Ifrs 9 and cecl credit risk modelling and validation a practical guide with examples worked in r and

Page 1


Visit to download the full and correct content document: https://textbookfull.com/product/ifrs-9-and-cecl-credit-risk-modelling-and-validation-apractical-guide-with-examples-worked-in-r-and-sas-tiziano-bellini/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Survival Analysis with Interval Censored Data A Practical Approach with Examples in R SAS and BUGS 1st Edition Kris Bogaerts

https://textbookfull.com/product/survival-analysis-with-intervalcensored-data-a-practical-approach-with-examples-in-r-sas-andbugs-1st-edition-kris-bogaerts/

Traceability Validation and Measurement Uncertainty in Chemistry Vol 3 Practical Examples Nineta Hrastelj

https://textbookfull.com/product/traceability-validation-andmeasurement-uncertainty-in-chemistry-vol-3-practical-examplesnineta-hrastelj/

SAS certification prep guide base programming for SAS 9 Fifth Edition. Edition Sas Sas Sas

https://textbookfull.com/product/sas-certification-prep-guidebase-programming-for-sas-9-fifth-edition-edition-sas-sas-sas/

Eurocode Compliant Seismic Analysis and Design of R C

Buildings Concepts Commentary and Worked Examples with Flowcharts 1st Edition Ioannis Avramidis

https://textbookfull.com/product/eurocode-compliant-seismicanalysis-and-design-of-r-c-buildings-concepts-commentary-andworked-examples-with-flowcharts-1st-edition-ioannis-avramidis/

SAS Certified Specialist Prep Guide Base Programming Using SAS 9 4 Sas

https://textbookfull.com/product/sas-certified-specialist-prepguide-base-programming-using-sas-9-4-sas/

SAS Certification Prep Guide Base Programming for SAS 9 4th Edition Sas Institute

https://textbookfull.com/product/sas-certification-prep-guidebase-programming-for-sas-9-4th-edition-sas-institute/

Managing the Transition to IFRS Based Financial Reporting A Practical Guide to Planning and Implementing a Transition to IFRS or National GAAP which is Based on or Converged with IFRS 1st Edition

Lisa Weaver https://textbookfull.com/product/managing-the-transition-to-ifrsbased-financial-reporting-a-practical-guide-to-planning-andimplementing-a-transition-to-ifrs-or-national-gaap-which-isbased-on-or-converged-with-ifrs-1st-edition-lisa/

Online Machine Learning: A Practical Guide with Examples in Python 1st Edition Thomas Bartz-Beielstein

https://textbookfull.com/product/online-machine-learning-apractical-guide-with-examples-in-python-1st-edition-thomas-bartzbeielstein/

Nalluri And Featherstone s Civil Engineering Hydraulics

Essential Theory with Worked Examples 6th Edition

Martin Marriott

https://textbookfull.com/product/nalluri-and-featherstone-scivil-engineering-hydraulics-essential-theory-with-workedexamples-6th-edition-martin-marriott/

IFRS 9 and CECL Credit Risk

Modelling and Validation

A Practical Guide with Examples

Worked in R and SAS

TizianoBellini

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2019ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchas theCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenoted herein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changes inresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/or damagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-814940-9

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionEditor: ScottBentley

EditorialProjectManager: SusanIkeda

ProductionProjectManager: BharatwajVaratharajan

Designer: MarkRogers

TypesetbyVTeX

Amiopapà, aduneroesilenzioso, allasuaencomiabilemoralità.

1.4 ECLandCapitalRequirements

1.4.1InternalRating-BasedCreditRisk-WeightedAssets................17

2.2 DefaultDefinitionandDataPreparation.

2.3 GeneralisedLinearModels(GLMs)

2.3.1GLM(Scorecard)Development..

2.4 MachineLearning(ML)Modelling

2.5 LowDefaultPortfolio,Market-Based,andScarceDataModelling

2.5.1LowDefaultPortfolioModelling.

2.5.2Market-BasedModelling

2.6

2.5.3ScarceDataModelling..

2.5.4HintsonLowDefaultPortfolio,Market-Based,andScarceDataModel Validation...............................................75

2.8 AppendixA.FromLinearRegressiontoGLM

2.9 AppendixB.DiscriminatoryPowerAssessment

3.1

3.2 DataPreparation...

3.2.1DefaultFlagCreation......................................93

3.2.2Account-Level(Panel)DatabaseStructure

3.3 LifetimeGLMFramework........................................98

3.3.1Portfolio-LevelGLMAnalysis...............................99

3.3.2Account-LevelGLMAnalysis

3.3.3LifetimeGLMValidation...................................108

3.4 SurvivalModelling.

3.4.1KMSurvivalAnalysis......................................112

3.4.2CPHSurvivalAnalysis.....................................116

3.4.3AFTSurvivalAnalysis.....................................121

3.4.4SurvivalModelValidation

3.5 LifetimeMachineLearning(ML)Modelling

3.5.1Bagging,RandomForest,andBoostingLifetimePD

3.5.2RandomSurvivalForestLifetimePD ..........................129

3.5.3LifetimeMLValidation.....................................133

3.6 TransitionMatrixModelling... ...................................134

3.6.1NaïveMarkovChainModelling

3.6.2Merton-LikeTransitionModelling..

3.6.3Multi-StateModelling...

3.6.4TransitionMatrixModelValidation..

3.7 SASLaboratory ................................................144 3.8 Summary.....................................................147 SuggestionsforFurtherReading ...................................148

4.1 Introduction

4.2 LGDDataPreparation

4.2.1LGDDataConceptualCharacteristics ..........................158

4.2.2LGDDatabaseElements ....................................160

4.3 LGDMicro-StructureApproach ...................................161

4.3.1ProbabilityofCure.. ......................................164

4.3.2Severity................................................167

4.3.3DefaultedAssetLGD......................................170

4.3.4Forward-LookingMicro-StructureLGDModelling ................173

4.3.5Micro-StructureRealEstateLGDModelling.

4.3.6Micro-StructureLGDValidation..............................178

4.4 LGDRegressionMethods.. ......................................182 4.4.1TobitRegression..........................................182

4.4.2BetaRegression..........................................186

4.4.3MixtureModelsandForward-LookingRegression ................189

4.4.4RegressionLGDValidation..................................190

4.5 LGDMachineLearning(ML)Modelling

4.5.1RegressionTreeLGD......................................191

4.5.2Bagging,RandomForest,andBoostingLGD

4.5.3Forward-LookingMachineLearningLGD..

4.5.4MachineLearningLGDValidation

4.6 HintsonLGDSurvivalAnalysis...................................203

4.7 ScarceDataandLowDefaultPortfolioLGDModelling

4.7.1ExpertJudgementLGDProcess. .............................204

4.7.2LowDefaultPortfolioLGD..................................207

4.7.3HintsonHowtoValidateScarceDataandLowDefaultPortfolioLGDs208

4.8 SASLaboratory. ...............................................208

4.9 Summary.....................................................212 SuggestionsforFurtherReading ...................................213

5.1 Introduction

5.2 DataPreparation ...............................................217

5.2.1HowtoOrganizeData......................................217

5.3 FullPrepaymentModelling. ......................................219

5.3.1FullPrepaymentviaGLM ...................................220

5.3.2MachineLearning(ML)FullPrepaymentModelling

5.3.3HintsonSurvivalAnalysis..................................227

5.3.4FullPrepaymentModelValidation

5.4 CompetingRiskModelling. ......................................231

5.4.1MultinomialRegressionCompetingRisksModelling...

5.4.2FullEvaluationProcedure ...................................239

5.4.3CompetingRiskModelValidation .............................243

5.5 EADModelling. ...............................................245

5.5.1ACompeting-Risk-LikeEADFramework.......................246

5.5.2HintsonEADEstimationviaMachineLearning(ML)

5.5.3EADModelValidation..

5.6 SASLaboratory ................................................252 5.7 Summary.....................................................254

6.1

6.2 ScenarioAnalysis..

6.2.1VectorAuto-RegressionandVectorError-CorrectionModelling

6.2.2VARandVECForecast..

6.2.3HintsonGVARModelling ..................................269

6.3 ECLComputationinPractice......................................270

6.3.1ScenarioDesignandSatelliteModels

6.3.2LifetimeECL............................................273

6.3.3IFRS9StagingAllocation...................................277

6.4 ECLValidation................................................280

6.4.1HistoricalandForward-LookingValidation

6.4.2CreditPortfolioModellingandECLEstimation.

TizianoBellini’sBiography

TizianoBellinireceivedhisPhDdegreeinstatisticsfromtheUniversityofMilanafterbeingavisiting PhDstudentattheLondonSchoolofEconomicsandPoliticalScience.HeisaQualifiedChartered AccountantandRegisteredAuditor.HegainedwideriskmanagementexperienceacrossEurope(includinginLondon)andinNewYork.HeiscurrentlyDirectoratBlackRockFinancialMarketAdvisory (FMA)inLondon.PreviouslyheworkedatBarclaysInvestmentBank,EYFinancialAdvisoryServices inLondon,HSBC’sheadquarters,PrometeiainBologna,andotherleadingItaliancompanies.Heis aguestlectureratImperialCollegeinLondon,andattheLondonSchoolofEconomicsandPolitical Science.Formerly,heservedasalecturerattheUniversityofBolognaandtheUniversityofParma. Tizianoistheauthorof StressTestingandRiskIntegrationinBanks,AStatisticalFrameworkandPracticalSoftwareGuide(inMatlabandR) editedbyAcademicPress.Hehaspublishedinthe European JournalofOperationalResearch, ComputationalStatisticsandDataAnalysis,andothertop-reviewed journals.Hehasgivennumeroustrainingcourses,seminars,andconferencepresentationsonstatistics, riskmanagement,andquantitativemethodsinEurope,Asia,andAfrica.

Preface

Aseriesofconcernshavebeenexpressedsincetheadoptionoftheincurredlossesparadigmbyboth theInternationalAccountingStandardBoard(IASB)andtheFinancialAccountingStandardBoard (FASB).Therecent(2007–2009)financialcrisisuncoveredthisissuebyinducingareviewofaccountingstandardswhichculminatedwiththeInternationalFinancialReportingStandardnumber9(IFRS9) andCurrentExpectedCreditLoss(CECL).

ThisbookprovidesacomprehensiveguideoncreditriskmodellingandvalidationforIFRS9and CECLexpectedcreditloss(ECL)estimates.Itisaimedatgraduate,masterstudentsandpractitioners. Asadistinctivepracticalimprint,softwareexamplesinRandSASaccompanythereaderthroughthe journey.Thechoiceofthesetoolsisdrivenbytheirwideusebothinbanksandacademia.

Despitethenon-prescriptivenatureofaccountingstandards,commonpracticesuggeststorelyon theso-calledprobabilityofdefault(PD),lossgivendefault(LGD),andexposureatdefault(EAD) framework.Othernon-complexmethodsbasedonloss-rate,vintage,cashflowsareconsideredasa corollary.Inpractice,banksestimatetheirECLsasthepresentvalueoftheabovethreeparameters’ productoveraone-yearorlifetimehorizon.Basedonthis,adistinctionarisesbetweenCECLand IFRS9.Iftheformerfollowsalifetimeperspectiveforallcredits,thelatterclassifiesaccountsinthree mainbuckets:stage1(one-yearECL),stage2(lifetimeECL),stage3(impairedcredits).Thekey innovationintroducedbythenewaccountingstandardssubsumesashifttowardsaforward-lookingand lifetimeperspective.Thereforealinkbetweenmacroeconomicvariables(MVs),behaviouralvariables (BVs),andtheabovethreeparametersiscrucialforourdissertation.Suchaframeworkisalsoanatural candidateforstresstestingprojections.

Fromanorganizationalstandpoint,Chapter 1 servesthepurposetointroduceIFRS9andCECL. Itpointsouttheirsimilaritiesanddifferences.Thenthefocusisonthelinkconnectingexpectedcredit lossestimatesandcapitalrequirements.Abookoverviewisprovidedasaguideforthereaderwilling tograspahigh-levelpictureoftheentireECLmodellingandvalidationjourney.

Chapter 2 focusesonone-yearPDmodelling.Twomainreasonssuggestourtreatingone-yearand lifetimeseparately.Firstly,bankshavebeendevelopingone-yearPDmodelsoverthelasttwodecades forBaselIIregulatoryrequirements.Secondly,abuilding-block-structuresplitinone-yearandlifetime PDfacilitatesthelearningprocess.Asastartingpoint,thischapterfocusesonhowdefaulteventsare definedforaccountingpurposesandhowtobuildaconsistentPDdatabase.Movingtowardsmodellingfeatures,firstly,generalizedlinearmodels(GLMs)areexploredasaparadigmforone-yearPD estimates.Secondly,machinelearning(ML)algorithmsarestudied.Classificationandregressiontrees (CARTs),bagging,randomforest,andboostingareinvestigatedbothtochallengeexistingmodels, andexplorenewPDmodellingsolutions.Inlinewiththemostrecentliterature,thechoiceofthese approachesisdrivenbothbytheireffectivenessandeasyimplementation.Ifawidedataavailability encouragestheuseofdatadrivenmethods,lowdefaultportfoliosanddatascarcityareotherchallenges onemayneedtoface.Bespokemethodsarescrutinizedtoaddressissuesrelatedtolimitednumberof defaults,andadhocproceduresareexploredtodealwithlackofdeephistoricaldata.

Oneofthekeyinnovationintroducedbythenewaccountingstandardsreferstolifetimelosses. Eventhoughthisconceptisnotnewinriskmanagement,itsimplementationinthefinancialindustry xiii

isextremelycontemporaryasdiscussedinChapter 3.Account-levelinformationisusuallyrequired todevelopacomprehensivemodellingframework.Basedondataavailability,onemayconsiderfew alternativemethods.Asafirstwaytotacklethechallenge,generalizedlinearmodels(GLMs)areexplored.Asasecondstep,survivalmodellingisintroducedbymeansofthreemaintechniques.The pioneeringKaplan–Meier(KP)framepavesthewaytolifetimePDmodellingbymeansofCoxProportionalHazard(CPH)andacceleratedfailuretime(AFT)models.Thirdly,machinelearning(ML) proceduresarescrutinized.Bagging,randomforestandboostingaredirectlyappliedonpaneldatato capturetherelationshipwithbothBVsandMVsovertime.Then,asanalternative,randomsurvival forestisexploredbyembeddingsurvivalmodellingintoaMLstructure.Fourthly,transitionmatrices arestudiedbyconsideringbothbespokeapproaches,basedontransitionmatrixadjustmentsovera multi-periodhorizonandmultistateMarkovmodels.

Chapter 4 focusesonlossgivendefault(LGD)representingtheportionofanon-recoveredcreditin caseofdefault.AsastartingpointtodevelopanLGDmodel,oneneedstorelyonasuitabledatabase. Itsgoalistocollectallinformationneededtoassessrecoveriesthroughouttheso-called“workout process”untilanaccountisfullycuredorwritten-off.Fromamodellingstandpoint,firstlyamicrostructureLGDmodellingisintroducedtoprovideacomprehensiveviewofthepost-defaultrecovery process.Thefocusisontwokeycomponents:probabilityofcureandseverity.Asanextstep,thefocus isonregressiontechniques.Tobit,betaandothermethodsarefirststudiedassilosapproaches,andthen combinedinmixturemodelstoimprovebothgoodness-of-fitandmodelpredictivepower.Thirdly,machinelearning(ML)modellingisexplored.Classificationandregressiontreesarenaturalcandidates tofitLGDs.Bagging,randomforestandboostingarealsostudiedasavalidenhancementofthemost traditionalMLmethods.SomehintsareprovidedonhowtoapplyCoxproportionalhazard(CPH),and acceleratedfailuretime(AFT)modelstoLGDs.Scarcedataissuesandlowdefaultportfoliosarethen investigatedbypointingouttheneedforsimplerapproaches.Qualitativeassessmentsplayakeyrole insuchasetting.

Chapter 5 isdevotedtoexposureatdefault(EAD)analysis.Akeydistinctionoperatesbetween committedproducts(forexample,loans)anduncommittedfacilities(forinstance,overdrafts).Loantypeproductsusuallycoveramulti-yearhorizon.Consequently,economicconditionsmaycausea deviationfromtheoriginallyagreedrepaymentscheme.Fullprepaymentsandoverpayments(partial prepayments)arefirstinvestigatedbymeansofgeneralizedlinearmodels(GLMs)andmachinelearning(ML).Hintsonsurvivalanalysisarealsoprovidedtoestimateandprojectprepaymentoutcomes. Growingattentionisdevotedbothbyresearchersandpractitionerstocompetingrisks.Asasecond stepofourinvestigation,thefocusisonaframeworktojointlymodelfullprepayments,defaults,and overpayments.Ontheonehand,wemodeltheseeventsbymeansofamultinomialregression.Inthis case,whentheoutcomeisnotbinary(forexample,overpayment)asecondstepisneeded.Tobitand betaregressionsareusedtocaptureoverpaymentspecificfeatures.Ontheotherhand,fullprepayments andoverpaymentsarejointlyinvestigatedbymeansofMLmodels.Asathirdfocusarea,uncommitted facilitiesareinspectedbymeansofabespokeframework.Oneneedstodealwithadditionalchallenges, comprisingaccountswithzeroornegativeutilizationatreportingdateandpositiveexposureatdefault. AllstatesoftheworldrelevantforECLcomputationarescrutinizedfromdifferentangles.

Finally,Chapter 6 bringstogetherallECLingredientsstudiedthroughoutthebook.Giventherole ofscenarios,multivariatetimeseriesareinvestigatedbymeansofvectorauto-regression(VAR)and vectorerror-correction(VEC)models.Informationregardingglobalvectorauto-regression(GVAR) modellingisalsoprovided.CasestudiesallowustograsphowtocomputeECLinpractice.Emphasis

Preface xv isplacedonIFRS9andCECLcomparison.Finally,fullECLvalidationisscrutinized.Indeed,the presumedindependencebetweenriskparametersandlackofconcentrationeffectsischallengedby meansofhistoricalvalidationandforward-lookingportfolioanalysis.

London,August2018

TizianoBellini

Acknowledgements

WhenIgraduatedinBusinessandEconomicsattheUniversityofParma,mydreamwastobecome aprofessionalaccountant.Itwashardtoinvesttheearliestyearsofmycareerbyworkingbothin banking,andinprofessionalservicestogetthedegreeof DottoreCommercialistaeRevisoreContabile (QualifiedCharteredAccountantandRegisteredAuditor).Curiosityledmetostudynumbersfroma differentanglethroughoutthedoctorateinstatisticsattheUniversityofMilan,andattheLondon SchoolofEconomicsandPoliticalScience.Theexperiencegainedonexpectedcreditlossesoperating inthefinancialindustryacrossEurope(includinginLondon)andNewYorkcombinedmytwosouls asaccountantandstatistician.Mywishistoprovidethereaderofthisbookausefulguidethroughthe lensesofapractitionerinclinedtoacademicresearch.

IneedtothankEmeritusProfessorGiuseppeGalassiwhointroducedmetoaccountingresearch. IamgratefultoProfessorMarcoRianiandProfessorLuigiGrossi,whoaccompaniedmyinitialsteps intostatisticsanddataanalysis.

IexpressmydeepestgratitudetoNikolaPerovicandOmarKhanfortheirenormoushelpinsoftwaredevelopment.SpecialthanksareaddressedtoManueleIorioandProfessorTonyBellottifortheir carefulreadingofearlydrafts.Thisbookalsobenefitsfromanumberofgenuinediscussionswith FlavioCoccoandCarloToffano,whomentoredmethroughmyriskmanagementprofession.Iamalso immenselygratefulforallcommentsreceivedfromfouranonymousreviewers.Thebookhighlyprofits fromtheirchallengesandadvice.

IthankScottBentleyforsupportingandendorsingthisprojectasAcademicPressEditor.Iam beholdentoBillieFernandezandSusanIkedafortheirpatienceandaffectionatehelpallalongthe publicationprocess.

Mygreatestthankistomyfamily.Iwouldhaveneverbeenabletofacethischallengewithoutmy mom’sandmysister’sencouragement.Idedicatethisbooktomydad.Hismoralsandcourageinspired allmylife.ThisbookwasasurpriseIwantedtoofferhim.Iwastoolate...

INTRODUCTIONTOEXPECTED

CREDITLOSSMODELLINGAND

VALIDATION

Asaresponsetoincurredlossescriticisms,boththeInternationalAccountingStandardBoard(IASB) andFinancialAccountingStandardBoard(FASB)workedtoredesignaccountingstandardstowards anexpectedcreditlossparadigm.Theaimwastoanticipatelossrecognitionbyavoidingissues experienced—inparticular—duringthe2007–2009financialcrisis.

Startingfromaninitialjointeffortforauniquesolution,IASBandFASBagreedoncommonprinciples,butthenissuedtwoseparatedstandards.IASB’sInternationalFinancialReportingStandard number9(IFRS9),issuedin2014,reliesonathree-bucketclassification,whereone-yearorlifetime expectedcreditlossesarecomputed.Onthecontrary,FASB’sCurrentExpectedCreditLoss(CECL) accountingstandardupdate2016–13(topic326:creditlosses)followsalifetimeperspectiveasageneralrule.

IFRS9andCECLareseparatelyintroducedinSections 1.2 and 1.3 topointouttheirsimilarities anddifferences.Thenthefocusisonthelinkconnectingexpectedcreditlossestimatesandcapital requirements,asdetailedinSection 1.4.Asafinalstep,abookoverviewisprovidedinSection 1.5 asaguideforthereaderwillingtograsponoverviewoftheentireexpectedcreditlossmodellingand validationjourney.

KEYABBREVIATIONSANDSYMBOLS

CECL Currentexpectedcreditloss

EADi,s,t Exposureatdefaultforaccount i insub-portfolio s attime t

ECL Expectedcreditloss

FASB FinancialAccountingStandardBoard

IASB InternationalAccountingStandardBoard

IFRS Internationalfinancialreportingstandard

LGDi,s,t Lossgivendefaultforaccount i insub-portfolio s attime t

PDi,s,t Probabilityofdefaultforaccount i insub-portfolio s attime t

PIT Point-in-time

RWA Riskweightedasset

TTC Throughthecycle

UL Unexpectedloss

IFRS9andCECLCreditRiskModellingandValidation. https://doi.org/10.1016/B978-0-12-814940-9.00009-8

Copyright©2019ElsevierInc.Allrightsreserved.

FIGURE1.1

ECLengine:topicsexploredthroughoutthechapter.

1.1 INTRODUCTION

SincetheadoptionoftheincurredlossesarchetypebybothIASBandFASB,aseriesofconcernshave beenexpressedabouttheinappropriatenessofdelayingtherecognitionofcreditlossesandbalance sheetfinancialassetsoverstatement.Therecent(2007–2009)financialcrisisuncoveredthisissuetoits broaderextentbyforcingaprofoundreviewofaccountingstandards,culminatingwiththeInternational FinancialReportingStandardnumber9(IFRS9)(IASB, 2014)andCurrentExpectedCreditLoss (CECL)(FASB, 2016).IFRS9goeslivein2018byconsideringnotonlyexpectedcreditloss(ECL) rules,butalsoclassificationmechanicsandhedgeaccounting.Hereafter,ourfocusislimitedtoECLs. Ontheotherhand,FASB’snewimpairmentstandardwillbeeffectiveforSECfilersforyearsbeginning onorafterDecember15,2019(withearlyadoptionpermittedoneyearearlier),andoneyearlaterfor otherentities.

Thekeyinnovationintroducedbynewaccountingstandardssubsumesashiftfromabackwardincurred-lossesperspectivetowardsaforward-lookingECLrepresentation.Thischangeimpliesadeep reviewintermsofbusinessinterpretation,computationalskillsandITinfrastructures.Furthermore, adeeperseniormanagementinvolvementisattheveryheartofnewaccountingstandardspractical implementation.Aholisticperspectiveisrequiredinsuchacomplexframeworkinvolvingwidespread competencestobealignedonacommongoal.

Figure 1.1 summarisesthekeyareastouchedinthischapterasanintroductiontothemaintopics discussedthroughoutthebook.

• IFRS9. Despitethenon-prescriptivenatureoftheaccountingprinciple,commonpracticesuggests relyingontheso-calledprobabilityofdefault(PD),lossgivendefault(LGD)andexposureatdefault (EAD)framework.BanksestimateECLasthepresentvalueoftheabovethreeparameters’product overaone-yearorlifetimehorizon,dependinguponexperiencingasignificantincreaseincredit risksinceorigination.Section 1.2 startsbydescribingthekeyprinciplesinformingthestaging allocationprocess.Threemainbucketsareconsidered:stage1(one-yearECL),stage2(lifetime

ECL),stage3(impairedcredits).Thefocus,then,movesonECLkeyingredients,thatis,PD,LGD, EAD.Aforward-lookingperspectiveinspiresIFRS9byemphasisingtheroleofeconomicscenarios asakeyingredientforECLcomputation.Basedonthis,aneasyparallelcanbedrawnbetweenECL andstresstesting.

• CECL. FewmethodologiesarementionedunderFASB(2016)tocomputeECLs.Inthisregard, Section 1.3 providesanoverviewofapproachesonemayadopttoalignwithCECLrequirements. Loss-rate,vintageandcashflowmethodsareinspectedbymeansofillustrativeexamples.These non-complexapproachesarenotfurtherinvestigatedthroughoutthebook.Indeed,thefocusof thebookisonmorecomplexmethodsbasedonPD,LGDandEADtoleveragesimilaritieswith IFRS9.

• ECLandcapitalrequirements. Section 1.4 highlightssomeofthekeyconnectionslinkingaccountingstandardsandregulatorycapitalrequirements.Firstly,internalrisk-based(IRB)weighted assetsareintroduced.Secondly,expectedcreditlossesarescrutinisedinthecontextofregulatory capitalquantification.IFRS9andCECLimpactoncommonequityTier1,Tier2andtotalcapital ratiosispointedoutbymeansofafewillustrativeexamples.

• Bookstructureataglance. BothIFRS9andCECLrequireanoutstandingeffortintermsofdata, modellingandinfrastructure.AdeepintegrationisrequiredtocoherentlyestimateECLs.Forthis reasonSection 1.5 providesaguideforthereaderthroughthejourney.Anintroductiontoeach chapterisprovidedtogetherwithanarrativehighlightingthekeychoicesmadeinpresentingeach topic.

1.2 IFRS9

Therecent(2007–2009)financialcrisisurgedaresponsenotonlyfromacapitalperspective,butalso fromanaccountingpointofview.Indeed,BIS(2011)introducednewconstraintstobankingactivity andenforcedexistingrules.Capitalratioswerestrengthenedbydefiningaconsistentsetofrules. Leverageratiowasintroducedasameasuretopreventbanksexpandingtheirassetswithoutlimit. Liquidityratios(thatis,liquiditycoverageratioandnetstablefundingratio)constitutedaresponseto liquidityproblemsexperiencedduringthecrisis.Finally,stresstestingwasusedasakeytooltoassess potentialrisksonawiderperspectivebyencompassingeconomic,liquidityandcapitalperspectivesall atonce.

Fromanaccountingperspective,IASBintroducedthenewprinciple,IFRS9(IASB, 2014).Itsmost importantinnovationreferstocreditlossesestimation.Intermsofscope,thenewmodelappliesto:

• Instrumentsmeasuredatamortisedcost. Assetsaremeasuredattheamountrecognisedatinitial recognitionminusprincipalrepayments,plusorminusthecumulativeamortisationofanydifferencebetweenthatinitialamountandthematurityamount,andanylossallowance.Interestincome iscalculatedusingtheeffectiveinterestmethodandisrecognisedinprofitandloss.

• Instrumentsmeasuredatfairvaluethroughothercomprehensiveincome(FVOCI). Loansand receivables,interestrevenue,impairmentgainsandlosses,andaportionofforeignexchangegains andlossesarerecognisedinprofitandlossonthesamebasisasforamortisedcostassets.Changes infairvaluearenotrecognisedinprofitandloss,butinothercomprehensiveincome(OCI).

AnecessaryconditionforclassifyingaloanorreceivableatamortisedcostorFVOCIiswhether theassetispartofagrouporportfoliothatisbeingmanagedwithinabusinessmodel,whoseobjective istocollectcontractualcashflows(thatis,amortisedcost),ortobothcollectcontractualcashflows andtosell(thatis,FVOCI).Otherwise,theassetismeasuredatfairvaluesprofitandloss,andECL modeldoesnotapplytoinstrumentsmeasuredatfairvalueprofitandloss(forexample,tradingbook assets).

Figure 1.2 summarisesthekeytopicsinvestigatedthroughoutSection 1.2.

FIGURE1.2 WorkflowdiagramforSection 1.2.

Section 1.2.1 introducesthestagingallocationprocess.Indeed,IASB(2014)reliesontheconcept ofsignificantincreaseincreditrisktodistinguishbetweenstage1andstage2credits.Forstage1, one-yearECLholds,whereasforstage2lifetimeECLneedstobecomputed.Stage3referstoimpaired creditsandlifetimeECLapplies.Section 1.2.2 providesanoverviewofthekeyingredientscommonly usedtocomputeECL.Indeed,apartfromsimplifiedapproaches,probabilityofdefault(PD),lossgiven default(LGD)andexposureatdefault(EAD)arekeyelementsforECLestimate.

1.2.1STAGINGALLOCATION

IFRS9standard(IASB, 2014)outlinesathree-stagemodelforimpairmentbasedonthefollowing:

• Stage1. Thisbucketincludesfinancialinstrumentsthathavenothadasignificantincreaseincredit risksinceinitialrecognitionorthathavelowcreditriskatthereportingdate.Fortheseassets, one-yearECLisrecognisedandinterestrevenueiscalculatedonthegrosscarryingamountofthe asset(thatis,withoutdeductionforcreditallowance).One-yearECListheexpectedlossthatresults fromdefaulteventsthatarepossiblewithinoneyearafterthereportingdate.

• Stage2. Financialinstrumentsthatexperiencedasignificantincreaseincreditrisksinceinitial recognition,butthatdonothaveobjectiveevidenceofimpairmentareallocatedtostage2.For theseassets,lifetimeECLisrecognised.Interestrevenueisstillcalculatedonthegrosscarrying amountoftheasset.LifetimeECLreferstoallpossibledefaulteventsovertheexpectedlifeofthe financialinstrument.

• Stage3. Assetsthathaveobjectiveevidenceofimpairmentatreportingdateareallocatedtostage3. Fortheseassets,lifetimeECLisrecognisedandinterestrevenueiscalculatedonthenetcarrying amount(thatis,netofcreditallowance).

Inlinewiththeabove,thedefinitionofsignificantincreaseincreditriskplaysakeyrolethroughout theentireIFRS9process.Indeed,thisisthetriggercausingECLtobecomputedoveraone-year insteadoflifetimehorizon.Reasonableandsupportableinformation—availablewithoutunduecost oreffort—includingpastandforward-lookinginformation,areattheveryrootofthedecision.Few presumptionsinformthisprocessaslistedbelow:

• Lowcreditrisk. Nosignificantincreaseincreditriskispresumedinthecaseoflowcreditriskatthe reportingdate.Asanexample,onemayconsideranexternallyratedinvestmentgradeinstrument. Abankcanuseinternalmethodstoidentifywhetheraninstrumenthasalowcreditrisk.

• Presumption30dayspastdue. Thereisarebuttablepresumptionthatthecreditriskhasincreased significantly,whencontractualpaymentsaremorethan30dayspastdue.

Abankcomparestheriskofadefaultoccurringovertheexpectedlifeofthefinancialinstrument, suchasatthereportingdatewiththeriskofdefaultandatthedateofinitialrecognition.Inlinewith IASB(2014),theassessmentofsignificantincreaseincreditriskreliesonarelativecomparison.Nevertheless,anabsolutecomparison(example,absolutethreshold)isviablewhenitprovidesaconsistent outcome,asunderarelativeapproach.Factorstoconsiderindeterminingtheoccurrenceofasignificantincreaseincreditriskinclude,butarenotlimitedto,thefollowing:

• Quantitativeindicators. Probabilityofdefaultisthemostcommonindicatoradoptedinpracticeto assesscreditriskincrease.AresiduallifetimePDshouldbeused.Itimpliesthatthesameremaining periodisconsideredforbothPDatoriginationandreportingdate.Asapracticalexpedient,aoneyearPDcanbeusedifchangesinone-yearPDareareasonableapproximationtochangesinthe lifetimePD.

• Qualitativeindicators. IFRS9providessomeexamples,including:creditspread,creditdefault swapprice,marketinformationrelatedtotheborrower,significantchangeinthecreditrating,internalcreditratingdowngradeandsignificantchangeinthevalueofthecollateral.Qualitativefactors shouldbeconsideredseparately,whentheyhavenotalreadybeenincludedinthequantitativeassessment.

Judgementisappliedindeterminingwhatthresholdwouldbeconsideredasignificantincrease increditrisk.Theriskofrecognisingexpectedlossestoolateshouldbebalancedagainstdefininga narrowbandtoavoidinstrumentsfrequentlymovinginandoutofthedifferentstageswithoutthis reflectingasignificantchangeincreditrisk.Whatisasignificantchangevaries,basedonaseries ofcircumstances.Thesameabsolutechangeintheriskofdefaultwillbemoresignificantforan instrumentwithalowerinitialcreditrisk,comparedtoaninstrumentwithahigherinitialriskof default.Asanexample,iforiginationPDis0.10%andreportingdatePDis0.20%,arelativeincrease of100.00%occurred.However,itaccountsforarelativelysmallchange,0.10%.Onthecontrary,if thePDatinitialrecognitionwas1.00%andthisincreasedbythesameabsoluteamountof0.10%to 1.10%,thisisanincreaseofonly10%.Thereforestagingmechanicsneedspecificbalancetoaccount forbothrelativeandabsolutefeatures.

Itisevidentthatakeyissueinmeasuringexpectedlossesistospecifywhenadefaultoccurs.IFRS 9doesnotprovideaspecificdefinition.Nevertheless,anentitymustapplyadefinitionthatisconsistent withinternalcreditriskmanagementpurposes.Thereisarebuttablepresumptionthatadefaultdoes notoccurlaterthan90dayspastdue.

Thefollowingsectionprovidesahigh-leveldescriptionofthekeyECLingredients:PD,LGD,and EAD.

1.2.2ECLINGREDIENTS

InlinewithIFRS9principles,ECLmustreflectanunbiasedevaluationofarangeofpossibleoutcomes andtheirprobabilitiesofoccurrence.Reasonableandsupportableinformationneedstobeusedwithout unduecostoreffortatthereportingdateaboutpastevents,currentconditionsandforecastsoffuture economicconditions.Estimatesalsoneedtoreflectthetimevalueofmoneybymeansofrelevant discounting.

Basedonwhatwasdescribedintheprevioussection,defaultdefinitionplaysacrucialrole.Sucha concept,togetherwithdatatouseforitspracticalimplementation,willbeinvestigatedthroughoutall chaptersofthebook.Inwhatfollows,ahigh-leveldescriptionofthemainingredientstouseforECL estimateisprovided.Itallowsustofamiliarisewiththeircharacteristicsandunderstandthereasonwhy adequatemodelsarenecessary.

• Probabilityofdefault(PD). Defaulteventscanbeinterpretedasrealisationsofarandomvariable.PDrepresentstheexpectationoftheseoccurrencesoveragiventimeframe.Whenapplied toafinancialinstrument,PDprovidesthelikelihoodthataborrowerwillbeunabletomeetdebt obligationswithinacertainperiod.OneofthekeyinnovationsintroducedbyIFRS9isextending toalifetimetimeframecreditriskestimates.Thedistinctionbetweenone-yearandlifetimeECL, referredtoasstage1and2,respectively,needstobereflectedintermsofone-yearandlifetime PDs.Inthisregard,startingfromalifetimeperspective,PDsmaybebrokendownintosub-period withintheremaininglifeterm.One-yearPDrelatestoaone-yearinterval. Itisworthnotingthatfromacreditriskmanagementorganisationalstandpoint,regulatorycapital reliesonone-yearestimates(BIS, 2006).Asaconsequence,banksfancytheideatouseacommon frameworkforbothcapitalrequirementsandaccountingpurposes.Astress-testing-likeframework mayserveasaviaticumforone-yearthrough-the-cycle(TTC)PDstowardspoint-in-time(PIT) forward-lookinglifetimeestimates,asdetailedinChapters 2 and 3 ofthebook.

• Lossgivendefault(LGD). LGDrepresentstheportionofanon-recoveredcreditincaseofdefault. Twoextremescaneasilybeidentified.Ontheonehand,afullrecoveryisassociatedwith0%LGD. Onthecontrary,azerorecoveryscenarioleadstoa100%LGD.Aseriesofpartialrecoveriesmay alsooccurinpractice,sothatLGDisusuallyboundedbetween0%and100%.Duetoitsnature, LGDisestimatedovertheentireworkoutprocess.Inotherwords,oneneedstoconsiderallrecoveriesoccurredafterdefaultwithoutimposingtimerestrictions.Inthisconnection,LGDmaybe regardedasalifetimemetric.Ontheotherhand,accuratelyinvestigatingwhetherandhowmacroeconomicconditionsaffectLGDsisnecessary.Indeed,aforward-lookingperspectiveisrequiredfor IFRS9andCECLestimates,asdetailedinChapter 4

• Exposureatdefault(EAD). Chapter 5 ofthebookfocusesonthebalanceexpectedcreditloss (ECL)iscomputedon.Akeydistinctionarisesbetweenloan-typeproducts(forexample,mortgages)anduncommittedfacilities(suchasoverdrafts).Intheformercase,amultiyearhorizon usuallyapplies.Asaconsequence,deviationsfromtheoriginallyagreedrepaymentschememay takeplace.Fullprepaymentsandoverpayments(partialprepayments)requireadequatemodelling. Withregardstouncommittedfacilities,firstlyoneneedstohighlightthedistinctionbetweencontractualandbehaviouralmaturity.Thendefaulteddrawnamountisthetargetvariableunderscrutiny.

Asanadditionalstep,acompetingriskframeworkisconsideredagainstthemoretraditionalcredit risksilosrepresentation.Indeed,growingattentionhasbeenaddressedbothbypractitionersand researcherstointegrateriskestimatesbycapturingtheirinterdependencies.Ourfocusisonprepayments,defaultsandoverpayments.

AllaboveingredientsarejointlyusedtocomputeECL,basedonstagingallocationrulesintroduced andscenarios,assummarisedinthefollowingsection.

1.2.3SCENARIOANALYSISANDECL

IASB(2014)requiresascenario-weightingscheme(thatis,probability-weighted).Insomecasesa simplemodellingmaybesufficientasperB5.5.42.Inothersituations,theidentificationofscenarios thatspecifytheamountandtimingofthecashflowsforparticularoutcomes,andtheirestimated probability,isrequired.Inthosesituations,theexpectedcreditlossesshallreflectatleasttwooutcomes (seeparagraph5.5.18).OnemayinferanupperlimittothenumberofscenariosfromSectionBC5.265. Consequently,therequirementofasimulation-basedapproachoverthousandsofscenarioscanbe disregarded.

Aconnectingframeworkisneededtolinkaccountinformation,macroeconomicscenarios,and creditrisksatellitemodels(forexample,PD,LGD,EAD).Thisisalsothetypicalhigh-levelframe usedforstresstesting.Indeed,inbothcases(thatis,ECLandstresstesting)creditriskmodelsare linkedtomacroeconomicscenariostoforecastasetofmetrics.InthecaseofECL,thefocusisonIFRS 9scope(thatis,credits),whereasstresstestingalsoinvolvestheentireassetandliabilitystructureofa bank.

Onemaysummarisetheprocessasfollows:

• Data. Atreportingdate,asetofinformationisneededasastartingpointtoassessECL;information regardingbothperforminganddefaultedportfoliosisneeded.

• Macroeconomicscenarios. GivenECLforward-lookingnature,scenariosarerequiredbothfor IFRS9andCECL.Inmoredetail,IFRS9explicitlyrequiredamultiscenarioframework;on theotherhand,CECLisnotprescriptive.Nevertheless,CECLmaybeorganisedbyrelyingona multiple-scenarioscheme,asperIFRS9.

• Satellitemodels. Creditriskmodels,suchasPD,LGDandEAD,inconjunctionwithasetof otherframes(forexample,effectiveinterestrate),relyonaccount-level,portfolio-leveldata,and scenarios.ProjectionsaredrawnoveralifetimehorizonbothforIFRS9andCECL.Aspartofthe lifetimecurve,IFRS9requiresone-yearparameterstoestimatestage1ECL.

• IFRS9stagingallocation. Stagingrulesapplytoeachfinancialinstrument,basedoncriteria alignedwithIASB(2014)requirements.

• ECLcomputationforeachscenario. TheoutputofcreditrisksatellitemodelsfeedtheECL engine.IfCECLreliesonlifetimeperspectiveforallaccounts,IFRS9requiresadistinctionbetween one-yearandlifetimeECLs,basedonthestagingallocationprocessdescribedabove.

• WeightingschemeandfinalECLestimation. Asafinalstepoftheprocess,ECLisobtainedasa weightedaverageofECLsestimatedunderalternativescenarios.ForCECL,ifonlyonescenariois used,ECLisestimatedaspartofthepreviousstep: ECLcomputationforeachscenario.

Example 1.2.1 helpsustograspinterconnectionsbetweencreditriskparameters,scenarios,staging allocation,andECLestimation.

EXAMPLE1.2.1STAGINGALLOCATIONANDECL

Letusfocusonagivenborrowerwithonlyoneloan.Twoillustrativestagingthresholdareconsidered,thatis,6.00%and5.00%.Threescenarios(A,B,andC)aredefined,assummarised inTable 1.1.Allcreditriskparameters(thatis,PD,LGD,andEAD)areaffectedbyscenarios.Theaccountisallocatedtoonestage,basedontheweightedaveragelifetimePD.Inour case,theaveragelifetimePDis5.55%(thatis,2.00% 30.00% + 5.50% 50.00% + 11.00% 20.00%).

• Hypothesisthreshold6.00%. Since5.55% < 6.00%,theaccountisallocatedtostage1. ThereforeECLis$19.28thousand(thatis,one-yearestimate).

• Hypothesisthreshold5.00%. Ifthestagingthresholdissetat5.00%,theaccountisallocatedtostage2,andtheECLis$28.84thousand(thatis,lifetimeestimate).

Scenario

ThefollowingsectionfocusesonCECL(FASB, 2016).

1.3 CECL

Inlinewiththegeneralprincipleinformingpost2007–2009financialcrisisaccountreform,CECL (FASB, 2016)goesinparallelwithIFRS9bymovingfromanincurredperspectivetowardsanexpectedlossframe.Oneneedstoincludeforward-lookinginformationandrecognisetheexpected lifetimelossesuponoriginationoracquisition.Off-balancesheetcommitments,whicharenotunconditionallycancellablealsorequireECLcomputation.Inabroadsense,CECLappliestofinancialassets measuredatamortisedcostbyincluding,amongothers,financingreceivables,heldtomaturity(HTM) securities,receivablesfromrepurchaseagreementsandsecuritieslendingtransactions,andreinsurance receivables.Itexcludes,amongothers,assetsmeasuredatfairvaluethroughnetincome,loansmadeto participantsbydefinedcontributionemployeebenefitplansandpolicyloanreceivablesofaninsurance company.

Intermsofmethodologies,thestandardisnotprescriptive.Inparticular,itisopentomethodsbased onloss-rate,probabilityofdefault(thatis,PD,LGD,EAD),discountedcashflows,roll-rate,orusean ageingschedule.WhendevelopingECLmethods,oneneedstoconsiderthefollowing:

Table1.1 Stagingallocation:ingredientsandECLoutcomes($Thousands)

• Historicallossinformation. InternalandexternalpastinformationareattheveryheartofECL estimate.Thisisthestartingpointfortheassessment.Portfoliosegmentationandpoolingarealso crucialtoidentifycommonriskcharacteristics.

• Currentconditions. Estimatesneedtoincludecurrentconditions.Thisisinlinewiththepoint-intimeprinciplealsoinspiringIFRS9computation.

• Reasonableandsupportableforecasts. Theforward-lookingperspectiveurgedbyIFRS9isalso attherootofCECL.ThereforeeconomicforecastsneedtobeembeddedintoECLestimates.

• Reversiontohistory. Banksneedtoreverttohistoricallossinformationwhenunabletomakereasonableandsupportableforecasts.Thisreversionneedstobeperformedsystematicallybystarting frominputs,orappliedatanaggregatedlevel.Itimpliesthatbanksneedto:

• Defineasustainableandsupportablehorizonformeanreversion.

• Estimatealong-termexpectedloss.

Figure 1.3 summarisesthekeytopicsinvestigatedthroughoutSection 1.3.

FIGURE1.3

WorkflowdiagramforSection 1.3

Section 1.3.1 providesanoverviewofloss-ratemethods.Cumulativecreditlossesareinspected fromtwostandpoints:collectiveandindividual.Section 1.3.2 describeshowtomeasureECLsbased ontheoriginationdateandhistoricalperformanceofassetswithsimilarvintagecharacteristics.Section 1.3.3 summarisesthekeyfeaturesofcashflowsmethods.Section 1.3.4 pointsoutthekeyelements toconsiderwhenaprobabilityofdefaultmethodisadopted.InlinewithIFRS9,PD,LGDandEAD arethekeyingredientstocomputeECL.Asapracticalchoice,thebookfocusesonthemostcomplexmodellingmethods.Forthisreason,loss-rate,vintage,cashflow,andotherswillnotbefurther investigatedinthefollowingchapters.AttentionwillbedrivenbyPD,LGDandEADmodelling. Finally,Section 1.3.5 pinpointsthekeysimilaritiesanddifferencesbetweenIFRS9andCECLframeworks.

1.3.1LOSS-RATEMETHODS

Loss-ratemethodscantakevariousforms.Inallcases,theyarebasedonhistoricalratesofloss.As astartingpoint,onemayconsiderthepercentageofreceivablesthathavehistoricallygonebad,and

thenmakeanynecessaryadjustmentsbasedonrelevantinformationaroundcurrentorfutureconditions.

Example 1.3.1 referstoFASB(2016)Example1bypointingoutthedifferencebetweenincurred lossandECLestimates.

EXAMPLE1.3.1LOSSRATEANALYSIS

Table 1.2 providesallinformationneededtoestimatelossesundertheincurredlossmethod. Foreachyearaone-yearemergingperiodisconsideredasincurredlossesestimate(thatis,the AnnualLosscolumn).Aconstant0.30%representstheloss-ratepercentage.Anextra0.50% adjustmentisappliedtoobtainatotal0.80%incurredlosspercentage.Thelatteristhenappliedtoyear2020exposure(thatis,$3,000.00thousand)tocompute$24.00thousandincurred loss.

Table1.2 Loss-rate:incurredlossmethod($Thousands)

MovingfromFASB(2016)Example1,onemayestimateECLassummarisedinTable 1.3.Aten-yearhistoricalincurredlossestrackisputinplace.Inourcase,thestartingpointistheamortisedcostbalanceof$1,500.00thousandasper2010.Lossesare trackedthroughouttheperiod2010–2020.Totalincurredlossesis$22.50thousandcorrespondingto1.50%oftheinitialbalance.Someadjustmentsareintroducedtotakeintoaccountexpectationsoneconomicconditionevolution.Theoverallexpectedlosspercentage is1.65%.Basedon2020exposureof$3,000.00thousand,ECLaccountsfor$49.50thousand.

Another random document with no related content on Scribd:

distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.