Foundations of radio for scientists and technologists christopher john coleman - The ebook is ready

Page 1


Foundations of Radio for Scientists and Technologists Christopher John Coleman

Visit to download the full and correct content document: https://textbookfull.com/product/foundations-of-radio-for-scientists-and-technologists-c hristopher-john-coleman/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Nanocolloids : a meeting point for scientists and technologists 1st Edition Margarita Sanchez-Dominguez

https://textbookfull.com/product/nanocolloids-a-meeting-pointfor-scientists-and-technologists-1st-edition-margarita-sanchezdominguez/

Foundations of Mobile Radio Engineering First Edition Yacoub

https://textbookfull.com/product/foundations-of-mobile-radioengineering-first-edition-yacoub/

Analysis for Computer Scientists Foundations Methods and Algorithms Michael Oberguggenberger

https://textbookfull.com/product/analysis-for-computerscientists-foundations-methods-and-algorithms-michaeloberguggenberger/

John Berryman Centenary Essays Coleman

https://textbookfull.com/product/john-berryman-centenary-essayscoleman/

Analysis for computer scientists foundations methods and algorithms Second Edition Oberguggenberger

https://textbookfull.com/product/analysis-for-computerscientists-foundations-methods-and-algorithms-second-editionoberguggenberger/

Foundations for Lifelong Learning John Piper

https://textbookfull.com/product/foundations-for-lifelonglearning-john-piper/

Python for Scientists

2nd Edition John M. Stewart

https://textbookfull.com/product/python-for-scientists-2ndedition-john-m-stewart/

Mathematics Pocket Book for Engineers and Scientists

5th Edition John Bird

https://textbookfull.com/product/mathematics-pocket-book-forengineers-and-scientists-5th-edition-john-bird/

Mathematics Pocket Book for Engineers and Scientists

5th Edition John Bird

https://textbookfull.com/product/mathematics-pocket-book-forengineers-and-scientists-5th-edition-john-bird-2/

FoundationsofRadioforScientistsandTechnologists

Thego-totextfornon-specialistsrequiringaseriousintroductiontoradio.Designed forthosewithoutaspecialisttheoreticalbackgroundinelectronicandelectromagnetic engineering,itusesaholistic,physics-basedapproachtodescribethetheoryunderpinningradioscienceandengineering.Itcoversawiderangeoftopics,from fundamentalssuchasradiowavetheory,theelectronicsofradio,antennasandradio wavepropagation,tosoftwareradio,spreadspectrumandMIMO.Withawealthof practicalexercisesandexamplesaccompanyingthebookonline,thisistheidealtextfor graduatestudents,professionalsandresearcherswhoworkonradiosystemsandneed tounderstandboththescienceandpracticeofradio.

ChristopherJohnColeman isanassociateprofessorattheUniversityofAdelaideanda seniorvisitingresearchfellowattheUniversityofBath,havingpreviouslyworkedasa principalresearchscientistonAustralia’sJindaleeover-the-horizonradarproject.Heis theauthorof AnIntroductiontoRadioFrequencyEngineering (CambridgeUniversity Press,2004)and AnalysisandModelingofRadioWavePropagation (Cambridge UniversityPress,2017).

FoundationsofRadiofor ScientistsandTechnologists

CHRISTOPHERJOHNCOLEMAN

UniversityofBathandUniversityofAdelaide

UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA

477WilliamstownRoad,PortMelbourne,VIC3207,Australia

314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India

79AnsonRoad,#06-04/06,Singapore079906

CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence.

www.cambridge.org

Informationonthistitle:www.cambridge.org/9781108470940 DOI:10.1017/9781108684514

©CambridgeUniversityPress2018

Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress.

Firstpublished2018

PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary.

LibraryofCongressCataloging-in-PublicationData

Names:Coleman,Christopher,1950–author.

Title:Foundationsofradioforscientistsandtechnologists/ ChristopherColeman(DepartmentofElectricalandElectronicEngineering,AdelaideUniversity). Description:Cambridge:CambridgeUniversityPress,2018.|

Includesbibliographicalreferencesandindex.

Identifiers:LCCN2018015101|ISBN9781108470940(hardback)

Subjects:LCSH:Radio–History.|Radiowaves.|Radiowavepropagation.| Radio–Equipmentandsupplies.

Classification:LCCTK6550.C6752018|DDC621.384–dc23

LCrecordavailableathttps://lccn.loc.gov/2018015101

ISBN978-1-108-47094-0Hardback

Additionalresourcesforthistitleavailableatwww.cambridge.org/coleman2 CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate.

4.7TheEffectofNonlinearity79 4.8Conclusion82

5RadioTransmittersandReceivers 83

5.1FeedbackandOscillators83

5.2Mixers89

5.3ModulationandDemodulation93

5.4OscillatorNoiseandReciprocalMixing100

5.5PowerAmplifiers105

5.6Conclusion108

6DigitalTechniquesandSoftware-DefinedRadio 110

6.1BasicDigitalElectronics110

6.2DigitalSignalProcessing114

6.3Analogue-to-DigitalandDigital-to-AnalogueConverters120

6.4DigitalReceiverandTransmitterArchitecture125 6.5Conclusion128

7TransmissionLines 129

7.1Transmission-LineTheory129

7.2TheTerminationofTransmissionLines133

7.3Transmission-LineResonators135

7.4ScatteringMatrices139

7.5Transmission-LineTransformers146

7.6Conclusion149

8Antennas

8.1TheElectricDipole150

8.2TheMagneticDipole155

8.3Reciprocity157

8.4Gain159

8.5TheMonopoleAntenna161

8.6ReducingtheSizeofAntennas163

8.7BroadbandAntennas165

8.8ArrayAntennas169

8.9ApertureAntennas176

8.10Conclusion182

9RadioWavePropagation 183

9.1ReflectionandRefraction183

9.2TheFriisEquation185

9.3Huygens’PrincipleandPropagationbyRefraction187

9.4ScatterandDiffraction198

9.5Conclusion205

Preface

Radioisoneofthemostpervasivetechnologiesofthetwentiethcenturyandisamajor elementinallofourlives.Besidesbeingthemajortechnologythatmakesthebroadcast andtelecommunicationindustriespossible,itisanimportantsupportingtechnologyfor thetransportindustry,themilitaryandtheemergencyservices.Inthesphereofscientific research,itisanimportantelementindatagatheringand,throughradar,providesa primaryresearchtoolforgeology,meteorologyandenvironmentalscience.Furthermore, throughradiotelescopes,itisamajortoolforastronomers.Itisclearthatmanyscientists willneedtounderstand,andevendesign,radiosystemsofconsiderablesophistication. Whilstsuchscientistsmightnotneedtodesigntheelectronics,theywillcertainlyneed tounderstanditscapabilityandperformancelimitations.However,suchknowledgeis usuallythepreserveoftheprofessionalRFengineer;knowledgehewillhavegleaned fromaseriesofcoursesindiverseareasthatincludeelectronics,signalprocessing, communications,electromagnetism,antennasandpropagation.Materialfromthese topicsconstitutesthesubjectofradio.Manyscientists,andtechnologists,donothave theluxuryofbeingabletostudysucharangeofmaterialindetail.Consequently,itis theaimofthepresentedtexttoprovidesuchreaderswithabasicunderstandingofradio, bothitstheoryandpractice.

Thisisnotabookaboutthedesignofradiofrequencycircuits,butratherabookabout thephenomenonofradioandhowitworks.Consequently,thereisanevenbalance betweenthephysicsofradioandthetechnologythathasmadeitpossible.Theprimary aiminwritingthisbookhasbeentomakesomequiteadvancedtopicsinradioaccessible toamoregeneralaudience.However,duetothemathematicalnatureofmostradio theory,thereisadangerthatsuchabookcanendupasjustalistoffactsandformulas. Toavoidthis,thebookusesamorephysics-basedapproachtothecomplextheoryof radio.Thisnotonlyaidsthereader’sunderstandingbutalsoavoidstherequirementof alargeprerequisiteknowledgeinadvancedmathematics.Indeed,thereaderonlyneeds somebasicknowledgeofvectors,calculusandcomplexnumbers.Inparticular,thebook doesnotrequireknowledgeofvectorcalculus.Asaconsequence,thebookshouldbe accessibletoalargerangeofscientists,engineersandtechnicians.

Thebookdevelopsthetheoryofelectromagnetisminahistoricalfashion,fromearly ideasconcerningelectrostaticstothepredictionanddiscoveryofradiowaves.Itthen looksatthefundamentaltechnologicaldevelopmentsthathavemademodernradio possible.Thebookintertwinesthehistoryofradiowiththetheory,hencegivingthereader anideaofhow,andwhy,certaintechnologiesweredeveloped.Importantly,thebook

x Preface discussesissuesthatcanaffecttheperformanceofradiosystems.Thebookdevelops, insomedetail,theimportanttopicsoftransmissionlines,antennasandpropagation. Additionally,itlooksatsomeimportantmodernradiotechnologiessuchasspread spectrum,cellularradio,MIMOandradar.Whilstthebookdoesnotaimtotrainthe readerinradioelectronics,thebookwillprovideasufficientbackgroundforthereader toprogressontorelativelyadvancedtextsinthisarea.Muchofthematerialinthisbook grewoutofcoursesgiventonon-specialistswithaneedtounderstandradioinmore detailthanisofferedbymostintroductorytexts.Thestudentsonthesecourseswere mainlyusersofradio(ionosphericphysicistsandradarscientistsforexample)witha needtounderstandradioingreaterdepth.Suchstudentsaretheintendedreadershipof thisbook.However,thebookmightalsobeofinteresttothosewithanelectricaland electronicengineering(EEE)background.ThecoverageofradioinatypicalEEEdegree tendstobedisjointedanditispossiblethatthisbookmightproveusefultothosewho wishtofillgapsintheirknowledgeofradio,orsimplytorevisetheirknowledge.For thosereadersinterestedinthepracticalapplicationofthematerialinthisbook,theonline resourcesincludenumerousexamplesandexercises.

Iwouldliketothankmywife,Marilyn,forherinvaluablesupportandhelpinpreparing thisbook.

1Electromagnetism

Radioisatechnologythatisbaseduponelectromagneticphenomenaandan understandingofelectromagnetictheoryiscrucialtotheunderstandingofradio.Ideas ofelectricityandmagnetismhavebeeninexistenceformanymillennia,butthetheory ofelectromagnetismwastheresultofasurgeinactivityoverthelastfourcenturies.The developmentofelectromagnetictheoryculminatedintheMaxwellequations,equations thatarecrucialtoourunderstandingofradiowaves.Radioisanexampleofthetriumphof theoreticalscienceinthatitwaspredictedthroughtheoryratherthanbeingdiscoveredby accident.Itistheaimofthecurrentchaptertodescribeelectromagnetictheorythroughits historicaldevelopment.Thechapterhasbeenwrittenforthosewithverylittleknowledge intheareaandsocanbeskippedbythosewhoalreadypossessagoodknowledgeofthe subject.However,itisexpectedthatsomereaderswillbealittlerustyonthetheoryand sothischapterwillserveasrevisionforthem.

1.1Electricity

ThefirstrecordedobservationsofelectricaleffectsgobacktotheGreeks.Inthesixth centuryBC,ThalesofMiletusobservedthatamber,whenrubbed,wouldattractlight objects.Thisphenomenonisexemplifiedbytheoldschoolboytrickofrubbingacomb onyourtrousersandthenseeingitliftsmallscrapsofpaper.Todayweknowthatmatter ismadeupofatomswhichcontainparticleswithpositiveelectriccharge(protons), negativeelectriccharge(electrons)andnocharge(neutrons).Further,thatlikecharges repeleachotherandthatunlikechargesattract.Asimplemodelofasingleatomconsists ofanumberofelectronsthatorbitaroundanucleusconsistingofthesamenumberof protonsandpossiblysomeneutrons(seeFigure1.1).Theelectronsarearrangedinshells aroundthenucleus,eachshellcontainingelectronsofapproximatelythesameenergy (theenergyincreaseswithradius)andaredesignated,inorderofenergy,asK,L,M,N, O,PandQ(itshouldbenotedthattheenergygapbetweentheseshellsismuchlarger thantherangeofenergieswithinashell).Duetoquantummechanicaleffects,theshells containonlyalimitednumberofelectrons(theKshellcancontainamaximumof2 electrons,theLshell8electrons,theMshell18electrons,theNshell32,etc.).Matter willconsistofalargecollectionofsuchatomswhich,undernormalcircumstances, willbeinoverallelectricalneutrality(thenumbersofelectronsandprotonsareequal). Undersomecircumstances,however,itispossibletoincrease,ordecrease,thenumber

Fig.1.1 Atomicstructureconsistsofelectronsorbitinganequalnumberofprotonsandpossiblysome neutrons.

ofelectronsandthematerialwillbecomeelectricallycharged.Thisiswhatisachieved intheaboverubbingprocess,sometimesknownasthetriboelectriceffect.Theessential conditionfortheeffecttoexististhatthematerialsbeingrubbedtogetherhavedifferent strengthsoftheforcethatbindtheirelectronstothenucleus(glasshasafarstronger bondthanrubberforexample).Whenthematerialsarebroughttogether,electronsinthe materialwiththeweakerforcewillbeattractedtothematerialwiththestrongerforce. Whenthematerialsarethenseparated,someofthetransferredelectronswillremainon thematerialwiththestrongerforceandbothmaterialswillbecharged,onepositively (theonewiththeweakerforce)andonenegatively(theonewiththestrongerforce).

Realmattercanbequitecomplexinstructure,withmanymaterialscomposedof moleculesthatarecomplexcombinationsofdifferentkindsofatoms.Theheavieratoms (thosewithalargenumberofprotons)canhavemanylayersofelectronssurroundingthe nucleusandthismeansthatthebondoftheouterelectronscanberelativelylow.Thiscan leadtohighelectronmobilityinmaterialscomposedofsuchatoms.Materialsforwhich theelectronsarehighlymobile,relativetotheprotons,areknownasconductorsandare exemplifiedbymetalssuchascopper,silverandgold.Materialswheretheelectronsare relativelyimmobileareknownasinsulators(glassandrubberbeingimportantexamples). Insulatorsandconductorsturnedouttobeofgreatimportanceinthedevelopmentof electricity.

Theseventeenthandeighteenthcenturieswereaperiodofgreatadvancesinour knowledgeofelectricaleffects,muchofitmadepossiblebyincreasinglysophisticated machinesfordevelopingchargedmaterialsthroughthetriboelectriceffect.Figure1.2 showsthebasicmechanismofsuchmachines.Therubberbeltrollsovertheglasscylinder andthiscauseselectricalchargetobuilduponthesecomponentsthroughthetriboelectric effect.Whenthecomponentsseparate,thebeltwillbenegativelychargedandthecylinder positivelycharged.Thenegativechargesonthebeltwilleventuallyreachaconducting brushthatsweepsthemupontoaconductingmetalwirealongwhichtheytraveluntil reachingaconductingsphereonwhichtheyaccumulate.Inasimilarfashion,thepositive chargetravelswiththecylinderuntilitreachesaconductingbrush.Atthisbrush,the positivechargeisneutralisedbynegativechargethathasbeendrawnfromthelower spherealongtheconductingwire.Inthisfashion,positivechargeaccumulatesonthe lowersphere.AsshowninFigure1.2,thechargeaccumulatesonopposingfacesofthe spheres.Thisoccursduetothemobilityofelectronsonconductorsandthefactthat

Fig.1.2 Abasicmachineforcreatingpositiveandnegativechargebythetriboelectriceffect.

opposingchargesattract.Themediumbetweenthespheresiscomposedofairandthis willtendtoactasaninsulatorandsothechargewilljustaccumulateonthespheres. Furthermore,thechargesontheopposingsphereswillbalanceeachotherout.

Ifachargedparticleisplacedbetweenthespheres,itwillbedrawntowardsthesphere withtheopposingchargeandrepulsedbythespherewiththesamecharge.Consequently, ifwewanttoincreasetheamountofnegativechargeontheupperspherebydirectly movingpositivechargetothelowersphere,thiswillrequireanexternalagencytodo somework.Thisbringsustotheimportantconceptof potentialdifference.Thepotential differencebetweentwopointsisdefinedtobetheworkdonebyanexternalforcein movingpositivechargebetweenthesepointsandismeasuredintermsofvolts(1voltis 1joulepercoulomb).Inordertoquantifythis,weneedtobeabletocalculatetheforce thatonechargeimposesuponanother.Theforce F imposedoncharge q bycharge Q is givenby Coulomb’slaw

where r isthedistancethatseparatesthechargesand 0 isknownasthe permittivity offreespace(i.e.spacethatisdevoidofmatter).Thisforceisrepulsiveifthecharges havethesamesignandattractiveifthesignisdifferent.Thelawwasformulatedby CharlesAugustindeCoulombin1784astheresultofmuchexperimentalwork.The unitsofchargeareknownascoulombs,withaprotonhavingacharge1.60219 × 10 19 coulombsandanelectronminusthatamount.Ifdistancesaremeasuredinmetresand theforceinnewtons, 0 = 8.85 × 10 12

Forceis vector innature,i.e.ithasbothmagnitudeanddirection.Consequently,we needsomeunderstandingofvectorquantities.Pictorially,wecanrepresentavectoras anarrowthatpointsinthedirectionofthevectorwithitslengthequaltothemagnitude (Figure1.3).Vectorsarenotonlyusefulfordescribingquantitiessuchasforce,butcan alsobeusedfordescribingthegeometricalconceptofposition.Thepositionofapoint canbedescribedbythevectorthatjoinssomearbitraryorigintothispoint,themagnitude beingthedistancefromtheorigintothepoint.Animportantconceptinvectorsisthatof

Fig.1.3 a)Vectorrepresentedgraphicallyasanarrowandb)anglebetweenvectorsforthevectordot product.

Fig.1.4 Theadditionofvectors.

the dotproduct oftwovectors a and b,writtenas a · b.Ifthetwovectorshavemagnitudes a and b,respectively,thedotproductisdefinedtobe ab cos θ where θ istheanglebetween thesevectors(seeFigure1.3).Itcannowbeseenthat a = √a · a and b = √b · b.(Note thatweoftenuse |x | asmathematicalshorthandformagnitude x = √x x ofthevector.) Thedotproductcanbeusedtofindthecomponentofaforce F inaparticulardirection. Let ˆ t beaunitvector(| ˆ t |= 1)inthedirectionofinterest,then ˆ t F isthecomponentof forceinthatdirection.

Animportantoperationwecanperformonavector p istomultiplyitbyascalar s to getanewvector sp thatpointsinthesamedirectionas p butnowhasthemagnitude sp. Anotherimportantoperationwhenwehavemultiplevectorsistheiraddition.Forthe vectors a and b,ifwejointhetipofthearrowrepresenting a tothebaseofthearrow representing b,thesum a + b isrepresentedbythearrowfromthebaseofthearrow representing a tothetipofthearrowrepresenting b (seeFigure1.4).

Intermsofvectors,Coulomb’slawcanberewrittenas

where ˆ r isaunitvector( ˆ r ˆ r = 1)inthedirectionfrom Q to q .Analternativewayof lookingatthisistoregardcharge Q ascreatingan electricfield (sometimesknownas the electricintensity)

thatpervadesspace.Whenacharge q isplacedinthisfield,itisacteduponbyaforce q E where E isthevalueofthefieldatthepositionofcharge q (E willhaveunitsofvolts

permetre).Theconceptofafieldthatexistsatallpointsofspacewasarevolutionin thinkingandwasanextremelyimportantstepinthedevelopmentofelectromagnetism. Onecannowaskwhatthefieldwillbewhentherearechargesatavarietyoflocations. Fortunately,itturnsoutthatthisfieldwillsimplyconsistofthesumofthefieldsdue totheindividualcharges.Consequently,ataposition r ,asystemof N chargeshasthe electricfield

where ri isthepositionofthe i th charge Qi and |r ri | isthedistancefrom ri to r Wenowreturntothequestionofthepotentialdifferencebetweenpoints rA and rB . Thisistheworkdoneinmovingaunitchargefromapoint rA toapoint rB .Ifthereisa constantelectricfield,theworkdoneinmovingfrompoint rA to rB is (rB rA ) · E (i.e. minusthefieldinthedirectionof rB from rA multipliedbythedistanceinthatdirection). Whenmovingthroughthefieldproducedbyafinitenumberofcharges,however,the forcewillvaryfrompointtopoint.Consequently,wewillneedtosplitthepathover whichtheunitchargemovesintoanumberofshortsegmentsoneachofwhichthe electricfieldcanberegardedasconstant(seeFigure1.5).Thepotentialdifferencewill nowbeapproximatedby

where M isthenumberofsegments.Takingthelimitwherethesegmentlengthstend tozero,theabovesumbecomesthemathematicaloperationofintegrationalongaline, thatis

Inthecaseofourfinitesystemofcharge,wewilldefinethe potentialV ofthesystem tobethepotentialdifferencewhenpoint rA isapointatinfinityand rB isthetestpoint r ,then

Fig.1.5 Pathforcalculatingworkdonewhendividedintosegments(

and

).

Fig.1.6 Fieldlinesandlinesofconstantpotentialforpositiveandnegativecharges.

Fig.1.7 Fieldlinesandlinesofconstantpotentialforadipole.

Wecanvisualiseafieldintermsofwhatareknownas fieldlines.Suchlineshave thepropertythat,atanypoint,theirtangentisinthedirectionofthefieldatthatpoint.

Figure1.6showsthefieldlinesforpositiveandnegativecharges,thefieldsruninthe radialdirection(outwardsandinwardsrespectively).Itwillbenotedthatthefieldlines spreadoutaswemoveawayfromthesourcesandsothedensityoffieldlinesatanypoint isanindicationofthestrengthofthefieldatthatpoint.Alsoshownarethesurfacesof constantpotential(sphericalsurfacesaroundthechargethataredepictedasbrokenlines).

Figure1.7showsthefieldlinesforpositiveandnegativechargesofequalmagnitude thatareseparatedbyafinitedistance d .Thiscombinationisoftenknownasadipoleand isimportantinthedevelopmentofradiotheory.Atgreatdistancesfromthedipolethe effectsofthechargeswillalmostbalanceoutandsothefieldwillbemuchweakerthan

Fig.1.8 a)Geometryofaparallelplatecapacitorandb)fieldlinesinachargedcapacitor. thatofasinglecharge.Atgreatdistances,thefieldwillhavetheform

where p = Q(r+ r ) isknownasthedipolemomentwith r+ and r thepositionsof thepositiveandnegativechargesrespectively.

WenowreturntotheconfigurationofFigure1.2andnotethatthemachinecausesthe accumulationequalnumbersofopposite-signedcharges,positiveonthelowersphere andnegativeontheuppersphere.Thespheresessentiallystorechargeandareanexample ofanelectricaldeviceknownasa capacitor.Itwillbenotedthatthepotentialoneach spheremustbeconstant.Thispropertyfollowsfromthefactthatchargescanmovefreely onaconductingsphereandsonofurtherworkisneededtomovethemaroundonthe sphere.Itturnsoutthatthecharge Q onthelowersphereisproportionaltothepotential difference V = V+Q V Q betweenthespheres.Theconstantofproportionality C is knownasthe capacitance (Q = CV )andismeasuredinfarads(coulombspervolt). Spheresarenottheonlycapacitorsandanimportantformofcapacitorisknownasthe parallelplatecapacitor(seeFigure1.8a).Inthisdevicethechargeisaccumulatedon opposingfacesoftwoparallelplates.Thefieldbetweentheplatesismainlyconstant (magnitude E = Q/ A),exceptattheedges,whereitadjuststothezerofieldoutside thecapacitor.Iftheplatesaredistance d apartandhavesurfacearea A,thecapacitance willbe C = 0 A/d .Thisvaluecanbeenhancedbyinsertinganinsulatingmaterial betweentheplates.Thecapacitancewillnowgivenby C = A/d where isknown asthe permittivity oftheinsulator.Whenaninsulatorisadded(seeFigure1.9a),the moleculesbecomepolarised(electronsaredrawntowardsthepositiveplateandprotons towardsthenegativeplate).Thematerialwillthenconsistofacollectionofdipolesthat areorientatedalongtheoriginalfieldlineandthiscausesanadditionalfieldthatpartially counterstheoriginalfield.Thereducedfieldinsidethedielectricwillthenresultinan increasedcapacitance.Thecapacitorisanimportantcomponentinelectroniccircuits andisrepresentedbythesymbolshowninFigure1.9b.

Ifweconnectthetwosidesofacapacitorbyaconductor,electronswillflowfromthe negativesidetothepositivesideuntilallthechargehasbeenneutralised.Foraperfect conductor,thiswillhappeninstantaneously.Inreality,however,conductorsareimperfect andtherewillbesomeresistancetotheflowduetocollisionsonthemolecularscale. TheflowthroughanimperfectconductorisdescribedbyOhm’slaw,accordingtowhich

Fig.1.9 a)Parallelcapacitorwithdielectricandb)symbolforcapacitor.

Fig.1.10 Resistorandacapacitordrainedbyaresistor.

thepotentialdrop V acrosstheconductorisproportionaltothecurrent I throughthe conductor.Currentistherateatwhichchargeflowsinaconductorandismeasuredin amperes(1ampereis1coulombpersecond).Somewhatconfusingly,currenthasalways beentakentobeflowofpositivechargefromhighertolowerpotential(theopposite directiontotherealityofelectronflow)andsoistherateofdecreaseofcharge Q onthe capacitorplate(I =−dQ/dt inthelanguageofcalculus).Theconstantofproportionality inOhm’slawisknownastheresistance R (V = RI )andhasunitsofohms(1ohmis 1amppervolt).GeorgeOhmproposedhisfamouslawin1827anditisanimportant relationincircuittheory.Inthecaseofawireoflength L andcross-sectionalarea A,the resistanceisgivenby R = L /Aσ where σ isamaterialpropertyknownasitsconductivity. Animperfectconductorisknownasaresistorandisanimportantcomponentin electroniccircuits.Aresistorisalossydeviceanddissipatesenergyasheatatarate RI 2 (thisisknownas Ohmicloss).Figure1.10bshowsasimplecircuitconsistingofa capacitorandaresistorthatdissipatestheenergystoredinthecapacitor(Figure1.10a showsthesymbolusedtorepresenttheresistor).Whentheswitchisthrown,acurrent I willflowthroughtheresistorandthevoltagedropacrossthecapacitorwillbegivenby V = RI .Astheresistordrainsthecapacitor,thevoltageacrossthecapacitorwilldrop sincethechargewillbesteadilydepleted(seeFigure1.10c).Since Q = C V wewillhave I =−C dV /dt andhence V =−RC dV /dt .Thisisanordinarydifferentialequationthat hasthesolution V = V0 exp( t /RC ) where V0 istheinitialvoltagedifferencebetween thecapacitorplatesand t isthetimeafterswitchon.

Muchoftheearlydevelopmentofthescienceofelectricitywashinderedbythe needtousemachines,suchasthatshowninFigure1.2,togenerateelectriccharge. In1794,however,thisprocesswasrevolutionisedthroughtheinventionofthe battery byAlessandroVolta,adevicethatcreateschargethroughachemicalprocessrather thanamechanicalprocess.Figure1.11showsasingle-cellversionofVolta’sbattery

Fig.1.11 Volta’sbattery.

(Voltainfactmadeastackoftheseinordertoproducelargepotentialdifferences).It consistsofalayerofcopper(theanode),alayeroffeltthatissoakedinamixtureof waterandsulphuricacid(theelectrolyte)andalayerofzinc(thecathode).Withinthe electrolyte,thesulphuricacidwilldisassociateintoSO2 4 andH2+ ions.Atthecopper plateelectronsaredrawnintotheelectrolytetocombinewithhydrogenionsandform hydrogengas,hencecausinganaccumulationofpositivecharge.Meanwhile,atthezinc plate,thisiscounterbalancedbyzincionsdissolvingintotheelectrolyte,hencecausing anaccumulationofnegativecharge.Thechemistrycanbesummarisedas

Animportantconceptinelectromagnetictheory(andmanyotherfieldtheories)isthe conceptof flux .Consideraflatsurfacewitharea A andunitnormal n .If G isaconstant vectorfield,itwillhaveaflux n GA acrossthesurface(i.e.thenormalcomponent ofthefieldmultipliedbytheareaofthesurface).Agoodillustrationofthenotionof fluxcomesfromthestudyoffluidflow.Suchamediumisusuallydescribedinterms ofitsvelocityfield,avectorfieldthatgivesthemagnitudeanddirectionofthefluid velocityatagivenpoint.Thefluxisthenthetotalvolumeoffluidcrossingthesurface inaunittime.Forageneralsurfacesurface S withunitnormal n ,the flux through S isdefinedbytheintegraloverthesurfaceofthenormalcomponentofthevectorfield, i.e. S G(r ) · n dS .Thesurfaceintegralisacalculusconceptthatcanbeunderstoodby approximatingthesurfacebyasetofsmallflatsurfaceelementsoneachofwhich n and G canbeapproximatedbyconstantvalues.Ifthe i thelementhasarea Si ,we approximate n byaconstantvector ni and G byaconstantvector Gi .Thetotalflux throughSisthenapproximatedbythesumofthefluxes G(ri ) · ni Si throughthese smallerelements,i.e. totalfluxthrough S ≈ N i =1 Gi ni Si .(1.10)

Inthelimitofthissumastheareasofthesurfaceelementstendtozero,theabovesum thenbecomesthesurfaceintegral S G(r ) · n dS .

Fig.1.12 Fluxsurfaceintegral.

Fig.1.13 Gauss’law.

Animportantpropertyoftheelectricfieldisthatthetotalfluxthroughaclosedsurface S isproportionaltothechargecontainedwithinthatsurface.Thisisknownas Gauss’ Law which,inmathematicalterms,isgivenby S E (r ) · n dS = totalchargewithin S ,(1.11)

where S isanarbitraryclosedsurfaceinspaceand n isunitnormalonthissurface.Gauss’ lawisoneofthefundamentallawsofelectromagnetism.Asimpleexampleisgivenby asinglechargelocatedattheoriginandasurface S thatconsistsofasphereofradius a withcentreatthecharge.ThefieldisgivenbyEq.1.3andfromwhich E · n = Q/4π 0 a2 since n isaunitvectorintheradialdirection(i.e.thefielddirection).Since E n is constant,wesimplymultiplybytheareaofthesphere(4π a2 )togettheintegralover thesphere.Asaconsequence S E (r ) n dS = q / 0 ,whichisGauss’law. 1.2Magnetism

Atthetimeoftheirdiscoveryofelectrostaticattraction,theGreekswerealsoaware thatthemineralmagnetite(theoxideofironFe3 O4 )couldattractpiecesofnon-oxide iron.Further,thattheironitselfcouldbemagnetisedbystokingwiththemagnetite. TheChinesewerealsoawarethatmagnetite(alsoknownaslodestone)wasanaturally occurring magnet thatcouldattractiron.Indeed,theChinesealsodiscoveredtheeffect

ofamagnetorientatingitselfwithrespecttoEarth.Bythetwelfthcentury,boththe ChineseandEuropeanswereusingcompassesintheformoflodestonesfornavigation. However,ittookuntil1600fortheEarthitselftoberecognisedashavingthepropertyof amagnet.ThiswasrecognisedbyWilliamGilbertinhisbook’DeMagnete’,oneofthe firstworksonmagnetism.TherecognitionoftheEarth’smagneticpropertiesledtothe designationofthetwoendsofamagnetasNorthandSouth.However,unlikeelectric sourceswherepositiveandnegativechargecanhaveseparateexistence,thesourcesof magneticfieldsarealwaysfoundinNorth/Southpairs.Becauseofthis,thefluxofa magneticfieldthroughaclosedsurface S iszero,i.e.

where B isthemagneticfield(sometimesknownasthe magneticfluxdensity).

SincethemagneticpolesalwaysappearinNorthandSouthpairs,thebasicsourceof magnetismisthemagneticdipole.Thishasafield

where M isknownasthedipolemomentand μ0 isaconstantthatisknownasthe permeabilityoffreespace.ThedipolewillhavethefieldlinesshowninFigure1.14 (alsoshownisthefieldlinesofEarth’smagneticfieldforwhichnorthisat79◦ latitude). Ifthebasicmagneticsourceisthedipole,howdoweinterpretthedipolemoment?It turnsoutthat,ifwesuspendamagneticdipoleofmoment m infield B ,thedipolewill experienceatorque

Thisisamorecomplexbehaviourthantheinteractionofanelectricchargewithan electricfield.Inparticular,itinvolvesa vectorproduct ,definedby a × b = ab sin(θ) ˆ n where θ istheanglebetweenthevectorsand ˆ n isaunitvectorthatisperpendicularto magneticnorth

a)b)

Fig.1.14 Magneticfieldlines.

Vectorproduct.

Fig.1.16 Themagneticfieldofacurrent-carryingwire.

both a and b (directiondefinedbytheright-handscrewruleasshowninFigure1.15).An importantconsequenceof1.14isthatamagnet,freelysuspendedinthemagneticfield ofEarth,willrotateuntilitalignswithEarth’sfieldlines(i.e.untilthetorquebecomes zero),aneffectthatisusedinnavigationintheguiseofacompass.

In1820,HansChristianOersteddiscoveredthemagneticeffectofcurrent.By observingthedeflectionsofacompass,heshowedthatalongstraightwirecarrying asteadycurrent I causedamagneticfieldthathadcircularfieldlinescentredonthewire (seeFigure1.16a)andamagnitude B thatdependeduponthedistance r fromthewire

where I isthecurrentinthewire.Theunitforthemagneticfieldisusuallythetesla,a quantitythatisonenewtonperamperepermetre.Further,insuchunits,thepermeability hasthevalue4π × 10 7 .

FromtheworkofOersted,itbecameclearthatthemovingchargehadtheabilityto causeamagneticfield.Further,thatacurrentcarryingwirecouldexperiencetheforceof amagneticfield.AccordingtoOersted,awireelementoflength L carryingacurrent I willsufferaforce

where t isaunitvectorinthedirectionofthecurrent.

Fig.1.15

a)currentloopb)unmagnetised c)magnetised SN

Fig.1.17 Thecurrentloopandthecurrentloopmodelofmagnetism.

Thefactthatmovingchargecouldproduceamagneticfieldledtofurtherillumination oftheconceptofamagneticdipole.Around1820,theformulaofOerstedwasfurther generalisedtoallowforanarbitrarycircuit C bytheworkofJean-BaptisteBiotand FelixSavart.TheBiot–Savartformulais

Forpointsatalargedistancefromaplanarcurrentloop,thisexpressionreducesto(1.13) with M = I An where n isaunitvectorperpendiculartotheplaneoftheloopand A isthe areaoftheloop.Themagneticdipolecanthusbepicturedasaloopofcurrent.Infact, atamolecularlevel,wecaninterpretthisasorbitingelectronsorspinningcharge.All matterwillconsistofmanysuchdipoles,butinmostmatterthesewillbeinarandom configurationandhencehavenoneteffect.However,formaterialssuchasmagnetite, thesedipolesarealignedwitheachotherandhencethematerialwillexhibitmagnetic properties.Materialssuchasironcanbemagnetisedwhenexternalfieldsaligntheir dipolesandmaterialssuchassteelcanretainthismagnetism.

Currentcanberegardedasastreamofchargetravellingdownawireandtheabove considerationssuggestthattheforce F thatactsuponacharge q willbe

where v isthevelocityvectorofthecharge.Thisforceisoftenknownasthe Lorentzforce andisimportantforunderstandingtheinteractionofmatterwiththeelectromagnetic field.

AgenerallawconnectingmagneticfieldsandcurrentwasdiscoveredbyAndre-Marie Ampèrein1823.Considerasurface S throughwhichcurrentpassesandwhichisbounded byacurve C . Ampère’slaw,initsmathematicalform,thenstatesthat

where I isthetotalcurrentpassingthroughthesurfaceS.Ifweconsiderthecaseofa longstraightwirecarryingcurrent I ,wecouldtakethecurve C tobeacircleofradius a thatiscentredonthewire.Inthiscase,themagneticfield B willbeconstanton C

Fig.1.18 Themagneticfieldofalongsolenoid.

andwewillhave C B (r ) dr = 2πμ0 aB .Substitutingfrom(1.15),theright-handside becomes μ0 I ,i.e.wehaveAmpère’slaw.

Ampère’slawisausefulresultfordeterminingcomplexmagneticfields.Consider theexampleofaninfinitelylongsolenoid(agoodapproximationtoalongsolenoid, asinFigure1.18a).Bysymmetry,theonlydependenceofthemagneticfieldisthe radialdistancerfromtheaxis.Further,byanalogywiththelimitingcaseofaninfinite wire,thefieldlinesoutsidethewirewillbecircularandcentredonthesolenoidaxis, i.e.thefieldwillpointintherotationaldirection.WefirstapplyAmpère’slawona circularcurve C withradius r andcentredontheaxis(thecurve1inFigure1.18b).On curve C themagneticfieldwillbeconstantandso C B (r ) · dr = 2π r B ,where B isthe componentmagneticfieldthatistangentto C .Consequently,ifcurrent I flowsthrough thesolenoid,Ampère’slawwillimply B = μ0 I /2π r .Insidethesolenoid,Ampère’slaw willimplythattherotationalcomponentofthefieldiszeroandso,asaconsequence, wetakethefieldtobeparalleltothesolenoidaxis.IfweapplyAmpère’slawonthe rectangularcurveinFigure1.18(curve2),wefindthat C B (r ) dr = DB where B isthe magnitudeofthemagneticfieldparalleltotheaxis.Thecurrentthroughtheloopwillbe nDI where n isthenumberofturnsperunitlengthonthesolenoid.Asaconsequence, Ampère’slawwillimplythat B = μ0 nI insidethesolenoid.Uptonow,wehaveimplicitly assumedthattheradialcomponentofthemagneticfieldiszero,butwecanverifythis using(1.12).Wetakethesurface S tobeacylinderofradius r ,andlengthD,with thesameaxisasthesolenoid.Themagneticfluxthroughthecylinderendswillcancel, butthecontributionfromthecurvedsurfacewillbe2π rDB ,where B isnowtheradial componentofthemagneticfield.Equation1.12willthenimplythatthisradialcomponent iszero.

Whatemergesfromourconsiderationsisthatthevariousintegralresults,suchas Ampère’sandGauss’laws,constituteapowerfulandself-containeddescriptionof electromagnetism.Inordertocompletethisdescription,however,weneedtointroduce onefurtherintegrallawandthisisthesubjectofthenextsection.

1.3Electromagnetism

Wenowconsidertheconsequencesofthevariationoffieldswithtime.Thisbringsusto Faraday’slaw,oneofthekeydiscoveriesinthedevelopmentofelectromagnetictheory.

In1830,MichaelFaradaydiscoveredmagneticinductionwhenhenotedthat,bymoving aloopofwireinandoutofamagneticfield,hecouldcauseacurrenttoflowinthe loop.Thiswasanimportantdiscoveryas,hitherto,thebatteryandthechargedcapacitor hadbeentheonlymeansofdrivingacurrentthroughanelectricalcircuit.Somewhat confusingly,theeffectivepotentialofthisnewsortofgeneratorcametobeknownasthe electromotiveforce (orEMFforshort).FaradayconcludedthattheEMFinducedina circuitwasproportionaltotherateofchangeofmagneticfluxthroughthatcircuit,aresult thatisknownas Faraday’slaw..Forasurface S withboundingcurve C (seeFigure1.19), thefluxisgivenby = S

andthelawhasthemathematicalform

Figure1.20showstwodifferentwaysinwhichmagneticfluxcanvaryinacircuit.If weconsidertheloopinFigure1.20atoberotatingatangularspeed ω ,theflux through theloopwillbe = AB sin(ω t ) where A istheareaoftheloopand B isthemagneticfield (weassumetheplaneoftheloopisparalleltothefieldwhen t = 0).Asaconsequence, anEMF AB cos(ω t ) willbegeneratedandthiscausesan alternatingcurrent toflowin theload.InFigure1.20baconductingbarwithloadmovesoverarectangularcircuitat speed v andsocausesthetotalareaofthecircuittochangeatrate vd .Asaconsequence, themagneticfluxwillincreaseatarate vd B andso,byFaraday’slaw,anEMFof vdB willbegeneratedinthecircuit(B isamagneticfieldorthogonaltotheloop).Wecan viewthislastexamplefromtheviewpointoftheLorentzforce.Aunitcharge,located ontheconductingbar,willsufferaLorentzforce vB intheclockwisedirectiondueto

GeometryforFaraday’slaw.

Fig.1.20 Magneticinduction.

Fig.1.19

theimposedmotiontransversetothebar.Consequently,integratingalongthebar,we obtainanEMFof vd B .

Atime-varyingcurrentbringsustotheconceptofmutualimpedance.Considera solenoidwithawireloopwrappedaroundit.Ifwenowdrivethesolenoidbyaalternating current I1 (t ),therewillbeamagneticfield B (t ) = μ0 nI1 (t ) throughtheloopandhence aflux = Aμ0 nI1 (t ) where A istheareaoftheloop.AccordingtoFaraday’slaw,this willgenerateanEMFof

(1.21)

inthewire,where L21 = Aμ0 n isknownasthe mutualinductance ofthewireloopand solenoid.Ifthesolenoidhasafinitelength l with N1 turnsthen n = N1 /l andthemutual inductancewillbegivenby L12 = μ0 N1 A/l .Further,andiftheloophas N2 turns,the mutualinductancewillnowbegivenby L12 = μ0 N1 N2 A/l .Adevicewithmutually interactingwindingsisknownasa transformer andisrepresentedbythesymbolshown inFigure1.21b.Thelongersolenoidisoftenknownastheprimaryandtheloopwinding asthesecondary.Ifcurrentflowsthroughthesecondary,itisclearthesecondaryitself willcauseadditionalfluxandso

where L22 isknownastheselfinductanceofthesecondarywinding.Itisclearthatthe primarywillalsoexperienceselfinductanceandthattheEMFgeneratedintheprimary willtaketheform

whereitshouldbenotedthat L12 = L21 .Forthesolenoid,itisobviousthatitwill induceaflux = Aμ0 I1 (t )Aμ0 N1 /l initselfandsoitwillhaveaselfinductance L11 = μ0 N 2 1 A/l .Likewise,thesecondarywillhaveaselfinductance

l TheunitofinductanceisthehenryandisnamedafterJosephHenrywhodiscovered magneticinductionindependentlyofFaradayandataboutthesametime.Aninductance of1henrywillresultinanEMFof1voltinaclosedloopforachangeof1ampinthe currentoveraperiodof1second.

Fromtheaboveconsiderations,itwillbenotedthatasolenoidthatcarriesacurrent I willalwayshaveaself-inducedEMF,evenifthesecondarywindingdoesnotexist. Forthisreason,suchadeviceisknownasan inductor andisanimportantcomponent inradiotechnology(itisrepresentedbythesymbolshowninFigure1.21a).Forsucha componentwewillhavetheself-inducedEMF

where I isthecurrentintheinductorand L istheselfinductance(L = μ0 N 2 A/l fora solenoidwithlength l andcross-sectionalarea A).Wecanenhancetheinductanceof thesolenoidbywindingitaroundacoremadeupofferromagneticmaterial(ironand cobaltforexample).AscanbeseeninFigure1.22,thesolenoidfieldcausesthecurrent loopswithinthecoretoalignandthiscausesanincreaseinthemagneticfluxdensity. Consequently,theinductanceinthesolenoidwillnowbecome L = μN 2 A/l ,where μ is knownasthe permeability ofthecore.Permeabilityisamaterialpropertyofthesolenoid coreandhasunitsofhenriespermetre.

WenowconsiderthecircuitshowninFigure1.23b,consistingofaseriescapacitor, resistor,inductorandswitch.Beforetheswitchisclosedweassumethecapacitortobe chargedtoavoltage V0 .Aftertheswitchisclosed,however,thecapacitordischarges andthepotentialdifferenceacrossthecapacitorwilldecay.

Magneticfluxenhancedbyaferromagneticmaterial.

Fig.1.22

WecananalysethecircuitbynotingthefamousKirchhoffcircuitlaws:

1.Thetotalcurrentintoanyjunctionisequaltothetotalcurrentout.

2.Thetotalvoltagedroparoundanycircuitloopiszero.

(Sincetheybothhaveunitsofvolts,voltageisaterminologyoftenusedforboth potentialdifferenceandEMF.)Fromthefirstlawweobtainthatthesamecurrent I flowsinandoutofallcomponentsandfromthesecondlawweobtainthat

Intermsofthecharge Q ontheuppercapacitorplate,wehavetheordinarydifferential equation(ODE)

whichcanbesolvedtoyield

where ω0 = 1/√LC and ζ = R√C /L /2.Itwillbenotedthatwhenthecapacitoris dischargedthroughaninductor,itwill ring,i.e.therewillbeoscillationsinthecircuit atanangularfrequencyof 1 ζ 2 ω0 .Further,theoscillationswilldecayataratethat isdependentupontheamountofresistance R inthecircuit.

Thefrequency ω atwhichacircuitringsisofgreatimportanttousinradio.Consider theparallelcombinationofacapacitor C ,aninductor L andaloadresistance R with theinductordrivenbyharmonicvoltagesource VS cos(ω t ) (seeFigure1.24).Bythe Kirchhoffcurrentlaw,wehavethat

andfromtheKirchoffvoltagelaw

Asaconsequence

and,dividingby LC ,weobtain

Afterthesourceisswitchedon,thesolutionwillsettledowntothesteadystate

,(1.32)

where ω0 = 1/√LC ,i.e.thevoltageinthecircuitoscillatesattheforcingfrequency ω .It willbenoted,however,thatasfrequency ω approaches ω0 ,theamplitudeofoscillations willincrease,reachingapeakvalueof QVS where Q = R/ω L .Thecircuitissaidto resonate atfrequency ω0 and Q isameasureofthestrengthofthisresonance.

1.4Maxwell’sEquations

Untilabout1860,Eqs.(1.11),(1.12),(1.19)and(1.20)werepresumedtocorrectlyreflect thecontentofelectromagnetictheory.Whilsttheseequationsimplythattime-varying magneticfluxwillcauseanelectricfield,theydonotimplythattime-varyingelectricflux willcauseamagneticfield.Around1860thephysicistJamesClerkMaxwellbecame convincedthattime-varyingelectricfluxshouldcauseamagneticfield.Indeed,thereare goodreasonsforbelievingthatAmpère’slawneedssomeformofmodification.Consider Ampère’slawinform

Weconsiderthecaseoftwochargedspheresthataremadetodischargebyconnecting themthroughaconductingwirethat,asaresult,carriesacurrent I .Referringto Figure1.25,ifweapplyEq.(1.33)usingsurface S1 weobtainthat C1 B (r ) · dr = μ0 I andusingsurface S2 weobtainthat C2 B (r ) dr = 0.Ifweaddthesetworesults,the pathintegralswillcancel(thecurvesareidenticalbuttheintegralsareevaluatedin oppositedirections)andthiswillimplythat I = 0.Thisclearlyposesaproblemfor electromagnetictheory.Maxwell’ssolutionwastoaddanothertermtoEq.(1.33),which hecalledthe displacementcurrent .Theresultingequationis

Another random document with no related content on Scribd:

chromosphere

chronic Chronicle chronicled chronicler chroniclers chronological chronologically chronology

Chu Chua

Chuang

Chugoku

chun

CHUNG

Chungking church churches

Churchill churchwardens churchyard

chwang

Chéng

Chêkiang

Chêng

Chêngtu

Chün cider

Cienfuegos cigarette cigarettes

Cincinnati Cindad

cipher

Cipriano circa Circle

circles circuit circuitous circuits circular circulars circulate circulated circulating circulation Circum circumference circumnavigated circumspect circumspection circumstance circumstances circumstantial Cisleithania Cisleithanian Cisneros cistern citadel cited cites Cities Citizen citizens citizenship city civic civil civilian civilians Civilis civilisation civilised

civilising Civilization civilizations civilize

CIVILIZED

civilly clad claim claimant claimants

Claimed claiming claims clair

Clam clamor clamored clamoring clamorous clamoured clan Clancy clandestinely clans clansmen clap Clara Clarence clarion Clark Clarke

Clary clash clashed clashing clasp Class

classed classes classical classically

classics classification classified classify

Classifying

Claude Clause

clauses clawed CLAY

claypits

Clayton clean cleaned cleaners cleaning cleanliness cleanse cleansing clear clearance cleared clearer clearest clearing Clearly clearness

cleavage cleave clemency

Clemens clement

Clements

clergy

clergyman

clergymen

Clerical

Clericalism

clericals

clerk clerks

Clery cleveite

CLEVELAND

clever client climate climatic

Climatically climax climb climbed clime

Clinch cling clinging clique cliques clock clog clos close

Closed closely closer closes closest closet closing clot

cloth

clothe

clothed clothes

Clothing clouded clouds

cloven Club Clubs clue clumsy clung

clustered clusters

Cnossos

Co coach coadjutor

Coahnila

COAL

coalfield coalfields coaling coalition coals

COAMO coarse Coast

Coastguard coasting

Coasts coastwise coat

coated coats

Cobham

Coblenz

Cobra

Coburg coccidium

Cockburn

cocked cockpit

Cockran

cocoa cocoanuts

cod

Code codes

codfish

codification

Codlin

Codman coeducational

coerce coerced coercion

coercive coeval

coffee

coffer coffers

coffin

coffins cognisance cognisant cognizable cognizance coherence coherent coherer

cohesion coil

coils

Coin coinage coincided coincident

Coincidentally coinciding coined coins

Coit

Coke cold coldly Coleman

COLENSO

Coler

Colesberg Colima collapse collapsed collar collars collate collateral colleague colleagues collect collected collecting collection Collections collective collectively collectivist collector collectors collects

COLLEGE COLLEGES

collegiate collier

colliers

Collins Collis collision

collisions

Colloquially

Cologan

Colomb Colombari

COLOMBIA

Colombian Colombo

Colon Colonel

colonelcy colonels

colonial colonials

Colonies colonisation

colonists colonization colonize

colonizing colonnade

Colony color

COLORADO

Colorados colored colors

colossal colossi

Colossus colour coloured colourless colours

cols

Colt Columbia Columbian COLUMBUS column columns

Colón Com Comanches combat combatant combatants combated combating combative combats combed combination combinations Combine combined combines combing combining combustible combustion Come comer comers comes comfort

comfortable comfortably comforting comforts coming comity

Command commandant

Commandants commanded commandeer commandeered

Commandeering Commander commanders

Commanding COMMANDO commandos commands comme commemorate commemorated commemorates commence commenced commencement commences

Commencing commend commendable commendation commended commending commensurate comment commented

Commenting

comments

COMMERCE

Commercial

Commerciale commercialism

Commercially Commerford commettant comminuted commissariat commissaries

Commissary Commission

COMMISSIONED commissioner commissioners

Commissions commit committal committed committee committees committing commodities commodity

Commodore Common Commoners commonly Commons commonwealth commonwealths commotion communal communes communicate communicated

communicates communicating communication Communications communicative communion communions communique communities community commutation commuted comp compact compacted compactly Compagnie companies companion companions company comparable comparative comparatively Compare Compared compares comparing Comparison comparisons compartments compass compassed Compassionate compatible compatriots compel

Compelled compelling compels compendium compensate compensates compensating COMPENSATION compensations

Compensatory compete competed competence competency competent competing Competition competitive competitively competitor competitors compilation compile compiled compilers complacency complacent complain complainant complained complaining complaint Complaints complement COMPLETE completed completely

completeness completes completing completion complex complexities complexity compliance complicate complicated complication complications complicity complied complies complimenting Compliments comply complying component comport comports compos compose composed composer composing composite composition compound compounded compounds comprehend comprehended comprehending comprehension comprehensive

compressed compression compressor comprise comprised comprises comprising Compromis compromise compromised compromises compromising Comptroller compulsion

COMPULSORY compunction computation computed comrade comrades Comte Comus Concas conceal concealed concealing concealment conceals concede conceded concedes conceding conceit conceivable conceivably conceive conceived

Conceiving concentrate concentrated concentrating concentration concentrations concentric

Concepcion conception

Conceptions concern concerned

Concerning concerns

Concert concerted concerts

Concession concessionaire concessionary concessions conciliate conciliated conciliating Conciliation conciliators conciliatory concisely conclude concluded concludes concluding Conclusion conclusions conclusive conclusively concocted

concomitant Concord Concordat concourse concrete concubine concupiscence concur concurred concurrence concurrent concurrently concurring concurs condamnant condemn condemnable condemnation condemnatory condemned condemning condemns condensation condenser condensers condescension condign condition conditional conditionally conditioned conditions

CONDOMINIUM conduce conduces conducive conduct

conducted conducting conductive conductivity conductor conductors conducts conduits

Condé confederacies

CONFEDERATE

Confederated Confederation confer Conference conferences conferred conferring confers confess confessed confessedly confesses confessing

Confession confessions confessor confessors confide confided

Confidence

Confident confidential confidentially confidently

Confiding configuration

confine confined confinement confines confining confirm Confirmation confirmatory confirmed confirming confirms confiscated conflagration conflict

Conflicting conflicts confluence conform conformable conformably conformation conformed conformer conforming conformity conformément confounded confounding confront confronted confronts Confucianism Confucius confuse confused confusing confusion

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.