Visit to download the full and correct content document: https://textbookfull.com/product/microbial-applications-vol-2-biomedicine-agriculture-a nd-industry-1st-edition-vipin-chandra-kalia-eds/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Microbial Nanobionics Volume 2 Basic Research and Applications Ram Prasad
https://textbookfull.com/product/microbial-nanobionicsvolume-2-basic-research-and-applications-ram-prasad/
Sustainable Agriculture Reviews 45 Legume Agriculture and Biotechnology Vol 1 Praveen Guleria
https://textbookfull.com/product/sustainable-agriculturereviews-45-legume-agriculture-and-biotechnology-vol-1-praveenguleria/
Fluorinated polymers in 2 Vol v 2 Applications Ameduri Bruno. (Ed.)
https://textbookfull.com/product/fluorinated-polymersin-2-vol-v-2-applications-ameduri-bruno-ed/
Recent Advances in Redox Active Plant and Microbial Products From Basic Chemistry to Widespread Applications in Medicine and Agriculture 1st Edition Claus Jacob
https://textbookfull.com/product/recent-advances-in-redox-activeplant-and-microbial-products-from-basic-chemistry-to-widespreadapplications-in-medicine-and-agriculture-1st-edition-claus-jacob/
Handbook of Fibrous Materials Vol 1 Production and Characterization Vol 2 Applications in Energy
Environmental Science and Healthcare Hu
https://textbookfull.com/product/handbook-of-fibrous-materialsvol-1-production-and-characterization-vol-2-applications-inenergy-environmental-science-and-healthcare-hu/
Microbial Fuels: Technologies and Applications 1st Edition Farshad Darvishi Harzevili
https://textbookfull.com/product/microbial-fuels-technologiesand-applications-1st-edition-farshad-darvishi-harzevili/
Fibonacci and Lucas Numbers with Applications Pure and Applied Mathematics Vol 2 Thomas Koshy
https://textbookfull.com/product/fibonacci-and-lucas-numberswith-applications-pure-and-applied-mathematics-vol-2-thomaskoshy/
Agriculturally Important Microbes for Sustainable Agriculture Volume 2 Applications in Crop Production and Protection 1st Edition Arunava Pattanayak
https://textbookfull.com/product/agriculturally-importantmicrobes-for-sustainable-agriculture-volume-2-applications-incrop-production-and-protection-1st-edition-arunava-pattanayak/
Microbial enzyme technology in food applications 1st Edition Ray
https://textbookfull.com/product/microbial-enzyme-technology-infood-applications-1st-edition-ray/
Vipin Chandra Kalia Editor
Microbial Applications Vol.2 Biomedicine, Agriculture and Industry MicrobialApplicationsVol.2 VipinChandraKalia Editor
Biomedicine,AgricultureandIndustry Editor VipinChandraKalia
UniversityCampusDelhi
CSIR-InstituteofGenomics&IntegrativeBiology
Delhi,Delhi
India
ISBN978-3-319-52668-3ISBN978-3-319-52669-0(eBook) DOI10.1007/978-3-319-52669-0
LibraryofCongressControlNumber:2016034924
© SpringerInternationalPublishingAG2017
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilaror dissimilarmethodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
Printedonacid-freepaper
ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface Plants,humans,andmicrobesshowastronginteractionamongthemselves.Plants dependuponmicrobesfortheirgrowthanddevelopmentandforacquiringnutrients.Plantsinturnserveasfoodforhumanandanimals.Microbesintherhizosphereproducesecondarymetabolitestoprotectplantsagainstpathogensand toleratestress.Thehumanskinandgutharborawiderangeofmicrobes,which areresponsiblefortheirwell-being.Thisinteractionoflivingbeingsisgaining renewedinterestandvalue.Microbialactivitiesarequiteuniqueandinterestingand arefindingwiderapplicationsrangingfrombioremediation,bioenergy,biomedicine,agriculture,andindustry.Duringthepastcentury,therehasbeenatransition fromchemicalprocessestobiologicalmethods,largelybecausethelatterare eco-friendly.Now,theemphasishasshiftedfromonlyeco-friendlybio-processes toeconomicalaswell.TheGreenTechnologiesarethenewtrendtosavetheplanet Earththroughsustainableprocesses.Scientificprogresscanbegaugedprimarily throughbasicscientificresearch.Asmostscientificworksaresupportedthrough publicfunds,thereisaconstantdemandtoputthesefindingstoapplicationsfor humanwelfare.Students—therisingstarsandourscientistsinthemaking—are curioustolearnthebasicsciencesandhowthesecanbetranslatedintoproducts. Thisbookhasbeenbroughtouttocatertocuriousyoungmindsandprovide economicbenefitstothesociety.Inthisbook,thelearnedscientificcommunity hasputtheirbesteffortstosharetheirexpertise,whichtheyhavegainedthrough theirimmenseexperiencetargetedtowardunderstandingthemicrobialworld.This bookisatruereflectionofthesincerityofthescientificcommunity,whopromptly agreedtocontributetheircreationfortheyoungminds,whoarelikelytobenefitand takethisworldastepfurtherintothefuture.Iamtrulyhumbledbythehelp renderedbythecontributingauthors.Iamindebtedtoallofthem.Iamrunning shortofwordstoadequatelyacknowledgetheworthinessoftheirefforts.Mytrue inspirationstowritethispieceofworkstemfromthefaithinmeandtheconstant supportofthefollowingindividuals:thelateMrs.KantaKaliaandMr.R.B.Kalia (parents);Amita(wife);SunitaandSangeeta(sisters);Ravi,Vinod,andSatyendra (brothers);DakshandBhrigu(sons);myteachersespeciallyDr.A.P.Joshi;andmy
friendsRup,Hemant,Yogendra,Rakesh,Atya,Jyoti,Malabika,Neeru,and Ritusree.Imustalsoacknowledgethesupportofmystudentfriends—Sanjay, Mamtesh,Subhasree,Shikha,Jyotsana,andRavi.
Delhi,IndiaVipinChandraKalia
Contents PartIBiomedicine
RoleofBacteriainNanocompoundFormationandTheirApplication inMedical ...............................................3
RubbelSingla,AnikaGuliani,AvneshKumari,andSudeshKumarYadav
MicrobialSourceofMelatoninandItsClinicalAspects .............39 SanjayKumar,BrendanPatrickMulligan,ShreeshOjha,andAlexTinson
MajorSourceofMarineActinobacteriaandItsBiomedical Application ...............................................55 RamBaskaran,ThenmozhiSubramanian,WuZuo,JiaxinQian, GaobingWu,andAshokKumar
AntimycobacterialAgents:ToTargetorNottoTarget .............83 AndaleebSajid,GunjanArora,RichaVirmani,andAnshikaSinghal
PartIIAgriculture
MicrobialBiofilm:RoleinCropProductivity ....................107
BhagwanN.RekadwadandChandrahasyaN.Khobragade
BacterialQuorumSensing(QS)inRhizosphere(PaddySoil): UnderstandingSoilSignalingandN-RecyclingforIncreased CropProduction ..........................................119 BhagwanRekadwadandChandrahasyaKhobragade
UseofPlantGrowth-PromotingRhizobacteriaasBiocontrolAgents: InducedSystemicResistanceAgainstBioticStressinPlants .........133 Marı´aVictoriaSalomon,Iva ´ nFunesPinter,PatriciaPiccoli, andRube ´ nBottini
BiologicalRoutesfortheSynthesisofPlatformChemicalsfrom BiomassFeedstocks ........................................153
Md.ImteyazAlam,MohammadAsifAli,ShelakaGupta, andM.AliHaider
PartIIIIndustry
GreenSynthesisofHydroxamicAcidandItsPotentialIndustrial Applications ..............................................169
BhatiaRaviKant,BhatiaShashiKant,BhallaTekChand, andBhattArvindKumar
BioactiveNaturalProducts:AnOverview,withParticularEmphasis onThosePossessingPotentialtoInhibitMicrobialQuorum Sensing ..................................................185
VijayKothari,PoojaPatel,andChinmayiJoshi
FungiImperfectiLaccase:BiotechnologicalPotentialandPerspectives ...203 BhagwanRekadwadandChandrahasyaKhobragade
Biosurfactants:AMultifunctionalMicrobialMetabolite ............213 NehaPanjiar,ShashwatiGhoshSachan,andAshishSachan
BioproductionofPolyhydroxyalkanoatefromPlantOils ............231
FakhrulIkhmaBinMohdFadzilandTakeharuTsuge
MicrobialSynthesisofPolyhydroxyalkanoates:Diversification
QiWangandChangshuiLiu
Microbe-DerivedItaconicAcid:NovelRoutetoBiopolyamides
MohammadAsifAliandTatsuoKaneko
BasicsofMethanogenesisinAnaerobicDigester ..................291 VinayPatel,SoumyaPandit,andKuppamChandrasekhar
Laccases:BlueCopperOxidaseinLignocelluloseProcessing .........315 DayanandC.Kalyani,JogiMadhuprakash,andSveinJarleHorn
AbouttheEditor VipinChandraKalia ispresentlyworkingasEmeritusScientist.Hehasbeenthe ChiefScientist,andtheDeputyDirector,atMicrobialBiotechnologyandGenomics,CSIR-InstituteofGenomicsandIntegrativeBiology,Delhi.HeisaProfessor ofAcademyofScientificandInnovativeResearch(AcSIR),Delhi.Heobtainedhis M.Sc.andPh.D.degreesinGeneticsfromtheIndianAgriculturalResearchInstitute,NewDelhi.Hehasbeenelectedas:(1)FellowoftheAssociationofMicrobiologistsofIndia(FAMI),(2)FellowoftheNationalAcademyofSciences (FNASc),and(3)FellowofNationalAcademyofagriculturalSciences (FNAAS).Hismainareasofresearcharemicrobialbiodiversity,genomics,and evolution,bioenergy,biopolymers,antimicrobials,quorumsensing,andquorum quenching.Hehaspublished101papersinscientificjournalssuchas(1)Nature Biotechnology,(2)BiotechnologyAdvances,(3)TrendsinBiotechnology,(4) CriticalReviewsinMicrobiology,(5)BioresourceTechnology,(6)International JournalofHydrogenEnergy,(7)PLoSONE,(8)BMCGenomics,(9)Gene,and (10)AnnualReviewofMicrobiology.Hisworkshavebeencited3558timeswitha hindexof31andani10indexof66.Hehasedited3books:Quorumsensingversus quorumquenching:Abattlewithnoendinsight(2015,SpringerIndia),Microbial FactoriesVol1and2(2015).HeispresentlytheeditorinchiefoftheIndianJournal ofMicrobiologyandEditorof(1)PLoSONE,(2)JournalofMicrobiology& Biotechnology(Korea),(3)AppliedBiochemistry&Biotechnology(USA),(4) InternationalScholarlyResearchNotices(Energy),(5)DatasetPapersinScience (Microbiology),and(6)JournalofMolecularandGeneticMedicine.Heisalife memberofthefollowingscientificsocieties:(1)SocietyofBiologicalChemistsof India(2)SocietyforPlantBiochemistryandBiotechnology,India;(3)Association ofMicrobiologistsofIndia;(4)IndianScienceCongressAssociation;(5) BioEnergySocietyofIndia,and(6)theBiotechResearchSocietyofIndia (BRSI).HeisalsoamemberoftheAmericanSocietyforMicrobiology.
RoleofBacteriainNanocompound FormationandTheirApplicationinMedical RubbelSingla,AnikaGuliani,AvneshKumari,andSudeshKumarYadav
Abstract Nanotechnologyhasnowreachedtoastagewherethenanoparticles (NPs)havebeeninapplicabilityinwide-rangingrealmsofscienceandtechnology. NPsarethematerialswithatleastonedimensionintheorderof100nmorless.NPs displayastonishingpropertiesofhighsurface/volumeratioandenhancedphysical, chemical,optical,andthermalpropertieswhichareextremelydifferentthantheir bulkmaterials.Theconventionalmethodsofsynthesisofnanocompoundsinvolve theemploymentofphysicalandchemicalmethods,whichhavefewdrawbacks suchastherequirementoftoxichazardouschemicals,energyintensive,andcostly processesmakeitdifficulttobewidelyimplemented.Toovercometheselimitations,theresearchershavelookedforwardforaneasyandfeasiblealternative approachforthesynthesisofnanocompounds.Theemploymentofalternative biogenicroutefortheNPsynthesisbyusingbiologicalentitiesofunicellularliving organismssuchasbacteria,fungi,andactinomyceteshassoughtapparentattention ofthescientiststhroughouttheglobalearth.Agreenerapproachinterconnecting nanobiologywithmicrobialbiotechnologyisresponsiblefortheformationofNPs mediatedbymicrobesthatallowsynthesisinaqueousenvironment,withlow energyconsumptionandatlowcosts.Biosynthesisofgold,silver,copper,quantum dots,andmagnetiteNPsbybacteria,fungi,actinomycetes,andyeastshasbeen reported.InaviewtoformnoblemetalNPsofuniformshapeandsize,biological routesusingmicrobialculturesatoptimaltemperature,pressure,andpHhavebeen
R.Singla•A.Guliani
BiotechnologyDivision,CSIR-InstituteofHimalayanBioresourceTechnology,Councilof ScientificandIndustrialResearch,Palampur,HimachalPradesh,India AcademyofScientificandInnovativeResearch(AcSIR),NewDelhi,India
A.Kumari
BiotechnologyDivision,CSIR-InstituteofHimalayanBioresourceTechnology,Councilof ScientificandIndustrialResearch,Palampur,HimachalPradesh,India
S.K.Yadav(*)
BiotechnologyDivision,CSIR-InstituteofHimalayanBioresourceTechnology,Councilof ScientificandIndustrialResearch,Palampur,HimachalPradesh,India AcademyofScientificandInnovativeResearch(AcSIR),NewDelhi,India CenterofInnovativeandAppliedBioprocessing(CIAB),160071,Mohali,India e-mail: sudeshkumar@ihbt.res.in; skyt@rediffmail.com
© SpringerInternationalPublishingAG2017
V.C.Kalia(ed.), MicrobialApplicationsVol.2,DOI10.1007/978-3-319-52669-0_1
formulated.Inthischapter,themainfocusisgivenontheintracellularand extracellularapproachesusedforsynthesisofmetallicNPsbyvariousmicrobial species.Adetaileddiscussionisprovidedtoexplainthevariousfactorswhich affectthesynthesisofnanocompoundstofurtheraugmentthegrowthrateofNPsas wellasthemechanismofactionatthecellular,biochemical,andmolecularlevel.A greatstressisgivenontheroleofthesenanocompoundsinthemedicalfieldforthe diagnosticanddiseasetreatment.Thepotentialofgreatbiodiversityofmicrobial culturesasbiologicalcandidatesleadingtothemanufacturingofNPsisneededto befullyinvestigated.
Keywords Microbialsynthesisofnanocompounds•Metalnanoparticles• Theranostics•Anti-microbialagents•Diseasetherapy
1Introduction Theterm“nano”hasitsoriginfromtheGreeklanguagemeaningofminiaturized objectsofonebillionth(10 9)insize.Nanoparticles(NPs)aretheparticleshaving atleastonedimensioninthenanometerscale,i.e., 100nm.Nanocompoundshave attractedagreatattentionduetotheircharacteristicuniqueelectronic,optical, physical,chemical,electrical,mechanical,magnetic,thermal,dielectric,andbiologicalpropertieswhichareabsolutelydifferentfromtheirbulkcounterparts(Jain etal. 2008;Kato 2011).ThemetalNPshaveanupperhandwhencomparedtothose metalcompoundsatmolecularlevelduetotheirenhancedRayleighscattering, surfaceplasmonresonance(SPR),surface-enhancedRamanscattering(SERS)in metalNPs,quantumsizeeffectinsemiconductorquantumdots,andsupermagnetismbehaviorinmaterialswithmagneticproperties.Interestingly,cuttingdownthe dimensionsofNPshasaclear-cuteffectonthebehaviorofmaterialsatnanoscale. ThesephysicalpropertiesofNPsareduetotheirgreateraspectratio(surfaceareato volumeratio),spatialconfinement,greatersurfaceenergy,andreducedimperfections.NPshavevariousapplicationsinbiomedical,cosmetics,optics,electronics, spacetechnology,energy,catalysis,food,andmanymore(RosarinandMirunalini 2011;SolomonandD’Souza 2011).
FortheNPsynthesis,twodifferentstrategies,namely,“top-down”and“bottomup,”areused.Intheformercase,large-sizedmaterialsareconvertedtosmaller oneswiththehelpofreducingagents,whereasincaseofbottom-upapproach,the atomsareassembledintolargermolecularstructuresatnanometerscale(Alietal. 2015).Anoverwhelmingnumberofchemicalandphysicalprocessesarepopular thataretakenintoaccountformanufacturingofmetallicNPs(likesilver,gold, copper,magnetites,andsemiconductorquantumdots)usingthesetwoapproaches. Theseconventionalsynthesisproceduresareinefficientinmaterialandenergy usage,laborious,andcapital-intensiveandproducetoxicwastesasendproducts (Thakkaretal. 2010)andinvolvetheemploymentofharmfulchemicalsubstances, intensereactionconditions,andelectrochemicaltechniques.Toovercomethese limitationsassociatedwiththetraditionalmethodsandtoincreasethe
biocompatibilityofnanocompounds,theresearchinthecurrentscenarioisdirected tolookforthereliable,eco-friendly,andsustainableapproachesforthedevelopmentofNPsofdesirableshapeandsizeswithexcellentpropertiesofdispersityand stabilitycausingminimalornoharmtothelivingsystemsandenvironment (Chauhanetal. 2011).Inawaytoachievetheextensivescopeofnanocompounds, thepotentialofmicroorganismsisrealizedforthesynthesisofmetalNPs.The microbe-mediatedsynthesisofnanomaterialhasattractedthegreatscientificworld acrosstheworld.
BiogenicNPssynthesizedbyusingthelivingentitieslikebacteria,fungi,and actinomycetesarehighlystablewithbetterspecificityandcatalyticreactivityas theyhelptomaintainabettercontactbetweentheenzymeandmetalsaltbecauseof microbialcarriermatrix.Themicrobesarewidelyabundantinnaturalecosystems andcanbeculturedinasuitablegrowthmedia(Lietal. 2011).Apartfromthe advantagesofbiologicalsynthesis,theexploitationofmicrobialspeciesforthe manufacturingofnanoscaleparticlesalsopossessessomedrawbacksofculture maintenancewhicharequitecomplexandtakealongdurationtogrow.The microbe-mediatedsynthesisapproachesdonotprovidecontroloversizedistributionandshapeofnanostructures.EventheformedbiogenicNPsarepolydispersein natureandproductionrateissoslow(NarayananandSakthivel 2010).Despiteof theseproblems,therearestillchancestogaininsightintothebacterialsynthesisof NPsthroughtheprocessoptimizationofreactionparameterssuchasmicrobial strainselection,ageandconcentrationofcultureused,pH,temperatureandtimeof incubationofthereactionmixture,andconcentrationandtypeofmetalsaltsused (Punjabietal. 2015).Theestablishmentandimplementationoftheseoptimization processeswillprovidehopefortheuseofNPssynthesizedbymicrobesonalarge scaleandformarketableapplications.
ThebiosynthesisofmetallicNPstakesplacewhenthemicroorganismscapture ionsofinterestfromtheirsurroundingenvironmentandconvertthemetalionsinto theelementalformofmetalsthroughtheinvolvementofvariousenzymesreleased bythecellactivities.MicroorganismcansynthesizemetalNPsthroughtwomechanisms,i.e.,metalbioreductionandbiosorption.Thefirstisbioreduction,inwhich metalionsarechemicallyreducedintomorestableformsbiologicallyinwhichthe reductionofametalioniscoupledwiththeoxidationofanenzyme.Microorganismspossessingtendencyofmetalbioreductioncancolonizemetal-contaminated surroundings(Deplancheetal. 2010).Biosorptionisaphenomenoninwhich microbesaresurroundedbytoxicheavymetalsintheirsurroundingsleadingto stressconditions.Themetalionsbindtothecellwall;thereleasedpeptidesorother cellwallcomponentsbindtothesemetalionsandformstablenano-complexes (Yongetal. 2002).
ThesynthesisofNPsmediatedbymicrobesoccursmainlybytworoutes,e.g., intracellularandextracellular.NPformationthroughtheuseofmicrobesisan exampleofbottom-upapproach,wherethefirststepofreactiondealswiththe reduction/oxidationofsubstratesandthenthedevelopmentofcolloidalformations (Moghaddam 2010).Intheintracellularmechanism,metalionscrossthemicrobial cellmembraneandaretransportedinsidetoformNPsinthepresenceofenzymes. Themicrobialenzymesactasreducingagentsresponsibleforreductionofmetal
saltsintonano-forms.Reducedmetalatomsnucleatewithsubsequentgrowthfor thegenerationofnanostructures.TheextracellularapproachofNPsynthesis involvesentrappingofthemetalionsonthemicrobialcellsurfaceandreducing themetalionsinthepresenceofenzymes(Zhangetal. 2011).DuetothebiocompatibilityofthesebiosynthesizedmetalNPs,theygenerallyfindapplicabilityinthe medicalfields.ThemetalNPsfindawidespaceforthediseasediagnosticsaswell asforthetreatmentofcertaindiseases.ThesemetalNPspossessgreatantibacterial potentialwhichallowstheutilityofthesenanostructuresinthemedicalfields. Microbe-mediatedsynthesisofmetalNPsisapromisingapproachwhichconnects microbialbiologywithbiotechnologyandnanotechnology.Thereisaneedto explorethisareatosearchtheenvironmental-friendlyandcost-effectiveprocedures forthedevelopmentofnanomaterialstorealizethefullpotentialofmetalNPsinthe medicalaswellasotherspheresoflife.
2RoleofBacteriainNanocompoundFormation Recentlyscientistshavestartedfocussingonprokaryotesforsynthesisofmetallic NPs.Duetotheirubiquitousnature,abundanceinenvironment,andabilitytotolerate diverseconditions,bacteriaareagoodchoiceforthispurpose.Bacteriaarefast growing,easytomanipulate,andinexpensivetocultivate.Bacteriaareconsideredas potentialbio-candidateforthesynthesisofmetallicNPslikegold(Au),silver(Ag), platinum(Pt),palladium(Pd),titanium(Ti),andsoforth.Bacteriatendtosynthesize inorganicmaterialsatnanoscaledimensionsbyeitherintracellularorextracellular mechanisms.Mostoftheionsofmetalsaltscancauseharmtobacteria,andhencethe metalreductionbythemicrobesisaparticularkindofdefensemechanismgenerated toprotectthemfromsuchtoxicity.Microbesbecomeresistanttohazardousheavy metalsbecauseofchemicaldetoxificationaswellasoutwardmovementofenergydependentionsfromthecellthroughsomemembrane-boundproteinswhichactas ATPaseoraschemiosmoticcationorprotonanti-transporters.Variationinsolubility playsadeterministicjobformicrobialresistance.Thelocationofthereductive componentspresentinthecellalsoaffectstheformationofmicrobe-mediatedNP synthesis.Whentheenzymespresentonthecellmembraneactasreducingagents andareinvolvedinmetalionreduction,thenextracellularformationofmetalNPsis quiteobvious.NPsproducedbyextracellularpathwayhaveapplicationsindifferent spheres,i.e.,optoelectronics,electronics,bio-imaging,andsensingtechnology,than intracellularaccumulation.
2.1IntracellularBiosynthesis ForintracellularsynthesisofNPsusingmicrobialculture,thebacterial/fungal cultureisgrowninaspecificliquidgrowthmediaincubatedonashakeratacertain optimaltemperature.Aftercompleteincubation,thecultureflaskiskeptunder
staticconditionstoallowthemicrobialbiomasstosettledown;afterthattheculture supernatantisdiscardedandthecellsarewashedwithdistilledwater(Punjabietal. 2015).Thisstepofcellwashingisrepeatedseveraltimesandthesupernatantis discardedeachtime.Thebiomassseparatedbycentrifugationisfurtherexposedto aqueoussolutionofmetalsatdifferentconcentrations.Thecultureisthenincubated onashakeratasuitabletemperatureuntilavisualchangeincolorisobserved.A colorchangefrompaleyellowtobrownishcolorindicatesthesynthesisofsilver nanoparticles(AgNPs);paleyellowtopinkishorpurplecolorrepresentsthe formationofgoldnanoparticles(AuNPs).
2.2ExtracellularBiosynthesis NPsaresynthesizedbyextracellularbiosynthesismechanismwherethetestmicrobialstrainisgrowninanappropriategrowthmediaandincubatedunderparticular growthconditionsliketemperatureandshaking.Afterincubation,theculturebroth iscentrifugedandthesupernatantisusedforsynthesisofNPs.Theculture supernatantisaddedtothesolutionofmetalionsatanoptimizedconcentration andthenincubatedforaperiodof72h.Thevisiblecolorchangeinthereaction mixtureisnoticedafteraparticulartimewhichconfirmsthebiosynthesisofNPsin thesolution(Punjabietal. 2015).
2.3SynthesisofMetalNanocompounds Intherecenttimes,prokaryotesareinhighdemandforthebiosynthesisofNPs.The metalNPsareformedfromthereductionofbulkmetalsalts.Inthissection,we havetriedtosummarizevariousmetallicNPslikesilver,gold,copper,magnetic NPs,andquantumdotssynthesizedusingdifferentspeciesofmicrobeslikebacteria,fungi,andactinomycetes.
2.3.1SynthesisofSilverNPs(AgNPs) AgNPsarethosepreparedfromdifferentsilversaltslikesilverchloride(AgCl2), silveriodide(AgI2),andsilvernitrate(AgNO3)havingsizerangeof1–100nm.The importantmethodstakenintoaccountfortheformationofAgNPsincludethe chemicalandphysicalmethods.Buttheonlydisadvantagebehindtheuseof thesetwoapproachesincludeshighcostofpreparation.Tomakethecost-effective synthesis,biologicalapproachusingmicrobeshasbeensupposedasanalternate. ManybacterialstrainsusedforthesynthesisofAgNPsincludeeitherextracellular orintracellularsynthesisapproaches.Intracellularsynthesisinvolvestheuseof extramaterialslikesurfactantsorultrasoundtreatmenttoreleasesynthesizedNPs. Extracellularsynthesisischeap,requiresdownstreamprocessing,andisusefulfor large-scaleproductionofAgNPs.
AgNPshavebeensynthesizedbythemicrowaveirradiationofculturesupernatantsof Bacillussubtilis.SynthesizedAgNPshavesizeintherangeof5–50nm. Microwaveirradiationresultedinuniformheatingandreductionofaggregation aroundAgNPs(Saifuddinetal. 2009).AgNPshavebeensynthesizedintracellularly andextracellularlyusing Bacillus strainCS11.AgNO3 solutionhasbeenaddedto thenutrientbrothcontainingbacterialbiomassandincubatedfor72hatroom temperatureinthepresenceoflight.Avisiblecolorchangeofthemediumfrom paleyellowtobrownindicatestheformationofAgNPs.Themechanismforthe bioreductionofsilveriontoAgNPsisstillunclear,althoughitisconsideredthat someenzymeslikenitratereductasesecretedbythemicrobesareresponsiblefor thereduction(Dasetal. 2014).AgNPscanalsobesynthesizedbyaddingthe AgNO3 solutiontothesupernatantofthebacterialculturesof Bacillussubtilis, Lactobacillusacidophilus, Klebsiellapneumoniae, Escherichiacoli, Enterobacter cloacae, Staphylococcusaureus,etc.Theextracellularmetabolitesexcretedbythe culturesreducethesilverionsintoAgNPsinthepresenceoflight(Shahverdietal. 2007). E.coli wasalsousedfortheextracellularsynthesisof40–60nm-sized AgNPs.Theeffectofgrowthmediaandincubationperiodwasexaminedonthe formationofAgNPsandobservedthatluriabroth(LB)mediumandstationary phasehavethemaximumpotentialforthesynthesisofAgNPs(Natarajanetal. 2010).
TheuseoffungalspecieshasalsobeenreportedfortheformationofAgNPs. Thefungus-mediatedformationofAgNPsisbasedonthemechanismthatthe fungalcellstrapAgionsonitssurfacefollowedbythereductionwiththehelpof releasedenzymes.Thefungalspecies Aspergillusterreus hasbeenreportedearlier leadingtoformationofAgNPsbyextracellularNADH-dependentreductase enzyme(Lietal. 2012).ExtracellularbiosynthesisofAgNPsbytheuseof Fusariumoxysporum isbasedonthereductionofmetalionsbynitrate-dependent reductaseenzymeandshuttlequinoneprocess(Duranetal. 2005).Fungiproduce largeamountsofAgNPsascomparedtobacteriaduetothesecretionofalarge amountofproteinsbyafunguswhichisresponsibleforformationofAgNPs.The synthesisofAgNPsbyotherbacteriaandtheirsizerangearetabulatedinTable 1
2.3.2SynthesisofGoldNPs(AuNPs) AuNPsaretheparticlesrangingindimensionsof3–150nmwhichalsoknownas colloidalgoldandpossessmanydistinctivepropertieswhichmakethem“star” amongotherNPs.AuNPshaveatendencytochangethecolorofcolloidalsolutions dependingupontheirsizes.TheimportantpropertiesofAuNPsarehighsurfaceto volumeratio;optical,electrochemical,andcatalyticproperties;lowtoxicity;easy toprepare;easilydispersedinliquids;easeofsurfacemodification;etc.Many bacterialstrainshavebeenusedfortheintracellularandextracellularsynthesisof AuNPs.Theuseofmicrobesforthisfunctionisfoundtobeeasy,economical,and eco-friendly.Abriefdescriptionaboutthemicrobialsynthesismethodsandfew relatedexamplesforthepreparationofAuNPsarementioned.
Table1 Size,range,andlocationofsynthesisofdifferenttypesofmetallicnanocompoundsby theuseofdifferentkindsofmicrobialspecies
Typeofmicrobes
Pseudomonas antarctica
Synthesis location
Typeof NPs synthesizedSizeandshapeofNPsReferences
ExtracellularAgNPsSphericalshaped, 6–13nm Shivajietal. (2011)
Bacillus CS11ExtracellularAgNPsSpherical,42–92nmDasetal.(2014)
Idiomarina sp PR58–8
Pseudomonas meridian
IntracellularAgNPsSpherical,26nmSeshadrietal. (2012)
ExtracellularAgNPsSphericalshaped, 6–13nm Shivajietal. (2011)
Humicola sp.ExtracellularAgNPsSpherical,5–25nmSyedetal. (2013)
Pleurotus ostreatus
Aspergillusniger
Proteusmirabilis PTCC1710
Penicillium chrysogenum
Aspergillus sydowii
Pseudomonas fluorescens
Aspergillusniger
Fusarium oxysporum
Aspergillus fumigatus
Pseudomonas fluorescens
Salmonella typhimurium
Pseudomonas stutzeri
Magnetospirillum magnetotacticum
Geobacter metallireducens
E.coli
ExtracellularAgNPsGrainshaped,8–50nmDevikaetal. (2012)
Extracellular and Intracellular AgNPsSphericalshapes, 43–63nm Vanajaetal. (2015)
Extracellular and Intracellular AgNPsSpherical,10–20nmSamadietal. (2009)
IntracellularAuNPsSpherical,triangle,and rodshaped,5–100nm
Sheikhlooand Salouti(2011)
ExtracellularAuNPsSpherical,8.7–15.6nmVala(2014)
ExtracellularAuNPsSpherical,50–70nmRadhika Rajshreeand Suman(2012)
ExtracellularAuNPsSpherical, 12.79 5.61nm Bhambureetal. (2009)
ExtracellularAuNPsShapenotdefined, 22nm Thakkeretal. (2013)
IntracellularAuNPsSpherical,irregularly shapedwithindefinite morphology, 85–210nm Bathrinarayanan etal.(2013)
ExtracellularCuNPsSphericalandhexagonalshaped,49nm Shantkritiand Rani(2014)
ExtracellularCuNPsSpherical,49nmGhorbanietal. (2015)
ExtracellularCuNPsSpherical,8–15nmVarshneyetal. (2010)
IntracellularIronoxide NPs Cuboctahedral,50nmLeeetal.(2004)
ExtracellularIronoxide NPs Tabularshapedwith 20–200nmlengthand 20–70nmwidth
Valietal.(2004)
ExtracellularCdTeSpherical,2–3nmBaoetal. (2010a, b) (continued)
Table1 (continued)
Typeofmicrobes
Phanerochaete chrysosporium
Fusarium oxysporum
Brevibacterium casei
Aspergillus terreus
Synthesis location
Typeof NPs synthesizedSizeandshapeofNPsReferences
ExtracellularCdSGrainshaped,2.56nmChenetal. (2014)
ExtracellularCdTePolydispersespherical, 15–20nm SyedandAhmed (2013)
IntracellularCdSPolydispersespherical, 10–30nm Pandianetal. (2011)
ExtracellularPbSePolydispersespherical, 20–50nm Jacobetal. (2014)
ThebiosynthesisofAuNPshasbeenreportedfrom Pseudomonasaeruginosa and Rhodopseudomonascapsulata,wherebythecell-freesupernatantofthesetwo strainsismixedwithhydrogentetrachloroaurate,indicatingthecolorchangeof solutiontopurpleorredwine,furtherconfirmingtheformationofAuNPs.ThepH ofthesolutionisthedecidingfactorfortheshapeandsizeofNPs.AtpH4and 7,nanoplatesandsphericalNPsofsizerange10–20nmareformed,respectively (SinghandKundu 2014).CubicAuNPsareformedwhenafilamentouscyanobacterium, Plectonemaboryanum UTEX485,reactswithaqueousAu(S2O3)23 solutionat25–100 Cfor1month,andoctahedralAuNPsareformedafterreacting AuCl4 at200 Cfor1day(Lengkeetal. 2006).Differentfungalstrainsarealso knownforbothextracellularandintracellularsynthesisofmetallicAuNPs. Phanerochaetechrysosporium (fungalmycelium)istreatedwithHAuCl4 under ambientconditionstoformAuNPswithin90minbytheproteinsecretedbyfungus itself.TheextracellularandintracellularproductionofAuNPsisduetothesecretionofenzymeslacaseandligninasebyfungus,respectively(Sanghietal. 2011). Verticillium speciesoffungushasalsoledtotheformationofAuNPsbythe reductionofaqueousAuCl4 ions(Mukherjeeetal. 2001).Theenzymespresent withinthecellwalloffungiareknowntoreducetheions.Aspecies-specific NADH-dependentreductase,releasedby Fusariumoxysporum,hasalsobeen usedforreducingAuCl4 ionintoAuNPs(Mukherjeeetal. 2002).
Thermomonospora,anextremophilicactinomycete,alsoreducesAuionsto AuNPsextracellularly.Theharvestedbiomassisaddedtosolutionofchloroauric acidandkeptindarkforthesynthesisofmonodisperseAuNPs,wherebyenzymatic processesplayadeterministicjobinthereductionofmetalionsaswellasAuNP stabilization.Theproteinssecretedbyactinomycetebiomassactascappingagents forthestabilizationofAuNPs(Sastryetal. 2003).Thebiomassofotheractinomycetes, Streptomycesviridogens,hasalsobeenaddedtochloroauricacidsolution, andthecolorofbiomasschangestopinkwithin24hoftimeindicatingthe formationofAuNPswithinthecells.ThesesynthesizedAuNPspossess antibacterialactivityagainst S.aureus and E.coli (Balagurunathanetal. 2011).
2.3.3SynthesisofCopperNPs(CuNPs)
CuNPsynthesisisagreatchallengeasCuatnanometerscaleisnotsostableand easilyoxidizedtogetconvertedintocopperoxides(CuO).Therefore,itisofgreat needtofurtherstabilizeCuNPsaftertheirsynthesissoastousetheminvarious applications.CopperasmetalorCuOatnanoscalepossessuniquepropertiesasitis anessentialpartoflivingbeingsthatplaysabeneficialroleinbiomedicalapplications.TheresearchonCuNPshasbecomeafocalpointduetotheirunique propertiesandlowcostofpreparationandutilityinawidearrayofapplications. CuNPsholdgoodthermalandelectricalconductivity,aswellasopticalproperties. AmicrobialapproachhasbeenusedforthesynthesisofCuNPsbyincubating coppersulfatesolutionwiththecellpelletandcell-freesupernatantof Pseudomonasfluorescens.Spherical-andhexagonal-shapedNPsof49nmwereformed (ShantkritiandRani 2014).Thesupernatantofanotherbacterialculture S.typhimurium wasincubatedwithaqueoussolutionofcoppernitratetoform CuNPsofsize49nm(Ghorbanietal. 2015).Fungi,suchas Penicillium sp.and F.oxysporum strains,havealsobeenreportedtobiosynthesizeCuOandCu2SNPs. Afungusknownas Stereumhirsutum hasalsobeenusedforthesynthesisofCuand CuONPs(Cuevasetal. 2015).ThesynthesisofCuorCuONPscanleadtodifferent SPRwhichisformedduetothestrongcouplingbetweenincidentelectromagnetic radiationandsurfaceplasmoninmetalNPs.
2.3.4SynthesisofMagneticNPs(MNPs) MNPsareofgreatpotentialinthepresenteraastheypossessmagneticbehavior withutilityindiversefields.Theresearcherspaymoreattentiontothesynthesis methodsofMNPssoastoformuniform-sizedMNPsbecausethepropertiesof MNPsaresizedependent.ThethreemajorfunctionalpartsofanMNPcarrier includeamagneticcore,asurfacecoat,andafunctionaloutercoating.Theinner magneticcoreconsistsofasupramagneticmolecule(Fe,Ni,Co,etc.)which dependsuponitsapplication.Thesurfacecoatisusedtoprovidestericrepulsions, toincreasethestabilityandtorestrainagglomerationoftheparticles.The functionalizedoutercoatingmayattachanyligandorthebiologicallyactiveentity (Kumarietal. 2014).
Magnetotacticbacteria(MTB)producemagneticnanocrystalsorMNPswhich areenvelopedbycertainbiomembranescalledmagnetosomes(Alphanderyetal. 2008).Theybiomineralizemembrane-boundmagneticnanocrystalsoftheiron oxide(Fe3O4)orironsulfide(FeS4)(BazylinskiandFrankel 2004).Insidethe bacterialmembrane,themagnetosomesareorganizedinachain-likemanner whichofferstrongmagneticdipoleforbacteriatohelpmovealongtheearth’s magneticfielddirection(Alphanderyetal. 2008).MTBsarefoundinmarineand freshwatersources.FreshwatermilieuswerefoundtocontainvariousmorphologicaltypesofMTB,includingrod-shaped,comma(vibrio),coccoid,andhelicoidal
forms. Alphaproteobacteria and Magnetobacteriumbavaricum aresomeofthe MTBsfoundinfreshwaterenvironments.BothFe3O4 andFe3S4 producer MTBshavebeenfoundinmarineenvironments.
Thestrainsof Magnetospirillummagneticum produceeitherFe3O4 magnetic NPsinchainsorFe3S4 (greigite),whilesomeotherstrainsproducebothtypesof NPs(Rohetal. 2001). Fusariumoxysporum and Verticillium speciesareableto formironoxidesmainlyFe3O4 byhydrolyzingtheionprecursorsextracellularly (Bhardeetal. 2006).Magnetosomescanhavesquare-like,rectangular,hexagonal, orbullet-shapedprojections.
2.3.5SynthesisofQuantumDots(QDs) SemiconductornanocrystalsarethetypeofinorganicNPsdiscoveredintheearly 1980sranginginsizebetween1and10nm.Theserepresentastateofmatterinthe transitionregimebetweenthemoleculesandthebulksolid.Alayeroforganic ligandsatthesurfaceofsemiconductorNPsstabilizestheminthecolloidalform. Theligandconsistsoftwoparts:apolarheadgroupthatpossessestheaffinityfor theattachmenttothesurfaceofsemiconductornanocrystalsand,asecondpart,a tail,whichhelpsinthesolubilizationofsemiconductornanocrystalsintheorganic media.Thepropertiesofsemiconductornanocrystalsariseduetothespatial arrangementsofatomsinthecrystallinelattice.Theopticalandelectronicpropertiesofsemiconductornanocrystalscanbevariedwiththereductioninthesizeof nanocrystals,andthephenomenacanbedescribedbytheterm“sizequantization effect.”Thequantumdots(QDs)arethesmall-sizedsemiconductornanocrystalsto befitinthequantumconfinementregion.
AfacileandbiocompatibleroutehasbeendevelopedtosynthesizeCdSeQDs using Escherichiacoli cellsasamatrix.TheQDsextractedfromsuchcellsshowed asurfaceproteinlayerwhichactedtoimprovethebiocompatibilityofQDs(Yan etal. 2014).YeastcellshavebeenreportedtosynthesizebiocompatibleCdTeQDs ofsize2–3.6nmwitheasilytunableflorescenceemissioncapacity.Anextracellular growthpathwayisknowntoberesponsiblefortheformationoftheprotein-capped CdTeQDs(Baoetal. 2010a).Thefungus Fusariumoxysporum hasbeenreported tosynthesizeCdTeQDsextracellularly.Thereisnoneedtoaddstabilizingagents asformedQDsarealreadycappedbyanaturalprotein(SyedandAhmad 2013).
3FactorsAffectingNPSynthesisbyMicrobes ThesizeandshapeofNPsarealteredbythevariationincertainphysicaland chemicalpropertiesofNPs.VariousfactorsaffectingthesynthesisofNPsbythe microbesincludetheageandconcentrationofcellcultureused,natureandconcentrationofmetalionused,pH,temperatureofreactionmixture,andincubation timewhichplaysagreattaskinthemicrobe-mediatedsynthesisofNPs.Theroleof eachfactorandhowitaffectsthesynthesisofNPsaredescribedbelow.
3.1AgeandConcentrationoftheMicrobialCellCulture Theageandconcentrationofthemicrobialcultureusedforthesynthesisofmetallic NPshavedeterministiceffectonthesizeandshapeofNPsasthemetabolic activitiesofthecellsvarywiththeage.Ageofculturehaspronouncedeffecton NPsynthesis(MaliszewskaandPuzio 2009).Withtheincreaseinconcentrationof biomassused,thereisanincreaseintheproductionofNPs.Itisspeculatedthatthe enzymespresentintheorganismsalsoknownasbiocatalystsareresponsiblefor biologicalsynthesisofNPs.Thesebiocatalystsareusedintheformsofpurified enzymes,wholecells,andcrudeenzymes.Inrespecttofindtheoptimumageof culturedmicrobialcellsforNPformation,theculturedcellsareharvestedat differentphasesofgrowth(lag,earlystationary,latestationary).Forexample, synthesisofAuNPsusingcell-freesupernatantof Geotrichumcandidum showed thatthecellmassharvestedat48hofgrowthproducedmaximumamountof AuNPs.Thereasonbehindmaybeduetotheemergenceofmaximumamountof reducingagentsat48hgrowthwhichresultedinhigherreductionofmetalsaltsinto NPs(Mittaletal. 2013).
3.2ConcentrationofMetalSalt/SubstrateUsed Inbiotransformations,oneoftheimportantfactorsistofindthemaximumconcentrationofsubstratewhichcouldbeconvertedintofinalendproductwhichmakes thereactionmorecost-effectiveandefficient.Concentrationofinitialsubstrate/ metalionusedhasapredominanteffectontheshapeandsizeofsynthesizedNPs. Increasingtheconcentrationofsilvernitratesolutionfrom1mMto5mMinthe reactionmixtureisknowntoincreasetheparticlesize.Eventheparticleagglomerationisknowntooccurwhenhighconcentrationsofmetalsalts(10mM)areused inthesynthesisreactionandalsotheproductionofAgNPsdecreased.Itisalso reportedthattheuseofhigherconcentrationofAgNO3 hascertaintoxiceffectson F.oxysporum biomass(thebiocatalyst).ForthebiosynthesisofAgNPs,theoptimumconcentrationofsilvernitrateshouldbearound5mM(Korbekandietal. 2013).Similareffectsofmetalsaltconcentrationarenoticedonthesynthesisof AuNPsbytheuseof Penicilliumcrustosum wheretheincreaseinconcentrationof AuCl4 (mM)causesadecreaseintheaveragediameterofparticlesbutsizebeginto increaseatevenhigherconcentrationofsaltused(Barabadietal. 2014).Thisis explainedbasedonthefactthatincreaseintheconcentrationofmetalsaltusedfor reductionintonanoscale-sizedparticlesallowsthegrowthofNPsatafasterrate. Moreover,particlesinhighersaltconcentrationmayhaveatendencytoaggregate andproducebiggerparticles.
pHofthereactionmixtureisacriticalfactorwhichinfluencesthesizeandshapeof NPsatalargeextent.AgNPsofdifferentsizeandshapecanbeobtainedby controllingtheenvironmentofNPsynthesis(Correa-Llantenetal. 2013).IncreasingpHresultedintheformationofAgNPsofsizerange10–20nm,whiledecreasingthepHto4resultedintheformationofsilvernanoplates(Correa-Llantenetal. 2013).Inanotherstudy,acidicpHresultedintheformationof45nm-sizedAgNPs, whereasatpH10,AgNPsobtainedwereofjust15nm.ThepHwasfoundtobea vitalfactoralsoaffectingthesynthesisofAuNPsinmicrobialcultures.Alterations inpHduringcontacttoAuionshaveadirecteffectontheshape,size,andnumber ofNPsformedpercell.AuNPssynthesizedin V.luteoalbum afterexposureto HAuCl4 for24hatpHvaluesof3,5,7,and9wereexaminedinastudybyGericke andPinches(2006).AuNPsformedatpH3werecomparativelyuniforminsize wheremajorityofNPswereofsphericalshapehavingadiameterlessthan10nm. AtpH5,thesynthesizedAuNPsweresmallsphericalparticles,similartothoseNPs formedinthereactionmixtureatpH3.Apartfromthis,agreatquantityoflargesizedNPsoffewmorevariableshapes,e.g.,triangles,spheres,hexagons,androds, arealsosynthesizedatthispH.TheshapesofformedAuNPsatpH7weresimilarto particlesobservedatpH9whichincludedsmallsphericalaswellasbiggerparticles ofirregular,undefinedshapes.AnotherstudywhereAuNPshavebeensynthesized bywholecellsupernatantsof Geotrichumcandidum demonstratedthatthesynthesisofAuNPsisoptimumatpH7,whereasatpHaboveandbelow7,particle aggregationisobserved(Mittaletal. 2013).ThesynthesisofmetalNPsofvariable shapesbytheuseofreactionmediaatdifferentpHvaluessignifiesthatthevariation inthisfactortendstocontroltheparticlemorphologyduringoptimizationofa synthesisprocess.
3.4Temperature TheenvironmentofNPsynthesissuchastemperature,oxygenation,andincubation canbeeasilycontrolledandmanipulated.ThesizeofAgNPsisalsoaffectedbythe reactiontemperature.IncreaseintemperatureleadstotheformationofsmallersizedAgNPs.TheformationofmanyseedcrystalsisthereasonbehindtheshapecontrolledsynthesisofAgNPsbycontrollingcertainenvironmentalfactors.Lower (acidic)pHandlowertemperaturesofthereactionmixtureleadtolessernucleation fortheformationofAgNPswherenewAgatomsgetdeposittobuildlarge-sized NPs.ButwithanincreaseinpHaswellastemperature,nucleationrateincreases duetoagreatabundanceofhydroxylionsandraisedtemperature.Theincreasein
formationofAgNPsisfollowedbyanincreaseinthekineticsofthedepositionof thesilveratoms(Correa-Llantenetal. 2013).Thewholecellsof Geotrichum candidum exposedtotetrachloroauricacidataconcentrationof1mMwasadded toresuspendedwholecells,andthencultureflaskswereincubatedinashakerat differenttemperaturesintherangeof15–40 CtoformAuNPs.Anincreasein reactionrateuptoacertainvaluewasobservedwithincreaseinreactiontemperaturewhichfurtherstarteddecreasing.Atemperatureof35 Cwasfoundtobe optimumforNPssynthesis,beyondwhichtheabsorptionat520nmdecreased.This maybeduetoinstabilityofreductivecompounds(protein/peptide)athigher temperatures(Mittaletal. 2013).
3.5IncubationTime ThetimetakentocompleteNPsynthesisisanimportantparameterfroman industrialpointofview.Baietal.(2006, 2009)havenoticedthatthesizeofNPs increasesduetotheincreaseinincubationtimeduringtheformationofZnSand CdSNPsbyusingthebacterialspecies, Rhodopseudomonaspalustris and Rhodobactersphaeroides.DuringthesynthesisofCuNPsusingcellpelletorcellfreesupernatantof Pseudomonasfluorescens afterincubationwithCuSO4 solution, effectofincubationtimewasstudied.Itwasnoticedthatopticaldensity(absorbance)at610nmincreasedgraduallyupto90minandthendecreasedwhich revealedtheformationofCuONPs.Further,withanincreaseintime,sizereduction takesplace(ShantkritiandRani 2014).
4MechanismofNanocompoundFormationbyMicrobes ThemechanismofsynthesisofNPsmediatedbymicrobesisdifferentforsynthesis bydifferentorganisms.AgeneralmechanismofformationofNPsisthat,firstlythe metalionsgotentrappedonthesurfaceorenterinsidethebacterialcells,andthen themetalionsarereducedtoNPsbythereleaseofcertainfactorsbymicrobeslike enzymesorproteins.Thispartmainlyfocusesonthepossibleactionofmechanism forsynthesisoftypicaltypesofNPs(AgNPs,AuNPs,CuNPs,MNPs,andQDs)by microbes.AdiagrammaticrepresentationofmechanisticactionofNPsisillustrated inFig. 1.
4.1MechanismfortheSynthesisofAgNPsbyBacteria AlltheorganismsdonothavecapabilitytosynthesizeAgNPs.Asreportedearlier, thoseorganismswhichpossessthe“silverresistancemachinery”havethe
Optimization of various parameters (Temperature, pH, Incubation time, Growth Media and Bacterial Concentration)
Mechanism
Fig.1 Abriefrepresentationofmechanisticactionofmicrobe-mediatedgreensynthesisof nanocompounds
capabilityofAgNPssynthesiswhilethemechanismofresistancedifferswiththe organisms.Bacterialcellextractsmayserveasboththereducingandcapping agentsfortheformationofAgNPs.Thereductionofsilverionsbyvarious componentslikeenzymes/proteins,aminoacids,andpolysaccharidespresentin bacterialcellularextractsisfoundtobeeco-friendlybutchemicallycomplicated. Thepresenceofenzyme“nitratereductase”isresponsibleforthesynthesisof AgNPs.Itispostulatedthatnitratereductaseisthecausalagentbehindthesynthesis ofAgNPsin B.licheniformis.Nitratereductaseisinducedbynitrateionswhich reducesilverionstometallicsilver.NADH-andNADH-dependentnitratereductaseenzymesplayavitalroleforsynthesizingAgNPs. B.licheniformis secretesthe cofactorNADH-andNADH-dependentenzymes,especiallynitratereductase, whichmightberesponsibleforthereductionofAg+ toAg0 andthesubsequent formationofAgNPs(Husseinyetal. 2007).Moreover,inalkalinereactions,the synthesisofAgNPsisfasterascomparedtothereactioninacidicconditions. SynthesisofAgNPsincreasesasthepHofreactionmixtureisraisedtoward alkalinescaleandreachestomaximumatpH10.IfthereactionpHisincreased beyond10,thentheAgNPsynthesisstartsdeclining.Theproteinscontainingthiol groups( SH)bindwithsilverforminga–S–Agbond,responsibleforthesynthesis whichprovidesanideaabouttheconversionofAg+ toAg0.Inaddition,thealkaline
Bacteria Yeast Fungi
(Sources- food, soil, air, fruit and other biomass)
Culture + elemental metal (Ag, Au, Cu, Fe)
Greener synthesis of nanoparticles
ion(OH)isrequiredforthemetalionreduction.Undernormalconditions,it requiresgenerally4daysforthecompleteformationofsilverions,whereasless thananhouristakenwhenthepHismadealkaline.Alkalinityincreasesthe capacityoftheenzymeswhichplayaroleforAgNPsynthesis.
4.2MechanismofSynthesisofAuNPsbyMicrobes AwidevarietyofmicrobesareknownfortheformationofAuNPs.Ageneral mechanismbehindthemicrobe-mediatedformationisthereductionofgold(Au+3) ionstoAg0 toformAuNPs.Ithasbeenspeculatedthattheenzymessecretedby variousmicrobeshelpinreductionofmetalions,causingnucleationandgrowthof NPs.ThesyntheticrouteofAuNPsinvolvesthereductionofgoldsaltsbyafew reducingagentsthathappeneitherintheextracellularorintracellularenvironment. Inastudyusingfilamentouscyanobacterium, Plectonemaboryanum UTEX485for thesynthesisofAuNPsshowedthatinabioticexperiments,thesolutionsofgold sulfidewerefoundtobestableforabout1monthat25 C,whereasAuNPsofsize 25nmhavingcuboctahedralshapewereprecipitatedat60–200 C.Similaristhe caseobservedwiththesolutionsofAuCl4 whichwerefoundtobestablefor 1monthat25–60 C,butathighertemperaturesof100–200 C,AuNPsofirregular shape( 25nm)wereformed.Increaseintemperaturefrom25 Cto60–200 C leadstoanincreaseinprecipitationofgold.Whenthebacterialcellswereexposed tohighconcentrationsofgoldsaltaqueoussolutionofgoldchloride,theyleadto theproductionorreleaseofmembranevesiclesfortheprotectionofcells.The interactionofvesiclecomponentslikeproteins,lipopolysaccharides,andphospholipidswiththegoldsaltsleadstotheprecipitationofgoldonthevesicularsurfaces orinsolutions(Lengkeetal. 2006).
ExtracellularsynthesisofAuNPformationiscommonlyreportedbyfungi F.oxysporum whichreleasesprotein-reducingagentsintothesolution.WhenAu3+ ionsfromgoldchloridesaltaretrappedandreducedbyproteinreductaseinthecell wall,theseproteinmoleculesbindtoAuNPsthroughthelinkagebetweentheamine groupsinaminoacidlysine(Mukherjeeetal. 2002).AuNPformationbyintracellular approachanddiffusionofAu3+ ionsfromthegoldsaltsolutiontakeplacethroughthe cellmembraneandarethenreducedbycystolicredoxmediators.Thedifferenttypes offunctionalgroupspresentonthecellsurfacelikecarboxyl,amine,phosphate,etc. providebindingsitesforAu(III)formineralizationofAu.Negativelychargedgold ionsbindonthepositivelychargedmyceliaof R.oryzae throughelectrostatic interactionwithphosphoproteins(Dasetal. 2012).However,itisstillunexplored whichneedextensiveresearchwhetherthediffusionofAu3+ ionsthroughthe membraneoccursviaactivebioaccumulationorpassivebiosorption.Thebiosorption mightbecausedbytoxicityofAu3+ ions,whichcanincreasetheporosityofthe microbialcellmembranes.
4.3MechanisticActionofMicrobialSynthesisofCuNPs Differentspeciesofmicroorganismshavedifferentmechanisticactionforthe synthesisofCuNPs.Thebacteriataketargetmetalionsfromthesurroundingson theircellsurfaceorinsidethemembrane.Thecapturedmetalionsarereducedto NPsinthepresenceofreductantenzymesreleasedbythecellactivities.The interactionbetweenthepositivelychargedmetalionsandnegativelycharged carboxylatefunctionalgroupoftheenzymeslocatedinthecellwallcausesthe reductionofthemetalions(Lietal. 2011).Anotherstudyexplainstheformation processofCuNPnanoparticlein Serratia sp.Thebacterialcellsinstationaryphase faceanoxidativestressandosmoticstressbecauseoftheexhaustionofenergy sourceandincreaseofmetabolicwastes.Whenthecellsareexposedtohigh concentrationofmetalsalts,thestressisincreasedevenmore.Themetalsaltis internalizedintothecellmembrane,andCu2+ ionsgetreducedbyparticularbiomoleculestometallicCu,whichiscomparativelylesstoxicwhichfurtherleadto theproductionofCuNPs(Hasanetal. 2007).
4.4MechanismofMNPs Themolecularmechanismofbacterialmagneticparticle(BacMP)biomineralizationisamultistepreaction(Arakakietal. 2008).First,thecytoplasmicmembrane invaginates,andthenthevesicleisproducedwhichactsasthestartingmaterialfor theformationoftheBacMPmembrane.AspecificGTPasehelpsintheprimingof theinvaginationforvesicleformationofmagnetotacticbacteriajustalikeother eukaryoticorganisms.Alongwithcytoskeletalfilaments,thevesiclesorganize themselvesinalinearchainstructure.Thenextstepofbiomineralizationincludes theaccumulationofFe3+ intothevesiclesbythetransmembraneirontransporters, transportproteins,andsiderophores.Feaccumulationisfurthercontrolledbya redoxsystem.Magnetitecrystalnucleationisthelaststepregulatedbyvarious proteinsrelatedwiththeBacMPmembraneformagnetitegeneration.Theseinclude theaccumulationofsupersaturatingironconcentrations,maintenanceofreductive conditionsandtheoxidationofirontoinducemineralization,orthepartialreductionanddehydrationofferrihydritetomagnetite(Arakakietal. 2008).
Anothermostfeasiblemechanismtakesintoconsiderationbothpassiveand activemechanismsforthemanufacturingofmagnetitesusing Shewanella oneidensis (Perez-Gonzalezetal. 2010).Firstly,byactivemechanism,theformationofFe2+ occurswhenbacterialspeciesmakeuseofferrihydriteasaterminal electronacceptor,andthepHinthecellsurroundingenvironmentincreasesmost likelyduetotheaminoacidmetabolism.Then,throughapassivemechanism,the localaccumulatedconcentrationofFe2+ andFe3+ atthenetnegativelychargedcell structuresandcellwallprovokesariseofsupersaturationofthesystemwithrespect tomagnetite,causingtheprecipitationofmagnetitetoformNPs.
4.5MechanismofSynthesisofQuantumDots TheprecursormoleculeslikeCdCl2,Na2TeO3,mercaptosuccinicacid,andsodium borohydrideareincubatedwith E.coli inLBmedium.Theuniform-sizedCdTe QDscappedwithproteinsareformedwithgoodcrystallinityasaresultofmechanismofextracellulargrowthwhichencompassedthenucleationreactionofmetal ionswiththeproteinmoleculeyeastsecretedbybacteriaandthenfollowedby Ostwaldripening(Baoetal. 2010b).Itcouldbeassumedthat E.coli cells exposedtoextremeenvironmentalconditionsoftoxicheavymetalionsrequire startingofaspecifickindofdefensemechanismstoprotectthemfromtheunfavorablestressdevelopedbymetalion.Toovercomethemetalstress,thebacterial cellsgeneratemoremetal-bindingproteinswhichpromotethesynthesisofQDsby microbes.Moreresearchneedstobecarriedouttoconfirmthemechanismproposedabove.Inanotherreport,itwasdescribedthat S.cerevisiae yeastcellswere firstincubatedwithNa2SeO3 inasuitablegrowthmedia.Thentheharvested seleniumizedyeastcellswerefurtherculturedwithCdCl2-containingmedia whichresultedininsitusynthesisofCdSeQD.Glucancontentincreasesinthe cellwallsofyeastcellswhichresultinenhancedmechanicalstrength(Luoetal. 2014).
5Multi-scaleCharacterizationofNanocompounds Thecharacterizationofbiosynthesizednanocompoundsisveryessentialasthe propertieslikesize,shape,surfacefunctionalgroups,thermalconductivity,and surfacechargeofNPsdeterminetheirbehaviorinthebodysystemswhichare requiredfortheirmedicalapplicability.Alargenumberofhigh-throughputinstrumentsareavailablewhichareusedforthecharacterizationofNPsofmicrobialmediatedsynthesis.Asthesize,shape,andotherpropertiesofNPsvarywiththe variationinreactionparameters,concentrationofprecursormoleculeused,typeof microbialcultureused,andthesynthesisroute,itisanecessarytasktodetermine thesepropertiesbeforetheuseofNPsfordifferentpurposes.Thecharacterization givesaprimaryclueaboutthebehaviorofNPsinthelivingsystems.Thefollowing characterizationtechniquesareusedtodeterminetheessentialcharacteristics ofNPs.
5.1ScanningElectronMicroscope(SEM)
SEMisusedtoestimatethesurfacetopographyofNPs.Anelectronbeamofhigh energystrikesthesamplesurfaceandtheninteractswiththeatomsatornearthe samplesurface.ThesignalsproducedbySEMincludesecondaryelectrons,
backscatteredelectrons,andcharacteristicX-rayswhichprovidedetailsaboutthe topographyandelementalcompositionofthesample(Joshietal. 2008).SEMcan beusedtoobserveonlytheexternalmorphologyofthesample.Thesample preparationofNPsiscomparativelysimpletoanalyzethesampleusingSEM. VanmathiSelviandSivakumar(2012)usedSEMtoestimatethesizeofAgNPs biosynthesizedby F.oxysporum. SEMmicrographsshowedthespherical-shaped AgNPsof20–25nm.
5.2TransmissionElectronMicroscope(TEM) Abeamofelectroninteractswiththeinteriorofthesamplemainlythrough diffraction.Thelenses,deflectioncoils,andstigmatorshelpintheformationof imageandthenprojectitonthescreen.Theprojectionchamberhavingdifferent typesofelectrondetectorshelptorecordthesampleimages.Afocusedelectron beamwhenpassesthroughanextremelysmallthinsampleprovidesaninsightinto size,shape,composition,NPlocalization,crystallinity,andothercharacteristics (Punjabietal. 2015).TEMprovidestheinternalstructureofthesampleatavery highmagnificationpower.TheonlylimitationofTEMislaboriousprocedureof samplepreparationandexpensive.TEMwasusedtocharacterizetheintracellular localizationandsizeofAuNPssynthesizedby Geobacillus sp.Thequasihexagonal-shapedAuNPsofsize5–50nmwereobserved(Correa-Llantenetal. 2013).
5.3AtomicForceMicroscope(AFM) Thesamplesurfaceisscannedusingaprobeandtheoscillationamplitudeisusedto measurethesurfacecharacteristicsofthesample(Joshietal. 2008).AFMprovides thethreedimensionalstructuresoftheNPs.Itprovideshigherresolutionas comparedtoSEM.Insteadofusinghigh-energyelectronbeam,alaserlightis usedtomeasurethedeflectionofcantileverprobe.Inastudy,AFMwasusedto studytheinfluenceof Microbacteriumhominis and Bacilluslicheniformis extracellularpolymersonAgNPsandironoxideNPswhichrevealedthattheformed AgNPswereofsizelessthan100nm,whereasironoxideNPswereof100–200nm (Gholampooretal. 2015).
5.4DynamicLightScattering(DLS) DLSisatechniquewhichisusedfordeterminingthesizeofparticlesinthe submicronregion.TheprincipleisbasedontheBrownianmotionofparticles
Another random document with no related content on Scribd:
The Project Gutenberg eBook of The Cambridge natural history, Vol. 04 (of 10)
This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
Title: The Cambridge natural history, Vol. 04 (of 10)
Author: Geoffrey Smith
D'Arcy Wentworth Thompson
Cecil Warburton
Walter Frank Raphael Weldon
Henry Woods
Editor: S. F. Harmer
Sir A. E. Shipley
Release date: November 26, 2023 [eBook #72233]
Language: English
Original publication: London: Macmillan and Co, 1909
Credits: Richard Tonsing, Peter Becker, and the Online Distributed Proofreading Team at https://www.pgdp.net (This file was produced from images generously made available by The Internet Archive) *** START OF THE PROJECT GUTENBERG EBOOK THE CAMBRIDGE NATURAL HISTORY, VOL. 04 (OF 10) ***
Transcriber’s Note: New original cover art included with this eBook is granted to the public domain.
THE CAMBRIDGE NATURAL HISTORY EDITED BY
S. F. HARMER, Sc.D., F.R.S., Fellow of King’s College, Cambridge; Keeper of the Department of Zoology in the British Museum (Natural History) AND
A. E. SHIPLEY, M.A., Fellow and Tutor of Christ’s College, Cambridge; Reader in Zoology in the University
VOLUME IV
MACMILLAN AND CO., L
LONDON · BOMBAY · CALCUTTA
MELBOURNE
THE MACMILLAN COMPANY
NEW YORK · BOSTON · CHICAGO
ATLANTA · SAN FRANCISCO
THE MACMILLAN CO. OF CANADA, L . TORONTO
CRUSTACEA By G S , M.A. (Oxon.), Fellow of New College, Oxford; and the late W. F. R. W , M.A. (D.Sc., Oxon.), formerly Fellow of St. John’s College, Cambridge, and Linacre Professor of Human and Comparative Anatomy, Oxford
TRILOBITES By H W , M.A., St. John’s College, Cambridge; University Lecturer in Palaeozoology
INTRODUCTION TO ARACHNIDA, AND KINGCRABS By A. E. S , M.A., F.R.S., Fellow and Tutor of Christ’s College, Cambridge; Reader in Zoology
EURYPTERIDA By H W , M.A., St. John’s College, Cambridge; University Lecturer in Palaeozoology
SCORPIONS, SPIDERS, MITES, TICKS, ETC. By C W , M.A., Christ’s College, Cambridge; Zoologist to the Royal Agricultural Society
TARDIGRADA (WATER-BEARS) By A. E. S , M.A., F.R.S., Fellow and Tutor of Christ’s College, Cambridge; Reader in Zoology
PENTASTOMIDA By A. E. S , M.A., F.R.S., Fellow and Tutor of Christ’s College, Cambridge; Reader in Zoology
PYCNOGONIDA By D’A W. T , C.B., M.A., Trinity College, Cambridge; Professor of Natural History in University College, Dundee
1909
All the ingenious men, and all the scientific men, and all the fanciful men, in the world, with all the old German bogypainters into the bargain, could never invent ... anything so curious, and so ridiculous, as a lobster.
C K , The Water-Babies.
For, Spider, thou art like the poet poor, Whom thou hast help’d in song. Both busily, our needful food to win, We work, as Nature taught, with ceaseless pains, Thy bowels thou dost spin, I spin my brains.
S , To a Spider.
Last o ’ er the field the Mite enormous swims, Swells his red heart, and writhes his giant limbs.
E D , The Temple of Nature.
PREFACE The Editors feel that they owe an apology and some explanation to the readers of The Cambridge Natural History for the delay which has occurred in the issue of this, the fourth in proper order, but the last to appear of the ten volumes which compose the work. The delay has been due principally to the untimely death of Professor W. F. E. Weldon, who had undertaken to write the Section on the Crustacea. The Chapter on the Branchiopoda is all he actually left ready for publication, but it gives an indication of the thorough way in which he had intended to treat his subject. He had, however, superintended the preparation of a number of beautiful illustrations, which show that he had determined to use, in the main, first-hand knowledge. Many of these figures have been incorporated in the article by Mr. Geoffrey Smith, to whom the Editors wish to express their thanks for taking up, almost at a moment’s notice, the task which had dropped from his teacher’s hand.
A further apology is due to the other contributors to this volume. Their contributions have been in type for many years, and owing to the inevitable delays indicated above they have been called upon to make old articles new, ever an ungrateful labour.
The appearance of this volume completes the work the Editors embarked on some sixteen years ago. It coincides with the cessation of an almost daily intercourse since the time when they “came up” to Cambridge as freshmen in 1880.
S. F. H . A. E. S .
March 1909.
CONTENTS S C V
CRUSTACEA CHAPTER I
CRUSTACEA G O 3
CHAPTER II
CRUSTACEA (continued)
E B P C W 18
CHAPTER III
CRUSTACEA ENTOMOSTRACA (continued)
C 55
CHAPTER IV
CRUSTACEA ENTOMOSTRACA (continued)
CHAPTER V
CRUSTACEA (continued)
M : L P : E : S A : P M C
I A : H S
110
CHAPTER VI
CRUSTACEA MALACOSTRACA (continued)
E (CONTINUED): E E
C E D
144
CHAPTER VII
CRUSTACEA (continued)
R D M F -
C
197
CHAPTER VIII
CRUSTACEA (continued)
T 221
ARACHNIDA
CHAPTER IX
A I
CHAPTER X
ARACHNIDA (continued)
D = M X 259
CHAPTER XI
ARACHNIDA DELOBRANCHIATA (continued)
E = G 283
CHAPTER XII
ARACHNIDA (continued)
E S P 297
CHAPTER XIII
ARACHNIDA EMBOLOBRANCHIATA (continued)
A E S I S 314
CHAPTER XIV
ARACHNIDA EMBOLOBRANCHIATA (continued)
A (CONTINUED) H E T Y M —W —N —E - —P —F — E —P C —M —S — I —M H —F S 338
CHAPTER XV
ARACHNIDA EMBOLOBRANCHIATA (continued)
A (CONTINUED) C
CHAPTER XVI
ARACHNIDA EMBOLOBRANCHIATA (continued)
P S = S C = P 422
CHAPTER XVII
ARACHNIDA EMBOLOBRANCHIATA (continued)
P = R P = O H S C
CHAPTER XVIII
ARACHNIDA EMBOLOBRANCHIATA (continued)
A H -B P M T S M S M C
CHAPTER XIX
ARACHNIDA (APPENDIX I)
T —O —E —S —D — A B D P S 477
CHAPTER XX ARACHNIDA (APPENDIX II)
P O E I S D L -H S
PYCNOGONIDA CHAPTER XXI P
SCHEME OF THE CLASSIFICATION ADOPTED IN THIS VOLUME The names of extinct groups are printed in italics.
CRUSTACEA (p 3)
ENTOMOSTRACA (p 18)
Divisions. Orders. Sub-Orders. Tribes. Families.
Branchipodidae (pp 19, 35)
Branchiopoda (p 18)
Phyllopoda (pp. 19, 35)
Ctenopoda (p 51)
Calyptomera (pp 38, 51)
Cladocera (p. 37)
Anomopoda (p 51)
Gymnomera (pp 38, 54)
Apodidae (pp. 19, 36)
Limnadiidae (pp. 20, 36)
Sididae (p. 51).
Holopediidae (p 51)
Daphniidae (p. 51).
Bosminidae (p 53)
Lyncodaphniidae (p 53)
Lynceidae = Chydoridae (p 53)
Polyphemidae (p. 54).
Leptodoridae (p. 54).
Divisions. Orders. Sub-Orders. Tribes. Families.
Copepoda (p. 55)
Eucopepoda (p. 57)
Gymnoplea (p. 57)
Podoplea (p. 61)
Amphascandria (p. 57)
Heterarthrandria (p 58)
Ampharthrandria (p 61)
Calanidae (p. 57).
Centropagidae (p. 58).
Candacidae (p 60)
Pontellidae (p. 60).
Cyclopidae (pp 61, 62).
Harpacticidae (pp 61, 62)
Peltiidae (p. 63).
Monstrillidae (p 63)
Ascidicolidae (p. 66).
Asterocheridae (p. 67).
Dichelestiidae (p. 68).
Isokerandria (p. 69)
Oncaeidae (p 69)
Corycaeidae (p. 69).
Lichomolgidae (p. 70).
Ergasilidae (p 71)
Bomolochidae (p. 71).
Chondracanthidae (p. 72).
Philichthyidae (p 73)
Nereicolidae (p. 73).
Hersiliidae (p 73)
Caligidae (p. 73).
Lernaeidae (p 74)
Lernaeopodidae (p 75)
Cirripedia (p 79)
Branchiura (P. 76)
Pedunculata (p. 84)
Operculata (p 89)
Acrothoracica (p. 92).
Ascothoracica (p. 93).
Apoda (p 94)
Rhizocephala (p. 95).
Choniostomatidae (p 76)
Argulidae (p. 76).
Polyaspidae (p. 84).
Pentaspidae (p 87)
Tetraspidae (p. 88).
Anaspidae (p 89)
Verrucidae (p. 91).
Octomeridae (p 91)
Hexameridae (p. 91).
Tetrameridae (p 92)
Ostracoda (p 107)
Phyllocarida (p 111)
Cypridae (p 107)
Cytheridae (p. 107).
Halocypridae (p. 108).
Cypridinidae (p. 108).
Polycopidae (p 109)
Cytherellidae (p 109)
MALACOSTRACA (p 110)
LEPTOSTRACA (p 111)
Divisions. Orders. Sub-Orders. Tribes Families. EUMALACOSTRACA (p 112)
Syncarida (p. 114)
Peracarida (p. 118)
Anaspidacea (p 115)
Mysidacea (p. 118)
Cumacea (p. 120)
Isopoda (p 121) Chelifera (p. 122)
Flabellifera (p 124)
Anaspididae (p 115)
Koonungidae (p. 117).
Eucopiidae (p. 118).
Lophogastridae (p 119)
Mysidae (p. 119).
Cumidae (p. 121).
Lampropidae (p 121)
Leuconidae (p. 121).
Diastylidae (p 121)
Pseudocumidae (p 121)
Apseudidae (p. 122).
Tanaidae (p 122)
Anthuridae (p 124)
Gnathiidae (p. 124).
Cymothoidae (p 126)
Cirolanidae (p. 126).
Serolidae (p 126)
Sphaeromidae