisationalstandpoint,regulatorycapital reliesonone-yearestimates(BIS, 2006).Asaconsequence,banksfancytheideatouseacommon frameworkforbothcapitalrequirementsandaccountingpurposes.Astress-testing-likeframework mayserveasaviaticumforone-yearthrough-the-cycle(TTC)PDstowardspoint-in-time(PIT) forward-lookinglifetimeestimates,asdetailedinChapters 2 and 3 ofthebook.
• Lossgivendefault(LGD). LGDrepresentstheportionofanon-recoveredcreditincaseofdefault. Twoextremescaneasilybeidentified.Ontheonehand,afullrecoveryisassociatedwith0%LGD. Onthecontrary,azerorecoveryscenarioleadstoa100%LGD.Aseriesofpartialrecoveriesmay alsooccurinpractice,sothatLGDisusuallyboundedbetween0%and100%.Duetoitsnature, LGDisestimatedovertheentireworkoutprocess.Inotherwords,oneneedstoconsiderallrecoveriesoccurredafterdefaultwithoutimposingtimerestrictions.Inthisconnection,LGDmaybe regardedasalifetimemetric.Ontheotherhand,accuratelyinvestigatingwhetherandhowmacroeconomicconditionsaffectLGDsisnecessary.Indeed,aforward-lookingperspectiveisrequiredfor IFRS9andCECLestimates,asdetailedinChapter 4
• Exposureatdefault(EAD). Chapter 5 ofthebookfocusesonthebalanceexpectedcreditloss (ECL)iscomputedon.Akeydistinctionarisesbetweenloan-typeproducts(forexample,mortgages)anduncommittedfacilities(suchasoverdrafts).Intheformercase,amultiyearhorizon usuallyapplies.Asaconsequence,deviationsfromtheoriginallyagreedrepaymentschememay takeplace.Fullprepaymentsandoverpayments(partialprepayments)requireadequatemodelling. Withregardstouncommittedfacilities,firstlyoneneedstohighlightthedistinctionbetweencontractualandbehaviouralmaturity.Thendefaulteddrawnamountisthetargetvariableunderscrutiny.
Asanadditionalstep,acompetingriskframeworkisconsideredagainstthemoretraditionalcredit risksilosrepresentation.Indeed,growingattentionhasbeenaddressedbothbypractitionersand researcherstointegrateriskestimatesbycapturingtheirinterdependencies.Ourfocusisonprepayments,defaultsandoverpayments.
AllaboveingredientsarejointlyusedtocomputeECL,basedonstagingallocationrulesintroduced andscenarios,assummarisedinthefollowingsection.
1.2.3SCENARIOANALYSISANDECL
IASB(2014)requiresascenario-weightingscheme(thatis,probability-weighted).Insomecasesa simplemodellingmaybesufficientasperB5.5.42.Inothersituations,theidentificationofscenarios thatspecifytheamountandtimingofthecashflowsforparticularoutcomes,andtheirestimated probability,isrequired.Inthosesituations,theexpectedcreditlossesshallreflectatleasttwooutcomes (seeparagraph5.5.18).OnemayinferanupperlimittothenumberofscenariosfromSectionBC5.265. Consequently,therequirementofasimulation-basedapproachoverthousandsofscenarioscanbe disregarded.
Aconnectingframeworkisneededtolinkaccountinformation,macroeconomicscenarios,and creditrisksatellitemodels(forexample,PD,LGD,EAD).Thisisalsothetypicalhigh-levelframe usedforstresstesting.Indeed,inbothcases(thatis,ECLandstresstesting)creditriskmodelsare linkedtomacroeconomicscenariostoforecastasetofmetrics.InthecaseofECL,thefocusisonIFRS 9scope(thatis,credits),whereasstresstestingalsoinvolvestheentireassetandliabilitystructureofa bank.
Onemaysummarisetheprocessasfollows:
• Data. Atreportingdate,asetofinformationisneededasastartingpointtoassessECL;information regardingbothperforminganddefaultedportfoliosisneeded.
• Macroeconomicscenarios. GivenECLforward-lookingnature,scenariosarerequiredbothfor IFRS9andCECL.Inmoredetail,IFRS9explicitlyrequiredamultiscenarioframework;on theotherhand,CECLisnotprescriptive.Nevertheless,CECLmaybeorganisedbyrelyingona multiple-scenarioscheme,asperIFRS9.
• Satellitemodels. Creditriskmodels,suchasPD,LGDandEAD,inconjunctionwithasetof otherframes(forexample,effectiveinterestrate),relyonaccount-level,portfolio-leveldata,and scenarios.ProjectionsaredrawnoveralifetimehorizonbothforIFRS9andCECL.Aspartofthe lifetimecurve,IFRS9requiresone-yearparameterstoestimatestage1ECL.
• IFRS9stagingallocation. Stagingrulesapplytoeachfinancialinstrument,basedoncriteria alignedwithIASB(2014)requirements.
• ECLcomputationforeachscenario. TheoutputofcreditrisksatellitemodelsfeedtheECL engine.IfCECLreliesonlifetimeperspectiveforallaccounts,IFRS9requiresadistinctionbetween one-yearandlifetimeECLs,basedonthestagingallocationprocessdescribedabove.
• WeightingschemeandfinalECLestimation. Asafinalstepoftheprocess,ECLisobtainedasa weightedaverageofECLsestimatedunderalternativescenarios.ForCECL,ifonlyonescenariois used,ECLisestimatedaspartofthepreviousstep: ECLcomputationforeachscenario.
Example 1.2.1 helpsustograspinterconnectionsbetweencreditriskparameters,scenarios,staging allocation,andECLestimation.
EXAMPLE1.2.1STAGINGALLOCATIONANDECL
Letusfocusonagivenborrowerwithonlyoneloan.Twoillustrativestagingthresholdareconsidered,thatis,6.00%and5.00%.Threescenarios(A,B,andC)aredefined,assummarised inTable 1.1.Allcreditriskparameters(thatis,PD,LGD,andEAD)areaffectedbyscenarios.Theaccountisallocatedtoonestage,basedontheweightedaveragelifetimePD.Inour case,theaveragelifetimePDis5.55%(thatis,2.00% 30.00% + 5.50% 50.00% + 11.00% 20.00%).
• Hypothesisthreshold6.00%. Since5.55% < 6.00%,theaccountisallocatedtostage1. ThereforeECLis$19.28thousand(thatis,one-yearestimate).
• Hypothesisthreshold5.00%. Ifthestagingthresholdissetat5.00%,theaccountisallocatedtostage2,andtheECLis$28.84thousand(thatis,lifetimeestimate).
Scenario
ThefollowingsectionfocusesonCECL(FASB, 2016).
1.3 CECL
Inlinewiththegeneralprincipleinformingpost2007–2009financialcrisisaccountreform,CECL (FASB, 2016)goesinparallelwithIFRS9bymovingfromanincurredperspectivetowardsanexpectedlossframe.Oneneedstoincludeforward-lookinginformationandrecognisetheexpected lifetimelossesuponoriginationoracquisition.Off-balancesheetcommitments,whicharenotunconditionallycancellablealsorequireECLcomputation.Inabroadsense,CECLappliestofinancialassets measuredatamortisedcostbyincluding,amongothers,financingreceivables,heldtomaturity(HTM) securities,receivablesfromrepurchaseagreementsandsecuritieslendingtransactions,andreinsurance receivables.Itexcludes,amongothers,assetsmeasuredatfairvaluethroughnetincome,loansmadeto participantsbydefinedcontributionemployeebenefitplansandpolicyloanreceivablesofaninsurance company.
Intermsofmethodologies,thestandardisnotprescriptive.Inparticular,itisopentomethodsbased onloss-rate,probabilityofdefault(thatis,PD,LGD,EAD),discountedcashflows,roll-rate,orusean ageingschedule.WhendevelopingECLmethods,oneneedstoconsiderthefollowing:
Table1.1 Stagingallocation:ingredientsandECLoutcomes($Thousands)
• Historicallossinformation. InternalandexternalpastinformationareattheveryheartofECL estimate.Thisisthestartingpointfortheassessment.Portfoliosegmentationandpoolingarealso crucialtoidentifycommonriskcharacteristics.
• Currentconditions. Estimatesneedtoincludecurrentconditions.Thisisinlinewiththepoint-intimeprinciplealsoinspiringIFRS9computation.
• Reasonableandsupportableforecasts. Theforward-lookingperspectiveurgedbyIFRS9isalso attherootofCECL.ThereforeeconomicforecastsneedtobeembeddedintoECLestimates.
• Reversiontohistory. Banksneedtoreverttohistoricallossinformationwhenunabletomakereasonableandsupportableforecasts.Thisreversionneedstobeperformedsystematicallybystarting frominputs,orappliedatanaggregatedlevel.Itimpliesthatbanksneedto:
• Defineasustainableandsupportablehorizonformeanreversion.
• Estimatealong-termexpectedloss.
Figure 1.3 summarisesthekeytopicsinvestigatedthroughoutSection 1.3.
FIGURE1.3
WorkflowdiagramforSection 1.3
Section 1.3.1 providesanoverviewofloss-ratemethods.Cumulativecreditlossesareinspected fromtwostandpoints:collectiveandindividual.Section 1.3.2 describeshowtomeasureECLsbased ontheoriginationdateandhistoricalperformanceofassetswithsimilarvintagecharacteristics.Section 1.3.3 summarisesthekeyfeaturesofcashflowsmethods.Section 1.3.4 pointsoutthekeyelements toconsiderwhenaprobabilityofdefaultmethodisadopted.InlinewithIFRS9,PD,LGDandEAD arethekeyingredientstocomputeECL.Asapracticalchoice,thebookfocusesonthemostcomplexmodellingmethods.Forthisreason,loss-rate,vintage,cashflow,andotherswillnotbefurther investigatedinthefollowingchapters.AttentionwillbedrivenbyPD,LGDandEADmodelling. Finally,Section 1.3.5 pinpointsthekeysimilaritiesanddifferencesbetweenIFRS9andCECLframeworks.
1.3.1LOSS-RATEMETHODS
Loss-ratemethodscantakevariousforms.Inallcases,theyarebasedonhistoricalratesofloss.As astartingpoint,onemayconsiderthepercentageofreceivablesthathavehistoricallygonebad,and
thenmakeanynecessaryadjustmentsbasedonrelevantinformationaroundcurrentorfutureconditions.
Example 1.3.1 referstoFASB(2016)Example1bypointingoutthedifferencebetweenincurred lossandECLestimates.
EXAMPLE1.3.1LOSSRATEANALYSIS
Table 1.2 providesallinformationneededtoestimatelossesundertheincurredlossmethod. Foreachyearaone-yearemergingperiodisconsideredasincurredlossesestimate(thatis,the AnnualLosscolumn).Aconstant0.30%representstheloss-ratepercentage.Anextra0.50% adjustmentisappliedtoobtainatotal0.80%incurredlosspercentage.Thelatteristhenappliedtoyear2020exposure(thatis,$3,000.00thousand)tocompute$24.00thousandincurred loss.
Table1.2 Loss-rate:incurredlossmethod($Thousands)
MovingfromFASB(2016)Example1,onemayestimateECLassummarisedinTable 1.3.Aten-yearhistoricalincurredlossestrackisputinplace.Inourcase,thestartingpointistheamortisedcostbalanceof$1,500.00thousandasper2010.Lossesare trackedthroughouttheperiod2010–2020.Totalincurredlossesis$22.50thousandcorrespondingto1.50%oftheinitialbalance.Someadjustmentsareintroducedtotakeintoaccountexpectationsoneconomicconditionevolution.Theoverallexpectedlosspercentage is1.65%.Basedon2020exposureof$3,000.00thousand,ECLaccountsfor$49.50thousand.
Another random document with no related content on Scribd:
distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.