Comprehensive energy systems 1st edition canan acar - The ebook is available for online reading or e

Page 1


Comprehensive Energy Systems 1st Edition Canan Acar

Visit to download the full and correct content document: https://textbookfull.com/product/comprehensive-energy-systems-1st-edition-canan-ac ar/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Energy Storage: Systems and Components 1st Edition

Alfred Rufer

https://textbookfull.com/product/energy-storage-systems-andcomponents-1st-edition-alfred-rufer/

Advances in Energy Systems Engineering 1st Edition

Georgios M. Kopanos

https://textbookfull.com/product/advances-in-energy-systemsengineering-1st-edition-georgios-m-kopanos/

Smart Energy Control Systems for Sustainable Buildings 1st Edition John Littlewood

https://textbookfull.com/product/smart-energy-control-systemsfor-sustainable-buildings-1st-edition-john-littlewood/

Handbook of Energy Systems in Green Buildings 1st Edition Ruzhu Wang

https://textbookfull.com/product/handbook-of-energy-systems-ingreen-buildings-1st-edition-ruzhu-wang/

Design and Optimization of Biogas Energy Systems 1st Edition Prashant Baredar

https://textbookfull.com/product/design-and-optimization-ofbiogas-energy-systems-1st-edition-prashant-baredar/

Modular Systems for Energy Usage Management 1st Edition

Yatish T. Shah

https://textbookfull.com/product/modular-systems-for-energyusage-management-1st-edition-yatish-t-shah/

Low Carbon Energy Supply Technologies and Systems 1st Edition Atul Sharma

https://textbookfull.com/product/low-carbon-energy-supplytechnologies-and-systems-1st-edition-atul-sharma/

Energy Efficient Computing Electronics Devices to Systems Devices Circuits and Systems 1st Edition

Santosh K. Kurinec

https://textbookfull.com/product/energy-efficient-computingelectronics-devices-to-systems-devices-circuits-and-systems-1stedition-santosh-k-kurinec/

Simulation Approach Towards Energy Flexible Manufacturing Systems 1st Edition Jan Beier (Auth.)

https://textbookfull.com/product/simulation-approach-towardsenergy-flexible-manufacturing-systems-1st-edition-jan-beier-auth/

1.1 EnergyUnits,Conversions,andDimensionalAnalysis

İlhamiYıldızandYuLiu, DalhousieUniversity,Halifax,NS,Canada

r 2018ElsevierInc.Allrightsreserved.

1.1.1Introduction

1.1.2.3DerivedQuantities3

1.1.2.4MultiplesandSubmultiplesofQuantities3 1.1.2.5TypesofQuantityEquations4

1.1.5.5UseofSymbolsforMathematicalOperations9

Nomenclature

aAtto

a Index;acceleration,ms 2;constant,2897 mmK

AUnitofelectriccurrent,ampere;area,m2

b Index

BtuBritishthermalunit

cCenti

c Index;speedoflight,3 108 ms 1

CUnitofelectriccharge,coulomb;Celsius

C Specificheat,Jkg 1 K 1 orBtulbm 1 1F 1

cdLuminousintensityunit

dDeci

daDeka

EExa

E Energy,JorBtuh 1

fFemto

FFahrenheit

F Force,Norlbf

g Gravitationalacceleration,ms 2

GGiga

hHecto

h Height,m;pumphead,m;enthalpy,Jkg 1 ,

heattransfercoefficient,Wm 2 K 1 orBtuh 1

ft 2 1F 1;Planck’sconstant,6 626 10 34 Js

hpUnitofpowerinI–P,horsepower

I Radiant fluxdensity,Wm 2 orBtuh 1 ft 2

JUnitofenergyandwork,joule

kKilo

k Dimensionlesscoefficient,thermal conductivity,Wm 1 K 1 orBtuh 1 ft 1 1F 1

kgUnitofmass,kg

kWhUnitofenergy,kilowatt-hour( ¼ 3.6MJ)

KUnitofthermodynamictemperature

l Length,morft

LLength

mMilli

m Unitoflength,m;mass,kgorlbm

m Mass flowrate,kgs 1

MMega;mass

molUnitofamountofsubstance,mol nNano

NUnitofforce,newton pPico

p Pressure,Paorlbf

PPeta

P Power,WorBtuh 1

PaUnitofpressure,pascal

r Radius,m

R Thermalresistance,m2 KW 1 orhft2 1FBtu 1

radUnitofplaneangle,radian

s Entropy,Jg 1 orBtulbm 1

srUnitofsolidangle,steradian

TTera;time,s;temperature, 1C, 1F,K,orR

thermUnitofheatenergy,105.5MJor100,000Btu

tonRefrigerationton,12,000Btuh 1 or3.52kW

U Thermaltransmittance,Wm 2 K 1 orBtuh 1 ft 2 1F 1

VUnitofelectricpotential,potentialdifference, andelectromotiveforce,volt

V Volume,m3 orft3

Greekletters

D Difference

F Pump power,Worhp

Z Conversionef ficiency,%

l Wavelength, mm

m Micro

m Dynamicviscosity,Pas

Subscripts

w Width WUnitofpower,watt W Work x Distance,morft yYocto YYotta zZepto ZZetta

n Kinematicviscosity,m2 s 1;speci ficvolume, m 3 kg 1 orft3 lbm 1;frequency,cycles

s 1 ¼ hertz ¼ Hz

y Pumppower,Worhp

r Density,kgm 3 orlbm ft 3

O Unitofelectricresistance,ohm

bkBreakpower fl Fluid power keKineticenergy maxMaximum pPump;constantpressure pePotentialenergy vConstantvolume

Superscripts 1 Degree 0 Minute(angle)

1.1.1Introduction

Second(angle)

Whendealingwithengineeringandscientificrelationships,inordertoappreciatethemagnitudesofphysicalquantities,itis essentialtohaveasolidgraspofunits,andrecognizetwotypesofequations,namely,quantityequationsandnumerical equations.Bothtypesarefoundintextsandreferencebooks,andtheconceptofunitsandquantitiesisusefulinunderstanding theirrespectivefeatures.Inthischapter,wecoverthemainfeaturesofquantitiesandquantityequations,andprovidethemost importantunitsandconversionsrelatingtoenergy.Quantityequationsarealsocalledequationsbetweenquantities,orphysical equations.And,numericalequationsarealternativelycalledmeasureequations.Wealsointroducethetechniqueofdimensional analysis,whichisusedtoderivebasicphysicalrelationshipswithoutperformingafullanalysisofasystem.

1.1.2Quantities

In1954,the10thgeneralconferenceonweightsandmeasures(CGPM)decidedthataninternationalsystemshouldbederived fromsixbaseunitstoprovideforthemeasurementoftemperatureandopticalradiationinadditiontomechanicalandelectromagneticquantities.Sixbaseunitsrecommendedatthisconferencewerethemeter,kilogram,second,ampere,degreeKelvin (laterrenamedkelvin),andcandela.In1960,the11thCGPMnamedthesystemtheInternationalSystemofUnits,SIfromthe Frenchname,LeSystèmeInternationald'Unités [1].Later,theseventhbaseunit,themole,wasaddedin1971bythe14thCGPM [2].SIisthemodernformofthemetricsystem,andtodayisthemostwidelyusedmeasurementsystem.

Therefore,theInternationalSystemofQuantities(ISQ)isnowasystembasedonsevenbasequantities:length,mass,time, thermodynamictemperature,electriccurrent,luminousintensity,andamountofsubstance.Otherquantities,suchasarea,pressure, andelectricalresistanceareallderivedfromthesebasequantities.TheISQdefinesquantityasanyphysicalpropertythatcanbe measuredwiththeSIunits [3].Aquantitymayalsobeaphysicalconstant,suchasthegasconstant,orthePlanck’ s constant.Several hundredquantitiesareemployedtodescribeandmeasurethephysicalworld,andafewofthesequantitiesarelistedbelow [4]:

1.1.2.1RelationshipBetweenQuantities

Thestudyofphysicstoagreatextentcanbedefinedasthestudyofmathematicalrelationshipsamongvariousphysicalproperties.

Physicalquantitiesaredefined,asabove,whenthesepropertiesallowareasonablemathematicaldescription.Therelationshipof allotherquantitiescanbeestablishedintermsofafewbasequantitiesselectedproperly,eitherbydefinition,bygeometry,by physicallaw,orbyacombinationofthebasequantities.

Forinstance,pressureisaquantitythatisrelated,bydefinition,toaquantityforcedividedbyaquantityarea.Area,onthe otherhand,isaquantityrelated,bygeometry,totheproductoftwoquantitiesoflength.Moreover,forceisaquantityrelated(by Newton’ssecondlaw)tothequantitymasstimesthequantityacceleration.

Therelationshipsbetweenquantitiesareexpressedintheformofquantityequations.Wecanrelateevenanisolatedquantity, suchastemperaturetothequantitiespressure,volume,andmass.Wecanfurtherrelatethequantitieslengthandtimebyusingthe universalconstantandthespeedoflight.Therefore,ifwedefineourconceptscorrectly,wecanrelateanyquantitytoanyother quantity.Thustheequationarea ¼ length widthisaquantityequation,whichstatesthatthequantity(areaofarectangle)is equaltothequantity(length)timesthequantity(width).

1.1.2.2BaseQuantities

Inordertoreduceasetofquantityequations,wehaveto firstestablishanumberofso-calledbasequantities.Hence,base quantitiesarecalledthebuildingblocksuponwhichwedeveloptheentirestructureandrelationshipsofthephysicalworld.As mentionedearlier,theinternationalsystemofunits,orSI,makesuseofsevenbasequantities:mass(kg),length(m),time(s), temperature(K),electriccurrent(A),luminousintensity(cd),andamountofsubstance(mol).Thenumberofbasequantities,as wellastheirchoice,isquiteanarbitrarychoice;but,generally,weselectquantitiesthatareeasytounderstandandfrequentlyused, andforwhichaccurateandmeasurablestandardscanbeestablished.

1.1.2.3DerivedQuantities

Asmentionedintherelationshipsectionearlier,usingtheselectedbasequantitiesasbuildingblocks,derivedquantitiesare expressedasthosethatcanbedeductedbydefinition,geometry,orphysicallaw.Somederivedquantityexamplesarearea(equals theproductsoftwolengths),velocity(equalslength/time),andforce(equalsmass acceleration),pressure,power,etc.Wealso havewhatarecalledsupplementaryunits(asaclassofderivedunits),namely,theplaneangle(radian ¼ rad ¼ mm 1)andsolid angle(steradian ¼ sr ¼ m 2 m 2).

1.1.2.4MultiplesandSubmultiplesofQuantities

Notethatthemagnitudeofaquantitycanhaveanextremelylargerange.Inanefforttohandlesuchalargerange,theSIunit systemgenerated20prefixesshownin Table1

Table1 MultiplesandsubmultiplesinSIunitsystem

Prefix SymbolMultiplierExample

YottaY1024 5Ym ¼ 5yottameters ¼ 5 1024 m

ZettaZ1021 2Zm ¼ 2zettameters ¼ 2 1021 m

ExaE1018

7Em ¼ 7exameters ¼ 7 1018 m

PetaP1015 6PJ ¼ 6petajoules ¼ 6 1015 J

TeraT1012 5TW ¼ 5terawatts ¼ 5 1012 W

GigaG109 8GJ ¼ 8gigajoules ¼ 8 109 J

MegaM106 2MW ¼ 2megawatts ¼ 2 106 W

Kilok103 3km ¼ 3kilometers ¼ 3 103 m

Hectoh1006hL ¼ 6hectoliters ¼ 600L

Dekada102dam ¼ 2decameters ¼ 20m

Decid10 1 3dL ¼ 3deciliters ¼ 0.3L

Centic10 2 5cm ¼ 5centimeters ¼ 0.05m

Millim10 3 9mV ¼ 9millivolts ¼ 9 10 3 V

Micro m 10 6 5 mm ¼ 5micrometers ¼ 5 10 6 m

Nano n10 9 2ns ¼ 2nanoseconds ¼ 2 10 9 s

Picop10 12 3pJ ¼ 3picojoules ¼ 3 10 12 J

Femtof10 15 6fm ¼ 6femtometers ¼ 6 10 15 m

Attoa10 18 5aJ ¼ 5attojoules ¼ 5 10 18 J

zeptoz10 21 6zJ ¼ 6zeptojoules ¼ 6 10 21 J

yoctoy10 24 8yJ ¼ 8yoctojoules ¼ 8 10 24 J

1.1.2.5TypesofQuantityEquations

Theenergyofwind,thepressureatthebottomofanairorwatercolumn,theweightofanobject,andtheviscosityofaliquidare allphysicalquantitiesofnature.And,whethertheyaremeasuredornot,thesequantitiesarealwaysthereinteractingwitheach otheraccordingtofundamentallaws.Physicistsoftenexpresstheselawsintermsofquantityequationsbecausequantities conformtotheselaws.Quantityequationspossesstwoimportantfeatures: first,theyshowtherelationshipbetweenquantities, andsecond,theycanbeusedwithanysystemofunits.

Therearethreebasictypesofquantityequations:

1. Quantityequationsdevelopedfromthelawsofnature;forinstance,Newton’ssecondlawofmotion F ¼ ma

where F isthemagnitudeoftheforce, m isthemagnitudeofthemass,and a isthemagnitudeoftheacceleration.

2. Quantityequationsdevelopedfromgeometry;forinstance,areaofacircle

where A isthemagnitudeofthearea, p isthecoefficientbasedonthegeometryofacircle,and r isthemagnitudeoftheradius.

3. Quantityequationsdevelopedfromadefinition;forinstance,definitionofpressure

where p isthemagnitudeofthepressure, F isthemagnitudeoftheforce,and A isthemagnitudeofthearea.

Manyquantityequationscanbedevelopedasacombinationofthebasicquantityequationsgivenabove,andinallcases,we canuseanyunitswewanttodescribethemagnitudesoftherelevantphysicalquantities.

1.1.3DimensionalAnalysis

Dimensionalanalysisisquiteausefulmethodforderivinganalgebraicrelationshipbetweendifferentphysicalquantities,which reliesongoodphysicalintuitioninchoosingthedifferentappropriatephysicalvariables.Theideabehindthisanalysisisthateach variableisexpressedintermsofitsfundamentalunitsofmass M,length L,andtime T,etc.,raisedtosomearbitraryindex a,b,c, etc.Theseunknownindicesarethendeterminedbyequatingtheindicesoflikeunits [5].Onemightalsochooseforce,length,and mass asthebasedimensions,withassociateddimensions F, L, M,whichcorrespondstoadifferentbasis.Itmaysometimesbe usefultochooseoneoranotherextendedsetofdimensionalsymbols.Inelectromagnetism,forinstance,itmaybeadvantageous tousedimensionsof M, L, T,and Q,where Q isusedtorepresentthedimensionofelectriccharge.Anotherexampleisthat,for instance,inthermodynamics,thebasesetofdimensionsisoftenextendedtoincludeadimensionfortemperature, Y

Let’snowperformasimpledimensionalanalysisto findanexpressionforthehydrostaticpressureina fluid.Thehydrostatic pressureisdependentonthedensity r,thegravitationalacceleration g,anddepth h.Now,let’sassumeageneralalgebraicequation intheformof

where k isacoefficient(dimensionless),and a,b, and c aretheindices(numbers)tobedetermined.Now,wecanreplaceeach symbolbyitsfundamentalphysicalunit,andhave

or

M, L,and T areallindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowingequations

Thenwecansolveforand findthat a ¼ b ¼ c ¼ 1;consequently,theexpressionforhydrostaticpressurecanbefound as p ¼ k r gh, wherethecoefficient k cannotbedeterminedfromdimensionalanalysisbecauseitisdimensionless. Moredimensionalanalysisexamplesareprovidedintheexamplessectionlater.

1.1.4UnitsandConversions

Thissection,asmodifiedafterASHRAE [6,7],referencestheStandardforMetricPractice,ASTMStandardE380-84 [8], asoneof the basicstandardsforSIusage [9–13] Table2 providesconversionfactorsroundedtothreeorfoursigni ficant figures for conversionbetweenSIandI–P.And Table3 providesconversionfactorsfordifferentphysicalquantitiesrelatedtoenergyfurther.

Table2

SIenergyrelatedunitsandconversions

Divide By Toobtain

Divide ByToobtain

ha 0.405acre J 1.36ft lbf (work)

kPa 100barJkg 1 2.99ft lbf lb 1 (specificenergy)

L 159barrel(42USgal,petroleum) W 0.0226ft lbf min 1 (power)

m3 0.159 L 3.79gallon(US,231in3)

kJ 1.055Btu,ITm3 0.00379gallon

kJm 3;JL 1 37.3Btuft 3 mLs 1 1.05gph kJL 1 0.279Btugal 1 Ls 1 0.0631gpm

W(mK) 1 1.731 Btufth 1 ft3 1FmLJ 1 0.0179gpmton 1 refrigeration Btuin(hft3 1F) 1 g 0.0648grain(1/7000lb)

W(mK) 1 0.144 (thermalconductivity,k) mgL 1 17.1grgal 1

W(m 1C) 1 gkg 1 0.143grlb 1 W 0.293Btuh 1 kW 9.81horsepower(boiler)

kJm 3 11.4Btuft 2 kW 0.746horsepower(550ft-lbf s 1)

GJ(ym2) 1 0.0000114 Btu(yft2) 1 mm 25.4a inch

Toobtainby Multiply Toobtain byMultiply

Wm 2 3.15Btu(hft2) 1 kPa 3.38inofmercury(60 F)

W(m2 K) 1 5.68 (overallheattransfercoef., U) Pa 249inofwater(60 F) (thermalconductance, C) mmm 1 0.833in/100ft,thermalexpansion

kJkg 1 2.33Btulb 1 mNm 113in lbf (torqueormoment)

kJ(kgK) 1 4.19 Btu(lb 1F) 1 (specificheat, C) mm2 645in2

kJ(kg 1C) 1 mL 16.4in3 (volume)

m3 0.0352bushel mLs 1 0.273in3 min 1 (SCIM) J 4.19calorie,grammm3 16,400in3 (sectionmodulus)

kJ 4.19calorie,kilogram;kilocaloriemm4 416,000in4 (sectionmoment)

mPa s 1.00a centipoise,viscosity, m ms 1 0.278kmh 1 (absolute,dynamic) MJ 3.60a kWh

mm2 s 1 1.00a centistokes,kinematicviscosity, n GJ(y m2) 1 0.0388 kWh(yft2)

Pa 0.100a dynecm 2 JL 1 2.12kWh/100cfm

W44.0EDRhotwater(150Btuh 1) N 9.81kilopond(kgforce)

W 70.3EDRstream(240Btuh 1) kN 4.45kip(1000lbf)

COP 0.293EERMPa6.89kipin 2 (ksi)

m 0.3048a ft m3 0.001a liter

mm304.8a ft mPa 133micronofmercury(60oF)

ms 1 0.00508ftmin 1,fpm km 1.61mile

ms 1 0.3048a fts 1,fps km 1.85mile/nautical

kPa 2.99ftofwater kmh 1 1.61mph

kPam 1 0.0981ftofwaterper100ftpipe ms 1 0.44mph

m2 0.0929ft2 kPa 0.100a millibar

m2 KW 1 kPa 0.133mmofmercury(601F)

m2 1CW 1 0.176ft2 h 1FBtu 1 Pa 9.80mmofwater(601F) (thermalresistance, R) kPa 9.80meterofwater

mm2 s 1 92900ft2 s 1,kinematicviscosity, n g28.3ounce(mass,avoirdupois)

L 28.3ft3 N 0.278ounce(forceorthrust)

m3 0.0283ft3 mL 29.6ounce(liquid,US)

mLS 1 7.78ft3 h 1,cfh mN m 7.06ounceinch(torqueormoment)

1. Ls 1 0.472ft3 min 1,cfm gL 1 7.49ounce(avoirdupois)pergallon

Ls 1 28.3ft3 s 1,cfs ng(s m2 Pa) 1 57.4 perm(permeance)

N m 1.36ft lbf (torqueormoment)

mL 473pint(liquid,US)

ng(s m Pa) 1 1.46 perminch(permeability)

kgm 3 16.0lbft 3 (density, r) pound

kgm 3 120lbgallon 1

kg 0.454lb(mass) mgkg 1 1.00a ppm(bymass)

g 454lb(mass) kPa 6.89psi

N 4.45lbf (forceorthrust) EJ 1.055quad

kgm 1 1.49lbft 1 (uniformload) L 0.946quart(liquidUS)

mPas 0.413lbm (ft h) 1 viscosity m2 9.29square(100sqft) (absolute,dynamic, m) mL 15tablespoon(approximately)

mPas 1490lbf (ft s) 1 viscosity mL 5teaspoon(approximately) (absolute,dynamic, m) MJ 105.5therm(US)

gs 1 0.126lbh 1 t(tonne);Mg 1.016 ton,long(2240lb)

kgs 1 0.00756lbmin 1 t(tonne);Mg 0.907 ton,short(2000lb) (Continued )

Table2 Continued

Divide By Toobtain Divide ByToobtain

kW 0.284lbofsteamperhour@2121FkW3.52ton,refrigeration(12,000Btuh 1) (1001C) Pa 133torr(1mmHg@01C)

Pa 47.9lbf ft 2 Wm 2 10.8wattpersquarefoot mPas47900lbf sft 2 viscosity m 0.9144a yd (absolute,dynamic, m) m2 0.836yd2 kgm 2 4.88lbft 2 m3 0.765yd3

Toobtainby Multiply Toobtain byMultiply aConversionfactorisexact.

Abbreviation:COP,coefficientofperformance;EDR,equivalentdirectradiation;EER,energyefficiencyratio;SCIM,standardcubicinchesperminute.

1.1.4.1UsefulUnitsinElectricity

1.1.4.1.1Coulomb

Inanelectriccircuit,theunitofelectricchargeinSIisthecoulomb,andhasthesymbolC.Anampere,whichhasthesymbolofA, isdefinedastheamountofchargetransportedthroughanycross-sectionofaconductorinonesecondbyaconstantcurrentofone ampere,andisequivalenttotheamountofchargeonabout6,241,510,000,000,000,000electrons.

1.1.4.1.2Volt

Inanelectriccircuit,theunitofelectricpotential,potentialdifference,andelectromotiveforceinSIisthevoltandhasthesymbol V.Ifandwhenweconsiderourhousewiringasplumbing,voltscanthenbeconsideredasameasureofthewaterpressure.One voltisthepotentialdifferencebetweentwopointsonaconductorwhenthecurrent flowingisoneampereandthepower dissipatedbetweenthepointsisonewatt.

Thevoltisaderivedunit,andintermsofbaseunitsitcanbeexpressedasfollows:

1.1.4.1.3Watt

Inanelectriccircuit,onewatt(joulespersecond)isacurrentofoneampereatapressureofonevolt.Intermsofbaseunits, Watt ¼ Js 1

1.1.4.1.4Ohm

Inanelectriccircuit,theunitofelectricalresistance(aderivedunit)inSIiscalledanohmandhasthesymbolof O.Oneohmis definedastheelectricalresistancebetweentwopointsonaconductorwhenaconstantpotentialdifferenceofonevolt,appliedto thesepoints,producesintheconductoracurrentofoneampere.Ohmisaderivedunit,andintermsofbaseunitsitcanbe expressedasfollows:

1.1.5RulesforUsingSIUnits

1.1.5.1Capitalization

Thenamesofunitsstartwithalowercaseletterwhenwritingtheunitsoutexceptforinatitleorthebeginningofasentence.The onlyexceptionis “degreeCelsius.” Unlesstheycomefromanindividual'sname(inwhichcasethe firstletterofthesymbolis capitalized),lowercaseisusedinwritingsymbolsforunits.TheonlyexceptionisLforliter.Symbolsfornumericalprefixes (multiplesandsubmultiples)arealsolowercase,exceptforthoserepresentingmultipliersof106 ormore,forinstance,mega(M), giga(G),tera(T),peta(P),exa(E),zetta(Z),andyotta(Y).Itmeansthatallprefixesarewritteninlowercasewhenspelledout. Lowercaseunits:m,kg,s,mol,etc. Uppercaseunits:A,K,Hz,Pa,C,etc. Symbolsratherthanself-styledabbreviationsshouldalwaysbeusedtorepresentunits. Correctusage:A,s. Incorrectusage:ampsec

1.1.5.2UseofPlurals

Rememberthatsymbolsareneverexpressedasplural.Thatis,an “ s ” isneveraddedtothesymboltodenoteplural.However, whenthenamesofunitsarespelledout,theyaremadepluralifthenumbertowhichtheyreferisgreaterthan1.Fractions,onthe otherhand,arealwayswrittenassingular.Pluralsareusedasrequiredwhenwritingunitnames.Forexample,henriesispluralfor henry.Thefollowingexceptionsarenoted:

Table3 Continued

10,000859810.23881761.1 41,86936,0004.186917373.5 5.67834.88235.6783

Singular:lux,hertz,siemens Plural:lux,hertz,Siemens

Example1: Correctandincorrectusages

Correctusage Incorrectusage 5kg 5kgs 5kilograms 5kilogram

5.57kg –

5.57kilograms 5.57kilogram

0.57kilogram 0.57kilograms

1.1.5.3UseofHyphenationandSpace

Alsorememberthatahyphenoraspaceisnotusedtoseparateaprefixfromthenameoftheunit.Aspace,however,isleft betweenasymbolandthenumbertowhichitrefers,withtheexceptionofthesymbolsfordegree,minute,andsecondofangles, andfordegreeCelsius.

Inthreecasesthe finalvowelintheprefixisomitted:megohm,kilohm,andhectare.

Example2: Correctandincorrectusages

Correctusage Incorrectusage

1.1.5.4UseofNumeralsandPeriods

Rememberthatscienti ficandtechnicalwritingisdifferentfromanyotherwritings,suchasnewspaper,magazine,andother writings.Inscientificandtechnicalwriting,numeralsareusedforallnumbersexpressingphysicalquantities;however,itisa commonpracticetowriteoutthenumbersfromonetonineandusenumeralsforothernumbersinnewspapers.Inordinary booksandmagazines,forinstance,wholenumbersfromonethroughninety-nine,andanyofthesefollowedby “hundred,” “thousand,”“million,”“billion,” etc.,arespelledout.Also,keepinmindthattheassociatednumberiswrittenasnumeralswhen theunitisrepresentedbyanabbreviationorsymbol.

PeriodsareneverusedafterSIsymbolsunlessthesymbolisattheendofasentence.

1.1.5.5UseofSymbolsforMathematicalOperations

Unitsarerepresentedbysymbols,notbytheirspelled-outnames,whentheunits(SI)areusedwithsymbolsformathematical operations.

Notestoremember

1.Whenwritingunitnamesasaproduct,alwaysuseaspace(preferred)orahyphen.

Correctusage:newtonmeterornewton-meter

2.Whenexpressingaquotientusingunitnames,alwaysusethewordperandnotasolidus(/).Thesolidusorslashmarkis reservedforusewithsymbols.

Correctusage:meterpersecond Incorrectusage:meter/second

3.Whenwritingaunitnamethatrequiresapower,useamodifier,suchassquaredorcubed,aftertheunitname.Forareaor volume,themodifiercanbeplacedbeforetheunitname.

Correctusage:millimetersquaredorsquaremillimeter

4.Whendenotingaquotientbyunitsymbols,anyofthefollowingareacceptedform:

Correctusage:m/sorms 1

Inmorecomplicatedcases,considerusingnegativepowersorparentheses.Foracceleration,usem/s2 orms 2 butnotm/s/s. Forelectricalpotential,usekg.m2/(s3 A)orkgm2 s 3 A 1 butnotkgm2/s3/A.

Example3: Correctandincorrectusages

Correctusage

Jkg 1

Jkg 1

1.1.6OverallExamples

Example4: Area

Incorrectusage

jouleskg 1 joulesperkilogram joules/kilogram

N.m newton.meter

newtonmeter newton-meter

Find:ShowtheunitofareainSI,andperformdimensionalanalysis.

Solution:

Areaequationisaquantityequationarisingfromgeometry;forexample,theareaequationforapipeisexpressedasfollows:

where A isthemagnitudeofareainm2,themagnitudeof p is3.14(dimensionless),and r isthemagnitudeofradiusinm.

Orinanotherexample,theareaforarectangleisexpressedasfollows:

where A isthemagnitudeofareainm2, w isthemagnitudeofwidthinm,and l isthemagnitudeoflengthinm.

Let’snowperformasimpledimensionalanalysisto findanexpressionforthearea.Theareaisdependentonthedimensionless number p andtheradius.So,

¼ kr a

where k isadimensionlessnumber,and a isthenumbertobedetermined.Now,wecanreplaceeachsymbolbyitsfundamental physicalunit,andhave L2 ¼ La

L isanindependentquantity;thereforewecanequatetheindicesonbothsides,andhavethefollowingequation

a ¼ 2

Consequently,theexpressionfortheareacanbefoundas A ¼ kra, wherethecoefficient k cannotbedeterminedfrom dimensionalanalysisbecauseitisdimensionless;however,fromgeometry,weknowthat k ¼ p Example5: Volume

Find:ShowtheunitofvolumeinSIandperformdimensionalanalysis.

Solution:

Volumeequationisaquantityequationarisingfromgeometry;forexample,thevolumeequationforapipeisexpressedasfollows:

Volume V ðÞ¼ pr 2 L

¼ p m2 m ðÞ

Volume V ðÞ¼ m3

where V isthemagnitudeofvolumeinm3,themagnitudeof p is3.14(dimensionless),and r isthemagnitudeofradiusinm.

Orinanotherexample,thevolumeforarectangularcross-sectionisexpressedasfollows:

Volume V ðÞ¼ w l h ¼ m m m

Volume V ðÞ¼ m3

where V isthemagnitudeofvolumeinm3, w isthemagnitudeofcross-sectionalwidthinm, l isthemagnitudeofcross-sectional lengthinm,and h isthemagnitudeofheight.

Let’snowperformadimensionalanalysisto findanexpressionforthevolumehavingatubularcross-sectionalarea.The volumeisdependentonthedimensionlessnumber p,theradius,andlengthofthetube.So,

V ¼ kr a Lb

where k isadimensionlessnumber,and a and b arethenumberstobedetermined.Now,wecanreplaceeachsymbolbyits fundamentalphysicalunit,andhave

L3 ¼ La Lb

L isanindependentquantity;wecanthereforeequatetheindicesonbothsides,andhavethefollowingequation a þ b ¼ 3

Intheearlierexample,itwasdeterminedthat a ¼ 2,sothisleaves b ¼ 1.Consequently,theexpressionforthevolumecanbe foundas V ¼ kra Lb,wherethecoefficient k cannotbedeterminedfromdimensionalanalysisbecauseitisdimensionless;however, fromgeometry,weknowthat k ¼ p;therefore, V ¼ kr2 L

Example6: Volume

Find:Determinetheunitofvolume(m3)inSIforagivenvolumeinI–Psystem.

Solution:

VolumeunitinI–Psystemisft3 andrememberthat1ft ¼ 0.3048m;then

Volume V ðÞ¼ ft 3 0 3048 m=1ft ðÞ3

Volume V ðÞ¼ 0 028317 m3

Example7: Mass

Find:Determinetheunitofmass(kg)inSIforagivenmassinI–Psystem.

Solution:

MassunitinI–Psystemislbm andrememberthat1lbm ¼ 0.45359kg;then

Mass m ðÞ ¼ lbm 0 45359kg =1lbm ðÞ

Mass m ðÞ¼ 0 45359 kg

Example8: Force

Find:Showthattheunitofforceisnewton(N)inSI,andperformdimensionalanalysis.

Solution:

TheunitofforceinSI,definedasthatforce,whichappliedtoamassof1kg,givesitanaccelerationof1ms 1.Newton’ s secondlawofmotion,aquantityequationestablishedfromthelawsofnature,isexpressedas:

Force F ðÞ¼ mass acceleration ¼ ma ¼ kg ðÞ ms 2 ¼ kgms 2

Force F ðÞ¼ N

where m isthemagnitudeofmassinkg, a isthemagnitudeofaccelerationinms 2,and F isthemagnitudeofforceinN. Theforceisdependentonthemassandtheacceleration.Now,let’sassumeageneralalgebraicequationforforceintheformof F ¼ ma ab

where a and b aretheindices(numbers)tobedetermined.Now,wecanreplaceeachsymbolbyitsfundamentalphysicalunit,andhave

or

M, L,and T areallindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowingequations 1 ¼ a and1 ¼ b

Then,wecansolveforand findthat a ¼ b ¼ c ¼ 1;consequently,theexpressionforforcecanbefoundas F ¼ ma.

Example9: Force

Find:Showthattheunitofforceisnewton(N)inSIforagivenforceinI–Psystem

Solution: ForceunitinI–Psystemislbf andrememberthat1lbm ¼ 0.45359kg,1ft ¼ 0.3048m,andgravitationalacceleration g is32.174 lbm s 2;then Force F ðÞ¼ 1lbf ¼ 1lbm 32

Force F ðÞ¼ 4 45 kgms 2 ¼ 4 45 N where g isthemagnitudeofgravitationalacceleration,and F isthemagnitudeofforce. NotethatinI–Psystem,anaccelerationof9.80665ms2 correspondsexactlyto32.174048fts2 asshownbelow: g ¼ 9 80665ms2 100cm=1m ðÞ= 12in=1ft ðÞ= 2 54cm=1in ðÞ¼ 32 174048fts2

Example10: Pressure

Find:Showtheunitofpressure(pascal)inSI,andperformdimensionalanalysis.

Solution:

Insolids,wedealwithstresses;inliquidsandgases,however,wedealwithpressure,whichisdefinedasthenormalcomponent offorceperunitarea.Thereforetheunitforpressureisaderivedunit,andhasthesymbolPa(pascal)inSI.Onepascalisthe pressureresultingfromaforceof1Nactinguniformlyoveranareaof1m2.So,thepressureequationisaquantityequation establishedfromadefinition,whichisexpressedasfollows:

ðpÞ¼ force=area ¼ F =A ¼

p ðÞ¼ Pa where F isthemagnitudeofforce(themasstimestheacceleration)innewton(N),and A isthemagnitudeofareainm2.

Thepressureisdependentonthemass,thegravitationalacceleration,andthearea.Now,let’sassumeageneralalgebraic equationforpressureintheformof

where a,b, and c aretheindices(numbers)tobedetermined.Now,wecanreplaceeachsymbolbyitsfundamentalphysicalunit, andhave

or

M, L,and T areallindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowingequations

Then,wecansolveforand findthat a ¼ b ¼ c ¼ 1;consequently,theexpressionforpressurecanbefoundas p ¼ (mg)/A.

Example11: Pressure

Find:Showthattheunitofpressureispascal(Pa)inSIforagivenforceinI–Psystem.

Solution:

PressureunitinI–Psystemispsi(lbf in 2),andrememberthat1lbf ¼ 4.45kgms 2 ¼ 4.45N;1in ¼ 0.0254m;then

¼ 6894 8kgðÞ ms 2 m 2

Pressure p ðÞ¼ 6894 8Pa ¼ 6 89 kPa where F isthemagnitudeofforceand A isthemagnitudeofarea.

Example12: Work

Find:Showthattheunitofworkisjoule(J)inSI,andperformdimensionalanalysis.

Solution:

TheunitofworkorenergyinSIisjoule,whichhasthesymbol,J.Thisistheworkdonewhenthepointofapplicationofaforce of1Nisdisplaced1minthedirectionoftheforce.Onewatt-secondisequalto1J.Theworkequationisthenaquantityequation establishedfromadefinition,whichisexpressedasfollows:

Work ¼ force distance ¼ mass acceleration ðÞ distance ¼ W ¼ ma Dx ¼ kg ðÞ ms 2 ðÞ m ðÞ ¼ kgms 2 ðÞm

Work ¼ Nm ¼ J where W isthemagnitudeofworkinJ, m isthemagnitudeofmassinkg,and a isthemagnitudeofaccelerationinms 2,and Dx is thedistancetraveledinm.

Theworkisdependentonthemass,theacceleration,andthedistancetraveled,forinstance.Let’snowassumethatageneral algebraicequationforworkisintheformof

W ¼ ma ab Dxc

where a,b,and c aretheindices(numbers)tobedetermined.Now,wecanagainreplaceeachsymbolbyitsfundamentalphysical unit,andhave

M, L,and T areallindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowingequations

¼ a; 1 ¼ b and1 ¼ c

Then,wecansolveforand findthat a ¼ b ¼ c ¼ 1;consequently,theexpressionforforcecanbefoundas W ¼ ma Dx

Example13: Energy

Find:Showthattheunitofenergyisjoule(J)inSI,andperformdimensionalanalysis.

Solution:

Energyisdefinedastheabilitytoperformwork,andasexpressedearlier,theunitofenergyinSIisjoule,whichhasthesymbol, J.So,theenergyequationisaquantityequationestablishedfromadefinition,whichisexpressedasfollows:

where m isthemagnitudeofmassinkg,and a isthemagnitudeofaccelerationinms 2,and Dx isthedistancetraveledinm. Inthiscase,theenergyisdependentonthemass,theacceleration,andthedistancetraveled.Let’snowassumethatageneral algebraicequationforenergyisintheformof

where a, b,and c aretheindices(numbers)tobedetermined.Now,wecanagainreplaceeachsymbolbyitsfundamentalphysical unit,andhave

or

M, L,and T areallindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowingequations

¼ a; 1 ¼ b and1 ¼ c

Then,wecansolveforand findthat a ¼ b ¼ c ¼ 1;consequently,theexpressionforenergycanbefoundas E ¼ ma Dx

Example14: Power

Find:Showthattheunitofpoweriswatt(W)inSI,andperformdimensionalanalysis.

Solution:

TheunitofpowerinSIiswattandhasthesymbol,W.Powerisdefinedastherateatwhichenergyisexpendedorworkdone. Thewattinthermodynamicsisdefinedas “thepowerwhichin1sgivesrisetoenergyofonejoule.” Inmechanicalterms,however, apowerofonewattcanmoveamassof1kgin1s,throughadistanceofonemeterwithsuchforcethatthekilogrammass’ s velocityattheendofthemeterwillbe1ms 1 greaterthanitwasatthebeginning.Inanelectriccircuit,ontheotherhand,one wattisacurrentofoneampereatapressureofonevolt.So,thepowerequationisaquantityequationestablishedfroma definition,whichisexpressedasfollows:

Power ¼ work =time; orenergygeneration=time; orenergyconsumption=time

SincetheunitofworkorenergyisJ,then

Power ¼ J s 1 ¼ W ¼ P ¼ Et 1 ¼ energy =time ¼ ma Dxt 1 where t isthetimeinseconds.Inthiscase,thepowerisdependentonthemass,theacceleration,thedistancetraveled,andthe timetakentotravel.Let’snowassumethatageneralalgebraicequationforpowerisintheformof

where a, b,and c aretheindices(numbers)tobedetermined.Now,wecanreplaceeachsymbolbyitsfundamentalphysicalunit, andhave

or

M, L,and T areallindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowingequations

Then,wecansolveforand findthat a ¼ b ¼ c ¼ 1;consequently,theexpressionforpowercanbefoundas P ¼ F Dxt 1 ¼ ma Dxt 1

Example15: Volt

Find:Expresstheunitofvoltintermsofbaseunits.

Solution:

Asmentionedearlier,inanelectriccircuit,theunitofelectricpotential,potentialdifference,andelectromotiveforceinSIisvolt andhasthesymbolV.Onevoltisthepotentialdifferencebetweentwopointsonaconductingwirecarryingaconstantcurrentof oneampere,andthepowerdissipatedbetweenthepointsisonewatt.

Thevoltisaderivedunit,andintermsofbaseunitsitcanbeexpressedasfollows:

Example16: Radiant fluxdensity

Find:Howmanyunitsofradiant fluxdensity I (Wm 2)inSIareinagivenamountofBtuh 1 ft2?

Solution:

Radiant fluxdensityisdefinedastheamountofenergyreceivedonaunitsurfaceinunittime.

Radiantfluxdensity ðW m 2 Þ¼ðBtuh 1 ft 2 Þð1054 35JBtu 1 Þ h=3600s ðÞ ft =0 3048m ðÞ2

Radiantfluxdensity ðWm 2 Þ¼ 3 15 Wm 2

Example17: Boilerhorsepower

Find:HowmanykilowattsofpowerinSIarein1boilerhorsepower(bhp)inI–P?

Solution:

Rememberthatoneboilerhorsepoweristheenergyrateneededtoevaporate34.5lbm ofwaterat2121F(1001C)inonehour;therefore, itisequalto33,475Btuh 1.Aboilerhorsepowerisapproximately13timeslargerthanmechanicalhorsepower(engineoutput).

Alsorememberthat1Btu ¼ 1054.35J,and1h ¼ 3600s;therefore,

Boilerpower ¼ 1bhp ½ð33; 475Btuh 1 Þ=1bhp ð1054 35J=1BtuÞ 1h=3600s ðÞ

Boilerpower ¼ 9804W

Boilerpower ¼ 9 8kW

Example18: Horsepower

Find:HowmanykilowattsofpowerinSIarein1horsepower(hp)inI–P?

Solution:

Thehorsepower(hp)isaunitinI–Psystem,sometimesusedtoexpresstherateatwhichmechanicalenergyisexpended.Itwas originallydefinedas550foot-poundspersecond(ft-lbf s 1).

Rememberthat1lbf ¼ 4.45kgms 2 ¼ 4.45N,and1ft ¼ 0.3048m;then

Power ¼ð550ft lbf s 1 Þ½ 0 3048 m= 1ft ðÞð4 45kgms 2 Þ=1lbf

Power ¼ 746W

Power ¼ 0 746 kW

Example19: Refrigerationton

Find:HowmanyBtuh 1 andkWhofrefrigerationisprovidedby1tofrefrigeration?

Solution:

Rememberthat1Btu ¼ 1054.35J,1h ¼ 3600s,1lbm ice ¼ 1lbm ofliquidwater,latentheatoffusion ¼ 144Btulbm 1,and1 shortton ¼ 2000lbm

Refrigerationiscommonlyratedintons.1tofrefrigerationisthelatentheatoffusionneededtomelt1shortton(2000lbm)of icein24h.Therefore

1refrigerationton ¼ 2000lbm ice 144Btulb 1 m =24h

1refrigerationton ¼ 12; 000 Btuh 1

1refrigerationton ¼ 12; 000Btuh 1 1054 35JBtu 1 1 h=3600s ðÞ 1kJ=1000J ðÞ

1refrigerationton ¼ 3 52 kW

Example20: Energy

Find:ShowhowmanyMJofenergy1kWhisequalto.

Solution:

Rememberthat1MJofenergyisequalto106 Jofenergy,and1kWhisequalto1000Js 1.Therefore, 1kWh ¼ 1000Js 1 1h ðÞ 60min=1h ðÞ 60 s=1min ðÞ¼ 3;600;000J 1kWh ¼ 3;600;000J ðÞ = 1;000;000 J =1MJ ðÞ 1kWh ¼ 3 6MJ

Example21: Energy

Find:ShowhowmanyMJandkWhofenergy1therm(US)has.

Solution:

Thethermisaunitofheatenergyequalto100,000Btuunits.Itistheenergyequivalentofburningapproximately100ft3 (2.83m3)of naturalgas.Naturalgasmetersmeasurevolumeratherthanenergycontent;thereforenaturalgascompaniesuseathermfactortoconvert thevolumeofgasusedtoitsheatequivalent,andthencecalculatetheactualenergyuse.Pleaserememberthatnaturalgaswithahigher thanaverageconcentrationofbutane,ethane,orpropanehasahigherthermfactor,whileimpuritieslowerthethermfactor.

1therm ¼ 100;000Btu ðÞð1054 35J=BtuÞ MJ=106 J ¼ 105 5MJ

1therm ¼ð105 5MJÞ 1kWh=3 6MJ ðÞ¼ 29 3kWh

Example22: Potentialenergy

Find:Showthattheunitofpotentialenergyisjoule(J)inSI.

Solution:

Potentialenergy ¼ force elevation ¼ mass gravitationalacceleration ðÞ elevation

Epe ¼ mgh

¼ kg ðÞ ms 2 m ðÞ ¼ kgms 2 m

Epe ¼ Nm ¼ J where m isthemagnitudeofmassinkg, g isthemagnitudeofgravitationalaccelerationinms 2,and h istheelevationfromadatuminm. Adimensionalanalysiscaneasilybeperformedto findanexpressionforpotentialenergy,aswedidforworkandenergy examplesearlier.

Example23: Kineticenergy

Find:Showthattheunitofkineticenergyisjoule(J)inSI.

Solution:

Kineticenergy ¼ 0 5mass speed2

Eke ¼ 0 5 mu2 ¼ kg ðÞ ms 1 2

¼ kgms 2 m

Eke ¼ Nm ¼ J where m isthemagnitudeofmassinkg,and u isthemagnitudeofspeedinms 1

Adimensionalanalysiscaneasilybeperformedto findanexpressionforkineticenergy,aswedidforworkandenergyearlier.

Example24: Pressureenergy

Find:Showthattheunitofpressureenergyisjoule(J)inSI.

Solution:

Pressureenergy ¼ mass pressuredifference ðÞ=density ¼ m DP =r

¼ kg ðÞ Pa ðÞ= kgm 3

¼ kg ðÞ kgm 1 s2 = kgm 3 ¼ kgms 2 m

Pressureenergy ¼ Nm ¼ J

where m isthemagnitudeofmassinkg, DP isthemagnitudeofpressuredifferencebetweentwopointsinPa,and r isthe magnitudeofdensityinkgm 3

Again,adimensionalanalysiscaneasilybeperformedto findanexpressionforpressureenergy,aswedidforworkandenergyearlier.

Example25: Kinematicviscosity

Find:Showtheunitsofkinematicviscosity n inSI.

Solution:

Thequantityequationfordynamicviscosityisgivenasfollows: n ¼ dynamicviscosity =density ¼ m=r ¼ Ft =r ¼ Pas ðÞ= kgm 3 ¼ kgm 1 s 2 s= kgm 3

wherePa(pascal)isequaltokg(ms2) 1 , m isthemagnitudeofdynamicviscosityinPas,and r isthemagnitudeofdensityinkgm 3

Kinematicviscosityisdependentontheforce F,thetime t,andthedensity r.Now,let’sassumeageneralalgebraicequationin theformof

where a, b,and c aretheindices(numbers)tobedetermined.Now,wecanreplaceeachsymbolinkinematicviscositybyits fundamentalphysicalunit,andoverall,wewouldhave

where a, b,and c aretheindices(numbers)tobedetermined.Now,wecanreplaceeachsymbolbyitsfundamentalphysicalunit,andhave

M, L,and T areindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowingequations

Then,wecansolveforand findthat a ¼ c ¼ ½,and b ¼ 0, whicharetheindices(numbers);consequently,theexpressionfor kinematicviscositycanbefoundas n ¼ Ft/r

Example26: Dimensionlessnumber

Find:ShowthattheReynoldsnumber Re isadimensionlessnumber.

Solution:

ThequantityequationforReynoldsnumberisgivenasfollows: Re ¼ ruD=m ¼ kgm 3 ms 1 m ðÞ = kgm 1 s2 s ¼ Dimensionless where r isthemagnitudeofdensityofthe fluidinkgm 3 , u isthemagnitudeofaveragevelocityofthe fluidinms 1 , D isthe diameterofthepipeinwhichthe fluid flowsinm,and m isthemagnitudeofdynamicviscosityinPa.s.

Example27: Pumphead

Find:Showthatthepumphead hp unitisminSI.

Solution: hp ¼ pumpingenergy ðÞ= gravitationalacceleration ðÞ¼ Ep =g ¼ Jkg 1 = ms 2 ¼ Nmkg 1 = ms 2 ¼ kgms 2 mkg 1 s2 m 1 hp ¼ m

whereJistheunitofenergyjouleinSI( ¼ force distance ¼ Nm),Nistheunitofforcenewton( ¼ kgms 2),and g isthe magnitudeofgravitationalacceleration9.81ms 2

Pumpheadisdependentonthepumpingenergy Ep andthegravitationalacceleration g.Now,let’sassumeageneralalgebraic equationintheformof:

where a, b,and c aretheindices(numbers)tobedetermined.Now,wecanreplaceeachsymbolinkinematicviscositybyits fundamentalphysicalunit,andoverall,wewouldhave

where a and b aretheindices(numbers)tobedetermined.Now,wecanreplaceeachsymbolbyitsfundamentalphysicalunit,and have

M, L,and T areindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowing equations

Then,wecansolveforand findthat a ¼ 0and b ¼ 1,whicharetheindices(numbers);consequently,theexpressionforpump headcanbefoundas hp ¼ Ep/g.

Example28: Pumppower

Find:Showthatthepumppower y unitisWinSI.

Solution:

Pumppower y ðÞ¼ Ep ¼ kgs 1 Jkg 1

Pumppower h ðÞ¼ Js 1 ¼ W where m isthemagnitudeofmass flowrateinkgs 1,and Ep isthemagnitudeofpumpingenergyinJkg 1 Ifthepumphasaconversionefficiencyof Z,thenthepumpinputpower ybk canbecalculatedasfollows:

Pumpinputpower ¼ pumpbreakpower ybk ðÞ¼ pumpfluidpower =efficiency ¼ yfl =h where yfl isthepumpoutput(fluid)power,andtheefficiency Z isindecimals(i.e.,0.6isusedfor60%conversionefficiency). Adimensionalanalysiscaneasilybeperformedto findanexpressionforpumppower,aswedidforworkandenergy,and othersearlier.

Example29: Pump fluidpower

Find:Showthatthepump fluidpower Ffl unitisWinSI.

Solution:

Pumpfluidpower Ffl ðÞ¼ Js 1 ¼ W

where m isthemagnitudeofmass flowrateinkgs 1 , g isthemagnitudeofgravitationalaccelerationinms 2,and hp isthe magnitudeofpumpheadinm.

where a, b,and c aretheindices(numbers)tobedetermined.Now,wecanreplaceeachsymbolbyitsfundamentalphysicalunit, andhave

or

M, L,and T areallindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowing equations

Then,wecansolveforand findthat

c ¼ 1;consequently,theexpressionforpump fluidpowercanbefoundas Ffl ¼ F Dxt 1 ¼ mghpump

Example30: Pumpbreakpower

Find:Showthatthepumpbreakpower Fbk unitisWinSI.

Fig.1 Relationshipsbetweenthermodynamictemperatureandtemperaturescales.

Solution:

Pumpbreakpower Fbk ðÞ¼ O o

¼ kgms 2 ms 1 ¼ Nms 1

Pumpbreakpower Ubk ðÞ¼ Js 1 ¼ W

where O isthemagnitudeoftorqueinkgms 2,and o isthemagnitudeofangularvelocityoftheshaftinms 1

Adimensionalanalysiscaneasilybeperformedto findanexpressionforpumpbreakpower,aswedidinthepreviousexample.

Example31: Temperature

Find:ShowwhatthetemperatureisinSIforathermodynamictemperatureof300K.

Solution:

Weknowthattemperature,aproperty,isrelatedtohotnessorcoldnessofanobject;however,itisdifficulttogiveanexact definitionoftemperature.Thezerothlawofthermodynamicsindicatesthatwhentwobodieshavetemperatureequalitywitha thirdbody,theninturntheyhaveequaltemperatureswitheachother.

Thermodynamictemperatureis,however,definedbythethirdlawofthermodynamicsinwhichthetheoreticallylowest temperatureisthezeropoint.Atthispoint(absolutezero),theparticleconstituentsofmatterhaveminimalmotionandcan becomenocolder.

Byde finition,thetemperatureindegreeCelsiusisthedifferencebetweenthethermodynamictemperatureandthethermodynamictemperatureof273.15K.Notethat,bydefinition,atemperatureintervalof11Cisequaltoatemperatureintervalof1K, and01C(a.k.a.theicepoint)correspondsto273.15K(Fig.1).Then,thetemperatureinSI(1C) canbeexpressedasfollows:

Example2: Temperature

Find:Determinethethermodynamictemperatureequivalentof550oC. Solution:

Thermodynamictemperatureisexpressedasfollows:

NotethatKwassubstitutedfor 1Cbecausebothunitsareidenticalasexpressedbefore(Fig.1).

Example 33: Temperature

Find:DeterminethetemperatureinFahrenheitforagiventemperatureof211C.

Solution:

Notethaticepointandboilingtemperatures0and1001ContheCelsiusscalecorrespondto32and2121F,respectively. ThereforetheCelsiustemperaturerangeof(100–01C) ¼ 1001CcorrespondsexactlytotheFahrenheittemperaturerangeof (212–321F) ¼ 1801F(Fig.1). (212–321F) ¼ (100–01C) ¼ (1801F ¼ 1001C); therefore,1.01C ¼ 1.81F.Furthermore,knowingthat 1C ¼ K,weobtainK ¼ 1.81F. Then,therelationshipbetweentheCelsiustemperature(1C)andFahrenheittemperature(1F)canbedefinedasfollows:

where321FagainisthefreezingtemperatureforwaterinFahrenheittemperaturescale,whichisequalto01CintheCelsiusscale (Fig.1).Then,thetemperature(1F) inthisexamplecanbedeterminedas:

TheabsolutetemperaturescalerelatedtotheFahrenheittemperaturescaleisknownastheRankinescaleandisdesignated R TherelationshipbetweentheRankineandFahrenheittemperaturescalesisexpressedasfollows: Rankine ¼ 1F 459 67

Example34: Temperature

Find:DeterminethetemperatureinSIforagiventemperatureof701F. Solution:

TherelationshipbetweentheCelsiustemperatureandtheFahrenheittemperatureisdefinedasfollows:

where321FisthefreezingtemperatureforwaterintheFahrenheittemperaturescale,whichisequalto01CintheCelsiusscale. Then,thetemperatureinSI(1C)canbedeterminedas:

Example35: Density

Find:Determinetheunit(kgm 3)ofdensityinSIiftheunitisgiveninI–Psystem.

Solution:

Rememberthatthedensityisdefinedasthemass m perunitvolume V.So,thedensityequationisaquantityequation establishedfromadefinition,whichisexpressedinI–Psystemasfollows:

r ¼ m=V ¼ lbm ft 3

Rememberthat: 1ft ¼ 0 3048m; and1lbm ¼ 0 45359kg r ¼ lbm 0:45359kg =1lbm ðÞ ½ = ft 3 0:3048m=1ft ðÞ3 q ¼ 16 0184 kgm 3

Densityisdependentonthemass m andthevolume V.Now,let’sassumeageneralalgebraicequationintheformof r ¼ ma =V b where a and b aretheindices(numbers)tobedetermined.Now,wecanreplaceeachsymbolindensitybyitsfundamental physicalunit,andoverall,wewouldhave

L and T areindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowingequations 1 ¼ a and 3 ¼ 3b

Then,wecansolveforand findthat a ¼ b ¼ 1, whicharetheindices(numbers);consequently,theexpressionforkinematic viscositycanbefoundas r ¼ ma/Vb

Example36: Specificvolume

Find:Determinetheunit(m3 kg 1)ofspecificvolumeinSIiftheunitisgiveninI–Psystem.

Solution:

Rememberthatthespecificvolumeisdefinedasthevolume V perunitmass m,andisthereforeareciprocalofdensity. So,thespecificvolumeequationisaquantityequationestablishedfromadefinition,whichisexpressedinI–Psystemasfollows:

n ¼ 1=r ¼ ft 3 lb 1 m

Rememberthat: 1ft ¼ 0 3048m; and1lbm ¼ 0 45359kg

n ¼ ft 3 0 3048m=1ft ðÞ3 = lbm 0 45359kg =1lbm ðÞ ½

m ¼ 0:062428 m3 kg 1

Now,wecanreplaceeachsymbolinspecificvolumebyitsfundamentalphysicalunit,andoverallwewouldhave M 1 L3 ¼ M ðÞa L ðÞb where a and b aretheindices(numbers),whicharedeterminedas a ¼ 3and b ¼ 1,sospeci ficvolumehasadimensionofm3 kg 1 (inSI).

Example37: Specificheatorentropy

Find:Determinetheunit(J(kgK) 1)ofspecificheatinSIiftheunitisgiveninI–Psystem.

Solution:

Theconstantpressurespeci ficheat(Cp)andconstantvolumespecificheat(Cv)areusefulfunctionsforparticularlygases. Rememberthatthespeci ficheatisdefinedastheheatenergyrequiredtoraisethetemperatureofaunitmassofsubstanceone degree.So,thespecificheatequationisaquantityequationestablishedfromadefinition,whichisexpressedinI–Psystemas follows:

C ¼ Btulb 1 m 1F

Rememberthat: 1Btu ¼ 1054 35J; 1lbm ¼ 0 45359kg ; K ¼ 1 81F

C ¼ Btu1054 35J=1Btu ðÞ

¼ 4184 J= kgK ðÞ

So,inSIsystem,thespecificheatisdefinedastheheatenergy(J)requiredtoraisethetemperatureof1kgsubstance1K(or11C).

Example38: Enthalpy

Find:Determinetheunit(Jkg 1)ofenthalpyinSIiftheunitisgiveninI–Psystem.

Solution:

Rememberthattheenthalpyisdefinedastheheatenergyavailableperunitmassofasubstance.So,theenthalpyequationisa quantityequationestablishedfromadefinition,whichisexpressedinI–Psystemasfollows:

h ¼ Btulb 1 m

Rememberthat: 1Btu ¼ 1054 35J; and1lbm ¼ 0 45359kg

h ¼ Btu1054 35J=1Btu ðÞ ½ = lbm 0 45359kg =1lbm ðÞ

h ¼ 2324 5 Jkg 1

Example39: Entropy

Find:Determinetheunit(Jg 1)ofentropyinSIiftheunitisgiveninI–Psystem.

Solution:

Rememberthattheentropyisdefinedasameasureofthemoleculardisorder.Thehigherthedisorderofanysystem,thegreateris itsentropy;converselyahigherorderstatusofasystemgivesalowentropystatus.Boltzmannshowedthatthereexistedasimple relationshipbetweentheentropyofagivensystemofmoleculesanditsprobability(thermodynamic)ofoccurrence.So,theentropy equationisaquantityequationestablishedformadefinition,whichhasthesymbol s,andisexpressedinI–Psystemasfollows:

s ¼ Btulb 1 m

Rememberthat: 1Btu ¼ 1054:35J; and1lbm ¼ 0:45359kg

s ¼ Btu1054 35J=1Btu ðÞ ½ = lbm 1000g =1kg ðÞ 0 45359kg =1lbm ðÞ ½ ½

s ¼ 2 3244 Jg 1

Example40: Thermalconductivity

Find:Determinetheunit(W(mK) 1)ofthermalconductivityinSIiftheunitisgiveninI–Psystem.

Solution:

Rememberthatthethermalconductivityisdefinedastheamountofheatthatpassesthroughaunitareawhenthetemperature differencebetweenthetwosidesisonedegreeperunitdistance.So,thethermalconductivityequationisaquantityequation establishedfromadefinition,whichisexpressedinI–Psystemasfollows: k ¼ Btuh 1 ft 1F

Rememberthat: 1Btu ¼ 1054 35J; 1ft ¼ 0 3048m; K ¼ 1 81F; 1 h ¼ 3600s

k ¼ Btu1054 35J=1Btu ðÞ ½ = h3600s=1h ðÞ ft0 3048m=1ft ðÞ1F K =1 81F ðÞ

Example41: Heattransfercoefficient

Find:Determinetheunit(W(m2 K) 1)ofheattransfercoefficientinSIiftheunitisgiveninI–Psystem.

Solution:

Rememberthattheheattransfercoefficientisde finedastheamountofheatthatistransferredfrom/toaunitareaperunittime whenthetemperaturedifferencebetweenthesurfaceandtheambientisonedegree.So,theheattransfercoef ficientequationisa quantityequationestablishedfromadefinition,whichisexpressedinI–Psystemasfollows: h ¼ Btuh 1 ft 2 1F

Rememberthat: 1Btu ¼ 1054 35J; 1ft 2 ¼ 0 0929m2 ; K ¼ 1 81F; 1 h ¼ 3600s h ¼ Btu1054

Example42: Thermaltransmittance

Find:Determinetheunit(W(m2 K) 1)ofthermaltransmittanceinSIiftheunitisgiveninI–Psystem.

Solution:

Rememberthatthermaltransmittanceistheamountofheatthatpassesthroughanentirewall,ceiling,etc.,sectionofaunitarea perunittimewhenthetemperaturedifferencebetweentheaironthewarmsideandtheaironthecoldsideisonedegree.So,the thermaltransmittanceequationisaquantityequationestablishedfromadefinition,whichisexpressedinI–Psystemasfollows:

Rememberthat: 1Btu ¼ 1054 35J; 1ft 2 ¼ 0 0929m2 ; K ¼

Example43: Thermalresistance

¼ 5 68 W ðm2 KÞ– 1

Find:Determinetheunit(m2 KW 1 orm 2 1CW 1)ofthermalresistanceinSIiftheunitisgiveninI–Psystem.

Solution:

Rememberthatthermalresistanceistheresistanceofoneunitareatoheat flowthroughasubstanceperunittimewhenthe temperaturedifferencebetweenthetwosidesisonedegree,andhasthesymbolof R.Thermalresistanceisanadditivequantity; thatis,200 materialhastwicethe R-valueof100 .Anditdoesnotincludetheboundarylayerresistances.So,theheattransfer coefficientequationisaquantityequationestablishedfromadefinition,whichisexpressedinI–Psystemasfollows: R ¼ h ft 2 1FBtu 1

Rememberthat: 1Btu ¼ 1054 35J; 1ft 2 ¼ 0 0929m2 ; K ¼ 1 81C ¼ 1 81F; 1 h ¼ 3600s R ¼ h3600 s=1h ðÞ ft 2 0 0929m2 =1ft 2 1F K =1 81F ðÞ = Btu1054 35 J =1Btu ðÞ ½

R ¼ 0 176 m2 KW 1

Example44: Wavelength

Find:Calculatethemaximumwavelength lmax fortheSun’ssurfaceradiation.

Solution: Wien’sdisplacementlawstatesthatthewavelengthatwhichablackbodyemitsitsmaximumamountofradiationisinversely proportionaltoitsabsolutetemperatureinKelvin, lmax ¼ a/T,where l isin mm, a is2897 mmK,and T isinK.

Assuminganaveragesurfacetemperatureofapproximately6000K,wewouldhaveitsmaximumemissionat

lmax ¼ 2897 mmK =6000K

kmax ¼ 0 48 lm

Awavelengthofapproximately0.5 mmlieswithinthevisiblespectrum.

Example45: Frequency

Find:Determinethefrequencyofaradiationalwavelengthof0.5 mm.

Solution:

Wavelength(l)andfrequency(n)arerelated,andthisrelationshipcanformallybeexpressedthroughthespeedoflight c,as c ¼ ln,where c isthespeedoflight,whichhasavalueof3 108 ms 1 , l isthewavelength(mm),and n isthefrequency(cycles s 1,alsoknownasHz).Then,ifoneisknown,thentheothercaneasilybedeterminedusingthespeedoflight,whichisa constant.

Example46: Energycontentofasinglewavelengthsolarradiation

Find:Determinetheenergycontent E,ofasolarradiationfrequencyof6 1014 Hz(or0.5 mmwavelength).

Solution:

Solarradiationconsistsofphotons,whichcanbeconsideredaspacketsofenergy,andisrelatedtofrequency v as E ¼ hv, where E istheenergycontent(J),and h isthePlanckconstant(6 626 10 34 Js).

1.1.7ConcludingRemarks

Thischapterprovidedenergyunits,conversions,anddimensionalanalysis.Baseandderivedquantities,relationshipsbetween quantities,andquantityequationswerediscussed,alsocoveringthethreebasictypesofquantityequations:thequantityequations developedfromthelawsofnature,theequationsdevelopedfromgeometry,andtheequationsdevelopedfromadefinition.Then, the20multiplesandsubmultiplesintheSIunitsystemwerepresented.Anintroductionwasalsopresentedfordimensional analysis,whichisquiteausefulmethodforderivinganalgebraicrelationshipbetweendifferentphysicalquantities.Andthen,the StandardforMetricPractice,ASTMStandardE380-84,asoneofthebasicstandards,isreferencedforSIusage.Moreover, conversionfactorsforenergyrelatedunitsroundedtothreeorfoursignificant figuresforconversionbetweenSIandI–Pwere provided,aswellasconversionfactorsfordifferentphysicalquantitiesrelatedtoenergy.Andthechapterisconcludedwithsome illustrativeexamplesofunitconversionsanddimensionalanalyses.

References

[1] CGMP.ComptesRendusdela11eCGPM(1960);1961,p.87.

[2] CGMP.ComptesRendusdela11eCGPM(1971);1972,p.78.

[3] BIPM.Internationalvocabularyofmetrology – basic andassociatedterms(VIM).3rded.;2012.

[4] WildiT.Metricunitsandconversioncharts.Ametricationhandbookforengineers,technologists,andscientists.NewYork,NY:IEEEPress;1995.p.65–6.

[5] AndrewsJ,JelleyN.Energyscience:principles,technologies,andimpacts2007;NewYork,NY:OxfordUniversityPressInc.;2007.p.13–4.

[6] ASHRAE.Handbookoffundamentals.Atlanta,GA:AmericanSocietyofHeating,RefrigerationandAirConditioningEngineers,Inc.;1989.

[7] ASHRAE.SIGuideforHVAC&R.6thed.Atlanta,GA:AmericanSocietyofHeating,RefrigerationandAirConditioningEngineers,Inc.;1984.

[8] StandardsforMetricPractice.ASTMStandardE380.Philadelphia,PA:AmericanSocietyforTestingandMaterials;1993.

[9] TheInternationalSystemofUnits(SI).NationalBureauofStandardsSpecialPublication330.SuperintendentofDocuments.Washington,DC:U.S.Government Printing Office;2001.

[10] MetricPracticeGuide.CSAStandardCAN3-Z234-1.Rexdale,ON:CanadianStandardsAssociation;1973.

[11] ASMEGuide.ASMEorientationandguideforuseofmetricunits.NewYork,NY:AmericanSocietyofMechanicalEngineers;1982.

[12] ISO.SIunitsandrecommendationsfortheuseoftheirmultiplesandofcertainotherunits.Geneva:ISOStandard1000InternationalOrganizationforStandardization; 1992. AvailablefromAmericanNationalStandardsforMetricInstitute,NewYork,NY.

[13] HRAI.Supplementarymetricpracticeguidefortheheating,ventilating,refrigeration,airconditioning,plumbingandairpollutionequipmentmanufacturing industries. Etobicoke,ON:Heating,RefrigerationandAirConditioningInstituteofCanada.

RelevantWebsites

https://www.britannica.com/science/International-System-of-Units Brittanica. www.convertunits.com/SI-units.php ConvertUnits.com.

https://www.ic.gc.ca/eic/site/mc-mc.nsf/eng/lm00068.html GovernmentofCanada. https://www.nasa.gov/of fices/oce/f unctions/standards/isu.html NASA.

http://www.checklist.org.br/d/internationalsystemofunits.pdf NIST,U.S.DepartmentofCommerce. http://www.physics.nist.gov/cuu/Units/ NIST,U.S.DepartmentofCommerce. https://www.physics.info/system-international/ ThePhysicsHypertextbook.

1.2 HistoricalAspectsofEnergy

İlhamiYıldızandCraigMacEachern, DalhousieUniversity,Halifax,NS,Canada r 2018ElsevierInc.Allrightsreserved.

1.2.1Introduction

1.2.2PreindustrialMan

1.2.2.1.1Fireandearlyman

1.2.2.1.2Gunpowder

1.2.2.1.3Metallurgy

1.2.2.1.4Steamboilers

1.2.2.2.1Agriculture

1.2.2.2.2Transportation,hunting,andwarfare

1.2.2.3EarlyWindandHydro27

1.2.2.3.1Sailboats

1.2.2.3.2Windmills

1.2.2.3.3Waterwheels

1.2.3TheIndustrialRevolution

1.2.3.1.1Saverypump

1.2.3.1.3WattandBoulton–Wattsteamengines

1.2.3.1.4Solarreflectorsteamengine

1.2.3.2.1Thespinningjenny

1.2.3.2.3Thesewingmachine

1.2.3.3.1Naturalgas

1.2.3.3.2Coalmining

1.2.3.3.3Blastingcapsanddynamite

1.2.3.3.4Oildrilling

1.2.3.3.5Standardoil

1.2.3.4.1Discoveryofelectricity

1.2.3.4.1.1ThalesofMiletus

1.2.3.4.1.2WilliamGilbert

1.2.3.4.1.3OttovonGuerickeandCharlesFrançoisduFay

1.2.3.4.1.4PietervanMusschenbroek

1.2.3.4.1.5BenjaminFranklin

1.2.3.4.1.6LuigiGalvaniandAlessandroVolta

1.2.3.4.2Electromagnetism

1.2.3.4.3Fuelcells

1.2.3.4.4Incandescentbulb

1.2.3.4.5Warofthecurrents

1.2.3.5TransportationandMassProduction34

1.2.3.5.1Trainsandrailroads

1.2.3.5.2Internalcombustionengine

1.2.3.5.3Ethanol

1.2.3.5.4Automobiles

1.2.3.5.5Interchangeableparts

1.2.3.5.6Theassemblyline

1.2.3.5.7Ford’sModelT

1.2.3.5.8Hotairballoons

1.2.3.5.9Poweredairplanes

1.2.4Nonrenewables

1.2.4.1FossilFuelsandConventionalEnergySources36

1.2.4.1.1Coal

1.2.4.1.2Oil

1.2.4.1.3Naturalgas

1.2.4.1.4Nuclear fi ssion

1.2.5Renewables

1.2.5.1RenewableEnergySources39

1.2.5.1.1Hydro

1.2.5.1.1.1Small-scalehydro

1.2.5.1.1.2Large-scalehydro

1.2.5.1.3Geothermal

1.2.5.1.4Solar

1.2.5.1.5Biomassandbiofuels

1.2.5.1.6Tidal

1.2.5.1.7Pyrolysis

1.2.5.1.8Heatpumps

1.2.6.1.1Spacesolarpower

1.2.6.1.2GenerationIVnuclear fissionreactors

1.2.6.1.3Fusionpower

1.2.1Introduction

Thestoryofman’ssuccessandhiseventualdownfallisonethatrestslargelyontheshouldersofourcreativeexploitationand reimaginingofenergyanditsuses.Throughouthistorymanhasbeenabletoutilizeenergyinwaysotherspecieshavebeenunable tograsp,quicklydistinguishingmanasthealphaspeciesonplanetEarth.Ingenioususeofenergyhasledtoincreasedbrain development,grantedustheabilitytotravelgreatdistances,allowedforthemanufacturingofavarietyofproductsattremendous speed,andhelpedtopowerthemachinesthatinfluenceeverythinginlifefromhealthcaretocommunicationtoscienceand research.Despiteallthatman’scommandoverenergyhasgivenhim,therateatwhichenergyhasbeenexploitedhasleftmankind inacompromisingposition.Finiteresourcesarerapidlybeingdepletedandcarbonemissionscontinuetocauselarge-scale environmentalissues.Onceagainitwillbeuptomantoovercomethesechallengesifthespeciesistosurviveandthrive. Renewableenergysourcesofferoneanswertotheproblemandwithincreasedimplementationtheymay1daypowertheworld. Thisisthehistoryofhowmanandsocietyevolvedalongsideenergyandhowwe’vearrivedatthecurrentsituation.

1.2.2PreindustrialMan

Perhapsthemostinfluentialchangeinthedevelopmentofmodernmanwashisshifttowardtheuseofenergytocompletetasks onascalethatwaspreviouslyimpossible.Priortothe firstuseof fire,manwasasimplebeing,similartomanymodernapesin termsofenergyuse.Theyatefoodandusedthecalorieswithinthefoodtoperformwork.Thisworkgenerallycomprisedof attainingmorefood,protectingoneselffrompredators,andreproducing.Thisallchangedoncemanbegantouseenergysources otherthansimple,rawfood.Fireledtocookedfoodandprotectionfrompredators,theuseofanimalsmadeagricultureand transportationmoreefficient;soonsailboatsandwindmillsweretakingadvantageofwindenergyfortransportationandmilling. Regardlessofhowenergywasbeingusedandwhichsourceitcamefrom,thereisoneoverarchingthemelinkingthesetechnologiestogether.Theymadewhatweredifficultandtediousprocessesquickerandeasier,allowingmanmoretimetoperform othertasksandworktowardsolutionstomoreadvancedproblems.Itisundoubtedlythisconceptthatledtoman’srapid developmentasaspeciesanddrastictechnologicaladvanceintheyearsfollowingthe firstuseofenergy.

1.2.2.1Fire

Firecanmostaccuratelybedescribedasachemicalreactionthatoccursbetweenoxygen,heat,andafuelsource.Fireisnotan objectbutratherthevisibleoxidationthatoccursasaresultofrapidcombustion.Thisprocessisnotentirelydissimilarfromthe

rustingofmetalsorthebrowningofanapplecore.However,thecrucialdifferencebetweentheseoxidativeprocessesistherateat whichthereactiontakesplace.Heat,light,andsoundareallthebyproductsofthisrapidreactionandonesthatearlymantook greatadvantageofindevelopingasaspecies [1]

1.2.2.1.1Fireandearlyman

Theearliestknownexploitationofthenaturalenvironmentforenergyproductionbyhumanscomesintheformof fire.Some estimatesstatethatmanmayhavedevelopedanabilitytocontrolandmanipulate fireasearlyas1.6millionyearsago [2] Stratigraphicevidencegoesontosuggestthatasearlyas1millionyearsago,insitu fireswerebeingusedbyhominins [2].Fire offeredavarietyofadvantagestoearlymanincludingprotectionfrominsectsandpredators,warmth,aswellasproviding illuminationduringthenight.Withthatbeingsaid,perhapsthemostimportantadvantage fireprovidedearlymanwastheability tocookfood [3].Estimatessuggestthatpriortotheadventofcooking,earlymanwouldrequirebetween5.7and6.2hperday chewingatough, fibrousdietofplants,andrawmeat [4].Thistime-consumingprocessmeantthatwhenearlymanwasnot huntingandgatheringtheywouldbechewing.Thistimespentchewingrequiredlargeteethandjawmusclessimilartowhatwe mightobserveinmodernchimpanzees.Withamasteryofcookingandgeneticevolution,however,theseteethandjawmuscles begantoshrink,leavingmoreroomforthedevelopmentofearlyman’sbrain [3]

Theearliestmainstreamuseof fireforprocessesotherthancookingcomesintheformof “fire-stickfarming” [5].Fire-stick farmingwas firstobservedinthePaleolithicandMesolithicagesasameansofclearinglargeamountsofland [5].Landwascleared foravarietyofreasons,includingclearinggroundforpermanentortemporaryhumanhabitats,regeneratingplant-basedfood sources,facilitatingtravel,andevenwarfare [6].Fire-stickfarminghadtheeffectofreplacinglargeroldergrowthforestswithfaster growinggrassesandperennials,drasticallyreshapingthelandscapeofthetime.Theburningprocessincreasednutrientavailability, whichresultedinhigherplantyields [5].Withtheongoingextinctionofmegafaunaatthetime,earlymanwasforcedtoconvertto amoreplant-dependentdiet,reinforcingtheimportanceofthesenewfoundperennials [6].Thisprocessmaybetheearliestknown useofagriculturalpracticesbyman.

Inmoderntimesslashandburnorswiddenagriculturepracticescontinuetobeprevalentmethodsforlandclearingin agriculture.Thisprocessinvolvescuttingdownvegetationinanareaandsettingiton fire.Theideaisthatastheplantmaterial burnsitreleasesnutrientsintothenearbysoilresultinginhighlyfertileland.Thislandisthenusedforanumberofagricultural practicesuntilitisdeemednolongeracceptableduetosoildegradation.Currentestimatesstatethatthereareover200million peoplewhopracticeswiddenagricultureglobally [7]

1.2.2.1.2Gunpowder

ThediscoveryofgunpowderismostcommonlyattributedtoChinesealchemistsduringthe9thcenturyAD.Theactiveingredients forgunpowderwerediscoveredwhenanalchemistaccidentallydroppedcharcoalintoabowlofpotassiumnitrate(saltpeter).The combinationoftheingredientscausedthemixturetodeflagrateviolentlyand,thus,gunpowderwasborn.The firstwidelyused applicationofgunpowdercameintheformofcrude flamethrowersdevelopedbytheChineseinthemid-1000s.Theseweapons heldgunpowderinabambooorpapertubethatwasattachedtoanarrow.Thearrowswerethen firedfromabowwithdevastating effects [8].Duringthesametimeperiodadevicethatinmoderntimesisknownasagrenadewasalsodeveloped.Thisdevicewas describedasa “bursting fireball,” whichalsocontainedsmallbitsofporcelaintocausefurtherdestruction.Thesetwodesigns perfectlyharnessedtheexplosivepotentialofgunpowderandledtomanyfutureinventionsincludingrocketry,cannons,and firearms [9].Fromheretheknowledgeanduseofgunpowderspreadwest,throughtheMiddleEast,intoEuropeandeventuallyto EnglandwhereFranciscanmonkRogerBacontookupthetaskofimprovingontheexistingformula.Baconexperimentedwith variousproportionsofeachingredientandwasthe firsttonotehazelcharcoalasthebestvarietyforgunpowder.Baconalsomade theimportantdiscoverythatgunpowderwithhighernitratecontentwasmoreexplosive [8].Bacon’sworkdirectlyinfluencedthe implementationofthecannonand,inlateryears, firearmsintotheEnglishmilitary.

1.2.2.1.3Metallurgy

Thenextmajoradvancementintheexploitationof firewasseeninmetallurgy.WallpaintingsintheOldEmpireofMemphis suggestthatAncientEgyptiansutilizedtheintenseheatgeneratedby firetomeltandcastpuremetals.Thesepaintingsgoonto suggestthatancientEgyptiansalsodevelopedblowpipesandbellowstodelivermoreoxygentothe fires,demonstratingtheir knowledgeandcomfortwiththischemicalreaction [10]

Metallurgicalprocessesweregreatlyenhancedfollowingtheadventofcoke.Cokeisacoal-basedproductobtainedthroughthe destructivedistillationofcoal.Destructivedistillationisaprocess,wherebyafuelsourceisheatedtohightemperaturesinthe absenceofoxygen.Thisprocesshastheeffectofremovingmostofthevolatilecomponentsfoundinthecoal,resultinginacarbon massknownascoke [11].Cokingcoalallowedformuchlargerfurnacesandsubsequentlygreateroutput [10].Additionallycoke producesfarlesssmokethanconventionalcoal,leadingtosaferworkenvironments [11].Today,cokeisanessentialcomponentin theprocessingofironore.Withironbeingtheprimaryinputinsteelandmanyaluminumalloys,itisdifficulttosaywhatmodern manufacturingwouldlooklikewithouttheadventofcoke.

1.2.2.1.4Steamboilers

Inmoderntimes, fireseesextensiveuseinelectricityandheatgenerationthroughtheuseofsteamboilers.Oxygen-fed firesare usedtoboillargequantitiesofwaterwhosesteaminturndriveslargeturbines,generatingelectricity.Wasteheatfromthisprocess

canalsobecapturedandusedinavarietyofheatingprocesses;thisisknownascogeneration.Thesetopicswillbediscussed furtherinthefollowingsections [12]

1.2.2.2Animals

Theuseofanimalsforagriculture,transportation,andhuntingdatesbackthousandsofyears.Animals,suchascattle,horses, mules,donkeys,camels,elephants,anddogshaveallbeenusedforhumanbenefitthroughoutthistime [13].Byexploitingthe energyexpenditureoftheseanimals,mandevelopedtheabilitytoperformessentialtasksquickerandmoreefficiently.Thisledto greatercropyields,faster,andfurtherdistancestraveled,aswellasmorefruitfulhunts.

1.2.2.2.1Agriculture

SomeoftheearliestusesofanimalenergyinagricultureoccursintheMediterraneanregionsofEgyptandEthiopiaaround6000to 5000BC [14].Egyptianwallpaintingsandpapyrusrecordsshowtheuseofardplows,towedbyoxenasameansoftilling fields fortheplantingofcrops.Theardplowiscomposedofalongwoodenbeamattachedtoayokedpairofoxenatoneendandan almostperpendicularmetalshareattheother.Thissharewouldbepulledthroughthegroundbytheteamofoxen,thereby breakingupthepackedsoilallowingforeasierplantingandsuperiorplantgrowth [13].Anoperatorwouldwalkbehindtheplow controllingapairofhandlestoensuretheshareremaineduprightandinthesoil.TheentireprocessenabledtheEgyptianstoplow farmoreland,withfarlessmanpower.Ultimatelythismeantgreatercropyieldsandmorefoodtofeedtheirgrowingpopulation.

1.2.2.2.2Transportation,hunting,andwarfare

Theuseofhorsesfortransportationwas firstobservedaround3500BCbytheBotaipeopleofwhatisnowmodern-day Kazakhstan.TheBotaiutilizeddomesticatedhorsestogainaspeedadvantagewhenhuntingwildhorsesformeat.Additionally, horseswereusedasamoreefficientmeansofherdingsheep.Itisestimatedthatamancanherdaround200sheepwithagood herdingdog,butthisnumbercanbeincreasedto500ifthemanisonhorseback.Furthermore,itisthoughtthathorseswould havebeenusedasameansofquickentryandescapeduringtribalraidsonenemyencampments [15]

AstheuseofhorsesspreadacrossEuropeandAsia,webegintoseetheimplementationofanewformoftransport,thechariot. TheearliestknownuseofthechariotappearsinMesopotamiaaround3000BC [16].Withthatbeingsaid,itwasnotuntil1800BC thatthechariotwaspopularizedbytheAnatolians,whomayhavehelpedinshapingmoderntransportation [15].Theuseofthe chariotwasessentialinwarfareasitofferedhighmaneuverabilityandaplatformforrangedattacks.Essentialtothechariots successwastheuseofhorsesoronagersforpullingthecarts [16].Thiscombinationofanimallaboranddrawncartsfor transportationwasaconceptthatextendeduntiltheadventofthemodernautomobile.

Dogswerethe firstanimalstobedomesticatedbymanaroundtheendofthelasticeage.Atthistime,humansocietywasstill largelyahuntingandgatheringsociety,anddogsfacilitatedinthisprocess [17].Dogswereprimarilyemployedasameansof trackingwoundedpreyanddeliveringthekillingblowtopotentiallydangerousinjuredanimals.Thispartnershipledtogreater huntingefficiencyandsafetyresultinginmoreproductivehunts.Byusingdogstotrackwoundedanimals,manwasabletoexpend lessenergyandtimetrackinganimalsandmoretimehuntingfurtherprey [17]

1.2.2.3EarlyWindandHydro

1.2.2.3.1Sailboats

TheearliestknownuseofwindenergycomesintheformofcrudesailboatsdesignedandutilizedbytheEgyptiansbetween5000 and4000BC.Thesesailboatscomprisedofasinglesailattachedtothemastofwhatwaslittlemorethanahollowedlog [18] TheseboatshelpedEgyptiansmoveupanddowntheNileRiverandithasalsobeensuggestedthattheuseoftheseboatsdirectly impactedthespreadoftheNaqudaculturetoSouthernEgypt [18].Theimpactofthesailboatcontinuedtoincreaseandwiththis camegreatertechnologicaladvancement.Largersailsandcrewsbecamecommonandby2000BC,tradeintheMediterraneanwas highlydependentontheuseofthesailboat [19].By500BCthePhoeniciansandGreekshadpopularizedthetrireme,which combinedthebenefitsofhumanandwindenergyforevengreaterpropulsionthroughthewater [20].ByAD800theVikingswere readilyimplementinghydrodynamicallyoptimizedboatscapableofsailingfarfasterthanpreviousdesigns [21].Sailboats, throughcontinuedevolutionanddesignupgrades,becomeamajorpartofglobalization,worldtrade,andexplorationthroughout thenext1200years.TradethroughouttheMediterranean,EnglishChannel,BalticSea,andIndianandAtlanticOceanswouldnot havebeenpossiblewithouttheuseofwind-poweredsailboats.TheseboatswerealsoessentialinthediscoveryoftheAmericasand paintingthepictureoftheglobeasawhole.

1.2.2.3.2Windmills

Theearliestknownrecordofwindmillsdatesbackto400BCwhenaHindubookknownasthe Arthasastra ofKautilyasuggeststhe useofwindmillsforpumpingwater [22].This,however,istheonlymentionofsuchwindmillsinhistoryandis,therefore,difficult toconfirm.The firstconfirmedapplicationofwindturbinescomesfromHeronofAlexandriawhoimplementedaverticalwind turbineintothedesignofapipeorganduringthe1stcenturyAD [23].IthasbeensuggestedthatHeron’sreversalofconventional fanbladesmayhaveledtotheeventualimplementationofhorizontalwindturbinesinmidmillenniumEurope [24].The first knownimplementationofverticalaxiswindmillsonalarge-scalecomesfromthePersiansaroundAD800.ThePersiansutilized

thesewindmillsforthepurposesofgrindinggrain,poundingrice,andforirrigation [25].Thesesamewindmilldesignshavebeen foundasfareastasIndiasuggestingthattheywereefficientenoughtoimitate [26].The firsthorizontalaxiswindmillsappearin EuropebetweenAD1100and1200.Thesewindmillswereprimarilyimplementedforthepurposesofgrindinggrain,pumping water,andinthecaseoftheNetherlands,draining floodplainsforexpansion.Atthispoint,Europeanengineersalreadyhadan advancedknowledgeofgearingsystems.Withthistheyrealizedthatbyutilizinghorizontallypositionedbladesincombination withahorizontaltoverticalshafttransmissiongearingsystemtheycouldmaketheirwindmillsmoreefficient.Thiswasaconcept thatwasclearlyalreadyunderstoodbytheEuropeansbasedontheirimplementationoftheVitruvianwaterwheel [21].Thisdesign waspopularizedinEngland,Belgium,andNormandyandthroughitssuccessandefficiencyquicklyspreadtotheNetherlands, Germany,andDenmark [27].Bytheendofthe19thcenturythesewindmillswereachievingefficienciesofashighas5% [21]

1.2.2.3.3Waterwheels

The firstknownimplementationofhorizontalaxiswaterwheelscomesfromtheRomansbetween700and600BC [28].This waterwheelwasknownasanoriaandconsistedofbucketsthatcollectedwaterfromasurfacewatersource(usuallyastreamor river)andpoureditintoirrigationchannelsatgreaterpotential [29].Thesechannelshelpedtoprovidewatertonearbyfarmland, drasticallyincreasingyieldandproductivityinareasthathadconventionallyreliedononlyrainforwatering.Waterwheelsdriven bycamelsandoxenhavealsobeenemployedinAfghanistanandotherMiddleEasterncountriesforthepurposesofirrigation.To thisdaythereareregionsinSudanthatcontinuetoemploythismethodofirrigation [30].

By100BCtheuseofwaterwheelsformillingbeginstogainpopularitythroughoutGreece.Onceagainthismethodused bucketsofwaterthat filledupwiththe flowoftheriverandsubsequentlyrotatedthewaterwheel.Thechangeinweightcausedby the fillingandemptyingofthebucketscausedthewheeltorotatemoreefficiently.Thisrotationwastransferredfromthe horizontalaxisofthewheeltoaverticalshaft,whichinturndroveamillingstone.Thesemillingstoneswereusedprimarilyfor grindingwheatandcorninto floursforbreadmaking [29].Thismillingtechniquequicklygainedpopularityandbytheendofthe 1stcenturyAD,wasemployedasfareastasChina [29].AroundAD300theRomansmodifiedthedesignsothatthebucketscould beplacedjustbelowthesurfaceofthewater.Thisgreatlyimprovedtheefficiencyofthedesign [29].

ByAD1086therewereover5000watermillsinusethroughoutmainlandEnglandandbyAD1800thisnumberhadsurpassed 500,000.Millsatthistimewerenolongersimplybeingusedforgrindingcornandgrainthough.Thesewatermillshadbeen adaptedforavarietyofprocessesincludingpoweringbellowsforironproduction,grindingingredientsforpapermaking,sawing timber,crushingolivesforoliveoil,andinpoweringtextilefactories [29].

1.2.3TheIndustrialRevolution

Tothisday,theIndustrialRevolutionremainsthegreatesttimeperiodfortechnologicaladvancementinthehistoryofmankind. Eventoday,manyoftheprocessesthatallowformassproduction,rapidtransportation,andthatpowerourlivescanbecreditedto advancementsmadeduringthistimeinhumanhistory.TheIndustrialRevolutionbroughtmankindintotheeraoffossilfuelsand aworldofcheapandeasilyattainableenergy,moreabundantthananythingpreviouslydreamedof.Steamenginesgaveausefor thesefossilfuelsandtheirvarietyofapplicationshaddrasticeffectsonproductionandmanufacturing.Liquidfuelsallowedhomes tobelitatnightandforautomobilestobegintopopupandreplacetraditional,animal-drivenformsoftransportation.Before long,electricitywasmakingitswayintothehomesandof ficesofmillionsaroundtheworld,foreverchangingthewayhumanslive andwork.Incombination,alloftheseadvancementsledtobetterqualitiesoflife.Productswerecheaper,foodwasmorereadily available,andhealthcaredrasticallyadvancedwithnew findingsandinnovations.Regardlessofwhattheeffectwas,theoverarchingconsensusisthattheIndustrialRevolutionsparkedthisupturninhumanlifeandhashadagreaterimpactonmodernlife thananyotherperiodinhumanhistory.

1.2.3.1SteamEngine

1.2.3.1.1Saverypump

Perhapsthesinglemostcriticalinventionleadingtoindustrializationwastheadventofthesteamengine.The firststeamengine wasbuiltbyThomasSaveryin1698forthepurposeofremovingwaterfrommines.InSavery’swords,hismachinewas “anengine toraisewaterby fire. ” Savery’spumpoperatedbyvaporizingwatertogeneratesteamandusingthissteamto fillasecondarytank. Thenbyisolatingthesteamfromitssourceandallowingthesteamtocondenseavacuumwouldbecreated,whichwoulddraw waterfromwithinthemines.Thisdesignworkedwellbutwasextremelylimitedinthedepthatwhichitwaseffective.Themain issuewiththisdesignwasthatitcouldonlydrawwaterataround80ftbelowthesurface [31].Withtheminesofthetimeaiming togodeeperanddeeper,abetterpumpneededtobedeveloped.

1.2.3.1.2Newcomenatmosphericengine

Theyear1712sawtheinventionoftheatmosphericenginebyThomasNewcomen [32].Newcomen’sengineimprovedonSavery’ s designinthatitdidnotrelyonasteamvacuum.Newcomen’sdesignusedahorizontalbeamwithapivotinthemiddleweighted ononesideandincorporatedwithaboilerandpistonontheother.Theweightedsidewoulddrop,drivingthepistonupward,at thispoint,steamatnearatmosphericpressurewould fillthevoidinthecylinderleftbytherisingpiston.Coolwaterwouldthenbe

sprayedintothecylinder,quicklycondensingthesteamandtherebychangingthepressure,whichwouldpullthepistonback down.Thishadtheeffectofraisingtheweightedside,whichthroughanotherpistonmechanismdrovewatertothesurface.This automatedenginedrasticallyimprovedwaterremovalefficiencyandhadafargreateroperatingdepththanSavery’sdesign. Newcomen’sdesignwassorevolutionarythatitwouldbeanother63yearsbeforeabetterdesignwaspopularized [31]

1.2.3.1.3WattandBoulton– Wattsteamengines

In1776,JamesWattwasabletoimproveonNewcomen’sdesignfollowingacriticalobservation.Wattnotedthattherepeated heatingandcoolingofthecylinderwaswastingenergyandwouldleadtothemorerapiddeteriorationofthematerials.Basedon thisobservationhedevelopedhisowndesigninwhichthepistonandcylinderremainedhotatalltimesbyincorporatingan externalcondenser.Byalternatingtheopenandclosedphasesatthetopandbottomofthecylinder,steamisabletoenterthe cylinderinalternatesuccession,therefore,drivingthepistonupanddown.Asnewsteamentersfromthebottom,exhauststeam exitsthroughthetop,asthepistontravelsupward.Theprocessthenrepeatsitselfintheotherdirection.Theexhaustedsteam makesitswayfromthecylindertothecondenserwherethesteamiscondensedbackintowater.Thenewlycondensedwateris thenpumpedtoahotwatertankandrecirculatedbackthroughtheboiler.Bykeepingthepistonandcylinderhotatalltimes,less energywaswastedinreheatingandthethermalstressonthematerialwasreduced [31].In1782Wmodifiedhisengineto incorporateasunandplanetgearingsystemthatdrovea flywheel.This flywheelhadtheadvantageofprovidingsmoothand constantoutputasopposedtothepulsatingnatureofearlierdesigns [33].Thiscrucialdesignchangeiswhateventuallyledto steamenginesbecomingviableforthenewlyconstructedfactoriesthatwouldcometodrivetheIndustrialRevolution.

The finalmajoradvancementsinthesteamenginecamewiththeBoulton –Wattdoubleactingengine.Thegreatest improvementinthisdesigncameintheformofaparallelmotionmechanismthatassuredperfectalignmentofthepiston throughoutitscycle.Additionally,thismechanismallowedforworktobegeneratedontheupwardstroke,wherebeforethe upstrokesimplyservedtoresetthepiston.Wattwasfamouslynotedassayingthathewasmoreproudofthisinventionthanhe wasoftheengineitself [31].Thisdesignalsoincorporatedagovernorthatcouldbeusedtothrottlebacktheengineshouldless outputberequired.Bothofthesedesignchangesgreatlyimprovedtheviabilityoftheseenginesforfactoriesandmadethemmore attractiveasindooroptions [31].

1.2.3.1.4Solarre flectorsteamengine

In1860,FrenchinventorAugustineMouchotbecamefascinatedwiththeworldofsolarenergy.Mouchothadreadandheard storiesof “burningmirrors” capableoflighting fireatfargreaterspeedthananyoftheconventionalmethods.Mouchotrecognized thepotentialofsuchenergyandsetoutto findamorepracticaluseforit.ThedesignMouchotcameupwithisnotentirely dissimilarfrommodern-daysolardishconcentratingcollectors.Mouchot’sdesignorientedmirrorsonaconcavedisktowarda centralabsorbertube.Thisheatgeneratedonthetubewasthenusedtoboilwaterandthesteaminturndroveaturbine.While thereweresomewhofeltthatMouchot’sinventionwouldmeanunlimitedfreeenergytherealitywasthattheenergyproduced wasnotonparwiththesteamenginesavailableatthetime.France’sclimatesimplydidnotlenditselfwelltosolarenergy; however,Mouchotdemonstratedthattheprospectforimplementationinhotterregionswascertainlythere [34]

1.2.3.2Textiles

1.2.3.2.1Thespinningjenny

Inthemid-1700s,spinningwasalongandarduoustask,performedbyindividualsknownasspinners.Spinnersusedaspinning wheeltowindasinglestrandofcotton fiberintoayarn.Thisprocessinvolvedmanuallytwistingtheyarnandensuringtheyarn remainedtautuntilitwaswoundontothespindle.EnterJamesHargreaves,aBritishcarpenterandweaverwhowasattemptingto findawayinwhichtooptimizethistime-consumingprocess.Hargreaveshadbeenattemptingtoutilizemultiplespinnersatonce byholdingallofthethreadsinthislefthand,however,hequicklyranintodifficultieswhenitcametotwistingtheyarn.Thiswas duetothehorizontalpositioningofthespindles,whichHargreavesingeniouslyremarkedfollowingtheobservationofatoppled spinningwheel,whichcontinuedtospinandoperate.In1764,Hargreavesusedthisobservationtodevelophisspinning jenny,whichutilizedverticallypositionedspindlestowindeightcottonthreadsatonce.Thepositionofthespindlesallowed forthethreadtobetwistedautomaticallyaswellasensuringthethreadsremainedtaut.Thiscleverdesigncouldbeoperated byasingleperson,drasticallyreducingtimeandenergyinput.Hargreaveswentontodevelopa16-threadversionofthejenny andlaterinventorsmodifiedthedesigntobedrivenbyanexternalengine.Thespinningjennydrasticallychangedthetextile industrybyreducinglabordemands,whileincreasingoutput,andisoftenconsideredasthemachinethatbegantheIndustrial Revolution [35].

1.2.3.2.2Thecottongin

Duringthelate1700s,cottonwasavaluedproduct,however,notinthesamewayitistoday.Themainissuewithcottonwasthat seedsembeddedinthecotton fibersrequiredseparating,aprocessthatatthistimecouldonlybedonebyhand.AmericanEli Whitneyrecognizedthatifabettermethodforseparatingtheseedsfromthe fiberscouldbedevelopedthencottoncouldseea globalupturninvalue.WiththeAmericanSouthbeingoneofthemajorglobalproducersofcotton,anyproductionadvantage wouldbemassivefortheregion.In1794,Whitneydevelopedandpatentedamachinehecalledthecottongin,whichwascapable ofremovingembeddedseedfromrawcotton fibers.Thecottonginoperatedbyloadingrawcotton fibersintoahopperwherethey

Another random document with no related content on Scribd:

VALLANKUMOUKSELLINE KRÄÄTÄRI.

Oottako kuullu mistä Säntin pappa on kotoosi?

No siäl on ny tapahtunu kaksinkertaane erehrys.

Siäll'on yks leskiakka vanhoolla päivillänsä ostanu yhreltä isännältä ittellensä tuvan likiltä vaivaastalua. Ja siinä tuvas asuu turkinpunaane kräätäri, jok’ei tiänny kaupasta mitää, eikä tuntenu sitä uutta mökin omistajaakaa.

Eikä se mumma liioon tuntenu koko kräätäriä. Tiäsi vaan, jotta mökis jokin asuu.

Sitte se leskimumma tuumas jotta:

— Oliskahan se isäntä, jolta mä mökin ostin, pettäny mua. Jos seinähirret olsivakki kovaa lahot?

Ja sitä se mumma funteeras niin kauan, jotta viimmeen ettii kuustuumaasen rautanaulan ja lähti iltahämyys koittelemhan uuren mökkinsä seiniä.

Se turkinpunaane kräätäri, jok’on kovasti ajatellu paljo asioota ennenku siitä äkkijyrkkä tuli, tuumas nykkin parastaikaa sitä menettelytapapropleemia n’otta s’oli aiva kipparas pöytänsä päällä klasinviäres ja justhi luuras klasia vasthan yhren kapitalistin uuren housunpultun läpitte jotta:

— Tulikaha tua sauma ny suara — —

Kun se samas näki sen vanhan koukkuleuka akan tulovan suuri rautanaula käres aiva ku lahtari pistinhyäkkäykses suaraa kräätärin mökille.

— Siunakkohon! — kalpeni kräätäri n’otta se tuli aiva valkooseksi. Pöksyt putos käsistä ja sakset pöyrältä.

— Nyt ne lahtarit hyäkkää — kiljaasi kräätäri, pyärtyy ja putos pöyrältä. Mutta sen otti lonkkahan niin kipiää, jotta se heti virkos.

— Akka, akka, prässirauta tänne! — karjuu kräätäri. Ny ne hyäkkää.

Akka toi takanporosta prässirauran n’otta tuhka pöläji ja kaffipannu kaatuu silmällensä porohon.

Kräätäri hairas prässirauran, nosti sen korkialle, hyppäs oven ethen ja rupes veisaamahan kualinvirttä jotta:

»Tää on viimmeenen taisto, rintamaan ny yhtykää — —»

— Kuuleksä akka! Rintamaan ny yhtykää — — tuu tuu säki, kuuleksä.

Silloon vasta kräätärin akkaki käsitti. Se pani esti vasthan jotta::

— M’oon sosiaalitemokraatti, enkä kannata aseellista esiintymistä

Ja rupes itkiä köllöttamhan.

Mutta kräätäri oli hirmunne. Se haukkuu silmänräpsährökses akkansa yhteesen rintaman ja tyavaen asian petturiksi, kavaltajaksi, lakonrikkuriksi. Sanoo Noskeksiki.

Ja kun ei mikää näyttäny auttavan niin karjaasi jotta:

— Tuukko peijakas rintamahan, elikkä mä mollaan tällä prässirauralla!

Mikäs siinä auttoo. Akan piti ottaa isoot sakset kouraha ja asettua ovenpiälehen.

Ja kauan aikaa ne orotti sitä hyäkkäystä ovesta. Niin kauan, jotta kräätärin piti jo vaihtaa prässirautaa toisehe käthe.

Mutta mitää ei tullu. Kuuluu vain ympäri mökkiä piäntä kropinaa.

Ja aina vähän päästä kolahti seinähä.

Kräätäri meni luuraamaha klasista viimmeen ja näki sen akan kiärtävän tupaa suuri rautanaula käres. Ja aina vähän päästä se tuikkas seinän rakohon ja jotaki motaji itteksensä.

— Mikä herranähköhön tua on? Ja mitä se teköö, noituuko se siunas kräätärin akka, joka niinku kaikki tiätäävät, on kovasti utelias ihminen.

Kräätäri pani prässirauran pois ja rupes funteeraamahan ja taas luuras.

— S’oon hullu! — sanoo kräätäri. — Vaivaastaloosta karaannu.

Ja silloo kräätärin sisu nousi. Se sanoo akallensakki jotta:

— Siinä ny näjet tämän porvarillisen yhteeskunnan kuinka se hoitaa asiootansa, jotta hullukki pääsöö vaivaastaloosta karkuhan.

— Mutta mä otanki tuan ämmän kiinni ja viän esimiähelle, niin saavat maksaa kiinniottajaasta 25 mk. Ja se on porvarien pussista pois!

Kräätäri lähti pihalle, kiärti toisen kautta mökin taa, hiipii akan seljän taa ja sitte tormootti sen kimppuhu. Hairas takaapäi ympärinsä ja puserti lujaa.

— Ähä akka! — kiljaasi. — Nyt lährethän vaivaastaloolle!

Akka krääkääsi niin lujaa ku taisi, potkii ja huitoo n’otta n’oli heti kumos ja pyäriivät ja huutivat. Mutta kräätäri piti vallankumouksen koko ankaruurella akasta kiinni, ähkyy ja puserti, eikä päästäny irti, vaikka aiva oli kynnenalustat kuallehella verellä.

Ja te tiärättä, jotta ku kräätäri oikee saa haverretuksi miähestä kiinni, niin huiskun! Ei siinä auta!

Ja niin lähti tämäki kräätäri kuljethon akkaa vaivaastaloolle, hikos, ähkyy, puhkuu ja manas ku lappalaane ainaku se akka sai potkaastuksi sitä kintuulle.

Mutta menthin siinä! Menthin ojahankin monta kertaa, mutta aina se kräätäri sai traihatuksi akan ojasta maantiälle. Musteloomia,

kuhmuja ja naarmuja saivat molemmat ja kerran ne kaatuuvat niin pahoon, jotta kräätäriltä meni aiva klanssi nenänpäästå pois.

Niin toi kräätäri sen akan esimiähen pihalle asti. Mutta siinä loppuu voimat. Kräätärin piti ruveta huuthon apua.

Esimiäs tormaski pihalle jotta:

— Mikä kauhia täälä — —

Ja kräätäri seliitti jotta:

— Täs on yks hullujen huanehesta karaannu akka, joka meinas mun tappaa.

Esimiäs kattoo sitä akkaa oikee tarkasti. Ja se hämmästyy.

— Tämähän on se leski, jok’on ostanu kräätärin torpan — sanoo esimiäs.

— Tua peijakkahan hullu — huuti se akka. — Kun mä menin koittohon mökin seiniä — — —

Ja samas se akka mojahutti sitä kräätäriä niin vastapläsiä ja sylkääsiki jotta aiva ympärinsä.

Ja siin’oli totiset paikat ja tylpät keskustelut ennenkö kotia lährettihin esimiähen pihalta.

Oikeuthen viälä mennähän ja tohturia on käytetty. Muttei tohturi tahro löytää siitä akasta mitään vikaa, josta passaas oikee päällekantaa. —

Ja kräätäri on kovasti krätyyne ja häjyllä päällä.

PLUMPÄRI 50 VUATTA.

Oottako kuullu mikä skantaali ny on tapahtunu?

Herra Plumpärill'oli syntymäpäivä eileen ja siitä tuli suuri skantaali.

Hra Plumpäri täytti nyt sen viirennenkymmenennen ajastaikansa eileen ja se meni aiva plöröksi!

Hra Plumpäri oli salaases miälesnänsä ajatellu, jotta tänä merkillisenä päivänä tahtoovat kunnan arvovaltaaset kansalaaset soituun ja lauluun, kukkaasin, lähetystöön, atressin, tilikrammiin, kultakelloon ja hopialusikoon osoottaa yhteeseen, jakamattoman ja vilpittömän kunniootuksensa hra Plumpärille hänen suurista ansioostansa kansan ja yhteeskunnan hyväksi.

Ja juhlapuheeta pirethän ja kehuthan ja ylistethän ja toivotethan pitkää ikää ja monia teräksisen tarmon ja tyän vuasia hra Plumpärille viälä ereskinpäin.

Ja kaupunginvaltuusto tuloo niis suuris silkkipytyys lähetystönä hra Plumpärin kotia ja puheenjohtaja rykii ja puhuu koko kaupungin pualesta ja sanoo, jotta hra Plumpäri on ollu suureksi siunaukseksi

yhteeskunnalle syntymästänsä asti. Sitte se kääntyy niiren toisten silkkipyttyjen pualehen aiva pleikinä ja huutaa jotta:

— Hurrathan ny oikee lujaa tälle Plumpärille.

Ja sitte ne hurraa ku pasuunasta ja nostaavat niitä silkkipyttyjä.

Ja sitte pitää hra Plumpärin vastata ja kiittää ja pitää puheen.

Ja siitä puheen pirost'ei tuu mitää! Sen hra Plumpäri tiäsi heti ajattelemata. Mutta puhet pitää pitää sen tiäsi hra Plumpäri kans.

Sen pitää pitää, vaikka sen tuhat olis!

Ja se oli kamala paikka.

Hra Plumpäri ähkyy ja kulki kamarisnansa ku karhu. Repii tukkaa päästänsä ja aina vähän päästä kattoo suurehe nurkkapeilihi. Ja taas kulki ja ähkyy ja hikos ympärinsä. Ja istuu välis ja taas lähti kiärtämhän. Ja ku frouva Plumpäri tuli kamarihi ja sanoo jottta:

— Voi voi rakas pualisoni, ruaka jähtyy —

Niin hra Plumpäri kattoo niin pitkää ja rumasti frouvansa päälle, jotta se häipyy ku hiljaane haamu kamarista, meni ruakasalihi ja itki.

Mutta hra Plumpäri se kulki.

Ja ku kolmen tiiman päästä ovehe knoputethin ja frouva hiljaa kysyy avaamen reijästä jotta:

— Ekkö sä rakas ukkoseni jo tuu syämähän?

Niin hra Plumpäri, joka ny oli tullu toiselta pualelta päätä aiva harmaaksi ja toiselta pualelta kaljuksi, hyäkkäs ovhen, potkii ja huuti aiva oikohonsa jotta:

— Menkää — — —

Se huuti niin kauhian rumasti frouvallensa, jotta se pyärtyy heti ja kaatuu ku kapu oven taa.

Ja siitä tuli sellaane meteli, jotta heti soitethin tohturia ja se tuliki kohta. Ja virvootti sen frouvan ja oli kovana hra Plumpärille ku se tualla lailla frouvallensa huutaa, jotta se pyärtyy. Hra Plumpäri pillahti silloo itkuhu ja seliitti tohturille kuinka s'oon hermostunu kun se nyt täyttää 50 vuatta ja sen pitää pitää puheen. Eikä siitä tuu mitää!

Niin hra tohturi sanoo jotta:

— Hra Plumpärin ei pirä olla tyhmä ja päätänsä vaivata sellaasella, jost'ei kerran mitää tuu. Kaikki suuret yhteeskunnan hyväntekijät, jokka teköövät yhteeselle kansalle ja isänmaalle sen hyvän tyän, jotta aikanansa täyttäävät ikävuatensa ja kestittöövät ystäviänsä ruaalla ja juamalla, tilaavat puheensa joltakin köyhältä maisterilta, jok'ei ikänä täytä 50 vuatta, ja puhua prätistäävät sen sitte. Omanansa tiätysti, kun s'oon kerran ostettu 20 markalla.

Ja kun hra Plumpäri sen kuuli niin se tuli niin kovasti ilooseksi, jotta se hairas tohturia kaulasta ja maksoo 100 mk liikaa ja haastoo sen tohturin kans syntymäpäivällensä.

Ja frouvaansa se klappas ja taputteli ja otti ja oikee pussaski, n'otta frouva oikee hämmästyy kun ei s'oo pussannu pitkähä aikhan. Siit'on ny ainaki 7 vuatta sitte.

Mutta hra Plumpäri sanoo jotta:

— Mistä mä ne kaikki herraan konstit tietääsin, kun mä ny ensi kerran julkisesti täytän.

Ja hra Plumpäri tilas puheen ja frouva leipoo ja pesthin ja tryykättihin ja hra Plumpäri, joka kovasti kannattaa kialtolakia, tilas 2 pullua konjakkia, 2 pullua viiniä, pualiskan munkkia ja yhren heelan vanhaa punssia ja osti kaikista komjimman sikaarilooran, joka maksoo yli 300 markkaa.

Kaikki oli valmista.

Toffelit paikoolla.

Eikä tahtonu tulla unta olleskaa. Vasta tuas kolomen aikana hra Plumpäri pääsi unehen, mutta s'oli kovasti rauhatoonta ja aiva se kiakkas ja väänteli ittiänsä.

Molemmat korvat olivat aina höröllä, jotta koska rupiaa kuulumhan laulua.

Kuuren aikana kuuluu jotakin kropinaa ja hra Plumpäri poukahti pysthyn ja toffelit jalkoohi ja se puhet yäpöyrältä käthen ja sitte housuuhi ja kaprokki päälle ja aukaashon ovia.

Pimiäs porstuas se tormootti piian päälle, joka krääkkäsi kauhiasti ja rupes siunaamahan.

Ja kauan aikaa sai hra Plumpäri tuumata, ennenkö se käsitti, jotta piika päästi sotamiähen uloos.

Hra Plumpäri lähti takaasi sänkykamarihi, johna frouv'oli jo täyres

pukees, Hra Plumpäri sanoo vain jotta:

— Ei viälä. S'oli vain Hiltan aliupseeri.

Ja meni sitte karteekin raosta luuraamahan, eikö jo lauluseuraa näjy.

Frouva meni valmistamhan kaffipöytää ja seliitti samalla siveellisyyttä Hiltalle.

Ja hra Plumpäri luuras karteekin takaa kello yhreksähän asti.

Eikä ketää tullu! Eikä mitää kuulunu!

— Mitä täm' on? — kyseli hra Plumpäri itteltänsä ja frouvalta.

— Täm'on skantaali — huuti frouva kello 10 aamulla ja pyärtyy.

— Kiittämättömyys on maailman palkka — huokaasi hra Plumpäri.

— Enkös mä oo täyttäny 50 vuotta niinku muukki?

YHTIÖKOKOUS.

Oottako kuullu kuinka tätä nykyä yhtiökokouksia pirethän?

Nythän on niin kova raha-aika, jott'ei auta muu ku koroottaa osakepääomaa. Ja se on tyäläs yritys ja kamala paikka, kun rahaa ei oo ja kaikki on sitä miältä jotta korootethan!

Niimpä yhres pitäjäs täälä Etelä-Pohjanmaalla oli kans täs hiljan isännät ja pomomiähet kokoopunehet koroottamhan pääomaa.

Puheenjohtaja seliitti niinku asia on jotta:

— Tämä meirän yhtiö on erinomaasen tukevalla pohjalla ja taas tulvana vuanna jaethan voittua niinku meijerilitviikis — — —

Ja isäntiä kovasti nauratti.

— Mutta ny on kova raha-aika — jatkoo puheenjohtaja.

— Niin on kovasti — — —

— Ja yhtiö tarvittis 300.000 mk maksuuhi, eikä tiärä mistä saataas, kun rahat on kaikki — puheli puheenjohtaja.

S'olis ollu murheellinen paikka, jos ei joukos olsi ollu yhtä viisasta miästä. Se ehrootti jotta:

— Otethan pankista laihna ja korootethan osakepääomaa! Niinhän sitä pruukathan.

— Kannatethan! — kuuluu yksimiälisesti.

— Onko se päätös? — kysyy puheenjohtaja.

— Joo.

— Ja uuret osakkehet jaetahan tasan?

— Kannatethan vilkkahasti! —

— Ja osakemaksut kootahan heti sisälle.

— Kannatethan! Kannatethan!

— Se on siis kokouksen päätös — sanoo puheenjohtaja ja knapahutti taitavaa plyijypännällä pöytähän.

— Ja ny sitte päätethän siitä laihnanotosta pankista.

Taas nousi se viisas miäs ylhä ja sanoo:

— No sehän on jo päätetty asia. Mitäs siitä enää puhuthan. Johtokunta kirjoottaa velkakirjan pankkihin ja nostaa rahat. Sitähän varte se johtokunta onkin.

— Joo joo — sanoo puheenjohtaja — mutta m'oomma johtokunnan miähet jo niin paljo takaamas tätä puulaakia, jotta

meirän nimellä ei enää nouse. Ja ny on raha pankis lujas. Sanothin jotta pitää olla ainakin parikymmentä yhtiön osakasta takaamas.

Tuvas ruvettihin kovasti rykimähän.

— Niin että kyllä mä ehrootan, jotta tuata muukkin yhtiön osakkahat kirjoottavat ittensä takausmiähiksi kun puulaaki on yhteene.

Yks hairas kellonsa jotta:

— Voi ny sentähre ku kello on pian 7.

Ja sille tuli kiirus kotia, kun sen piti lähtiä emäntää kyyttihin asemalle.

Toiset vaipuuvat niin syvihin tuuminkiihi, jotta n'ei kuullehet enää mitää, vaikka puheenjohtaja monehen kertahan sanoo.

Ja muut tulivat niin levottomiksi, kun kauan oli jo istuttu, jotta nousivat ylhä ja sanoovat jotta:

— Pitää vähä pistääpyä pihalla. Mä tuun kohta. — — —

Ja niin niitä rupes isäntiä kovasti puhistamhan jotta puheenjohtaja viimmeen sanoo jotta:

— Eikhän oo paras tällätä sankoo oviloukkoho.

Mutta meni ne.

*** END OF THE PROJECT GUTENBERG EBOOK OOTTAKO KUULLU: SEN TUHANNEN PRÄTINÖÖTÄ POHJANMAALTA ***

Updated editions will replace the previous one—the old editions will be renamed.

Creating the works from print editions not protected by U.S. copyright law means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg™ electronic works to protect the PROJECT GUTENBERG™ concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for an eBook, except by following the terms of the trademark license, including paying royalties for use of the Project Gutenberg trademark. If you do not charge anything for copies of this eBook, complying with the trademark license is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. Project Gutenberg eBooks may be modified and printed and given away—you may do practically ANYTHING in the United States with eBooks not protected by U.S. copyright law. Redistribution is subject to the trademark license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase “Project Gutenberg”), you agree to comply with all the terms of the Full Project Gutenberg™ License available with this file or online at www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg™ electronic works

1.A. By reading or using any part of this Project Gutenberg™ electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg™ electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg™ electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg™ electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg™ electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg™ electronic works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation (“the Foundation” or PGLAF), owns a compilation copyright in the collection of Project Gutenberg™ electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg™ mission of promoting free access to electronic works by freely sharing Project Gutenberg™ works in compliance with the terms of this agreement for keeping the Project Gutenberg™ name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg™ License when you share it without charge with others.

1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg™ work. The Foundation makes no representations concerning the copyright status of any work in any country other than the United States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg™ License must appear prominently whenever any copy of a Project Gutenberg™ work (any work on which the phrase “Project Gutenberg” appears, or with which the phrase “Project Gutenberg” is associated) is accessed, displayed, performed, viewed, copied or distributed:

This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

1.E.2. If an individual Project Gutenberg™ electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase “Project Gutenberg” associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg™ trademark as set forth in paragraphs 1.E.8 or 1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg™ License for all works posted with the permission of the copyright holder found at the beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg™ License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg™ License.

1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg™ work in a format other than “Plain Vanilla ASCII” or other format used in the official version posted on the official Project Gutenberg™ website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original “Plain Vanilla ASCII” or other form. Any alternate format must include the full Project Gutenberg™ License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg™ works unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg™ electronic works provided that:

• You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg™ works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg™ trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information about donations to the Project Gutenberg Literary Archive Foundation.”

• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™

License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.

• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.

• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment.

1.F.2. LIMITED WARRANTY,

DISCLAIMER OF DAMAGES

- Except for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.