Advanced concepts for intelligent vision systems 15th international conference acivs 2013 poznań pol

Page 1


Advanced Concepts for Intelligent Vision

Systems 15th International Conference ACIVS 2013 Pozna■ Poland

October 28 31 2013 Proceedings 1st Edition Christophe Deknudt

Visit to download the full and correct content document: https://textbookfull.com/product/advanced-concepts-for-intelligent-vision-systems-15t h-international-conference-acivs-2013-poznan-poland-october-28-31-2013-proceedin gs-1st-edition-christophe-deknudt/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Advanced Concepts for Intelligent Vision Systems 17th

International Conference ACIVS 2016 Lecce Italy October 24 27 2016 Proceedings 1st Edition Jacques Blanc-Talon

https://textbookfull.com/product/advanced-concepts-forintelligent-vision-systems-17th-international-conferenceacivs-2016-lecce-italy-october-24-27-2016-proceedings-1stedition-jacques-blanc-talon/

Advanced Concepts for Intelligent Vision Systems 19th

International Conference ACIVS 2018 Poitiers France September 24 27 2018 Proceedings Jacques Blanc-Talon

https://textbookfull.com/product/advanced-concepts-forintelligent-vision-systems-19th-international-conferenceacivs-2018-poitiers-france-september-24-27-2018-proceedingsjacques-blanc-talon/

Advanced Concepts for Intelligent Vision Systems 18th

International Conference ACIVS 2017 Antwerp Belgium September 18 21 2017 Proceedings 1st Edition Jacques Blanc-Talon

https://textbookfull.com/product/advanced-concepts-forintelligent-vision-systems-18th-international-conferenceacivs-2017-antwerp-belgium-september-18-21-2017-proceedings-1stedition-jacques-blanc-talon/

Software Language Engineering 6th International

Conference SLE 2013 Indianapolis IN USA October 26 28 2013 Proceedings 1st Edition Don Batory

https://textbookfull.com/product/software-languageengineering-6th-international-conference-sle-2013-indianapolisin-usa-october-26-28-2013-proceedings-1st-edition-don-batory/

Information Theoretic Security 7th International Conference ICITS 2013 Singapore November 28 30 2013 Proceedings 1st Edition Kaoru Kurosawa

https://textbookfull.com/product/information-theoreticsecurity-7th-international-conference-icits-2013-singaporenovember-28-30-2013-proceedings-1st-edition-kaoru-kurosawa/

Advances in Systems Science Proceedings of the International Conference on Systems Science 2013 ICSS 2013 1st Edition Tadeusz Kaczorek (Auth.)

https://textbookfull.com/product/advances-in-systems-scienceproceedings-of-the-international-conference-on-systemsscience-2013-icss-2013-1st-edition-tadeusz-kaczorek-auth/

Ultrafast Magnetism I Proceedings of the International Conference UMC 2013 Strasbourg France October 28th November 1st 2013 1st Edition Jean-Yves Bigot

https://textbookfull.com/product/ultrafast-magnetism-iproceedings-of-the-international-conference-umc-2013-strasbourgfrance-october-28th-november-1st-2013-1st-edition-jean-yvesbigot/

Principles of Distributed Systems 17th International Conference OPODIS 2013 Nice France December 16 18 2013 Proceedings 1st Edition Hein Meling

https://textbookfull.com/product/principles-of-distributedsystems-17th-international-conference-opodis-2013-nice-francedecember-16-18-2013-proceedings-1st-edition-hein-meling/

The 15th International Conference on Biomedical Engineering ICBME 2013 4th to 7th December 2013 Singapore 1st Edition B. L. Khoo

https://textbookfull.com/product/the-15th-internationalconference-on-biomedical-engineering-icbme-2013-4th-to-7thdecember-2013-singapore-1st-edition-b-l-khoo/

Jacques Blanc-Talon Andrzej Kasinski

Wilfried Philips Dan Popescu

Paul Scheunders (Eds.)

Advanced Concepts for Intelligent Vision Systems

15th International Conference, ACIVS 2013 Poznań, Poland, October 2013

Proceedings

LectureNotesinComputerScience8192

CommencedPublicationin1973

FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen

EditorialBoard

DavidHutchison LancasterUniversity,UK

TakeoKanade

CarnegieMellonUniversity,Pittsburgh,PA,USA

JosefKittler UniversityofSurrey,Guildford,UK

JonM.Kleinberg

CornellUniversity,Ithaca,NY,USA

AlfredKobsa UniversityofCalifornia,Irvine,CA,USA

FriedemannMattern ETHZurich,Switzerland

JohnC.Mitchell StanfordUniversity,CA,USA

MoniNaor

WeizmannInstituteofScience,Rehovot,Israel

OscarNierstrasz UniversityofBern,Switzerland

C.PanduRangan IndianInstituteofTechnology,Madras,India

BernhardSteffen TUDortmundUniversity,Germany

MadhuSudan MicrosoftResearch,Cambridge,MA,USA

DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA

DougTygar UniversityofCalifornia,Berkeley,CA,USA

GerhardWeikum

MaxPlanckInstituteforInformatics,Saarbruecken,Germany

JacquesBlanc-TalonAndrzejKasinski

AdvancedConcepts forIntelligent VisionSystems

15thInternationalConference,ACIVS2013

Pozna´n,Poland,October28-31,2013

Proceedings

VolumeEditors

JacquesBlanc-Talon

DGA,Bagneux,France

E-mail:confs.blanctalon@free.fr

AndrzejKasinski

Pozna´nUniversityofTechnology,Pozna´n,Poland

E-mail:akas@ar-kari.put.poznan.pl

WilfriedPhilips

GhentUniversity,Ghent,Belgium

E-mail:wilfried.philips@telin.ugent.be

DanPopescu

CSIROICTCentre,Sydney,NSW,Australia E-mail:dan.popescu@csiro.au

PaulScheunders UniversityofAntwerp,Belgium E-mail:paul.scheunders@ua.ac.be

ISSN0302-9743e-ISSN1611-3349

ISBN978-3-319-02894-1

e-ISBN978-3-319-02895-8 DOI10.1007/978-3-319-02895-8

SpringerChamHeidelbergNewYorkDordrechtLondon

LibraryofCongressControlNumber:2013950933

CRSubjectClassification(1998):I.4,I.5,C.2,I.2,I.2.10,H.3-4

LNCSSublibrary:SL6–ImageProcessing,ComputerVision,PatternRecognition, andGraphics

©SpringerInternationalPublishingSwitzerland2013

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’slocation, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissionsforuse maybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliabletoprosecution undertherespectiveCopyrightLaw.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsor omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein.

Typesetting: Camera-readybyauthor,dataconversionbyScientificPublishingServices,Chennai,India

Printedonacid-freepaper

SpringerispartofSpringerScience+BusinessMedia(www.springer.com)

Preface

Thisvolumecollectsthepapersacceptedforpresentationatthe15thInternationalConferenceon“AdvancedConceptsforIntelligentVisionSystems” (ACIVS 2013),whichtookplaceinCityParkHotel,Poznan,Poland.Following thefirstmeetinginBaden-Baden(Germany)in1999,whichwaspartofalarge multiconference,the ACIVS conferencehassincethen developedintoanindependentscientificeventandhasmaintainedthetraditionofbeingasingle-track conference.ACIVS2013attractedscientistsfrom23differentcountries,mostly fromEurope,butalsofromAlgeria,China,Japan,SouthKorea,theUnited ArabEmirates,andtheUSA.

Although ACIVS isaconferenceonallareasofimageandvideoprocessing, submissionstendtogatherwithinsomemajorfieldsofinterest.Thisyear,video analyticsandbiometryprovedpopulartopics.Asinthepast,manypaperson imageanalysis,segmentation,andclassificationwerepresentedaswell.

Aconferencelike ACIVS wouldnotbefeasiblewithouttheconcertedeffort ofmanypeopleandthesupportofvariousinstitutions.Thepapersubmission andreviewprocedurewascarriedoutelectronicallyandaminimumofthree reviewerswereassignedtoeachpaper.From111submissions,63paperswere selectedforpresentation,eitherorallyorasposters.AlargeandenergeticProgramCommittee,helpedbyadditionalreferees–listedonthefollowingpages–completedthelonganddemandingreviewingprocess.Wewouldliketothank allofthemfortheirtimelyandhigh-qualityreviews.

Lastbutnotleast,wewouldliketothankalltheparticipantswhotrustedin ourabilitytoorganizethisconferenceforthe15thtime.Wehopetheyattended astimulatingscientificeventandenjoyedtheatmosphereofthe ACIVS social eventsinthecityofPoznan. July2013JacquesBlanc-Talon

Organization

Acivs2013wasorganizedbyPoznanUniversityofTechnology,locatedinPoland.

SteeringCommittee

JacquesBlanc-TalonDGA,France

WilfriedPhilipsGhentUniversity/iMinds,Belgium

DanPopescuCSIRO,Australia

PaulScheundersUniversityofAntwerp,Belgium

OrganizingCommittee

ZuzannaDomagaaPoznanUniversityofTechnology,Poland MichalFularzPoznanUniversityofTechnology,Poland MarekKraftPoznanUniversityofTechnology,Poland AdamSchmidtPoznanUniversityofTechnology,Poland KrzysztofWalasPoznanUniversityofTechnology,Poland

ProgramCommittee

AlinAchimUniversityofBristol,UK

HamidAghajanStanfordUniversity,USA

MarcAntoniniUniversitdeNice-SophiaAntipolis,France

MarieBabelInria-IRISA,France

PhilippeBolonUniversityofSavoie,France

DonBoneCannonInformationSystemsResearch, Australia

SalahBourennaneEcoleCentraledeMarseille,France

DanDumitruBurdescuUniversityofCraiova,Romania

JocelynChanussotGrenobleInstituteofTechnology,France

JenniferDavidsonIowaStateUniversity,USA

ArturodelaEscaleraHuesoUniversidadCarlosIIIdeMadrid,Spain

EricDebreuveUniversityofNice-SophiaAntipolis,France

ZuzannaDomagaaPoznanUniversityofTechnology,Poland FrdricDufauxENST,France

MichalFularzPoznanUniversityofTechnology,Poland JrmeGillesUCLA,USA

GeorgyGimel’farbTheUniversityofAuckland,NewZealand MarkkuHauta-KasariUniversityofEasternFinland,Finland

DimitrisIakovidisTechnologicalEducationalInstituteofLamia, Greece

ArtoKaarnaLappeenrantaUniversityofTechnology, Finland

ZoltanKatoUniversityofSzeged,Hungary RonKimmelTechnion,Israel

MarekKraftPoznanUniversityofTechnology,Poland

HamidKrimNorthCarolinaStateUniversity,USA

KennethLamTheHongKongPolytechnicUniversity, SARChina

PatrickLeCalletPolytechNantes/UniversitdeNantes,France

AlessandroLeddaArtesisUniversityCollegeAntwerp,Belgium

GonzaloPajaresMartinsanzUniversidadComplutense,Spain JavierMateosUniversityofGranada,Spain

FabriceMriaudeauUniversitdeBourgogne,France

JeanMeunierUniversitdeMontral,Canada

AdrianMunteanuVrijeUniversiteitBrussel,Belgium FernandoPereiraInstitutoSuperiorTcnico,Portugal

StuartPerryCanonInformationSystemsResearch Australia,Australia

WojciechPieczynskiTELECOMSudParis,France MarcPierrot-DeseillignyIGN,France

AleksandraPizuricaGhentUniversity/iMinds,Belgium

WilliamPuechLIRMM,France

GianniRamponiTriesteUniversity,Italy PaoloRemagninoKingstonUniversity,UK

PatriceRondaoAlfaceAlcatel-LucentBellLabs,Belgium

AdamSchmidtPoznanUniversityofTechnology,Poland MubarakShahUniversityofCentralFlorida,USA

AndrzejSluzekKhalifaUniversity,UnitedArabEmirates

HuguesTalbotESIEE,France

MarcVanDroogenbroeckUniversityofLige,Belgium

PeterVeelaertGhentUniversity/iMinds,Belgium

NicoleVincentUniversitParisDescartes,France

KrzysztofWalasPoznanUniversityofTechnology,Poland GeraldZaunerFachhochschuleOber¨osterreich,Austria PavelZemcikBrnoUniversityofTechnology,CzechRepublic DjemelZiouSherbrookeUniversity,Canada

Reviewers

AlinAchimUniversityofBristol,UK

HamidAghajanStanfordUniversity,USA

MarieBabelInria-IRISA,France

JacquesBlanc-TalonDGA,France

NyanBoBoGentUniversity/iMinds,Belgium

PhilippeBolonUniversityofSavoie,France

DonBoneCannonInformationSystemsResearch, Australia

SalahBourennaneEcoleCentraledeMarseille,France

DanDumitruBurdescuUniversityofCraiova,Romania

JocelynChanussotGrenobleInstituteofTechnology,France

ThierryChateauInstitutPascal,France

GabrielaCsurkaXeroxResearchCentreEurope,France

BoguslawCyganekAGHUniversityofScienceandTechnology, Poland

EmmanuelD’AngeloAdvancedSiliconS.A.,Switzerland

ArturodelaEscaleraHuesoUniversidadCarlosIIIdeMadrid,Spain

EricDebreuveUniversityofNice-SophiaAntipolis,France

IvanaDespotovicGhentUniversity/iMinds,Belgium

SeverineDubuissonLaboratoired’InformatiquedeParis6,France

FrdricDufauxENST,France

JrmeGillesUCLA,USA

GeorgyGimel’farbTheUniversityofAuckland,NewZealand BartGoossensGhentUniversity/iMinds,Belgium

SebastianGruenwedelGhentUniversity,Belgium

MarkkuHauta-KasariUniversityofEasternFinland,Finland

DimitrisIakovidisTechnologicalEducationalInstituteofLamia, Greece

ArtoKaarnaLappeenrantaUniversityofTechnology, Finland

RichardKleihorstXetalandGhentUniversity,Belgium

MarekKraftPoznanUniversityofTechnology,Poland

KennethLamTheHongKongPolytechnicUniversity, SARChina

PatrickLeCalletPolytechNantes/UniversitdeNantes,France

AlessandroLeddaArtesisUniversityCollegeAntwerp,Belgium

DominiqueLuzeauxDGA,France

HenriMaitreTelecomParisTech,France

AntoineManzaneraENSTAParisTech,France

GonzaloPajaresMartinsanzUniversidadComplutense,Spain

JavierMateosUniversityofGranada,Spain

JeanMeunierUniversitdeMontral,Canada

AdrianMunteanuVrijeUniversiteitBrussel,Belgium

SergioOrjuelaVargasGhentUniversity,Belgium

FernandoPereiraInstitutoSuperiorTcnico,Portugal

StuartPerryCanonInformationSystemsResearch Australia,Australia

WilfriedPhilipsGhentUniversity/iMinds,Belgium

AleksandraPizuricaGhentUniversity/iMinds,Belgium

DanPopescuCSIRO,Australia

GianniRamponiTriesteUniversity,Italy PatriceRondaoAlfaceAlcatel-LucentBellLabs,Belgium PaulScheundersUniversityofAntwerp,Belgium AdamSchmidtPoznanUniversityofTechnology,Poland MubarakShahUniversityofCentralFlorida,USA AndrzejSluzekKhalifaUniversity,UnitedArabEmirates HuguesTalbotESIEE,France

GuyThoonenUniversityofAntwerp,Belgium MarcVanDroogenbroeckUniversityofLige,Belgium DavidVanHammeGhentUniversity/iMinds,Belgium PeterVeelaertGhentUniversity/iMinds,Belgium NicoleVincentUniversitParisDescartes,France KrzysztofWalasPoznanUniversityofTechnology,Poland GeraldZaunerFachhochschuleOber¨osterreich,Austria PavelZemcikBrnoUniversityofTechnology,CzechRepublic DjemelZiouSherbrookeUniversity,Canada WitoldZorskiCyberneticsFaculty,MilitaryUniversity ofTechnology,Poland

Acquisition,Pre-processingandCoding

EfficientLowComplexitySVCVideoTransraterwithSpatial Scalability 1 ChristopheDeknudt,Fran¸cois-XavierCoudoux,PatrickCorlay, MarcGazalet,andMohamedGharbi

JanuszCichowski,AndrzejCzy˙zewski,andBo˙zenaKostek

Mart´ınMontalvo,Jos´eM.Guerrero,JuanRomeo,Mar´ıaGuijarro, Jes´usM.delaCruz,andGonzaloPajares

KalyanKumarHalder,MuratTahtali,andSreenathaG.Anavatti

YasirSalih,AamirSaeedMalik,NicolasWalter,D´esir´eSidib´e, NaufalSaad,andFabriceMeriaudeau

Florina-CristinaCalnegru

Biometry

Real-TimeFacePoseEstimationinChallengingEnvironments ......... 114 MlikiHazar,HammamiMohamed,andBen-AbdallahHanˆene

HumanMotionCaptureUsingDataFusionofMultipleSkeleton Data 126

Jean-ThomasMasse,Fr´ed´ericLerasle,MichelDevy,Andr´eMonin, OlivierLefebvre,andSt´ephaneMas

RecognizingConversationalInteractionBasedon3DHumanPose 138 JingjingDeng,XianghuaXie,BenDaubney,HuiFang,and PhilW.Grant

Upper-BodyPoseEstimationUsingGeodesicDistances andSkin-Color 150

SebastianHandrichandAyoubAl-Hamadi

ANewApproachforHandAugmentationBasedonPatchModelling 162 OmerRashidAhmadandAyoubAl-Hamadi

HiddenMarkovModelsforModelingOccurrenceOrderofFacial TemporalDynamics 172 KhadoudjaGhanem

AdaptiveTwoPhaseSparseRepresentationClassifierforFace Recognition ..................................................... 182

FadiDornaika,YoussofElTraboulsi,andAmmarAssoum

AutomaticUser-SpecificAvatarParametrisationandEmotion Mapping ........................................................ 192

StephanieBehrens,AyoubAl-Hamadi,RobertNiese,and EickeRedweik

ClassificationandRecognition

OptimizingContextual-BasedOptimum-ForestClassification throughSwarmIntelligence ....................................... 203

DanielOsaku,RodrigoNakamura,Jo˜aoPapa,AlexandreLevada, F´abioCappabianco,andAlexandreFalc˜ao

AMobileImagingSystemforMedicalDiagnostics ................... 215 SamiVarjoandJariHannuksela

FastRoadNetworkExtractionfromRemotelySensedImages .......... 227 VladimirA.KrylovandJamesD.B.Nelson

PartialNear-DuplicateDetectioninRandomImagesbyaCombination ofDetectors .....................................................

Andrzej ´ Sluzek

ObjectRecognitionandModelingUsingSIFTFeatures 250 AlessandroBruno,LucaGreco,andMarcoLaCascia

PaintingSceneRecognitionUsingHomogenousShapes 262 RazvanGeorgeCondorovici,CorneliuFlorea,andConstantinVertan

ANovelGraphBasedClusteringTechniqueforHybridSegmentation ofMulti-spectralRemotelySensedImages ...........................

BiplabBanerjee,PradeepKumarMishra,SurenderVarma,and BuddhirajuKrishnaMohan

Depth,3DandTracking

PlanarSegmentationbyTime-of-FlightCameras .....................

RudiPenne,LucMertens,andBartRibbens

AnEfficientNormal-ErrorIterativeAlgorithmforLineTriangulation ... 298 QiangZhang,YanWu,MingLiu,andLichengJiao

MovingObjectDetectionSysteminAerialVideoSurveillance 310 AhlemWalha,AliWali,andAdelM.Alimi

AnIndoorRGB-DDatasetfortheEvaluationofRobotNavigation Algorithms 321 AdamSchmidt,MichalFularz,MarekKraft,AndrzejKasi´nski,and MichalNowicki

Real-TimeDepthMapBasedPeopleCounting ....................... 330 FrantiˇsekGalˇc´ıkandRadoslavGargal´ık

TrackingofaHandheldUltrasonicSensorforCorrosionControl onPipeSegmentSurfaces .........................................

ChristianBendicks,ErikLilienblum,ChristianFreye,and AyoubAl-Hamadi

NizarK.SallemandMichelDevy

EfficientImplementationsandFrameworks

AResourceAllocationFrameworkforAdaptiveSelectionofPoint MatchingStrategies 366 QuentinDeNeyerandChristopheDeVleeschouwer

VTApi:AnEfficientFrameworkforComputerVisionDataManagement andAnalytics

PetrChmelar,MartinPesek,TomasVolf,JaroslavZendulka,and VojtechFroml

ComputationalMethodsforSelectiveAcquisitionofDepth Measurements:AnExperimentalEvaluation

389 PierrePayeur,PhillipCurtis,andAna-MariaCretu

ANewColorImageDatabaseTID2013:InnovationsandResults

402 NikolayPonomarenko,OlegIeremeiev,VladimirLukin,LinaJin, KarenEgiazarian,JaakkoAstola,BenoitVozel,KacemChehdi, MarcoCarli,FedericaBattisti,andC.-C.JayKuo

PerformanceEvaluationofVideoAnalyticsforSurveillanceOn-Board Trains 414

ValentinaCasola,MarianaEsposito,FrancescoFlammini, NicolaMazzocca,andConcettaPragliola

GPU-AcceleratedHumanMotionTrackingUsingParticleFilter

BoguslawRymut,BogdanKwolek,andTomaszKrzeszowski

LowLevelImageAnalysisandSegmentation

ModellingLineandEdgeFeaturesUsingHigher-OrderRiesz

RossMarchantandPaulJackway

SemanticApproachinImageChangeDetection

AdrienGressin,NicoleVincent,Cl´ementMallet,and NicolasPaparoditis

SmallTargetDetectionImprovementinHyperspectralImage 460 TaoLin,JulienMarot,andSalahBourennane

TheObjectiveEvaluationofImageObjectSegmentationQuality 470 RanShi,KingNgiNgan,andSongnanLi

AModificationofDiffusionDistanceforClusteringandImage Segmentation 480 EduardSojkaandJanGaura

FlexibleMulti-modalGraph-BasedSegmentation ....................

WillemP.Sanberg,LuatDo,andPeterH.N.deWith

TheDivideandSegmentMethodforParallelImageSegmentation

504 ThalesSehnK¨orting,EmilianoFerreiraCastejon,and LeilaMariaGarciaFonseca

UnsupervisedSegmentationforTransmissionImagingofCarbon Black ........................................................... 516 LydieLuengo,H´el`eneLaurent,SylvieTreuillet,IsabelleJolivet,and EmmanuelGomez

TreeSymbolsDetectionforGreenSpaceEstimation 526

AdrianSrokaandMarcinLuckner

HierarchicalLayeredMeanShiftMethods 538

Milan ˇ Surkala,KarelMozdˇreˇn,RadovanFusek,andEduardSojka

GloballySegmentationUsingActiveContoursandBeliefFunction ..... 546 FouedDerraz,MiloudBoussahla,andLaurentPeyrodie

VideoAnalytics

AutomaticMonitoringofPigActivityUsingImageAnalysis ........... 555 MohammadAminKashiha,ClaudiaBahr,SanneOtt, ChristelP.H.Moons,TheoA.Niewold,FrankTuyttens,and DanielBerckmans

IMM-BasedTrackingandLatencyControlwithOff-the-ShelfIPPTZ Camera ......................................................... 564

PierrickPaillet,RomaricAudigier,FredericLerasle,and Quoc-CuongPham

EvaluationofTrafficSignRecognitionMethodsTrained onSyntheticallyGeneratedData 576 BorisMoiseev,ArtemKonev,AlexanderChigorin,and AntonKonushin

RobustMulti-cameraPeopleTrackingUsingMaximumLikelihood Estimation ......................................................

584 NyanBoBo,PeterVanHese,SebastianGruenwedel, JunzhiGuan,JorgeNi˜no-Casta˜neda,DirkVanHaerenborgh, DimitriVanCauwelaert,PeterVeelaert,andWilfriedPhilips

APerception-BasedInterpretationoftheKernel-BasedObject Tracking ........................................................ 596 VittoriaBruniandDomenicoVitulano

EfficientDetectionandTrackingofRoadSignsBasedonVehicle MotionandStereoVision 608 Chang-WonChoi,Sung-InChoi,andSoon-YongPark

IncrementalPrincipalComponentAnalysis-BasedSparse RepresentationforFacePoseClassification 620 YuyaoZhang,Y.Benhamza,KhalidIdrissi,andChristopheGarcia

PersonDetectionwithaComputationTimeWeightedAdaBoost .......

632 AlhayatAliMekonnen,Fr´ed´ericLerasle,andArianeHerbulot

PerspectiveMultiscaleDetectionofVehiclesforReal-TimeForward CollisionAvoidanceSystems 645

JuanDiegoOrtega,MarcosNieto,AndoniCortes,andJulianFlorez

LearningandPropagationofDominantColorsforFastVideo Segmentation .................................................... 657

C´edricVerleysenandChristopheDeVleeschouwer

AKey-PoseSimilarityAlgorithmforMotionDataRetrieval 669

JanSedmidubsky,JakubValcik,andPavelZezula

TrainingwithCorruptedLabelstoReinforceaProbablyCorrect TeamsportPlayerDetector 682

PascalineParisot,BerkSevilmi¸s,andChristopheDeVleeschouwer

SphericalCenter-SurroundforVideoSaliencyDetectionUsingSparse Sampling ....................................................... 695

HamedRezazadeganTavakoli,EsaRahtu,andJanneHeikkil¨ a

SemanticConceptDetectionUsingDenseCodewordMotion 705 ClaudiuT˘anaseandBernardM´erialdo

ChristopheDeknudt,Fran¸cois-XavierCoudoux,PatrickCorlay,MarcGazalet, andMohamedGharbi

I.E.M.N.,OAEDepartment,UMR8520,UniversityofValenciennes LeMontHouy59313ValenciennesCedex9,France christophe.deknudt@gmail.com {francois-xavier.coudoux,patrick.corlay, marc.gazalet,mohamed.gharbi}@univ-valenciennes.fr http://www.univ-valenciennes.fr/DOAE/index-doae

Abstract. InthispaperweproposeanewH.264SVCtransratingarchitectureforspatiallyscalableSVCcompressedvideostreams.Thealgorithmislowcomplexitybased,itappliestospatiallyscalablepre-encoded videostreamsandallowsfinebitrategranularitywhilekeepinghighest spatialresolution.Simulationresultsdemonstratethattranscodedbit streamsproducesatisfyingpicturequalityevenatbitratereductionup to66%.ThecomparisonwithMGScompressedvideostreamsshows thattheproposedtransratingaslgorithmofferssatisfyingperformances comparedtoMGSwhenbitratereductionremainslimited.Moreover qualityscalabilityisobtainedthankstoouralgorithmeveniftheSVC compressedvideobitstreamhasnotbeenprocessedusingMGSscalabilityrightfromthestart1 .

Keywords: Videocompression,H.264,SVC,SpatialScalability, Transcoding,MediumGrainScalability(MGS).

1Introduction

Severalmultimediaservicessuchasvideoondemand(VoD)andvideostreamingarebasedonthewideuseofpre-encodedvideostreams[1].ScalableVideo Coding(SVC)constitutesanattractivesolutioninordertopre-encodevideo contentswiththepossibilitytofurtheraccesstoavarietyofformats,temporal resolutionand/orqualitylevels[2]-[3].Consequently,thenumberofavailable scalablevideocontentsisexpectedtowidelyincreaseinthenextfewyearsgiven thatstate of the artH.264/AVCcompressionstandardintegratescurrentlya

1 ThisworkwassupportedinpartbytheFrenchNationalResearchAgencythrough theTOSCANEproject.

C.DeknudtiswithSoftthinks,VilleneuvedAscq,France.

F.-X.Coudoux,P.CorlayM.GazaletandM.GharbiarewithInstitutdElectronique, deMicrolectroniqueetdeNanotechnologie.

J.Blanc-Talonetal.(Eds.):ACIVS2013,LNCS8192,pp.1–12,2013. c SpringerInternationalPublishingSwitzerland2013

scalableextensionwhileascalableversionofthenewemergingHEVCstandardisunderdevelopment.Theso-calledspatial,temporal,andso-calledSNR scalabilitiescantheoreticallybecombinedtogetherinordertoaccountforthe widevarietyofnewdigitalimageformats,frameratesanddeliverynetworks. Inthiscase,however,theSVCencodingprocessbecomesverycomplexandcan leadtoasignificantlossincodingefficiencycomparedtosingle-layercoding. Whenpre-encodedstreams aretransmitted,itcanb ecomenecessarytoreduce theinitialbitrateofthecompressedbitstreamaccordingtotheavailablebandwidthoruserdemand.Inthiscase,bitrateconversionalsocalledtransrating mayberequiredasanalternativesolutiontotheinherentscalabilityofferedby SVC[4].TherehasbeenalotofrecentscientificworkonH.264/AVCandSVC transratingalsocalleddynamicshaping[5]-[6]-[7].Inparticular,VandeWalle etal.havebeenveryactiveinthisresearchfieldandhaveproposedseveral originalcontributions.In[8],theyproposedalowcomplexitySNRtranscodingforH.264/AVCcompressedstreamswhichisbasedonrequantization.In [9],theypresentanefficientarchitectureforH.264/AVCtoSNRscalableSVC fasttranscoding.Itshouldbenoticedthatthepresentauthorshavealsoproposedinapreviousworkalowcomplexity transratingarchitecturebasedonfrequencyselectivityforH.264/AVCvideobitstreamswithoutdriftforintra-coded frames[10].

Inthispapertheprevioustransratingarchitectureisextendedtothecaseof SVCpre-encodedvideostreamswithspatialscalabilityonly,i.e.SNRscalabilityhasnotbeenconsideredatfirstduringtheencodingstage.Inthiscase,the so-calledbaselayercorrespondstothelowestspatialresolution,andtheneach supplementaryenhancementlayerallowsincreasingthespatialresolution.Basically,bitratereductionofspatiallyscalableencodedvideostreamsismadepossiblebyremovingonespatialenhancementlayeratatimefromthecompressed bitstream.Unfortunately,suchrateadaptationleadstoverycoarsegranularity hencepoorflexibilityandefficiency.Moreover,spatialresolutiondecreaseseach timethebitrateisreduced.

WeproposeanewapproachforefficientSVCtransratingofspatiallyscalable compressedvideostreams.Oursolutionpermittoobtainafinerbitrategranularity.Toourknowledge,thispaperpresentsthefirstsolutionfortransratingofSVC compressedvideostreamssupportingspatialscalabilityonly.Inwhatfollows,we onlydescribetheproposedalgorithmbasedonsimpledyadicspatialscalability withtwolayers.However,thesolutioncanbeextendedtoarbitraryresolution factorsandmultipleenhancementlayers.Theproposedalgorithmconsistsinremovingselectivelyresidualtransform coefficientsfromtheenhancementlayerof highestspatialresolution.Inordertoguaranteerealtimeprocessing,itshould beoflowcomputationalcomplexitycomparedtoatraditionalfulldecode-full recodeapproach.Hence,thetransratingsolutionisbasedonopen-looparchitecture.Twosolutionsareproposedbasedonathoroughanalysisofmacroblock encodingmodes:first,theselectionoftransformcoefficientsisappliedtoall macroblocksofthehighestenhancementlayergiventhattheencodingprocess ismodifiedsuchthatintra-layerintra-predictionisforbidden.Then,thesecond

EfficientLowComplexitySVCVideoTransraterwithSpatialScalability3

algorithmislimitedtomacroblocksencodedbymeansofinter-frameprediction withnorestrictionofthecodingprocess.Simulationresultsshowthatbothalgorithmsofferfinerategranularity,withverysatisfyingvisualqualityofthe transratedvideosequencefreeofseveredrifterrordistortionwhilepreserving highestspatialresolution.

Thepaperisorganizedasfollows.InSection2,wegiveabriefoverviewof SVCspatialscalabilityandthecorrespondingencodingtools.Then,thetransratingsolutionsbasedonfrequencyselectivityarepresentedindetail.Simulation resultsaregiveninSection4.AcomparisonwithacombinedhybridMedium GranularityScalability(MGS)/spatialscalabilityapproachisproposed.Weshow thattheproposedsolutionprovidesgoodresultsformoderatebitratereductions.Moreover,thehybridMGS/spatialscalabilitysolutionintroducesabitrate increaseand,aboveall,thissolutionmustbeinitiallyplannedattheencoding stagewhiletheproposedtransratingschemeallowsbitrate/qualityadaptation ofaSVCbitstreamevenifthisstreamonlysupportsspatialscalability.Finally, Section5givestheconclusions.

2OverviewofSVCSpatialScalability

Fig.1illustratestheconceptofspatialscalabilitywithtwospatiallayers.Inthis case,theSVCcodingstructureisorganizedintwodependencylayers:abase layernotedhereLayer0,andanenhancementlayercorrespondingtoresidual dataofhigherspatialresolutionnotedhereLayer1.

Fig.1. IllustrationofSVCspatialscalabilitywithtwolayers:thedifferentencoding modesarenoted(a)to(d)

Foreachdependencylayer,thebasicconceptsofmotion-compensatedpredictionandintra-prediction(solidarrows)areusedasinsingle-layercoding. Classically,theintra,predicted,andbidirectionalpicturesarenotedI,P,andB, respectively.Additionally,thesocalledinter-layerprediction(dottedanddashed arrows)isintroducedinSVCtoexploitredundancybetweendependencylayers andhenceincreasecodingefficiency[11].Ifweconsideronemacroblockbelonging totheenhancementlayer,differentencodingmodescanbeencounteredwhich arenoted(a)to(d)inFig.1:

(a) Intra-layerintra-prediction :intra-predictionisappliedonneighbouringblocks fromtheenhancementlayer;

4C.Deknudtetal.

(b) Motion-compensatedintra-layerprediction :inthiscase,previousand/orfutureframesusedformotionestimationbelongtotheenhancementlayer;

(c) Inter-layerintra-prediction :inthiscase,knownasINTRA BLprediction mode,thecorrespondingblockinthebaselayerisup-sampledpriortobe usedaspredictionsignal;

(d) Motion-compensatedinter-layerprediction :previousand/orfutureframes usedformotionestimationbelongtothebaselayer.

In[12],itwasbeenshownthatthetransratingprocessisstronglydependent ofthemacroblocktype.InordertoprovideastatisticalanalysisofthemacroblockmodesusedinSVCcompressedstreams,thewell-known City, Crew, Mobcal, Harbour and Soccer sequenceshavebeenencodedusingtheJSVM9.15 referencesoftwarealgorithmwithspatialscalability.HerethebaselayerconsistsintheCIF-resolutionsequence, whiletheenhancementlayerconsistsin the4CIF-resolutionversion.Differentquantizationparametersareused,namely QP=18,24,30and36,andtheIBBBPBBBPBBBIhierarchicalGoPstructure isconsidered.ThesameQPvalueisusedforbothbaseandenhancementlayer. Table1givesstatisticsofthemacroblo cktypesintheenhancementlayerslices asafunctionoftheframetype,namelyI,PorB,forallsequences.

Table1. Distribution(in%)ofmacroblocktypesinenhancementlayerslices

AllSlices Types IntraSlicesPredicted Slices Bidirect. Slices Skipped21-1625 Baselayermode26-2521

Intra16×16629220 Predicted6-37Bidirectional41--54 IntraBaselayerMode-71--

Weverifylogicallythatbidirectionalmacroblocksarethemostencountered sinceBslicesarepredominantlypresentintheconsideredhierarchicalGoPstructure.Thebaselayermodemacroblocksareencodedusinginter-layerprediction whatevertheintra-frameorinter-framecodingtype.Themacroblocksencoded usingintra-frameareeitheroftypeINTRA 16×16(6%,intra-layerprediction) orINTRA BLtype(includedinthe26%baselayermode,inter-layerprediction).WenotethatwiththisJSVMencoderrevision,themacroblocksusing intra-layerintra-frameprediction(intrapredictionusedinH.264/AVC)areonly ofINTRA 16×16type.WeverifythatINTRA 16×16macroblocksusingintraframeintra-layerpredictioncorrespondto29%inIslices,22%inPslices,and 0%inBslices,respectively.

InthenextSection,wewillfirstproposetorestricttheintra-frameprediction onlytotheINTRA BLmacroblocktypeinordertoavoiddrifterror.Wediscuss theimpactofthislimitationonbothbitrateandvideoquality.

3DescriptionoftheTwoProposedAlgorithms

Fig.2givesthegeneralblockdiagramoftheproposedtransratingarchitecture inthespecificcaseofthreelayers:onebaselayer,andtwospatialenhancement layers.

Fig.2. BlockdiagramoftheproposedSVCtransratingarchitecturewithspatial scalability

Obviously,theproposedarchitecturecanbeappliedtoaSVCcompressedbit streamwithspatialscalabilityandanynumberofenhancementlayers.

Theproposedsolutionisbasedonfrequencyselectivity:inthepresentcase,it consistsinselectivelyremovingresidua ltransformcoefficientsfrommacroblocks ofthehighestenhancementlayer,theotherlayersbeingleftuntouched.Hence, lowfrequencycoefficientsthathavesignificantvisualinfluenceareleftunchanged andkeptinazigzagorderuntilagivenfrequencyposition(FP)whichvaries from1(onlytheDCcoefficientremains)to16(allcoefficientsarepreserved). Practically,theFPparameterusedtotransrateintra-codedblocks(notedhereafterFPintra )canbechosenindependentoftheoneusedtotransrateinter-coded blocks(notedhereafterFPinter )inordertoincreasethetransraterflexibility.

Unfortunately,duetothewideuseofpredictivecodingbySVC,suchcoefficientremovalleadstoso-calleddrifterrorinthereconstructedvideosequence. ConsideringspatialscalableSVC,drifterrormayappearintoasingleframe,a groupofpictures,oralayer.Ithasbeenshownin[13]thatdrifterrorremains perceptuallynegligibleinthecaseofinter-prediction.Itistrueforawidevariety ofvideocontentssequenceswithamoderatemotion.

Also,weverifyonthebasisofsubjectiveevaluationofreconstructedsequences thatdrifterrorisacceptablewhendealingwithINTRA BLmacroblocks,asthe baselayerwhichservesasreferenceisleftuntouched.However,aproblemarises whenconsideringintra-layerintra-prediction.Inthiscase,theremovaloftransformcoefficientsleadstodrifterrorwhichseverelydegradesthereconstructed videosequence.

Hence,itisnecessarytospecificallyadaptthetransratingprocesstothis macroblocktype.Twosolutionshavebeenproposed:

1.ThefirstsolutionneedstoslightlymodifythespatialscalableSVCencoder, buttheresultingspatialscalableSVCbitstreamremainsfullycompatible

withanyspatialscalableSVCdecoder.Suchmodificationispossiblewhen consideringthatthevideostreamsarepre-encoded,likeinVODorstreaming:inthiscase,videoserviceprovidershasaperfectcommandoftheencoder andcanthereforerestricttheproprietaryspatialscalableSVCencodertoa limitednumberofauthorizedmacroblo cktypesifnecessary.Consequently, weproposetomaketheintra-layerintra-predictionmacroblocktypeunauthorizedduringthespatialscalableSVCencodingprocess.Weverifythat thisrestrictionleadstoanegligibleaveragerateoverheadofabout1.5%. Suchoverheadisclearlyacceptableasinreturn,thetransratingprocessis simplifiedbyindistinctlyapplyingfrequencyselectivitytoanymacroblock typeinthehighestenhancementlayer.

2.Becausedrifterrorismainlyvisuallyannoyinginthecaseofintra-prediction, weproposeinthesecondsolutiontoapplyfrequencyselectiononlyto macroblocksencodedbymeansofinter-prediction.Thislimitationslightly reducestheperformanceofthetransratingalgorithmbutoffersthegreatadvantagethatthetransratingalgorithmisoflowercomputationalcomplexity andiscompatiblewithanyspatialscalableSVC-compressedvideostream.

InthefollowingSection,wedemonstratetheperformancesofthetwosolutions intermsofbitratereductionaswellasreconstructedvideoquality.

4SimulationResults

Extensivesimulationswereperformedinordertoevaluatethetwotransrating architectures.Thewell-known City, Crew, Harbour, Soccer and Mobcal sequences havebeenencodedusingtheJSVM9.15referencesoftwarealgorithmwithspatial scalability.Thesesequenceshavebeenchosenbecausetheyofferawiderange ofspatialandtemporalcomplexitycharacteristics.Asmentionedpreviously,the baselayerconsistsintheCIF-resolutionsequence,whiletheenhancementlayer consistsinthe4CIF-resolutionversion.Differentquantizationparameterswere used,namelyQP=18,24,30and36,andaIBBBPBBBPBBBIhierarchicalGoP structurewasconsidered.Targetedbit ratevaluesareachievedbymodifying QPsettings.

Inafirstapproach,theFPintra andFPinter transratingparametersarechosen equal,i.eFPintra =FPinter =FP.However,itshouldbenotedthatFPintra and FPinter canbechosendifferentleadingtheoreticallyto256possibleintermediate bitrates,evenifsomeofthe(FPintra ,FPinter )combinationsmightresultinthe samebitrate.Weusethewell-knownpeaksignal-to-noiseratio(PSNR)inorder toevaluatethevideoqualitybecauseitr emainsnowadaysthemostwidelyused objectivemetricinthevideocommunity.Resultsaregivenherefortheluminance component;similarresultswereobtainedforthechrominancecomponents.

First,weconsiderthetransratingsolutionforwhichintra-predictionislimitedtotheINTRA BLmodeonlyinthehighestenhancementlayer.Remember thatthissolutionrequiresthemodificationofthespatialscalableSVCencoding process.Fig.3givestherate-distortionperformancesofthefirstspatialscalable

SVCtransratingarchitecturewithspatialscalabilityforthe City sequence.Similarresultswereobtainedwithothersequences.Onlytheresultsobtainedfor FPvaryingfrom1to10aregivenforclarityofthefigure.ForeachQPvalue, twoanchorsarealsogivenforcomparison:

– OnehighanchorlocatedontherightcorrespondingtothePSNRandcorrespondingbitratevalueswhenbothbaseandenhancementlayersareavailable(thiscouldbeconsideredasthespecialcase:FP=16,fullquality); –

Onelowanchorlocatedonbottom-leftwhichcorrespondstothecasewhen onlytheCIFbaselayerisavailableandup-scaledto4CIFspatialresolution usingtheup-samplingfilterdescribedin[14].

Fig.3. SVCtransratingoftheupperspatialenhancementlayer:PSNRasafunction ofbitrate- City sequence

Initially,onlythesetwoversions,i.e.onlythesetwobitrates/qualitylevels, areavailablethankstospatialscalability.Wecannotethatmaximalbitrate reductionvalueislogicallyreducedwhenthequantizationparameterincreases. Indeed,thestrongerthequantization,thelessthenumberofremainingresidual coefficients.However,themaximalbitratereductionisverysignificantandvaries upto66%(City sequence,QP=18andFP=1).ItshouldbenotedthateachFP parametervalueleadstoanintermediatebitratethusoffersgreatflexibility whilekeepinghighestspatialresolution.

Intermsofvideoquality,wecomputethePSNRvaluesforallintermediate bitratesresultingfromspatialscalableSVCtransrating.Wenotethat:

ThePSNRdifferencebetweenthetwoanchorsFP=16(notransrating)and FP=1(DCcoefficientonly)ismaximalforQP=18andisequaltoabout15 dB.ThisPSNRdifferenceisabout4dBforQP=36.

– ThePSNRcorrespondingtotheup-sampledbaselayerislogicallyalways lowerthanthePSNRobtainedwhentheenhancementlayerisavailable,even withFP=1.Inthislatercase,thePSNRdifferencetendstoincreasewhen thecompressionratiobecomeshigher.

AssuggestedinSection2,wenowrestrictfrequencyselectivitytothemacroblocksencodedbymeansofmotion-compensatedprediction.Fig.4showsfor the City sequenceanddifferentquantizationparametersvalues,acomparison betweenthetwofollowingcases:

– Macro-blocksusingintra-aswellasinter-imagepredictionarebothtransrated(FPintra =FPinter varyingfrom1to16,dashedcurve);

– Onlymacro-blocksusinginter-imagepredictionaretransrated(FPintra =16 andFPinter varyingfrom1to16,plaincurve).

Fig.4. SVCtransratingoftheupperspatialenhancementlayer(Intermacroblocks): PSNRasafunctionofbitrate- City sequence

Onceagain,simulationresultsaresimilarfortheothersequences.Theresults fortheothersequencesareavailablein[15].Weverifyforallsequencesandall quantizationparametervaluesthatthePSNRisbetterwhenthetransrating operationisrestrictedtointer-imageprediction.ThePSNRdifferencewiththe up-sampledbaselayercaseismoreimportant.However,themaximumbitrate reductionisreduced.Thisdifferencetends toincreasewhenhigherquantization parametersareused.Visuallyspeaking,itshouldalsobenoticedthatnospurious discontinuitiesappearattheboundariesbetweeninter-codedandintra-coded blocksaftertransrating.

Fig.5givesanillustrativevisualexampleoftheperformancesobtainedwith theproposedspatialscalableSVCtransrater.

Fig.5a)andFig.5d)correspondrespectivelyto:

– TheCIFversionreconstructedfromthebaselayerandupsampledtothe highestresolution.Thecorrespondingvisualqualityispoorasthereconstructedpicturesuffersfromaseverelossofdetails.ThePSNRisequalto 27dB;

Thefull4-CIFversionreconstructedfrombothbaseandenhancementlayers. Itcorrespondstothebestvisualquality,withaPSNRequalsto43.13dB.

Fig.5. IllustrativeexampleoftheperformancesoftheproposedSVCtransratingsolution,Harboursequence(image#000,QP=18,intra-coded),fromtoptobottom:(a) upsampledbaselayer(PSNR-Y=27dB);(b)FP=3(PSNR-Y=31,84dB);(c)FP=6 (PSNR-Y=38,09dB);(d)full-qualitynottranscodedversionwithFP=16(PSNRY=43,13dB).

Thankstotheproposedspatialscalability-basedSVCtransratingalgorithm,it ispossibletoadaptthebitrateandtohaveaccesstointermediatevisualquality levels.ThisisillustratedinFig.5b)andFig.5c),whichcorrespondtotransrated versionswithhighestspatialresolutionandFP=3andFP=6,respectively.The correspondingpicturesarecharacterizedbyhighestspatialresolutionandclearly exhibitabettervisualqualitywithenhancedtexturesanddetails(forexample, seeriggingaswellasnumbersonthesailandcharactersonthehull),with increasedPSNRvaluesof31.84dBand38.09dB,respectively.

Theseresultsareencouraginganditispossibletoproposeanarchitecturefor transcodingH.264spatialscalableSVCastheintermodetolimitthecomplexity ofthetranscoder.Thus,thisarchitecturedoesnotrequireforcingmacroblocks

10C.Deknudtetal.

fromtheintra-layerintra-imagemodetotheinter-layerintra-imageone(INTRA BL).Theadvantageofthissolutionisnotnegligiblesinceitispossibleto transcodeanyspatialscalableSVCcompressedvideostream.Recallthatinthis case,however,itisnecessarytoimplementthetwotypesofentropycoding:the CAVLC(choseninthiswork)andCABAC.

Toconclude,theapproachproposedinourtransratingschemeleadstoprogressivebitratereductionasprovidedbyqualityscalability(alsocalledSNR scalability)usingMediumGranularityScalability(MGS).ThankstoMGS,video throughputcanbedynamicallyadaptedbydiscardinganyenhancementlayer NALunitfromaSNRscalablebitstream.Inaddition,SVCprovidesthepossibilitytodistributetheenhancementlayertransformcoefficientsamongseveral slicesqualityrefinementlayerswitheachofthemcontainingrefinementcoefficientsforparticulartransformbasisfunctionsonly.Hence,itisinterestingto comparetheperformancesoftheproposedtransratingarchitecturetotheones obtainedthankstothisspecificMGSfeature.Experimentshavebeenperformed ondifferentvideotestsequencesandleadtosimilarresults.Inpractice,there aremanydifferentwaystoconfigureSVC layerstomeetspecificrequirements. Inwhatfollows,acomparisonismade fortheMobcalsequencebetweenthe proposedsolution(case1)andacaseofSVCusingMGS(case2):

– Case1:weapplytheproposedtransratingalgorithmonaspatialscalable SVCcompressedvideobitstreamwiththefollowingcharacteristics:

• baselayer:720x576,25fps,QP=28

• enhancementlayer:1280x720,50fps,QP=28

• sevenfrequencypositionsareselected:FP1(DConly),FP3,FP4,FP5, FP6,FP7andFP16. –

Case2:weconsideraSVCcompressedvideobitstreamwithcombined spatialandSNR(MGS)scalabilities:

• baselayer(BL):720x576,25fps,QP=28

• enhancementlayer1(EL1):1280x720,50fps,QP=32

• enhancementlayer2(EL2):1280x720,50fps,QP=28(usingMGS).Seven pointsareselectedwithrespecttoFPvalues;theycorrespondtothefollowingEL2transformcoefficientrepartitionintheMGSoriginalslice: DC,DC:AC2,DC:AC3,DC:AC4,DC:AC5,DC:AC6,andDC:AC15.

Resultsforthe Mobcal sequencearegiveninFig.6below.

WenoteherethattheproposedtransratingschemeoffersbetterresultscomparedtoMGS,forbitrateshigherthan8Mb/s.Forlowerbitrates,theresults areinfavouroftheMGSscheme.Inparticular,thePSNRcorrespondingto theenhancementlayer1withMGS(QP=32)issignificantlyhigher.Itshould benotedhoweverthattheperformancesobtainedwithourtransratingsolution shouldbeimprovedbyconsideringQPvalueshigherthan32.Anyway,ourtransratingsolutionremainsveryattractiveinthecasewhenonlyspatialscalability hasbeenoriginallyusedattheSVCencodingstage.

Practically,SVCsuffersfromhighcomputationalcomplexity;moreover,itis noteasytooptimizecodingparameterswhendifferenttypesofscalabilityare appliedtogether.Consequently,videocontentsareoftenencodedbymeansof

Fig.6. ComparisonbetweenSVCtransratingusingspatialscalabilityandMGS- Mobcal sequence

SVCusingonescalabilityatatime.InthecaseofspatialscalableSVCbit streams,onlytwoqualityscalabilitylevelsareavailable:BLcombinedwithEL (fullhigh-definitionversion)orBLonly(standarddefinitionversioneventually upsampled).Conversely,ourtransratingarchitectureauthorizestorefineprogressivelyvideoqualityofspatiallyscalablebitstreamswhilekeepinghighest spatialresolutionlevel.Clearlythisconstitutesagreatadvantageforthisoriginal transratingmethod.

5Conclusion

Inthispaper,wepresentedanoriginalsolutionfortransratingofSVCcompressedvideobitstreamssupportingspatialscalabilityonly.Theproposedarchitectureisopen-loopandlowcomplexity,toensurerealtimeprocessingofthe enhancementlayer.Transratingbyfrequencyselectionisappliedtomacroblocks oftheenhancementlayerandleadstointermediatebitrateswithgracefulvideo degradationbetweenthequalityoftheupsampledbaselayerandthequalitycorrespondingtotheadditionofthefullenhancementlayer.Dependingon thequantizationparameterusedforspatialscalableSVCencoding,wedemonstratedthattheoutputbitrateaftertransratingcanbereducedupto66%,while preservinghighestspatialresolution.Amongthetwodevelopedtransratingsolutions,thesecondonerestrictsthetransratingprocessonlytomacroblocksusing inter-pictureprediction(intermode).Thislimitationallowsreducingthecomputationalcomplexityofthesolutionwhileavoidingdrifterror.Moreover,this secondtranscodingarchitecturehasthegreatadvantagetobecompatiblewith anyspatialscalableSVCcompressedvideostream.Furtherworkwillconcern

12C.Deknudtetal.

firstamechanismtodynamicallycontroltheFPparameterbasedonthedesired bitratereduction,aswellastheeffectsofvaryingFPvaluesaccordingtothe picture/slice/macroblocktypes.Theauthorswillalsoconsidertheextensionof thepresentworktothenewHEVCcompressionstandard.

References

1.Simpson,W.:VideooverIP,2ndedn.FocalPress(2008)

2.Develder,C.,Lambert,P.,VanLancker,W.,Moens,S.,VandeWalle,R.,Nelis,J., Verslype,D.,Latr,S.,Staelens,N.,Vercammen,N.,Vermeulen,B.,Masschelein, B.,VanLeeuwen,T.,Macq,J.-F.,Struyve,K.,DeTurck,F.,Dhoedt,B.:Delivering scalablevideowithQoStothehome.TelecommunicationSystems49,129–148 (2012)

3.VanWallendael,G.,VanLancker,W.,DeCock,J.,Lambert,P.,Macq,J.-F.,Van deWalle,R.:FastchannelswitchingbasedonSVCinIPTVenvironments.IEEE TransactionsonBroadcasting58,57–65(2012)

4.Vetro,A.,etal.:Videotranscodingarchitecturesandtechniques:anoverview. IEEESignalProc.Magazine20,18–29(2003)

5.DeCock,J.,Notebaert,S.,Lambert,P.,VandeWalle,R.:Motion-refinedrewriting ofH.264/AVC-codedvideotoSVCstreams.JournalofVisualCommunicationand ImageRepresentation22(5),391–400(2011)

6.Hait,N.,Malah,D.:Model-BasedTransratingofH.264CodedVideo.IEEETrans. onCircuitsandSystemsforVideoTechnology19(8),1129–1142(2009)

7.Wu,Z.,Yu,H.,Tang,B.,Chen,C.W.:AdaptiveInitialQuantizationParameterDeterminationforH.264/AVCVideoTranscoding.IEEETrans.onBroadcasting58(2),277–284(2012)

8.DeCock,J.,Notebaert,S.,Lambert,P.,DeWolf,K.,VandeWalle,R.:LowComplexitySNRTranscodingforH.264/AVC.In:InternationalConferenceon Communication,InternetandInformationTechnology,pp.728–731.ACTAPress, St-Thomas(2006)

9.DeCock,J.,Notebaert,S.,Lambert,P.,VandeWalle,R.:ArchitecturesforFast TranscodingofH.264/AVCtoQuality-ScalableSVCStream.IEEETransactions onMultimedia11,7(2009)

10.Deknudt,C.,Corlay,P.,Bacquet,A.S.,Zwingelstein-Colin,M.,Coudoux,F.-X.: ReducedComplexityH.264/AVCTransratingbasedonFrequencySelectivityfor High-DefinitionStreams.IEEETrans.onConsumerElectronics56(4),2430–2437 (2010)

11.Richardson,I.:TheH.264AdvancedVideoCompressionStandard,2ndedn.Wiley &Sons(2010)

12.Lefol,D.,Bull,D.,Canagarajah,N.,Redmill,D.:AnEfficientComplexityScalable VideoTranscoderwithModeRefinement.SignalProcessing:ImageCommunication22(4),421–433(2007)

13.Lefol,D.,Bull,D.,Canagarajah,N.:PerformanceEvaluationofTranscodingAlgorithmsforH.264.IEEETrans.onConsumerElectronics52(1),215–222(2006)

14.ITU-TandISO/IECJTC1,JVT-T201r2,JointDraft7ofSVCAmendment,Revision2(2006)

15.Deknudt,C.:Miseenœuvred’architecturesdetranscodagevidoH.264/AVCet SVC:application`alatransmissionoptimis´eedelavid´eoHauteD´efinition.PhD dissertation,UniversityofValenciennes(2011)

VisualDataEncryptionforPrivacy EnhancementinSurveillanceSystems

JanuszCichowski1 ,AndrzejCzy˙zewski1 ,andBo˙zenaKostek2

1 MultimediaSystemsDepartment,GdanskUniversityofTechnology, 2 AudioAcousticsLaboratory,GdanskUniversityofTechnology, Narutowicza11/12,80-233,Gdansk,Poland {jay,andcz}@sound.eti.pg.gda.pl, bokostek@audioacoustics.org

Abstract. Inthispaperamethodologyforemployingreversiblevisual encryptionofdataisproposed.Thedevelopedalgorithmsarefocused onprivacyenhancementindistributedsurveillancearchitectures.First, motivationofthestudyperformedandashortreviewofpreexisting methodsofprivacyenhancementarepresented.Thealgorithmicbackground,systemarchitecturealongwithasolutionforanonymizationof sensitiveregionsofinterestaredescribed.Ananalysisofefficiencyofthe developedencryptionapproachwithrespecttovisualstreamresolution andthenumberofprotectedobjectsisperformed.Experimentalproceduresrelatedtostreamprocessingonasinglecore,singlenodeand multiplenodesofthesupercomputerplatformarealsoprovided.The obtainedresultsarepresentedanddiscussed.Moreover,possiblefuture improvementsofthemethodologyaresuggested.

Keywords: privacyprotection,datasecurity,informationsecurity, cryptography,multicoreprocessing.

1Introduction

Increasingpopularityofcloudcomputingarchitecturesallowsengineerstoovercometheproblemoflimitedperformanceofsinglecorecomputation.Ifoptimizationofthealgorithmsexecutedinasinglethreadisnotsufficient,parallelization istheonlywaytoimprovetheperformanceandreducethecomputationtime. Inspecificscientificareassuchasintelligentsurveillance,parallelcomputations areparticularlyuseful.

Monitoringofwideurbanspaces,e.g.largeurbanizedareas,isbasedona largenumberofmultimediadatastreams.Moreover,thesemultimediastreams havetobetransmittedviawide-bandcommunicationchannelsbecauseofhigh videoresolutionrequirementsandthepresenceofadditionaldatastreamssuch asaudioandmetadata.Themultimedia streamsfromsourcesconnectedtothe distributedinfrastructurearecollectedinthesupercomputingcluster,where real-timeprocessingisappliedforobjectdetection[1],objecttracking[2],objectclassificationandre-identification indifferentcameras[3],facedetection [4],licenseplatedetection[5],dangerouseventsdetectionandcrowdbehavior prediction[6],[7],[8].

J.Blanc-Talonetal.(Eds.):ACIVS2013,LNCS8192,pp.13–24,2013. c SpringerInternationalPublishingSwitzerland2013

ThesupercomputernamedGALERA,listedasoneoftheTOP500mostpowerfulcomputersintheworld,isthecrucialpartoftheexperimentspresented. Fortheappropriatemanagementofmultimediadatastreams,aspecialsoftwareframeworkforthesupercomputerwasrequired.That’swhytheKASKADA framework[9]wasdevelopedasanoperatingsystemforthesupercomputingcluster,whichenablesobtaining,storing,managinganderasingmultimediastreams, tasksandserviceswithinthewholecluster,withouttheuser’ssupervision.The algorithmicbackgroundoftheframeworkwasrealizedemployingamultilayerarchitecture.Inthefirstlayer algorithmsareinstalled,beingintegratedinthesecondlayerassimpleservices,subsequently,severalsimpleservicesareconnected intheworkflownamedasthecomplexservice.Theframeworkdistributesautomaticallysimpletasksacrossavailablenodestorealizethecomplexservice.The distributedandparallelapproachforcomputationallowsprocessingmultimedia streamsinrealtimewithoutasignificantdelay.

Anextensiveamountofdataistransmittedviaalargenumberofvisual streams,partofwhichmaybetreatedassensitivepersonaldata,posingathreat forsocialprivacy.Therightandneedsforprivacycannotpreventsendingsensitivedata,andbeacoverforcrime,fraudorvandalism,thereby,aspecific privacyprotectionandenhancementapproachtodataprocessinghastoberealized.Implementationofreversibleanonymizationisanadequatesolutionfor privacyissues.Theproposedsolutionenablesprotectingeachsensitiveobjectdetectedintheprocessedstream.Insomecriticalsituations,thereisapossibility toextractvisualcontentwithoutanyperceptualdegradation,employingvisual encryptionalgorithms.Algorithmicbasisandthekeyknowledgeofencryption arerequiredforprotecteddataextraction.Anunprivilegeduserwatchingthe anonymizedstreamisabletoseeonlynoise-likerectangularareasinsteadof sensitiveobjects.Nowadays,simpleanonymizationalgorithmsareusedforthe privacyprotectioninmediaandsurveillancesystems.Severalofthemwereimplementedinthedevelopedframework,i.e.:cuttingout,blurring,mosaicingand bitshiftingalgorithms.However,eachofthememploysthenon-reversibledata protection.Theydestroythevisualcontentpermanently.

Therearealsomoreadvancedmethodsavailablebasedonfacede-identification [10]orautomaticfaceswappingdescribedinthereferencedliterature[11].TheapproachproposedbyBitouk[11]usesafaceswappingtechniquewhichprotected theidentityofafaceimagebyautomaticallysubstitutingitwithreplacements takenfromalargelibraryofpublicfaceimages.However,duetoaggressivedeidentification,theoriginalfaceimagecanbelost.Thereexistsalsoaverysophisticatedapproachbasedonhumanskinsegmentation[12],butitisdedicatedto humanfaceprotectiononly.TheschemeproposedbyRodriguezallowsthedecryptionofaspecificregionoftheimageandresultsinasignificantreductionin encryptinganddecryptingprocessingtime.Theexistingmethodsappeartobe suitablefortheoffline(non-realtime)processingofsingleimages,alsotheyare successfullyemployedinbiometrics.However,theultimategoalistopreservethe anonymityofvisualstreamsinrealtime.Furthermore,usuallythereisnotany supporttorecovertheprotecteddata.Peoplecausingpotentialsecuritythreats

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.