Engineering optics keigo iizuka - Quickly download the ebook in PDF format for unlimited reading

Page 1


Engineering Optics Keigo Iizuka

Visit to download the full and correct content document: https://textbookfull.com/product/engineering-optics-keigo-iizuka/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Photonics rules of thumb : optics, electro-optics, fiber optics, and lasers Third Edition Edward Friedman

https://textbookfull.com/product/photonics-rules-of-thumb-opticselectro-optics-fiber-optics-and-lasers-third-edition-edwardfriedman/

Optics Eugene Hecht

https://textbookfull.com/product/optics-eugene-hecht/

Nonlinear optics Boyd

https://textbookfull.com/product/nonlinear-optics-boyd/

Principles of Electron Optics Basic Geometrical Optics

2nd Edition Peter W. Hawkes

https://textbookfull.com/product/principles-of-electron-opticsbasic-geometrical-optics-2nd-edition-peter-w-hawkes/

Handbook of Visual Optics, Volume One: Fundamentals and Eye Optics 1st Edition Artal

https://textbookfull.com/product/handbook-of-visual-opticsvolume-one-fundamentals-and-eye-optics-1st-edition-artal/

Diffractive Optics and Nanophotonics 1st Edition So■fer

https://textbookfull.com/product/diffractive-optics-andnanophotonics-1st-edition-soifer/

Nonlinear Optics 4th Edition Robert W. Boyd

https://textbookfull.com/product/nonlinear-optics-4th-editionrobert-w-boyd/

Symmetry

in Optics and Vision Studies A Data Analytic Approach Multidisciplinary and Applied Optics 1st Edition Marlos A.G. Viana

https://textbookfull.com/product/symmetry-in-optics-and-visionstudies-a-data-analytic-approach-multidisciplinary-and-appliedoptics-1st-edition-marlos-a-g-viana/

Progress in Optics Volume 61 1st Edition Visser

https://textbookfull.com/product/progress-in-opticsvolume-61-1st-edition-visser/

Keigo Iizuka Engineering Optics

Fourth Edition

EngineeringOptics

FourthEdition

Engineering

UniversityofToronto

Toronto,ON,Canada

ISBN978-3-319-69250-0ISBN978-3-319-69251-7(eBook) https://doi.org/10.1007/978-3-319-69251-7

LibraryofCongressControlNumber:2018961225

1st and2nd editions: © Springer-VerlagBerlinHeidelberg1985,1987

3rd edition: © SpringerScience+BusinessMedia,LLC2008

4th edition: © SpringerNatureSwitzerlandAG2019

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardto jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

PrefacetotheFourthEdition

Startlingly,fastprogresshasbeenmadeinthe fieldofopticaldistancemeasurement.Itisarapidlygrowing fieldwithsignificantimprovementsinmeasurement accuracy,reliability,simplicity,andrange.Yettextbooktreatmentsofthe fieldare laggingbehindtherapiddevelopment.

Inthisedition,sixnewchaptershavebeenaddedonopticaldistancemeasurementfromChaps. 17 to 22.

Opticaldistancemeasurementisuniqueinthatitisnon-contactandcanbe invisibleusinginfraredlight.Opticalmeasurementsarevastrangedfromthe micro-measurementofretinaltissueinophthalmologytothedetectionofgravitationalwavesfromcoalescingblackholesindistantpartsoftheuniverse.Optical distancemeasurementisusedinawidevarietyof fields,includingremotesensing, surveying,robotics,machinevision,qualitycontrol,medicaldevices,thecamera industry,andevencomputergames.

Besidestheadditionofthenewchapters,someoftheexistingchapterswere revitalizedtokeeppacewithtechnologicaladvances.Theupdatedmaterialincludes opticaldisksinChap. 4,optical fi bercommunicationsinChap. 13,and3Dimaging inChap. 16.

Examplesandproblemsareincludedineachchapterforeasiercomprehension andelaborationofthesubjectmatter.

Allinall,itistheauthor ’shumbleattempttomakechallengestothecutting edgeofopticsa “lightjob”!

Mylongtimecolleague,Ms.MaryJeanGiliberto,hasmadeasignificantcontributiontobringingthemanuscripttoitspresentform.Isincerelyappreciateher tremendouseffortsanddevotion.

Iwouldliketoextendmygratitudetomywife,Yoko,whohasbeenaconstant sourceofencouragementthroughoutourmanyyearstogether.Shehasstoodbeside meineverythingIhaveundertaken.Shehasbeenmyinspirationandmotivation, andIamforevergratefulforherprofoundsupport.

Toronto,CanadaKeigoIizuka August2018

PrefacetotheThirdEdition

Onmy1990sabbaticalleavefromtheUniversityofToronto,IworkedfortheNHK (JapanBroadcastingStation)ScienceandTechnologyLaboratory.Irecallmy initialvisittotheexecutive floorofNHK,aspaciousroomwithacommanding viewofmetropolitanTokyo.Icouldnothelpbutnoticehigh-definitiontelevisions (HDTVs)ineverycorneroftheroom.Atthattime,HDTVtechnologywasjust breakingintothemarketplace,andtherewas fiercecompetitionformass-producing HDTVs.WhenIenteredtheroom,theHDTVswereturnedononeaftertheotheras myhostproclaimed, “Thisisthefutureofthetelevision.Isn’tthequalityofthe picturesuperb?”

Ireplied, “Theyareindeedsuperb,butiftheHDTVimageswere3D,thatwould bereallyout-of-thisworld.”

Thehostcontinued, “3DHDTVisourfutureproject.”

Thatwasnearlytwentyyearsago,andmuchprogresshasbeenmadein3D imagingtechniquessincethen,andthisfutureisherewithus.Theamountof informationintheliteratureonthissubjectisnowsubstantial.Three-dimensional imagingtechniquesarenotmerelylimitedtothetelevisionindustry.Thebasic techniquesarealsousedintheautomobile,electronics,entertainment,andmedical industries.Inspiredbythisareaofgrowth,IaddedChap.16on3Dimaging,which startswithabriefhistoricalintroductionof3DimagingfromtheancientGreekera tomoderntimes.Thechapterthenexpandsonbasicprinciplesof13differenttypes of3Ddisplays.

Theerrataofthesecondeditionof EngineeringOptics,whichwerepreviously publishedonmyWebsite,havebeencorrectedinthisedition.

Afewnewproblemset-typequestionshavebeenaddedforteachingpurposes. Iwouldliketoexpressmysinceregratitudetomycolleagueandfellowengineer,Ms.MaryJeanGiliberto,forherexcellenteditingassistance.Thisbookand itspreviouseditionwouldnothavebeenpossiblewithouttheunconditionalcaring supportofmywifeandfamily.

Toronto,CanadaKeigoIizuka October2007

PrefacetotheSecondEdition

The firsteditionofthistextbookwaspublishedonlylastyear,andnow,thepublisherhasdecidedtoissueapaperbackedition.Thisisintendedtomakethetext moreaffordabletoeveryonewhowouldliketobroadentheirknowledgeofmodern problemsinoptics.

Theaimofthisbookistoprovideabasicunderstandingoftheimportant featuresofthevarioustopicstreated.Adetailedstudyofallthesubjectscomprising the fieldofengineeringopticswould fillseveralvolumes.Thisbookcouldperhaps belikenedtoasoup:Itiseasytoswallow,butsoonerorlaterheartiersustenanceis needed.Itismyhopethatthisbookwillstimulateyourappetiteandprepareyoufor thebanquetthatcouldbeyours.

Iwouldliketotakethisopportunitytothankthosereaders,especially Mr.BranislavPetrovicandMr.ThomasNimz,whosentmeappreciativelettersand helpfulcomments.Thesehaveencouragedmetointroduceafewminorchanges andimprovementsinthisedition.

Toronto,CanadaKeigoIizuka September1986

PrefacetotheFirstEdition

“WhichareadoyouthinkIshouldgointo?” or “Whicharetheareasthathavethe brightestfuture?” arequestionsthatarefrequentlyaskedbystudentstryingto decideona fieldofspecialization.Myadvicehasalwaysbeentopickany fieldthat combinestwoormoredisciplinessuchasnuclearphysics,biomedicalengineering, optoelectronics,orevenengineeringoptics.Withtheever-growingcomplexityof today’sscienceandtechnology,manyaproblemcanbetackledonlywiththe cooperativeeffortofmorethanonediscipline.

Engineeringopticsdealswiththeengineeringaspectsofoptics,anditsmain emphasisisonapplyingtheknowledgeofopticstothesolutionofengineering problems.Thisbookisintendedbothforthephysicsstudentwhowantstoapplyhis knowledgeofopticstoengineeringproblemsandfortheengineeringstudentwho wantstoacquirethebasicprinciplesofoptics.

Thematerialinthebookwasarrangedinanorderthatwouldprogressively increasethestudent’scomprehensionofthesubject.Basictoolsandconcepts presentedintheearlierchaptersarethendevelopedmorefullyandappliedinthe laterchapters.Inmanyinstances,thearrangementofthematerialdiffersfromthe truechronologicalorder.

Thefollowingisintendedtoprovideanoverviewoftheorganizationofthe book.Inthisbook,thetheoryoftheFouriertransformswasusedwheneverpossible becauseitprovidesasimpleandclearexplanationformanyphenomenainoptics. Complicatedmathematicshavebeencompletelyeliminated.

Chapter1givesahistoricalprospectiveofthe fieldofopticsingeneral.Itis amazingthat,eventhoughlighthasalwaysbeenasourceofimmensecuriosityfor ancientpeoples,mostprinciplesofmodernopticshadtowaituntilthelateeighteenthcenturytobeconceived,anditwasonlyduringthemid-nineteenthcentury withMaxwell’sequationsthatmodernopticswasfullybroughttobirth.The centuryfollowingthateventhasbeenanexcitingtimeoflearningandatremendous growthwhichwehavebeenwitnessingtoday.

Chapter2summarizesthemathematicalfunctionswhichveryoftenappearin optics,anditisintendedasabasisforthesubsequentchapters.

Chapter3developsdiffractiontheoryandprovesthatthefar-fielddiffraction patternissimplytheFouriertransformofthesource(oraperture)function.This Fouriertransformrelationshipisthebuildingblockoftheentirebook(Fourieroptics).

Chapter4teststheknowledgeobtainedinChaps.2and3.Aseriesofpractical examplesandtheirsolutionsarecollectedinthischapter.

Chapter5developsgeometricalopticswhichisthecounterpartofFourieroptics appearinginChap.3.Thepowerofgeometricalopticsisconvincinglydemonstratedwhenworkingwithinhomogeneoustransmissionmediabecause,forthis typeofmedia,othermethodsaremorecomplicated.Variouspracticalexamples relatedto fiberopticsarepresentedsothatthebasicknowledgenecessaryfor fiber-opticalcommunicationinChap.13isdeveloped.

Chapter6dealswiththeFouriertransformableandimageformablepropertiesof alensusingFourieroptics.Thesepropertiesofalensareabundantlyusedinoptical signalprocessingappearinginChap.11.

Chapter7explainstheprincipleofthefastFouriertransform(FFT).Inorderto constructaversatilesystem,themeritsofbothanaloganddigitalprocessinghaveto becleverlyamalgamated.Onlythroughthishybridapproachcansystemssuchas computerholography,computertomography,orhologrammatrixradarbecome possible.

Chapter8coversbothcoherentandwhite-lightholography.Thefabricationof hologramsbycomputerisalsoincluded.Whileholographyispopularlyidenti fied withitsabilitytocreatethree-dimensionalimages,theusefulnessofholographyas ameasurementtechniquedeservesequalrecognition.Thus,holographyisusedfor measuringminutechangesandvibrations,asamachiningtool,andforprofilingthe shapeofanobject.

DescriptionsofmicrowaveholographyaregiveninChap.12asaseparatechapter. Knowledgeaboutthediffraction fieldandFFTwhicharefoundinChaps.3and6is usedasthebasisformanyofthediscussionsonholography.

Chapter9showsapictorialcookbookforfabricatingahologram.Experiencein fabricatingahologramcouldbeamemorableinitiationforastudentwhowishesto beapioneerinthe fieldofengineeringoptics.

Chapter10introducesanalysisinthespatialfrequencydomain.Thetreatmentof opticscanbeclassifi edintotwobroadcategories:Oneisthespacedomain,which hasbeenuseduptothischapter,andtheotheristhespatialfrequencydomain, whichisnewlyintroducedhere.ThesetwodomainsarerelatedbytheFourier transformrelationship.TheexistenceofsuchdualdomainsconnectedbyFourier transformsisalsofoundinelectronicsandquantumphysics.Needlesstosay,the finalresultsarethesameregardlessofthechoiceofthedomainofanalysis. ExamplesdealingwiththelensinChap.6areusedtoexplaintheprinciple.

Chapter11coversopticalsignalprocessingofvarioussorts.Knowledgeof diffraction,lenses,FFT,andholography,coveredinChaps.3,6,7,and8, respectively,isusedextensivelyinthischapter.Inadditiontocoherentandincoherentopticalprocessing,Chap.11alsoincludesasectionontomography.Many examplesaregiveninthischapterwiththehopethattheywillstimulatethereader ’s imaginationtodevelopnewtechniques.

Chapter12isaseparatechapteronmicrowaveholography.While Chap.8concernsitselfprimarilywithlightwaveholography,Chap.12extendsthe principlesofholographytothemicrowaveregion.Itshouldbepointedoutthat manyofthetechniquesmentionedherearealsoapplicabletoacousticholography.

Chapter13describes fiber-opticalcommunicationsystemswhichcombinethe technologiesofopticsandthoseofcommunications.Thetreatmentoftheoptical fiberisbasedonthegeometricalopticspointofviewpresentedinChap.5.Many ofthecomponentsdevelopedfor fiber-opticalcommunicationsystems findapplicationsinotherareasaswell.

Chapter14providesthebasicsnecessarytofullyunderstandintegratedoptics. Manyanintegratedopticsdeviceusesthefactthatanelectro-oracousto-optic materialchangesitsrefractiveindexaccordingtotheexternalelectric fieldor mechanicalstrain.Theindexofrefractionofthesematerials,however,depends uponthedirectionofthepolarizationofthelight(anisotropic),andtheanalysisfor theanisotropicmaterialisdifferentfromthatofisotropicmaterial.Thischapter dealswiththepropagationoflightinsuchmedia.

Chapter15dealswithintegratedoptics,whichisstillsucharelativelyyoung fieldthatalmostanyonewithdesireandimaginationcancontribute.

Mrs.MaryJeanGilibertoplayedanintegralroleinproofreadingandstylingthe Englishoftheentirebook.Onlythroughherdevotedpainstakingcontributionwas thepublicationofthisbookpossible.Iwouldliketoexpressmysincereappreciationtoher.

Mr.TakamitsuAokiofSonyCorporationgavemehisabundantcooperation.He checkedalltheformulasandsolvedallproblemsets.Hewasthusthemanbehind thesceneswhoplayedalloftheseimportantroles.

IamthankfultoDr.JunichiNakayamaofKyotoInstituteofTechnologyfor helpingmetoimprovevariouspartsofChap.10.IamalsogratefultoProfessor StefanZukotynskiandMr.DehuanHeoftheUniversityofTorontofortheir assistance.TheauthoralsowishestothankProfessorT.TamirofthePolytechnic InstituteofNewYork,Brooklyn,andDr.H.K.V.LotschofSpringer-Verlagfor criticalreadingandcorrectingthemanuscript.Mr.R.MichelsofSpringer-Verlag deservespraiseforhispainstakingeffortstoconvertthemanuscriptintobookform. MegumiIizukahelpedtocompiletheSubjectIndex.

Toronto,CanadaKeigoIizuka August1985

3.2Fresnel-KirchhoffDiffractionFormula

3.3Fresnel-Kirchhoff

4.3DiffractionfromaPeriodicArrayofSlits

5.1.3DerivativeinanArbitraryDirectionandDerivative NormaltoaSurface

5.2SolutionoftheWaveEquationinInhomogeneousMedia bytheGeometrical-OpticsApproximation

5.3PathofLightinanInhomogeneousMedium

5.4RelationshipBetweenInhomogeneityandRadius ofCurvatureoftheOpticalPath

5.5PathofLightinaSphericallySymmetricMedium

5.6PathofLightinaCylindricallySymmetricMedium

5.7SelfocFiber

5.7.1MeridionalRayinSelfocFiber

5.7.2SkewRayinSelfocFiber

5.8QuantizedPropagationConstant

5.8.1QuantizedPropagationConstantinaSlabGuide

5.8.2QuantizedPropagationConstantinOpticalFiber

5.9GroupVelocity

6.1DesignofPlano-ConvexLens

6.2ConsiderationofaLensfromtheViewpointofWave

6.3.1InputontheLensSurface

6.3.2InputattheFrontFocalPlane

6.3.3InputBehindtheLens

6.3.4FourierTransformbyaGroupofLenses

6.3.5EffectofLateralTranslationoftheInputImage ontheFourier-TransformImage

6.4ImageFormingCapabilityofaLensfromtheViewpoint ofWaveOptics

6.5EffectsoftheFiniteSizeoftheLens

6.5.1InfluenceoftheFiniteSizeoftheLens ontheQualityoftheFourierTransform

6.5.2InfluenceoftheFiniteSizeoftheLens

7.1WhatistheFastFourierTransform?

7.2FFTbytheMethodofDecimationinFrequency

7.3FFTbytheMethodofDecimationinTime

8.1PictorialIllustrationofthePrincipleofHolography

8.2AnalyticalDescriptionofthePrincipleofHolography

8.3RelationshipBetweentheIncidentAngleofthe ReconstructingBeamandtheBrightnessofthe ReconstructedImage

8.4WaveFrontClassi ficationofHolograms

8.4.1FresnelHologram

8.4.2FourierTransformHologram

8.4.4LenslessFourierTransformHologram

8.5HologramsFabricatedbyaComputer

8.6White-LightHologram

8.7SpecklePattern

8.8ApplicationsofHolography

8.8.1PhotographswithEnhancedDepthofField

8.8.2High-DensityRecording .....................

8.8.3OpticalMemoryforaComputer

8.8.4HolographicDisk ..........................

8.8.5LaserMachining ...........................

8.8.6ObservationofDeformationbyMeansofan InterferometricHologram

8.8.7DetectionoftheDifferenceBetweenTwo Pictures .................................

8.8.8ObservationofaVibratingObject

8.8.9GenerationofContourLinesofanObject

9LaboratoryProceduresforFabricatingHolograms

9.1IsolatingtheWorkAreafromEnvironmentalNoise

9.2NecessaryOpticalElementsforFabricatingHolograms

9.2.1OpticalBench

9.2.2Laser

9.2.3BeamDirector

9.2.4SpatialFilter

9.2.5BeamSplitter

9.2.6Photographic-PlateHolder

9.2.7Film ....................................

9.3PhotographicIllustrationoftheExperimentalProcedures forHologramFabrication ...........................

9.4ExposureTime

9.5Dark-RoomProcedures

9.5.1Developing

9.5.2StopBath

9.5.3Fixer

9.5.4WaterRinsing

9.5.6Bleaching

9.6ViewingtheHologram

10AnalysisoftheOpticalSystemintheSpatialFrequency Domain

10.1TransferFunctionforCoherentLight

10.1.1ImpulseResponseFunction ...................

10.1.2CoherentTransferFunction(CTF)

10.2SpatialCoherenceandTemporalCoherence

10.3DifferencesBetweentheUsesofCoherentandIncoherent

11.2BasicOperationsofComputationbyLight

11.2.1OperationofAdditionandSubtraction

11.3.1DecodingbyFourierTransform

11.3.2InverseFilters

11.3.4AFilterforRecoveringtheImagefrom aPeriodicallySampledPicture

12.1.2MethodBasedonChangesinColorInduced byMicrowaveHeating

12.1.3MethodbyThermalVision

12.1.4MethodbyMeasuringSurfaceExpansion

12.2MicrowaveHolographyAppliedtoDiagnostics andAntennaInvestigations

12.2.1 “SeeingThrough” byMeansofMicrowave Holography

12.2.2VisualizationoftheMicrowavePhenomena

12.2.3SubtractiveMicrowaveHolography

12.2.4HolographicAntenna

12.2.5AMethodofObtainingtheFar-FieldPattern fromtheNearFieldPattern ...................

12.3SideLookingSyntheticApertureRadar .................

12.3.1MathematicalAnalysisofSideLookingSynthetic ApertureRadar ............................

12.4HISSRadar .....................................

13.1AdvantagesofOpticalFiberSystems

13.1.1LargeInformationTransmissionCapability

13.1.2LowTransmissionLoss

13.1.3Non-metallicCable

13.2OpticalFiber

13.3DispersionoftheOpticalFiber

13.4FiberTransmissionLossCharacteristics

13.5.1PhotonicCrystalFiberConfinedbyTotal InternalReflection

13.7ReceiversforFiberOpticalCommunications

13.7.2AvalanchePhotodiode

13.7.3OpticalPowerBudgetandSignalBitRate

13.8TransmittersforFiberOpticalCommunications

13.9Connectors,Splices,andCouplers

13.9.1OpticalFiberConnector

13.9.2Splicing

13.9.3FiberOpticCouplers

15.3.1DirectionalCouplerSwitch

15.3.2Reversed Db DirectionalCoupler

15.3.3TunableDirectionalCouplerFilter

15.3.4YJunction

15.3.5Mach-ZehnderInterferometricModulator

15.3.6WaveguideModulator

15.3.7AcoustoopticModulator

15.4.1OpticallySwitchableDirectionalCoupler

15.4.2OpticalTriode

15.4.3OpticalANDandORGates

15.4.4OtherTypesofBistableOpticalDevices

15.4.5Self-focusingActioninNon-linearOptics

15.5ConsiderationofPolarization

15.6IntegratedOpticalLensesandtheSpectrumAnalyzer

15.6.1ModeIndexLens ..........................

15.6.2GeodesicLens ............................

15.6.3FresnelZoneLens

15.6.4IntegratedOpticalSpectrumAnalyzer

15.7MethodsofFabrication .............................

15.7.1FabricationofOpticalGuides .................

15.7.2FabricationofPatterns ......................

15.7.3SummaryofStripGuides

15.7.4SummaryofGeometriesofElectrodes

163DImaging

16.1HistoricalDevelopmentof3DDisplays

16.2PhysiologicalFactorsContributingto3DVision

16.3HowParallaxandConvergenceGeneratea3DEffect

16.3.1ProjectionType

16.3.2InterceptionType

16.4DetailsoftheMeansUsedforRealizingthe3DEffect

16.4.1MethodsBasedonPolarizedLight

16.4.2SuperDeep3DMovies ......................

16.4.3Wheatstone’sStereoscope ....................

16.4.4Brewster ’sStereoscope ......................

16.4.5Anaglyph ................................

16.4.6TimeSharingMethod

16.4.7HeadMountedDisplay(HMD)

16.4.8VolumetricMethods

16.4.9VarifocalMirror

16.4.10ParallaxBarrier

16.4.11HorseBlinderBarrierMethod

16.4.12LenticularSheetMethod

16.4.13IntegralPhotography(IP)

17.1ScheimpflugCondition

17.2Triangulation

17.2.1SingleSpotScanningMethod

17.2.2LineScanningMethod ......................

17.2.3StereoscopicCameraMethod

17.3MethodbyAnalyticGeometry

17.3.1ExpressionofaLineinSpace

17.3.2ComparisonBetweentheMethodofAnalytic GeometryandthatofTrigonometry

17.4DistanceMeasurementofanAutofocusCamera

17.4.1AutofocusbyTriangulation ...................

17.4.2AutofocusbyProjectionofaStructuredPattern

17.4.3AutofocusbyImageComparison ...............

17.4.4AutofocusbyPhaseDetection(withaBeam DirectionDiscriminator) .....................

17.4.5AutofocusbyPhaseDetection(withFocus Detector) ................................

17.4.6AutofocusbyDetectingtheImageContrast .......

17.5Trilateration

17.5.1PrincipleofTrilateration 586

18Structured-LightPatternProjectionMethods

18.1CalculatingtheProfi lefromtheProjectedStructured-Light Pattern 593

18.1.1CalculationbyTrigonometryorAnalytic Geometry

18.1.2CalculationfromtheDistortionoftheStripe 594

18.1.3CalculationfromtheShiftoftheSpaceCode

18.2VariousKindsofStructured-LightPatterns

18.2.1DiscretelyColoredStripes

18.2.2StripesCodedbyRandomCuts

18.2.3ContinuousColorPattern

18.2.4LinearlyIntensityModulatedMonochromatic Pattern ..................................

18.2.5SequentialFringePattern

18.3Phase-ShiftingMethodofanIntensity-ModulatedPattern

18.3.1SinusoidalPhase-ShiftingMethod 603

18.3.2PhaseShiftingMethodwithSimultaneous Projection 613

18.3.3FastSinusoidalPhaseShiftingMethod 614

18.3.4TrapezoidalIntensityModulatedStripes 618

18.4Moiré TopographyMethod 621

19LightBeamRangeFinders

19.1PulsedLidar

19.2FMLidar

19.2.1FMLidarofthe1stType

19.2.2FMLidarofthe2ndType

19.3PrincipleoftheStepFrequencyMethod

19.3.1DerivationoftheObjectDistancebyDFT

19.3.2ZoomingFunctionofStepFrequencyLidar

19.3.3StepFrequencyLidarofthe1stTypeApplied to3DLaserMicrovision ..................... 637

19.4StepFrequencyLidarofthe2ndTypeUsedasa

21Interferometry

21.1CoherentInterferometry

21.1.1OpticalPathDifferenceoftheTwoBeams 654

21.1.2PhaseDifferenceDuetoInternalandExternal Refl ection

21.1.3FieldIntensityoftheFringePattern ontheScreen

21.1.4GeneralBehavioroftheInterferenceFringe Pattern ..................................

21.1.5ApplicationsoftheMichelsonInterferometer

21.2LaserInterferometerforDetectingGravitationalWaves

21.3IncoherentInterferometry ............................

21.3.1IntuitiveExplanationofOpticalCoherence Tomography(OCT) ........................

21.3.2AMoreRigorousExpressionoftheOCTSignal ... 670

21.3.3ApplicationsofOCT 673

21.4InterferometryinRadioAstronomy 674

21.4.1FringeFunctionofRadioWaveInterferometry 674

21.4.2SynthesisofOneDimensionalRadioAstronomy Interferometry 677

21.4.3PrincipleofVeryLongBaseLineInterferometry

22DistanceMappingCameras

22.1Continuous-WaveTimeofFlight(CW-TOF)Range Camera

22.1.1CalculationofthePhaseoftheEnvelope oftheReceivedLight .......................

22.1.2BlockDiagramoftheCW-TOFRangeCamera 686

22.1.3PerformanceoftheCW-TOFRangeCamera 687

22.2Divcam(DivergenceRatioAxi-VisionCamera) 688

22.2.1DistanceCalculationofDivcam 689

22.2.2DivcamApplications 692

22.3Axi-VisionCamera ................................

22.3.1BasicPrincipleoftheAxi-VisionCamera

22.3.2DistanceCalculationofAxi-VisionCamera

22.3.3StructureoftheAxi-VisionCamera

22.3.4ApplicationoftheAxi-VisionCameratoDepth Keying ..................................

22.4Gain-ModulatedAxi-VisionCamera ....................

22.4.1PrincipleofOperationoftheGain-Modulated Axi-VisionCamera

22.4.2ComparisonsBetweentheGain-Modulated Axi-VisionCameraandanOrdinaryAxi-Vision Camera

ListofFigures

Fig.1.1CuneiformtabletsexcavatedfromMesopotamia.The contentsaredevotedtothe floodepisode(BycourtesyofA. W.Sjörberg,UniversityMuseum,University ofPennsylvania)

2

Fig.1.2 a, b OnecandlepoweratthebeginningofGreekempire a evolvedto15cdpower, b attheendoftheempire 3

Fig.1.3Measurementoftheheightofapyramidbytheshadow ofastick .......................................... 3

Fig.1.4Reverseddirectionofarrowsaswellasreverseddesignation oftheincidentandreflectedangles ...................... 4

Fig.1.5Democritus(460–370B.C.)said “areplicaoftheobject isincidentupontheeyesandisimprintedbythemoisture oftheeye” ........................................ 5

Fig.1.6Inversionofmirrorimages ............................ 5

Fig.1.7Comermirrorwhichforms “correctimage” wasinventedby Hero(50?).Directionofthearrowsisstillwrong 6

Fig.1.8Ptolemy’sexplanationofCtesibiu’scoinandcup experiment

Fig.1.9Alhazen

Fig.1.10TelescopesmadebyGalileoGalilei(1564–1642). a Telescopeofwoodcoveredwithpaper, 1.36mlong;witha biconvexlensof26mmapertureand1.33mfocallength; planoconcaveeye-piece;magnifi cation,14times. b Telescope ofwood, coveredwithleatherwithgolddecorations:0.92m long;withabiconvexobjectiveof16mmusefulapertureand 0.96mfocallength;biconcaveeye-piece(alateraddition); magni fication,20times ...............................

Fig.1.11Descartes’ Vat ......................................

Fig.1.12Grimaldi’sexplanationofrefraction .....................

Fig.1.13Newton

Fig.1.14Newton

Fig.1.15Newton’sreflectortelescope ...........................

Fig.1.16Newton’srings ..................................... 16

Fig.1.17Huygens’ principle .................................. 17

Fig.1.18Michelson-Morleyexperimenttoexaminethedragbyaether wind ............................................. 20

Fig.1.19Photoelectriceffectexperiment: E ¼ 1

Fig.1.20 a, b Experimentalresultsofthephotoelectriceffect, a Photoelectriccurrentversusappliedpotentialswith wavelengthandintensityoftheincidentlightasparameters, b Energyneededtostopphotoelectricemissionversus frequency 22

Fig.1.21 a, b Compton’sexperiment. a Experimentalarrangement, b Changeofwavelengthwithangle 23

Fig.1.22Methodofchirpedpulseamplifi cation 26

Fig.2.1Energydistributionemanatingfromapointsourcewitha sphericalwavefront

Fig.2.2Geometryusedtocalculatethe fi eldattheobservation pointPduetoapointsourceS 31

Fig.2.3Energydistributionemanatingfromalinesource 32

Fig.2.4Positionvectorandthewavevectorofaplanewave propagatinginthe b k direction .......................... 33

Fig.2.5Determinationofthedirectionalsense(positiveornegative) ofawave ......................................... 35

Fig.2.6SummaryoftheresultsofExercise2.1

Fig.2.7Componentsofwavevectors k1 and k2

Fig.2.8 a, b Interferencepatternproducedbythevectorcomponents k″ a Geometry, b analogytoacorrugatedsheet 37

Fig.2.9De finitionofspatialfrequency 38

Fig.2.10Geometryusedtocalculatethe fi eldattheobservation pointPfromaonedimensionalslit 39

Fig.2.11 a Rectanglefunction P(x)and b itsFouriertransform 41

Fig.2.12 a, b The fielddistributiononanobservationscreenproduced byaonedimensionalslit. a Amplitudedistribution, b intensitydistribution 42

Fig.2.13 a Trianglefunction K(x)and b itsFouriertransform sinc2 f 43

Fig.2.14 a, b Curvesof a signfunctionsgn x and b itsFourier transform1=jpf ..................................... 44

Fig.2.15 a, b Curvesof a thestepfunctionH(x)and b itsFourier transform 1 2 d x ðÞþ 1=jpf ½ 45

Fig.2.16 a Analogyshowinghowthe d(x)functionhasconstantarea. b d(x)andanarbitraryfunction f(x) 46

Fig.2.17 a Shahfunctiongenerator, b shahfunctionIII(x) 47

Fig.2.18Convolutionofanarbitraryfunction g(x)withtheshah functionresultinginaperiodicfunctionof g(x) ............ 48

Fig.2.19Fourierexpansionoftheshahfunction ................... 48

Fig.2.20 a,b Fouriertransformincylindricalcoordinates. a Spatial domain, b spatialfrequencydomain ..................... 50

Fig.2.21 a Circlefunctioncirc(r)and b itsFouriertransform J1(2p .)/.

53

Fig.2.22DiagramshowinggeometryofExercise2.2(mirrorplaced atanangle c totheplaneperpendiculartothe opticalaxis) 54

Fig.2.23 a, b Maskswithtransmissiondistributions t(x) 58

Fig.2.24Semi-circularmask(seeProblem2.7) 58

Fig.3.1Avolume V completelyenclosedbyasurface S. Thevolume mustnotincludeanysingularitiessuchasPl,P2,P3, Pn 60

Fig.3.2Volume V ofintegration 61

Fig.3.3Theshapeofthedomainofintegrationconveniently chosenforcalculatingthediffractionpatternofanaperture usingtheKirchhoffintegraltheorem ..................... 63

Fig.3.4Multiplescatteringfromtheedgeoftheaperture ........... 64

Fig.3.5SpecialcaseofthesourceP2 beingplacednearthecenter oftheaperture,where SA isasphericalsurfacecentered aroundthesource.Theobliquityfactor ís(1+cos v) .......

65

Fig.3.6Geometryforcalculatingthediffractionpattern{u (xi, yi, zi)} onthescreenproducedbythesource{g(x0, y0,0)} ......... 67

Fig.3.7DiagramshowingtherelativepositionsoftheFresnel (near fi eld)andFraunhofer(far field)regions 67

Fig.3.8Geometryusedtocalculatethediffractionpattern duetoapointsourceusingtheFresnelapproximation (Exercise3.1)

71

Fig.3.9Geometryusedforcalculatingtheone-dimensional diffractionpattern 72

Fig.3.10Diffractionpatternduetoasquareaperture 75

Fig.3.11Cornu’sspiral(plotoftheFresnelintegralinthecomplex plane) ............................................ 76

Fig.3.12 a, b RelationshipbetweenthephasoronCornu’sspiral andthemagnitudeofthediffracted field. a Phasors representingthemagnitudeofthelight. b Themagnitude ofthe fieldvsposition(theFresneldiffractionpattern) ....... 77

Fig.3.13IllustrationofBabinet’sprinciple ....................... 78

Fig.4.1Geometryofdiffractionfromarectangularaperture ......... 80

Fig.4.2 a, b Diffractionpatternofarectangularaperture. a Amplitude. b Intensity .............................. 80

Fig.4.3 a, b Squarelightsourceobstructedbyasquare. a Geometry. b Antennawithcenterfeed(EMSystems, Inc.) ............................................. 81

Fig.4.4Diffractionpatternswithandwithouttheobstructing square ............................................ 81

Fig.4.5Apertureinatriangularshape 82

Fig.4.6Amplitudeandphasedistributionalong fx forthediffraction patternofatriangularaperture 83

Fig.4.7 a, b Aperturediffraction. a Photographofthediffraction patternofaright-angledtriangularaperture. b Diffraction duetoiris 84

Fig.4.8Semi-infiniteaperture 85

Fig.4.9Diffractionpatternofthesemi-infi niteaperturewith respectto fx 85

Fig.4.10 a–c Compositionofaslit. a Halfplaneshiftedby a/2 totheleft. b Halfplaneshiftedby a/2totheright. c Slit madeupoftwohalfplanes............................ 86

Fig.4.11Expressionofaslitusingstepfunctions .................. 87

Fig.4.12Mereadditionoftwohalfplanefunctions.Notethatitdoes notrepresentaslit.Thelawofsuperpositionisappliedtothe fieldbutnottotheboundaryconditions .................. 88

Fig.4.13One-dimensionalperiodicsource ....................... 89

Fig.4.14Convolutionof(sinc(af))*III(b/f)withsinc(cf) ........... 89

Fig.4.15Graphofac[sinc(af)III(bf)]*sine(cf) ................... 90

Fig.4.16Hornantennaarray 90

Fig.4.17Methodofdesigningtheantennaarray 91

Fig.4.18 a–c Compactopticaldisc(CD). a PhotographoftheCD. b ElectronmicroscopephotographoftheCDsurface (courtesyofPhilips). c CrosssectionoftheCD 92

Fig.4.19Diagramofthethree-beamtrackingmethodofaCD player 95

Fig.4.20 a–c Formationofanastigmaticbeambythecombination ofasphericalandcylindricallens. a Astigmaticbeam. b FocallengthFv intheverticalplane. c FocallengthFh inthehorizontalplane ............................... 96

Fig.4.21 a–c Changeoftheerrorsignalinaccordancewiththeposition oftheopticaldisc. a Discisinfocus. b Discistooclose.

c Discistoofar(BycourtesyofPhilips) ................. 97

Fig.4.22 a–c Principleoftheleftandrighttrackingbythethree-beam opticalpickuphead. a Trackdriftstotheleft. b Ontrack.

c Trackdriftstotheright ............................. 98

Fig.4.23 a–i Foucault’sknifeedge(left),imagecomparator(center), andopticalwedge(right)focussingmethods. a Thediscisin focus. b Thediscistooclose.Theknifeedge’sshadowison

theoppositesideoftheknifeedge. c Thediscistoofar.The knifeedge’sshadowisonthesamesideastheknifeedge. d Thediscisinfocus.Thecirclesareidentical. e Thediscis tooclose.Thelowercircleislarger. f Thediscistoofar.The uppercircleislarger. g Thediscisinfocus.Onebeamhits theborderbetweenAandB,andtheother,theborder betweenCandD. h Thediscistooclose.Thebeamsseparate moreandhitAandD. i Thediscistoofar.Thebeamscome closerandhitBandC

Fig.4.24 a, b Circularapertureanditsdiffractionpattern. a Circular aperture. b Diffractionpattern

Fig.4.25 a, b Transmissiondistributionofaonedimensionalzone plateexpressed a asafunctionof 2=kp p x0 and b asa functionof x ¼

Fig.4.26DistributionofthelighttransmittedthroughaFresnel zoneplate

Fig.4.27TwodimensionalFresnelzoneplate

Fig.4.28Thephotographsofthemachinedholesobtainedwithalaser beamfocusedbymeansofMZP[6]. a Anarrayofholes madeonachrome filmdepositedonasheetglass. b Two arraysofblindholesmadeonapolishedsurfaceofsteel

Fig.4.29 a, b Gammaraycamera. a Shadowofzoneplatecastby isotopetracer. b Reconstructionoftheimagebycoherent light

Fig.4.30Echelettegrating

Fig.4.31Debye-Searsspatiallightdeflector

Fig.4.32Modulatedzoneplate(MZP)formachiningtool

Fig.5.1Tangenttoacurve

Fig.5.2Tangentinpolarcoordinatesystem

Fig.5.3GeometryusedtoproveFrenet-Serretformula

Fig.5.4Explanationofthedirectionofdifferentiation

Fig.5.5Growthofanequi-phasefrontwiththeprogressoftime

Fig.5.6Pathoflightinamediumwhoserefractiveindexis variedonlyinthe x direction

Fig.5.7Pathoflightatvariouslaunchinganglesintoamedium whoserefractiveindexismonotonicallydecreasingwith increasing x 130

Fig.5.8PropagationpathoflightinsideaonedimensionalSelfoc slab ..............................................

Fig.5.9Suchanopticalpathisimpossibleifthemediumis sphericallysymmetric ................................

Fig.5.10Initiallaunchingconditionintoasphericallysymmetric medium ...........................................

Fig.5.11 a, b Lightpathinasphericallysymmetricmedium. In a thevaluesof c atthesame r areidentical. b shows thevalueof rmn(rm)foragivenlaunchingcondition ........

Fig.5.12Lightpathinamediumwith nðr Þ¼ 1= rp

Fig.5.13Geometryoftheopticalpathinacylindricallysymmetric medium(directioncosines) 141

Fig.5.14Determinationoftheregionofpropagationofameridional rayandaskewrayinaSelfoc fiberfromthesquarerootin (5.110)

Fig.5.15 a, b PathofthemeridionalrayinaSelfoc fi ber; a sideview, b endview.Asseenintheendview,theplaneofincidenceis perpendiculartothecircumference,justastherayintheslab isperpendiculartotheboundary ........................

Fig.5.16SkewrayinaSelfoc fiber ............................

Fig.5.17Explanationofthequantizationintheangleofincidence h ...

Fig.5.18Interferencebetweenthelightrays ......................

Fig.5.19Awavylineisdrawnonasideofapieceofnoodle,andthen wrappedaroundapieceofpencil.Thelinecanrepresentthe pathofaskewray ..................................

Fig.5.20Cross-sectionaldistributionoftheintensityforvariousmode numbers

Fig.5.21 k b diagramoftheSelfoc fiber 153

Fig.5.22Thelightpathinamediumwith n = b/(a ± x)isanarc ofacircle

Fig.5.23Directionoftheopticalpathexpressedindirectioncosines

Fig.6.1Designofthecurvatureofaplanoconvexlens 160

Fig.6.2Illustrationofthecauseoftheintensitynon-uniformity existinginaparallelbeamemergingfromaplanoconvex lens 161

Fig.6.3Phasedistributionofabeampassedthroughaplano-convex lens 161

Fig.6.4Apatternprojectedontoascreenthroughaconvexlenswhen theinputtransparency g(x0, y0)ispressedagainstthelensand thescreenisplacedat z = zi ........................... 163

Fig.6.5Fouriertransformbyaconvexlens;thecasewhentheinput transparency g(x0, y0)islocatedadistance d1 infrontofthe lensandthescreenisatthebackfocalplane .............. 164

Fig.6.6Fouriertransformbyaconvexlens;thecasewhentheinput transparency g(x0, y0)isplacedinthefrontfocalplane.When theinputtransparencyisplacedatthefrontfocalplanethe exactFouriertransform G(xi/k f, yi/k f)isobservedattheback focalplane 166

Fig.6.7Fouriertransformbyaconvexlens;inthecasewhenthe inputtransparency g(x0, y0)isplacedbehindthelens 166

Fig.6.8Fouriertransformperformedbyaconvergingbeamoflight. TheFouriertransformisobservedinaplanecontainingthe point P ofconvergence.Itdoesnotmatterhowthe convergentbeamisgenerated .......................... 169

Fig.6.9 a, b EffectofthelateraltranslationontheFouriertransform. a Theobjectisinthecenter; b theobjectislaterally translated.NotethatFouriertransformalwaysstaysonthe opticalaxis 170

Fig.6.10Theimageformingcapabilityofalensisexaminedfromthe viewpointofwaveoptics 171

Fig.6.11FormationoftheimageusingtwosuccessiveFourier transforms.Theoutputimageobtainedinthismanneris identicalwiththeinputimagenotonlyinmagnitudebutalso inphase 172

Fig.6.12Theoutputimagethroughalensofa finitesize.Someofthe higherspatialfrequencycomponentsdonotinterceptthelens resultinginalossofthehigherfrequencycomponentinthe outputimage ....................................... 173

Fig.6.13TheFouriertransformbyalensofa

nitesize ............ 174

Fig.6.14Theblurringduetothe finitenessofthediameter ofthelens ......................................... 175

Fig.6.15Influenceofthe finitenessofthelenssizeontheresolution ofoutputimage .....................................

Fig.6.16Thedesignofthesurfaceofameniscuslens ..............

Fig.6.17Maximumobtainablereductionratioofacamera withalensofa fi nitesize 180

Fig.6.18EliminationofthephasefactorassociatedwiththeFourier transformusingaconvexlens 181

Fig.6.19Opticalcomputingusingtwoconvexlenses 181

Fig.6.20Combinationofcylindricalandsphericallenses 181

Fig.6.21Electricalequivalentcircuitofanopticallenssystem 181

Fig.7.1Substantialreductioninnumberofcomputationsis demonstrated;OnecurvewithFTTtheotherwithordinary computation ....................................... 184

Fig.7.2Representationof Wk planeonthecomplexplane .......... 186

Fig.7.3Signal flowgraphrepresentingthecalculationof(7.12). Blackdotrepresentsthesummingofthetwonumbers transferredbythearrows ............................. 188

Fig.7.4SameasFig.7.3butfor(7.13).Adottedlinemeanstransfer thenumberafterchangingitssign.Anumberwrittenonthe sideofalinemeansthewrittennumberismultipliedbythe numberbroughtbytheline ............................ 189

Fig.7.5The4-pointDFTofthesamplepoints q0, q1, q2, q3 arefurther splitinto2-pointDFT 190

Fig.7.6SameasFig.7.5butfor r ’s ........................... 191

Fig.7.7Signal flowgraphof8-pointDFTbyamethodofdecimation infrequency ....................................... 191

Fig.7.8Signal flowgraphobtainedbyremovingtheframesand straighteningthelinesofFig.7.7(methodofdecimationin frequency) 192

Fig.7.9Signal flowgraphredrawnfromthatofFig.7.8withthe emphasisonusingitasanaidtowiretheFFTcomputer. (Methodofdecimationinfrequency) 193

Fig.7.10Signal flowgraphofthe firststageofthemethodof decimationintime;First,DFT Fl andDFT Hl arecalculated fromthesampledvaluesof g2k and g2k+1 andnext, Gl is foundbycombining Fl and Hl inthespeci fiedmanner 196

Fig.7.11Thesignal flowchartofthemethodofdecimationintime 197

Fig.7.12Signal flowgraphobtainedbyremovingtheframesand straighteningthelinesofFig.7.11(Methodofdecimation intime) ........................................... 197

Fig.7.13Signal flowgraphredrawnfromthatofFig.7.12withthe emphasisonusingitasanaidtowiretheFFTcomputer. (Methodofdecimationintime) ........................ 198

Fig.7.14Reductionofthenumberofvaluesof Wk tobestoredina ROM(ReadOnlyMemory) ........................... 199

Fig.7.15Findingthevaluesof G–l bytranslatingthespectrumnear theend ........................................... 200

Fig.7.16Sampledvaluesof gk =1 200

Fig.7.17Curveof gxðÞ¼

Fig.7.18Valueof gk 201

Fig.7.19Valueof g ’ k 201

Fig.7.20Valueof gk ........................................ 201

Fig.8.1 a,b Illustrationoftheprincipleofholography. a Fabrication ofhologram. b Reconstructionoftheimagefrom hologram .......................................... 204

Fig.8.2Arrangementofcomponentsforfabricatingahologram ...... 206

Fig.8.3Reconstructingoftheimagefromahologram ............. 208

Fig.8.4Imagesreconstructedfromahologram ................... 211

Fig.8.5Photographofthecross-sectionofaKodak469F holographicplatetakenbyanelectronmicroscope[3] 212

Fig.8.6Thereconstructionofanimagefromathickhologram.The samesourcewhichwasusedforthereferencebeamisused forthereconstructingbeam 212

Fig.8.7 a,b Theclassi ficationofhologramsaccordingtotheshapes ofthewavefront. a GeometriesforFouriertransform

Another random document with no related content on Scribd:

prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.