Cryptology and network security 12th international conference cans 2013 paraty brazil november 20 22

Page 1


Cryptology and Network Security 12th International Conference CANS 2013

Visit to download the full and correct content document: https://textbookfull.com/product/cryptology-and-network-security-12th-international-co nference-cans-2013-paraty-brazil-november-20-22-2013-proceedings-1st-edition-vale rie-nachef/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Cryptology and Network Security 15th International Conference CANS 2016 Milan Italy November 14 16 2016 Proceedings 1st Edition Sara Foresti

https://textbookfull.com/product/cryptology-and-networksecurity-15th-international-conference-cans-2016-milan-italynovember-14-16-2016-proceedings-1st-edition-sara-foresti/

Information Security and Cryptology ICISC 2013 16th International Conference Seoul Korea November 27 29 2013 Revised Selected Papers 1st Edition Hyang-Sook Lee

https://textbookfull.com/product/information-security-andcryptology-icisc-2013-16th-international-conference-seoul-koreanovember-27-29-2013-revised-selected-papers-1st-edition-hyangsook-lee/

Information Theoretic Security 7th International Conference ICITS 2013 Singapore November 28 30 2013 Proceedings 1st Edition Kaoru Kurosawa

https://textbookfull.com/product/information-theoreticsecurity-7th-international-conference-icits-2013-singaporenovember-28-30-2013-proceedings-1st-edition-kaoru-kurosawa/

Cryptology and Network Security 16th International Conference CANS 2017 Hong Kong China November 30 December 2 2017 Revised Selected Papers Srdjan Capkun

https://textbookfull.com/product/cryptology-and-networksecurity-16th-international-conference-cans-2017-hong-kong-chinanovember-30-december-2-2017-revised-selected-papers-srdjancapkun/

Progress

in Cryptology

INDOCRYPT

2013 14th

International Conference on Cryptology in India Mumbai India December 7 10 2013 Proceedings 1st Edition

Yoshinori Aono

https://textbookfull.com/product/progress-in-cryptologyindocrypt-2013-14th-international-conference-on-cryptology-inindia-mumbai-india-december-7-10-2013-proceedings-1st-editionyoshinori-aono/

Decision and Game Theory for Security 4th International Conference GameSec 2013 Fort Worth TX USA November 11 12 2013 Proceedings 1st Edition Emrah Akyol

https://textbookfull.com/product/decision-and-game-theory-forsecurity-4th-international-conference-gamesec-2013-fort-worth-txusa-november-11-12-2013-proceedings-1st-edition-emrah-akyol/

Smart

Card Research and

Advanced Applications

12th International Conference CARDIS 2013 Berlin Germany November 27 29 2013 Revised Selected Papers 1st Edition Aurélien Francillon

https://textbookfull.com/product/smart-card-research-andadvanced-applications-12th-international-conferencecardis-2013-berlin-germany-november-27-29-2013-revised-selectedpapers-1st-edition-aurelien-francillon/

Cyberspace Safety and Security 5th International Symposium CSS 2013 Zhangjiajie China November 13 15 2013 Proceedings 1st Edition Jan-Min Chen (Auth.)

https://textbookfull.com/product/cyberspace-safety-andsecurity-5th-international-symposium-css-2013-zhangjiajie-chinanovember-13-15-2013-proceedings-1st-edition-jan-min-chen-auth/

Advances in Computer Entertainment 10th International Conference ACE 2013 Boekelo The Netherlands November 12 15 2013 Proceedings 1st Edition Mathew Burns

https://textbookfull.com/product/advances-in-computerentertainment-10th-international-conference-ace-2013-boekelo-thenetherlands-november-12-15-2013-proceedings-1st-edition-mathewburns/

Cryptology and Network Security

12th International Conference, CANS 2013 Paraty, Brazil, November 2013 Proceedings

LectureNotesinComputerScience8257

CommencedPublicationin1973

FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen

EditorialBoard

DavidHutchison LancasterUniversity,UK

TakeoKanade

CarnegieMellonUniversity,Pittsburgh,PA,USA

JosefKittler UniversityofSurrey,Guildford,UK

JonM.Kleinberg

CornellUniversity,Ithaca,NY,USA

AlfredKobsa UniversityofCalifornia,Irvine,CA,USA

FriedemannMattern ETHZurich,Switzerland

JohnC.Mitchell StanfordUniversity,CA,USA

MoniNaor

WeizmannInstituteofScience,Rehovot,Israel

OscarNierstrasz UniversityofBern,Switzerland

C.PanduRangan IndianInstituteofTechnology,Madras,India

BernhardSteffen TUDortmundUniversity,Germany

MadhuSudan MicrosoftResearch,Cambridge,MA,USA

DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA

DougTygar UniversityofCalifornia,Berkeley,CA,USA

GerhardWeikum

MaxPlanckInstituteforInformatics,Saarbruecken,Germany

MichelAbdallaCristinaNita-Rotaru

RicardoDahab(Eds.)

Cryptologyand NetworkSecurity

12thInternationalConference,CANS2013 Paraty,Brazil,November20-22,2013

Proceedings

VolumeEditors

MichelAbdalla

ÉcoleNormaleSupérieureandCNRS

45rued’Ulm,75005Paris,France E-mail:michel.abdalla@ens.fr

CristinaNita-Rotaru

PurdueUniversity,DepartmentofComputerScience,LWSN2142J 305N.UniversityStreet,WestLafayette,IN47907,USA E-mail:cnitarot@purdue.edu

RicardoDahab

UniversityofCampinas,InstituteofComputing AvenidaAlbertEinstein1251,Campinas,SP13083-852,Brazil E-mail:rdahab@ic.unicamp.br

ISSN0302-9743e-ISSN1611-3349

ISBN978-3-319-02936-8 e-ISBN978-3-319-02937-5 DOI10.1007/978-3-319-02937-5

SpringerChamHeidelbergNewYorkDordrechtLondon

LibraryofCongressControlNumber:2013950915

CRSubjectClassification(1998):E.3,K.6.5,C.2,D.4.6,E.4

LNCSSublibrary:SL4–SecurityandCryptology

©SpringerInternationalPublishingSwitzerland2013

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’slocation, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissionsforuse maybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliabletoprosecution undertherespectiveCopyrightLaw.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsor omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein.

Typesetting: Camera-readybyauthor,dataconversionbyScientificPublishingServices,Chennai,India

Printedonacid-freepaper

SpringerispartofSpringerScience+BusinessMedia(www.springer.com)

Preface

TheInternationalConferenceonCryptologyandNetworkSecurity(CANS)isa recognizedannualconference,focusing onallaspectsofcryptologyandnetwork securityandattractingcutting-edgeresultsfromworld-renownedscientistsinthe area.The12theditionoftheconferencewasheldatCasadaCultura,Paraty, Brazil,duringNovember20–22,2013,andwasorganizedbytheInstituteof ComputingoftheUniversityofCampinas(UNICAMP)incooperationwiththe InternationalAssociationforCryptologicResearch(IACR).

CANS2013received57submissionsand eachsubmissionwasassignedto atleastthreecommitteemembers.Submissionsco-authoredbymembersofthe ProgramCommitteewereassignedtoatleastfivecommitteemembers.After carefuldeliberation,theProgramCommitteeselected18submissionsforpresentation.Theauthorsoftheacceptedpapershadthreeweeksforrevisionand preparationoffinalversions.Therevisedpaperswerenotsubjecttoeditorial reviewandtheauthorsbearfullresponsibilityfortheircontents.

Theconferencealsofeaturedfourinvitedtalksinadditiontotheregular papers.ThesetalksweregivenbyGeorgeCox(Intel),RosarioGennaro(CUNY), JacquesStern(ENS),andGeneTsudik(UCI),andcoveredawiderangeoftopics incryptographyandnetworksecurity.Theabstractsoftheseinvitedtalksare alsoincludedinthisvolume.

ThereviewingprocesswasrunusingtheiChairsoftware,writtenbyThomas Baign`eresfromCryptoExperts,France,andMatthieuFiniaszfromEPFL, LASEC,Switzerland.Wearegratefultothemforlettingususetheirsoftware. TherearemanypeoplewhocontributedtothesuccessofCANS2013.First, wewouldliketothanktheauthorsofallpapers(bothacceptedandrejected)for submittingtheirresultstotheconference.Second,wearegratefultothecommitteemembersandexternalreviewersfortheiroutstandingworkinthoroughly reviewingallpapersinatimelymanner.SpecialthankstoAngeloDeCaro,Orr Dunkelman,AndersonNascimento,andDamienVergnaud,fortheirextrawork asshepherds.Third,wearealsoindebtedtotheCANSSteeringCommittee membersfortheirguidance.Last,butnotleast,wethankoursponsors,CAPES andCGI.br,fortheirgeneroussupport.

CANS2013

The12thInternationalConference onCryptologyandNetworkSecurity

Paraty,Brazil

November20–22,2013

Organizedby

InstituteofComputing UniversityofCampinas(UNICAMP)

InCooperationwith TheInternationalAssociationforCryptologicResearch(IACR)

GeneralChair

RicardoDahabUniversityofCampinas,Brazil

ProgramChairs

MichelAbdalla ´ EcoleNormaleSup´erieureandCNRS,France

CristinaNita-RotaruPurdueUniversity,USA

SteeringCommittee

YvoDesmedtUniversityofTexasatDallas,USA

JuanGarayYahoo!Research,USA

YiMuUniversityofWollongong,Australia

DavidPointcheval ´ EcoleNormaleSup´erieureandCNRS,France

ProgramCommittee

NuttapongAttrapadungAIST,Japan

PauloS.L.M.BarretoUniversityofS˜aoPaulo,Brazil

Jean-LucBeuchatELCAInformatiqueSA,Switzerland

AlexandraBoldyrevaGeorgiaTech,USA

IoanaBoureanuEPFL,Switzerland

ColinBoydNTNU,Norway

BogdanCarbunarFloridaInternationalUniversity,USA

DavidCashRutgersUniversity,USA

RezaCurtmolaNewJerseyInstituteofTechnology,USA

AngeloDeCaroNTTSecurePlatformLaboratories,Japan

EmilianoDeCristofaroPaloAltoResearchCenter,USA

RobertoDiPietroUniversit`adiRomaTre,Italy OrrDunkelmanUniversityofHaifa,Israel

AlejandroHeviaUniversidaddeChile,Chile

DennisHofheinzKarlsruherInstituteofTechnology,Germany

SenyKamaraMicrosoftResearch,USA TaekyoungKwonYonseiUniversity,Korea

Ga¨etanLeurentUniversit´eCatholiquedeLouvain,Belgium

JulioL´opezUniversityofCampinas,Brazil

IvanMartinovicUniversityofOxford,UK JelenaMircovicUniversityofSouthernCalifornia,USA

RefikMolvaEurecom,France

MichaelNaehrigMicrosoftResearch,USA

AndersonNascimentoUniversidadedeBras´ılia,Brazil ClaudioOrlandiAarhusUniversity,Denmark ThomasPeyrinNanyangTechnologicalUniversity,Singapore

BartPreneelKatholiekeUniversiteitLeuven,Belgium EmmanuelProuffANSSI,France

KasperRasmussenUniversityofCalifornia,Irvine,USA

FranciscoRodr´ıguez-Henr´ıquezCINVESTAV-IPN,Mexico

JeffSeibertMITLincolnLabs,USA RaduStateUniversityofLuxembourg,Luxembourg AngelosStavrouGeorgeMasonUniversity,USA WillySusiloUniversityofWollongong,Australia

DamienVergnaud ´ EcoleNormaleSup´erieure,France

AndrewWhiteUniversityofNorthCarolina,USA DavidZageSandiaNationalLaboratories,USA XinwenZhangHuaweiResearchCenter,USA JianyingZhouInstituteforInfocommResearch,Singapore

AdditionalReviewers

Jean-PhilippeAumasson

MonirAzraoui

JoppeW.Bos

MelissaChase

DonaldChen

CraigCostello

AlexandreDuc

SimonEberz

NadiaElMrabet

KaoutarElkhiyaoui

LimingFang

MatthieuFiniasz

ThomasFuhr

JinguangHan

JungyeonHwang

VincenzoIovino

HaiqingJiang

OrhunKara

TaechanKim

JongHyupLee

JooyoungLee

YoonhoLee

WangLei

KaitaiLiang

AtulLuykx

MarineMinier

AzizMohaisen

SatsuyaOhata

ChristopherPeikert

ChristianePeters

ThomasRoche

RodrigoRoman

YusukeSakai

IsmailSan

SponsoringInstitutions

MartinSchlaffer

PeterSchwabe

YannickSeurin

JiSunShin

WuShuang

EmilStefanov

MartinStrohmeier

KatsuyukiTakashima

SergeVaudenay

AntonioVillani

JiaXu

LeiXu

NaotoYanai

BrazilianGovernmentAgencyfortheDevelopmentofHigherEducation (CAPES)

BrazilianInternetSteeringCommittee(CGI.br)

InvitedTalks

SolvingthePlatformEntropyProblem –Phase2

GeorgeCox

IntelCorporation

JF3-224,2111NE25thStreet,Hillsboro,OR97124

cox@intel.com

Abstract. Inthistalk,wediscusstheneedforhighquality“seeding” materialforsoftwarepseudorandomnumbergenerators(SWPRNGs), theresultantdevelopmentofNISTSP800-90B/C,andIntel’sproduct responsetoitwithevolutionofourexistingDigitalRandomNumber Generator(DRNG)andadditionofournewRdSeedinstruction.

ASurveyofVerifiableDelegationof Computations

TheCityCollegeofNewYork rosario@ccny.cuny.edu

Abstract. Inthistalk,IwillgiveanoverviewofpastandrecentresearchontheareaofVerifiableDelegationofComputation.Thegoalis toenableacomputationallyweakclientto“outsource”thecomputation ofafunction F onvariousinputs x1 ,...,xk tooneormorepowerful servers.Theservermustreturntheresultofthefunctionevaluation, e.g., yi = F (xi ),aswellasaproofthatthecomputationof F wascarriedoutcorrectlyonthegivenvalue xi .Acrucialrequirementisthatthe verificationoftheproofshouldrequiresubstantiallylesscomputational effortthancomputing F (xi )fromscratch.

Forthe“generalpurpose”case(protocolsthatworkforanyfunction F ),Iwilldiscussthedifferentwaysthisproblemhasbeen approachedtheoretically,particularlythelineofresearchthatlinksInteractiveProofs,toProbabilisticCheckableProofs,toSuccinctNonInteractiveArguments.Iwillalsosurveyrecentexcitingexperimental resultsthatshowhowthesetechniquesareonthevergeofbecoming practical.

Iwillalsotalkabout“adhoc”protocolsthataimtoverifyspecific computationsofparticularimportanceinpractice.

WhatIsPublic-KeyCryptanalysis?

Abstract. Traditionally,cryptanalysishasbeenbasedonstatisticalanalysis.Thisremainstrueforconventionalsecretkeycryptosystems.Inthe areaofpublickeyhowever,thepictureisquitedifferent.Ononehand, thereisusuallysomemathematicalstructurehiddeninthepublicdata; ontheotherhand,thecryptographicsecurityismoreorlesstightlyrelatedwithsomewellidentifiedcomputationalproblemwhichisbelieved tobehardtosolve.Thetalkwillgiveseveralexampleswherethecryptanalystwasabletorecoverthehiddenmathematicalstructurethrough apurelyalgebraicapproach,andtobreakschemesthatmightotherwise haveappearedpromising,suchastheS-FLASHsignaturescheme.Itwill alsodiscusssurprisingchangesofperspectivethathaverecentlyoccurred: algorithmicprogresshaveloweredtheasymptoticcomplexityofproblems underlyingtheso-calledHFEsignature,aswellasthecomplexityofthe discretelogarithminfieldsofsmallcharacteristic,thusquestioningthe securityofrelatedcryptographicschemes.Inanotherdirection,problems suchastheapproximateGCD,whichhadlongbeenknowntobeeasily solvablebylatticereduction,atleastinsmalldimensions,nowformthe basisforalargenumberofsuccessfulhomomorphicschemes.

UniversityofCalifornia,Irvine(UCI)

gts@ics.uci.edu

Abstract. WiththegrowingrealizationthatcurrentInternetprotocols arereachingthelimitsoftheirsenescence,anumberofongoingresearch effortsaimtodesignpotentialnext-generationInternetarchitectures.Althoughtheyvaryinmaturityandscope,inordertoavoidpastpitfalls, theseeffortsseektotreatsecurityandprivacyaskeyinitialrequirements.TheNamedDataNetworking(NDN)isanInternetarchitecture thatavoidsIP’shost-based,point-to-pointnetworkingapproachinorder tobetteraccommodatenewandemergingpatternsofcommunication. NDNtreatsdataasafirstclassobject,explicitlynamingitinsteadof itslocation.WhilethecurrentInternetsecuresthe“pipe”thatcarries databetweenhosts,NDNsecuresdata–adesignchoicethatdecouplestrustindatafromtrustinhosts,enablingscalablecommunication mechanisms,suchasautomaticcachingofdatainrouterstooptimize bandwidth.TheNDNprojectposesnumeroustechnicalchallengesthat mustbeaddressedtovalidateitasafutureInternetarchitecture:routingscalability,fastforwarding,trustmodels,networksecurity,content protectionandprivacy,andfundamentalcommunicationtheory.

ThistalkwilloverviewNDNandthenturntosecurityandprivacy issues.Bystressingcontentdissemination,NDNisanattractiveand viableapproachtomanytypesofcurrentandemergingcommunication models.Italsoincorporatessomeusefulsecurityandprivacyfeatures. WewillfirstconsidercommunicationprivacyandanonymityinNDNand describeanNDNadd-on(calledANDANA)thatoffersthefunctionality similartoTORontoday’sInternet.

SinceresiliencetoDenialofService(DoS)attacksthatplaguetodays Internetisamajorissueforanynewarchitecture,wewilldiscusssome initialresearchtowardsassessmentandmitigationofDoSinNDN.Next, wewillconsiderprivacyimplicationsofrouter-sidecontentcaching.Finally,wewilldiscusshowtoadaptNDNanditssecurityfeaturestoenvironmentsotherthancontentdistribution,usingtheexampleofbuilding automation.

TableofContents

CryptanalysisI

DifferentialAttacksonGeneralizedFeistelSchemes ................... 1 Val´erieNachef,EmmanuelVolte,andJacquesPatarin

RevisitingMACForgeries,WeakKeysandProvableSecurity ofGalois/CounterModeofOperation ..............................

BoZhu,YinTan,andGuangGong

PaddingOracleAttackonPKCS#1v1.5:CanNon-standard ImplementationActasaShelter? ..................................

SiGao,HuaChen,andLiminFan

Zero-KnowledgeProtocols

ZeroKnowledgeProofsfromRing-LWE .............................

XiangXie,RuiXue,andMinqianWang

ZeroKnowledgewithRubik’sCubesandNon-abelianGroups ......... 74 EmmanuelVolte,JacquesPatarin,andVal´erieNachef

EfficientModularNIZKArgumentsfromShiftandProduct ...........

PrastudyFauzi,HelgerLipmaa,andBingshengZhang

DistributedProtocols

StronglySecureOne-RoundGroupAuthenticatedKeyExchange intheStandardModel ............................................

YongLiandZhengYang

AchievingCorrectnessinFairRationalSecretSharing ................

SouryaJoyeeDeandAsimK.Pal

NetworkSecurityandApplications

BotSuer:SuingStealthyP2PBotsinNetworkTrafficthroughNetflow

NizarKheirandChirineWolley

KonstantinosChronopoulos,MariaGouseti,andAggelosKiayias

Wave-to-Access:ProtectingSensitiveMobileDeviceServices viaaHandWavingGesture 199 BabinsShrestha,NiteshSaxena,andJustinHarrison

AdvancedCryptographicPrimitives

Semantically-SecureFunctionalEncryption:PossibilityResults, ImpossibilityResultsandtheQuestforaGeneralDefinition ........... 218 MihirBellareandAdamO’Neill

EfficientLossyTrapdoorFunctionsBasedonSubgroupMembership Assumptions 235 HaiyangXue,BaoLi,XianhuiLu,DingdingJia,andYaminLiu

UniqueAggregateSignatureswithApplicationstoDistributed VerifiableRandomFunctions ...................................... 251

VeronikaKuchtaandMarkManulis

CryptanalysisII

APracticalRelated-KeyBoomerangAttackfortheFullMMBBlock Cipher .......................................................... 271 TomerAshurandOrrDunkelman

TruncatedDifferentialAnalysisofReduced-RoundLBlock 291 SarehEmami,CameronMcDonald,JosefPieprzyk,and RonSteinfeld

VerifiableComputation

HowtoUpdateDocuments Verifiably inSearchableSymmetric Encryption ...................................................... 309 KaoruKurosawaandYasuhiroOhtaki

PrivateOutsourcingofPolynomialEvaluationandMatrix MultiplicationUsingMultilinearMaps

LiangFengZhangandReihanehSafavi-Naini

DifferentialAttacks onGeneralizedFeistelSchemes

Val´erieNachef1 ,EmmanuelVolte1 ,andJacquesPatarin2

1 DepartmentofMathematics,UniversityofCergy-Pontoise,CNRSUMR8088 2AvenueAdolpheChauvin,95011Cergy-PontoiseCedex,France

2 PRISM,UniversityofVersailles 45avenuedesEtats-Unis,78035VersaillesCedex,France valerie.nachef@u-cergy.fr

Abstract. WhilegenericattacksonclassicalFeistelschemesandunbalancedFeistelschemeshavebeenstudiedalot,genericattacksonseveral generalizedFeistelschemesliketype-1,type-2andtype-3andalternating Feistelschemes,asdefinedin[8],havenotbeensystematicallyinvestigated.ThesegeneralizedFeistelschemesareusedinwellknownblock ciphernetworksthatusegeneralizedFeistelschemes:CAST-256(type1),RC-6(type-2),MARS(type-3)andBEAR/LION(alternating).Also, type-1andtype-2FeistelschemesarerespectivelyusedintheconstructionofthehashfunctionsLesamntaandSHAvite 3512 .Inthispaper, wegiveourbestKnownPlaintextAttacksandnon-adaptiveChosen PlaintextAttacksontheseschemes.Wedeterminethemaximalnumber ofroundsthatwecanattackwhenwewanttodistinguishapermutation producedbytheschemefromapermutationchosenrandomlyintheset ofpermutations.

Keywords: generalizedFeistelschemes,genericattacksonencryption schemes,blockciphers.

1Introduction

ClassicalFeistelschemeshavebeenextensivelystudiedsincetheseminalwork ofLubyandRackoff[14].Theseschemesallowtoconstructpermutationsfrom {0, 1}2n to {0, 1}2n byusingroundfunctionsfrom n bitsto n bits(DESisan exampleofaclassicalFeistelscheme).For3and4rounds,thereareattacks with √2n inputsin[1]and[18].For5rounds,anattackwith O (2n )inputsis givenin[19,20].Whentheroundfunctionsarepermutations,attacksarestudied in[12,13,25].SecurityresultsonclassicalFeistelschemesaregivenin[8,20,17].

WedefinegeneralizedFeistelschemesasfollows:theinputbelongsto {0, 1}kn andweapplydifferentkindsofroundfunctionsonsomepartsoftheinputin ordertoconstructpermutationsfrom kn bitsto kn bits.

Whentheroundfunctionsarefrom(k 1)n bitsto n bits,weobtainan unbalancedFeistelschemewithcontractingfunctions.Attacksontheseschemes werestudiedin[22].Whentheroundfunctionsarefrom n bitsto(k 1)n

M.Abdalla,C.Nita-Rotaru,andR.Dahab(Eds.):CANS2013,LNCS8257,pp.1–19,2013. c SpringerInternationalPublishingSwitzerland2013

bits,wehaveunbalancedFeistelschemeswithexpandingfunctions.Attackson theseschemesaregivenin[10,23,24,26].AlternatingFeistelschemesalternate contractingandexpandingrounds.Theyaredescribedin[2]andareusedin theBEAR/LIONblockcipher.Therearealsotype-1,type-2andtype-3Feistel schemes(theyaredescribedinSection2,seealso[9,29]).Theseschemesare usedrespectivelyintheblockciphersCAST-256,RC6andMARS.In[4],the authorsprovideattacksonthehashfunctionsLesamntaand SHAvite 3512 whoseconstructionisbasedontype-1andtype-2Feistelschemes.Someattacks oninstancesofgeneralizedFeistelschemesarealsogivenin[3].ImpossibledifferentialattacksongeneralizedFeistelschemesarestudiedin[5]whenthereis noconditionontheroundfunctions,andin[6,13,27]whentheroundfunctions arepermutations.

Securityresultshavebeenobtainedformostoftheseschemes.Forclassical Feistelschemesthedifferentresultsaregivenin[8,20,17].UnbalancedFeistel schemeswithcontractingfunctionshavebeenstudiedin[8,15,17,28]andfor unbalancedFeistelschemeswithexpandingfunctions,alternating,type-1,type2andtype-3Feistelschemes,theresultsarein[8].

Thispaperisdevotedtothestudyofgenericattacksontype-1,type-2,type-3 andalternatinggeneralizedFeistelschemes.Ourattacksaredistinguishersthat allowtodistinguishapermutationproducedbyaschemefromapermutation chosenrandomlyinthesetofpermutations.Theroundfunctionsarechosen atrandomandarenotknowntotheadversary.Moreover,weassumethatthe roundfunctionsareindependentofeachother.

Ourattackswillusedifferentialcharacteristics.WeprovideKnownPlaintext Attacks(KPA)andnon-adaptiveChosenPlaintextAttacks(CPA-1).Foreach kindofscheme,wewillgivethemaximalnumberofroundsthatwecanattack inKPAandCPA-1andwewilldescribeourbestattacksuptothemaximal numberofrounds.Table1givesthemaximalnumberofroundsattackedby eitherKPA,CPA-1thatwehaveobtainedandthecomparisonwithimpossible differentialattacksfortype-1,type-2andtype-3Feistelschemeswhentheround functionsarebijectiveornot.Inthistable,weconsiderthatwewanttodistinguishpermutations kn bitsto kn bitseitherproducedbytheschemeorchosen randomlyfromthesetofpermutations.

Table1. Maximalnumberofroundsreachedbyourattacksandimpossibledifferential attacks

+1[27] N/A

k + k 2 +1(Sec.4.3) k +1(Sec.4.3) 2k +3[27] 2k [4] Alternating 3k (Sec.4.4) 3k (Sec.4.4) N/A N/A

Thepaperisorganizedasfollows.InSection2,wegivethenotationsand definetype-1,type-2,type-3andalternatingFeistelschemes.Section3isdevoted toanoverviewoftheattacks.InSection4wedetailtheattacks.Fortype-1Feistel schemes,wealsoprovidetheresultsofoursimulations.IntheAppendices,we giveexamplesofcomputationsofthevariances,neededtogetthecomplexityof ourattacks.

2Notations-DefinitionsoftheSchemes

Theinputisalwaysdenotedby[I1 ,I2 ,...,Ik ]andtheoutputby[S1 ,S2 ,...,Sk ] whereeach Is , Ss isanelementof {0, 1}n .Whenwehave m messages, Is (i) representspart s oftheinputofmessagenumber i.Thesamenotationisused fortheoutputsaswell.Weusedifferentialattacks,i.e.attackswherewestudy howdifferencesonpairsofinputvariableswillpropagatefollowingadifferential characteristic,andgiverelationsbetweenpairsofinput/outputvariables.The numberofroundsisdenotedby r .Wenowdefineourschemes.

1. Type-1Feistelschemes(Fig.1)

Afteroneround,theoutputisgivenby[I2 ⊕ F 1 (I1 ),I3 ,I4 ,...,Ik ,I1 ]where F 1 isafunctionfrom n bitsto n bits.

2. Type-2Feistelschemes(Fig.1)

Here k iseven.Afteroneround,theoutputisgivenby[I2 ⊕ F 1 1 (I1 ),I3 ,I4 ⊕ F 1 2 (I3 ),...,Ik ⊕ F 1 k 2 (Ik 1 ),I1 ]whereeach F 1 s ,1 ≤ s ≤ k 2 isafunctionfrom n bitsto n bits.

3. Type-3Feistelschemes(Fig.2)

Afteroneround,theoutputisgivenby[I2 ⊕ F 1 1 (I1 ),I3 ⊕ F 1 2 (I2 ),I4 ⊕ F 1 3 (I3 ),...,Ik ⊕ F 1 k 1 (Ik 1 ),I1 ]whereeach F 1 s ,1 ≤ s ≤ k 1isafunctionfrom n bitsto n bits.

4. AlternatingFeistelschemes(Fig.2)

Ontheinput[I1 ,I2 ,...,Ik ],forthefirstround,weapplyacontracting function F 1 from(k 1)n bitsto n.Let X 1 = I1 ⊕ F 1 ([I2 ,...,Ik ]).Afteroneround,theoutputisgivenby[X 1 ,I2 ,...,Ik ]and X 1 iscalledan internalvariable.Forthesecondround,weapplyanexpandingfunction G2 =(G2 1 ,G2 2 ,...,G2 k )whereeach G2 s isafunctionfrom n bitsto n bits.The outputafterthesecondroundisgivenby[X 1 ,I2 ⊕ G2 1 (X 1 ),...,Ik ⊕ G2 k (X 1 )]. Thenwealternatecontractingandexpandingrounds.Wecanalsostartwith anexpandinground.Inthispaper,wewillalwaysbeginwithacontracting round.

Wenowexplainthedifferentialnotation.Weuseplaintext/ciphertextspairs. InKPA,ontheinputvariables,thenotation[0, 0,Δ0 3 ,Δ0 4 ,...,Δ0 k ]meansthat thepairofmessages(i,j )satisfies I1 (i)= I1 (j ), I2 (i)= I2 (j ),and Is (i) ⊕ Is (j )= Δ0 s ,3 ≤ s ≤ k .InCPA-1,thenotation[0, 0,Δ0 3 ,Δ0 4 ,...,Δ0 k ]means thatwechoose I1 and I2 tobeconstants.Thedifferentialoftheoutputs i and j afterround r isdenotedby[Δr 1 ,Δr 2 ,...,Δr k ].Ateachround,internal variablesaredefinedbythestructureofthescheme.Inourattacks,wedetermine

Fig.1. Firstroundfortype-1andtype-2Feistelschemes

Fig.2. Firstroundfortype-3FeistelschemeandfirsttworoundsofalternatingFeistel scheme

conditionsthathavetobesatisfiedbytheoutputs.Whenwehaveascheme, theseconditionsaresatisfiedeitherat randomorbecausetheinternalvariables verifysomeequalities.Thus,wewillimposeconditionsontheinternalvariables onsomechosenrounds.Whenweimposeconditionsontheinternalvariablesin ordertogetadifferentialcharacteristic,weusethenotation0 tomeanthat thecorrespondinginternalvariablesareequalinmessages i and j .

3OverviewoftheAttacks

Wepresentattacksthatallowustodistinguishapermutationcomputedby theschemefromarandompermutation.Dependingonthenumberofrounds, itispossibletofindsomerelationsbetweentheinputandoutputvariables. Theserelationsholdconditionallytoequalitiesofsomeinternalvariablesdue tothestructureoftheFeistelscheme.Ourattacksconsistofusing m plaintext/ciphertextspairsandincountingthenumber N ofcouplesofthesepairs

Type-2

thatsatisfytherelationsbetweentheinputandoutputvariables.Wethen compare Nscheme ,thenumberofsuchcouplesweobtainwithageneralized scheme,with Nperm ,thecorrespondingnumberforarandompermutation.The attackissuccessful,i.e.weareabletodistinguishapermutationgenerated byageneralizedFeistelschemefroma randompermutation ifthedifference |E (Nscheme ) E (Nperm )| islargerthanbothstandarddeviations σ (Nperm )and σ (Nscheme ),where E denotestheexpectancyfunction.Inordertocomputethese values,weneedtotakeintoaccountthefactthatthestructuresobtainedfrom the m plaintext/ciphertexttuplesarenotindependent.However,theirmutual dependenceisverysmall.Tocompute σ (Nperm )and σ (Nscheme ),wewillusethis well-knownformula(see[7],p.97),thatwewillcallthe“CovarianceFormula”: if x1 ,...xn ,arerandomvariables,thenif V representsthevariance,wehave V ( n i=1 xi )=

.Similar computationarealsoperformedin[22].

Aswewillseeinourcomputations,inthispaper,wewillalwayshave σ (Nperm ) E (Nperm )and σ (Nscheme ) E (Nscheme ) E (Nperm ).InAppendicesA andB,thisisexplainedonanexample.

4DescriptionofOurAttacksontheSchemes

Foreachscheme,wegiveexamplesofattacksanddescribemorepreciselyKPA andCPA-1thatallowtoattackthemaximalnumberofrounds.Wealways assumethat k ≥ 3.

4.1Type-1FeistelSchemes

For1to k 1rounds,onemessageisenough,sinceafter r rounds,1 ≤ r ≤ k 1, wehave Sk r +1 = I1 .Thisconditionissatisfiedwithprobability1withatype-1 Feistelschemeandwithprobability 1 2n whenwedealwitharandompermutation. Thuswithonemessagewecandistinguishatype-1Feistelschemefromarandom permutationinKPAandCPA-1.

WenowconsiderKPAfor r ≥ k .InTable2(leftpart),wegivethegeneral patternofthedifferentialcharacteristicsusedinourKPA.

Theconditionsafter rk 2rounds(r ≥ 3)aregivenby

Wecountthenumberofindices(i,j )suchthattheseconditionsaresatisfied. Let Nperm bethenumberobtainedwhenwehavepermutationchosenrandomly anduniformlyfromthesetofpermutationsfrom kn bitsto kn bits.Similarly, Nscheme representsthenumberobtainedwithapermutationproducedbythe scheme.For Nperm ,theconditionsappearatrandomandweobtain E (Nperm ) m 2

2 22n .For Nscheme ,theconditionsappearatrandomorbecausesomeconditions aresatisfiedbytheinternalvariablesandweget E (Nscheme )

).

Table2. Differentialcharacteristicusedinourattacksontype-1Feistelschemes

The O functioncomesfromtheconditions0 thatweimposeonthedifferential characteristic.InAppendixB,wewillexplainonanexamplehowtoestimate this O function.Bothstandarddeviationssatisfy σ (Nperm ) E (Nperm )and σ (Nscheme ) E (Nscheme ) E (Nperm )when r ≥ 4.Thismeansthatwe candistinguishbetweenarandompermutationandatype-1Feistelschemeas soonas m 2 2(r 1)n ≥ m 2n .Thisgivesthecondition m ≥ 2(r 2)n .Sincethemaximal numberofmessagesis2kn ,theseattacksworkfor r 2 ≤ k andthenwith r = k +2,wecanattackupto(k +2)k 2= k 2 +2k 2rounds.

Theanalysisofalltheattackswillbeverysimilar.Wefirstchoosethedifferentialcharacteristics.Then,wecompute E (Nperm ), E (Nscheme ), σ (Nperm ) and σ (Nscheme )asdefinepreviously.Again, E (Nperm )willbegreaterthan E (Nscheme )becausethereareconditionsontheinternalvariablesthatwillimplyconditionsontheoutputs.Moreover,wehave σ (Nperm ) E (Nperm )and σ (Nscheme ) E (Nscheme ) E (Nperm ).Then,wecomparethedifferenceof themeanvalueswiththestandarddeviationandweobtainthenumberofmessagesneededfortheattack.Theprevio usattackissummarizedbytheTable3, where σ denoteseither σ (Nperm )or σ (Nscheme ).

WestudyCPA-1for r ≥ k .For k to2k 1rounds,wehaveaCPA-1with 2messagessuchthat ∀s, 1 ≤ s ≤ k 1, Is (1)= Is (2).Then,atround r (k ≤ r ≤ 2k 1),withatype-1Feistelscheme,weobtainwithprobability1that S2k r (1) ⊕ S2k r (2)= Ik (1) ⊕ Ik (2).Ifwearenotdealingwithatype-1Feistel scheme,theprobabilitytoobtainthisequalityis 1 2n

Table3. Type-1Feistelscheme:KPAon rk 2rounds Differential

(

perm ) E (Nscheme )

Onround r (with r ≥ 2k ),wewillhavetoconsiderdifferentconditionson theinputvariables.WeexplainnowaCPA-1on rk 1rounds(with r ≥ 3)in Table2(rightpart)andTable4,wherewechoosethemessagessuchthat I1 takes onlyonevalueforallmessages.Here,wehave m ≥ 2(r 2)n .Sincethemaximal numberofmessagesis2(k 1)n ,theseattacksworkaslongas r 2 ≤ k 1.Thus with r = k +1,wecanattackupto(k +1)k 1= k 2 + k 1rounds.

Table6summarizesthecomplexitiesfortype-1Feistelschemes.Wealsogive theresultsofoursimulationsinTable5.

Table4. Type-1Feistelscheme:CPA-1on rk 1rounds

Table5. ExperimentalresultsforCPA-1againsttype-1Feistelschemewith k 2 + k 1 rounds

Table6. Complexitiesoftheattacksontype-1Feistelschemes r rounds KPA 1 → k 1 1 k → 2k 1 2n/2 2k → 3k 2 2n . . . rk 2 2(r 2)n rk 1 2(r 3/2)n rk . . 2(r 1)n (r +1)k 2 . . . k 2 +2k 2 2kn r rounds CPA-1 r CPA-1 1 1 k 1 k pk (p 2) 2 2(p 2)n 2k 2 (p +1)k p 2k 1 2n/2 3k 2 3k 1 k 2 +1

4.2Type-2FeistelSchemes

Fortype-2Feistelschemes, k isalwayseven.Table7andTable8representa KPAon2k +2rounds.

Table7. Differentialcharacteristicusedinourattacksontype-2Feistelschemes(KPA)

Table8. Type-2Feistelscheme:KPAon2k +2rounds Differential

Weexplainhowtogetattacksonintermediaterounds.After2r rounds, r ≥ 1, wehaveinTable9:

Table9. Type-2Feistelscheme:KPAon2r rounds

Differential

where1 ≤ s ≤ k and s ≡ 2 2r (mod k ).

Inthisattack, m =2(r 1)n .Thus,for r = k +1,wehavereachedthemaximal numberofroundswith2(k 1)n messages.

After2r +1rounds, r ≥ 1,theattackisrepresentedinTable10: where1 ≤ t ≤ k and t ≡ 1 2r (mod k ).

ForCPA-1,wecanimposeconditionsonagivennumberofinputvariables. WegiveinTable11andTable12anexampleofanattackon2k 1roundsfor whichweconsidermessageswhere I1 , I2 , I3 aregivenconstantvalues.Thenwe willgeneralize.

DifferentialAttacksonGeneralizedFeistelSchemes9

Table10. Type-2Feistelscheme:KPAon2r +1rounds

Differential E (Nperm ) E (Nscheme ) σ m

0 1 =0

Forround2k 2,theattackisrepresentedinTable13.

Moregenerally,ifwesupposethatfortheinputvariables,wehave I1 ,...,Ir are constants(r ≤ k 1),wecanperformthesamekindofattacks.Itiseasytocheck thatwecanattackupto2k r +2roundsandweneedexactly2(k r )n messages. InordertogetthebestCPA-1foreachround,wewillchangetheconditionsonthe inputvariables.Forexample,for k +1, k +2and k +3rounds,wechoose I1 ,...Ik 1 tobeconstantvalues,thenwewillhave I1 ,...Ik 2 constants,andsoon.

Table14summarizesthecomplexitiesfortype-2Feistelschemes.

4.3Type-3FeistelSchemes

Wewillpresentourattackswhen k iseven.For k odd,thecomputationsare similar.TheresultsaresummarizedinTable18.WebeginwithKPA.Forone round,weneedonemessage,wejusthavetocheckif I1 = Sk .Witharandom permutation,thishappenswithprobability 1 2n andwithaschemewithprobabilityone.Supposewewanttoattack r roundswith2 ≤ r ≤ k .Wewaituntil

Table11. Differentialcharacteristicusedinourattacksontype-2Feistelschemes (CPA-1)

Table12. Type-2Feistelscheme:CPA-1on2k 1rounds

Table13. Type-2Feistelscheme:CPA-1on r =2k 2rounds

Differential E (Nperm ) E (Nscheme ) σ m

Table14. Complexitiesoftheattacksontype-2Feistelschemes

wehave2messagessuchthat I1 (1)= I1 (2),...,Ir 1 (1)= Ir 1 (2).Thenwetest if Ir 1 (1) ⊕ Ir 1 (2)= Sk (1) ⊕ Sk (2).Witharandompermutation,thishappens withprobability 1 2n andwithaschemewithprobabilityone.Moreover,fromthe birthdayparadox,ifwehave2 (r 1)n 2 messages,weget2messageswiththegiven conditionswithahighprobability.WegiveinTable15(leftpart)aKPAon k +4rounds,wherewesupposethat4 ≤ k 2 +1.

Table15. Differentialcharacteristicsusedinourattacksontype-3Feistelschemes

round 0 0000 Δk 0

1 0...000 Δ0 k 0

2 0..00 Δ0 k 0

3 0..0 Δ0

+4 ... Δ0 k

ForthisKPAon k +4rounds,wehaveinTable16: Since m =2( k 2 +3)n ,wecanperformthesamekindofattackfor k + r rounds, with r ≤ k 2 +1.Wecanattackupto k + k 2 +1rounds.For k + k 2 +1,weneed themaximalnumberofmessagesi.e.2kn

ForCPA-1,itiseasytoseethatafteroneround,onemessageissufficient. Wejusthavetocheckif Sk = I1 .For2rounds,wechoose2messagessuchthat I1 (1)= I1 (2)andwecheckif Sk (1) ⊕ Sk (2)= I2 (1) ⊕ I2 (2).Witharandom

CPA-1

Table16. Type-3Feistelscheme:KPAon r = k +4rounds

Differential E (Nperm ) E (Nscheme ) σ m Δ0 1 =0 Δ0 2 =0

permutationthishappenswithprobability 1 2n ,butwithascheme,theprobability isone.Thus,wecandistinguishbetweenthetwopermutationswithonly2 messages.Moregenerally,for r roundswith r ≤ k ,wechoose2messagessuch that Is (1)= Is (2)for1 ≤ s ≤ k 1andthenwecheckif Sk (1) ⊕ Sk (2)= Id (1) ⊕ Id (2).Witharandompermutationthishappenswithprobability 1 2n , butwithascheme,theprobabilityisone.Thus,wecandistinguishbetweenthe twopermutationswithonly2messages.Wecanattackupto k rounds.

For k +1rounds,Wechoose m messagessuchthat I1 ,I2 ,...,Ik 1 havea constantvalue.WehavethefollowingCPA-1describedinTable15(rightpart) andTable17:

Table17. Type-3Feistelscheme:CPA-1on k +1rounds

Differential E (Nperm ) E (Nscheme ) σ m

Table18givesKPAandCPA-1complexities.

Table18. Complexitiesoftheattacksontype-3Feistelschemes

4.4AlternatingFeistelSchemes

HerewewilldescribeourbestattacksonalternatingFeistelschemes.Afterone round,wehave[I2 ,I3 ,...,Ik ]=[S2 ,S3 ,...,Sk ].Thus,wechooseonemessage andwecheckifthisconditionissatisfied.Witharandompermutation,this

happenswithprobability 1 2(k 1)n andwithaschemetheprobabilityisone.Thus, withonemessagewecandistinguisharandompermutationfromapermutation obtainedwithanalternatingscheme.After2rounds,inCPA-1,wechoose2 messagessuchthat ∀s, 2 ≤ s ≤ k,Is (1)= Is (2)andthenwecheckif I1 (1) ⊕ I1 (2)= S1 (1) ⊕ S1 (2).Theprobabilitytohavethisconditionsatisfiedis 1 2n with arandompermutationand1withanalternatingscheme.Wecantransformthis CPA-1intoaKPA.Wegenerate m messagesandfromthebirthdayparadox, when m 2 (k 1)n 2 withagoodprobability,wecanfind(i,j )suchthat ∀s, 2 ≤ s ≤ k,Is (i)= Is (j )andthenwetestif I1 (i) ⊕ I1 (j )= S1 (i) ⊕ S1 (j ).

ButtherearebetterKPA,aswenowshow.WehavethefollowingKPA on2r (r ≤ k )rounds,describedinTable19andTable20,where Δ0 denotes [Δ0 2 ,Δ0 3 ,Δ0 4 ,...,Δ0 k ].

Table19. DifferentialcharacteristicofourattacksonalternatingFeistelschemes (KPA)

Table20. AlternatingFeistelscheme:KPAon2

rounds

Hereweobtain, m =2 r 2 ,sincewhen r ≤ k , E (Nperm )isgreaterthanorequal totwice E (Nscheme )andwecandistinguishwhen m =2 r 2 .Noticethatinthis case,wedonotneedtousethestandarddeviation.Thus,after2roundswe getaKPAwith2 n 2 messages(noticethattheCPA-1complexityoftheprevious attackwasbetter).After2rounds,KPAarethebestattacks.Wedonothave betterattackifwefixsomepartontheinputs.

After2r roundswith r>k ,inKPA,wekeepthesamedifferentialcharacteristicsandtheattackisgiveninTable21.

DifferentialAttacksonGeneralizedFeistelSchemes13

Table21. AlternatingFeistelscheme:KPAon2r rounds r>k

Differential E (Nperm ) E (Nscheme ) σ m

2r = Δ0

Heresince r>k ,weneedtocomputethestandarddeviationandweget m =2(r k 2 )n .Sincethenumberofmessagescannotexceed2kn ,weobtainthe condition r ≤ 3k/2.Herewehavegiventhecomplexityforevenrounds.Ifwe wanttoattacktheoddround2r +1,wewillonlyimpose Δ2r +1 = Δ0 .Wecan attackupto3k rounds.ThecomplexitiesaresummarizedinTable22.

Table22. ComplexitiesoftheattacksonalternatingFeistelschemes

5Conclusion

Inthispaper,wehavegivenourbestdifferentialgenericattacks(KPAandCPA1)ondifferentkindsofgeneralizedFeistelschemes:type-1,type-2,type-3and alternatingFeistelschemes.Sincetheseschemesareusedinwellknownblock ciphers,itisinterestingtofindthemaximalnumberofroundsthatwecan attack.Wealsogavethecomplexityofattacksonintermediaterounds.Inour attacks,thecomputationsofthemeanvaluesandthestandarddeviationsare veryuseful.Wegenerallystopattackingschemes,whenweneedthemaximal numberofpossiblemessagestoperformtheattack.Awaytoovercomethis problemistoattackpermutationgeneratorsinsteadofasinglepermutation. Impossibledifferentialattacksarebetterontype-3Feistelschemes.Fortype-2 Feistelschemes,wecanattackthesamenumberofroundsasimpossibleattacks butheretheinternalfunctionsarenotnecessarilybijective.Fortype-1Feistel schemes,ourattackscanreachmoreroundsasimpossibledifferentialattacks.

References

1.Aiello,W.,Venkatesan,R.:FoilingBirthdayAttacksinLength-DoublingTransformations-Benes:ANon-ReversibleAlternativetoFeistel.In:EUROCRYPT1996. LNCS,vol.1070,pp.307–320.Springer,Heidelberg(1996)

2.Anderson,R.J.,Biham,E.:TwoPracticalandProvablySecureBlockCiphers: BEARandLION.In:Gollmann,D.(ed.)FSE1996.LNCS,vol.1039,pp.113–120.Springer,Heidelberg(1996)

3.Bogdanov,A.,Rijmen,V.:Zero-CorrelationLinearCryptanalysisonBlockCipher. CryptologyePrintarchive:2011/123:Listingfor2011(2011)

4.Bouillaguet,C.,Dunkelman,O.,Leurent,G.,Fouque,P.-A.:AttacksonHashFunctionsBasedonGeneralizedFeistel:ApplicationtoReduced-Round Lesamnta and SHAvite-3512 .In:Biryukov,A.,Gong,G.,Stinson,D.R.(eds.)SAC2010.LNCS, vol.6544,pp.18–35.Springer,Heidelberg(2011)

5.Bouillaguet,C.,Dunkelman,O.,Fouque,P.-A.,Leurent,G.:NewInsightsonImpossibleDifferentialCryptanalysis.In:Miri,A.,Vaudenay,S.(eds.)SAC2011. LNCS,vol.7118,pp.243–259.Springer,Heidelberg(2012)

6.Choy,J.,Yap,H.:ImpossibleBoomerangAttackforBlockCipherStructures.In: Takagi,T.,Mambo,M.(eds.)IWSEC2009.LNCS,vol.5824,pp.22–37.Springer, Heidelberg(2009)

7.Hoel,P.G.,Port,S.C.,Stone,C.J.:IntroductiontoProbabilityTheory.Houghton MifflinCompany(1971)

8.Hoang,V.T.,Rogaway,P.:OnGeneralizedFeistelNetworks.In:Rabin,T.(ed.) CRYPTO2010.LNCS,vol.6223,pp.613–630.Springer,Heidelberg(2010)

9.Ibrahim,S.,Mararof,M.A.:DiffusionAnalysisofScalableFeistelNetworks.World AcademyofScience,EngineeringandTechnology5,98–101(2005)

10.Jutla,C.S.:GeneralizedBirthdayAttacksonUnbalancedFeistelNetworks.In: Krawczyk,H.(ed.)CRYPTO1998.LNCS,vol.1462,pp.186–199.Springer,Heidelberg(1998)

11.Kim,J.,Hong,S.,Lim,J.:ImpossibleDifferentialCryptanalysisUsingMatrix Method.DiscreteMathematics310(5),988–1002(2010)

12.Knudsen,L.R.:DEAL-A128-bitBlockCipher.TechnicalReport151,University ofBergen,DepartmentofInformatics,Norway(February1998)

13.Knudsen,L.R.,Rijmen,V.:OntheDecorrelatedFastCipher(DFC)andItsTheory. In:Knudsen,L.R.(ed.)FSE1999.LNCS,vol.1636,pp.81–94.Springer,Heidelberg (1999)

14.Luby,M.,Rackoff,C.:HowtoConstructPseudorandomPermutationsfromPseudorandomFunctions.SIAMJ.Comput.17(2),373–386(1988)

15.Naor,M.,Reingold,O.:OntheConstructionofPseudorandomPermutations: Luby-RackoffRevisited.J.Cryptology12(1),29–66(1999)

16.Patarin,J.:GenericAttacksonFeistelSchemes-Extendedversion.In:Cryptology ePrintarchive:2008/036:Listingfor2008(2008)

17.Patarin,J.:SecurityofbalancedandunbalancedFeistelschemeswithlinearnon equalities.In:CryptologyePrintarchive:2010/293:Listingfor(2010)

18.Patarin,J.:NewResultsonPseudorandomPermutationGeneratorsBasedonthe DESScheme.In:Feigenbaum,J.(ed.)CRYPTO1991.LNCS,vol.576,pp.301–312.Springer,Heidelberg(1992)

19.Patarin,J.:GenericAttacksonFeistelSchemes.In:Boyd,C.(ed.)ASIACRYPT 2001.LNCS,vol.2248,pp.222–238.Springer,Heidelberg(2001)

Another random document with no related content on Scribd:

*** END OF THE PROJECT GUTENBERG EBOOK AMERICAN INDIAN WEEKLY VOL. 1, NO. 2 ***

Updated editions will replace the previous one—the old editions will be renamed.

Creating the works from print editions not protected by U.S. copyright law means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg™ electronic works to protect the PROJECT GUTENBERG™ concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for an eBook, except by following the terms of the trademark license, including paying royalties for use of the Project Gutenberg trademark. If you do not charge anything for copies of this eBook, complying with the trademark license is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. Project Gutenberg eBooks may be modified and printed and given away—you may do practically ANYTHING in the United States with eBooks not protected by U.S. copyright law. Redistribution is subject to the trademark license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase “Project Gutenberg”), you agree to comply with all the terms of the Full Project Gutenberg™ License available with this file or online at www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg™ electronic works

1.A. By reading or using any part of this Project Gutenberg™ electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg™ electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg™ electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg™ electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg™ electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg™ electronic works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation (“the Foundation” or PGLAF), owns a compilation copyright in the collection of Project Gutenberg™ electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg™ mission of promoting free access to electronic works by freely sharing Project Gutenberg™ works in compliance with the terms of this agreement for keeping the Project Gutenberg™ name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg™ License when you share it without charge with others.

1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg™ work. The Foundation makes no representations concerning the copyright status of any work in any country other than the United States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg™ License must appear prominently whenever any copy of a Project Gutenberg™ work (any work on which the phrase “Project Gutenberg” appears, or with which the phrase “Project

Gutenberg” is associated) is accessed, displayed, performed, viewed, copied or distributed:

This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

1.E.2. If an individual Project Gutenberg™ electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase “Project Gutenberg” associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg™ trademark as set forth in paragraphs 1.E.8 or 1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg™ License for all works posted with the permission of the copyright holder found at the beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg™ License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg™ License.

1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg™ work in a format other than “Plain Vanilla ASCII” or other format used in the official version posted on the official Project Gutenberg™ website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original “Plain Vanilla ASCII” or other form. Any alternate format must include the full Project Gutenberg™ License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg™ works unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg™ electronic works provided that:

• You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg™ works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg™ trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information

about donations to the Project Gutenberg Literary Archive Foundation.”

• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.

• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.

• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other

medium, a computer virus, or computer codes that damage or cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGESExcept for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH

1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project

Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form

accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and

distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.