Instant download Foundations of computer vision computational geometry visual image structures and o

Page 1


Foundations of Computer Vision

Computational Geometry Visual Image Structures and Object Shape Detection

1st Edition James F. Peters (Auth.)

Visit to download the full and correct content document: https://textbookfull.com/product/foundations-of-computer-vision-computational-geome try-visual-image-structures-and-object-shape-detection-1st-edition-james-f-peters-aut h/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Computational Proximity Excursions in the Topology of Digital Images 1st Edition James F. Peters (Auth.)

https://textbookfull.com/product/computational-proximityexcursions-in-the-topology-of-digital-images-1st-edition-james-fpeters-auth/

Introduction to Visual Computing: Core Concepts in Computer Vision, Graphics, and Image Processing 1st Edition Aditi Majumder

https://textbookfull.com/product/introduction-to-visualcomputing-core-concepts-in-computer-vision-graphics-and-imageprocessing-1st-edition-aditi-majumder/

A Sampler of Useful Computational Tools for Applied Geometry Computer Graphics and Image Processing 1st Edition Daniel Cohen-Or

https://textbookfull.com/product/a-sampler-of-usefulcomputational-tools-for-applied-geometry-computer-graphics-andimage-processing-1st-edition-daniel-cohen-or/

Image Processing and Computer Vision in iOS Oge Marques

https://textbookfull.com/product/image-processing-and-computervision-in-ios-oge-marques/

Computer Vision and Image Analysis Digital Image Processing and Analysis 4th Edition Scott E Umbaugh

https://textbookfull.com/product/computer-vision-and-imageanalysis-digital-image-processing-and-analysis-4th-edition-scotte-umbaugh/

Nonlinear Eigenproblems in Image Processing and Computer Vision Guy Gilboa

https://textbookfull.com/product/nonlinear-eigenproblems-inimage-processing-and-computer-vision-guy-gilboa/

Computer Vision Pattern Recognition Image Processing and Graphics Renu Rameshan

https://textbookfull.com/product/computer-vision-patternrecognition-image-processing-and-graphics-renu-rameshan/

Image Processing Computer Vision and Pattern Recognition Hamid R. Arabnia

https://textbookfull.com/product/image-processing-computervision-and-pattern-recognition-hamid-r-arabnia/

Feature extraction and image processing for computer vision Fourth Edition Aguado

https://textbookfull.com/product/feature-extraction-and-imageprocessing-for-computer-vision-fourth-edition-aguado/

James F. Peters

Foundations of Computer Vision

Computational Geometry, Visual Image

Structures and Object Shape Detection

IntelligentSystemsReferenceLibrary

Volume124

Serieseditors

JanuszKacprzyk,PolishAcademyofSciences,Warsaw,Poland

e-mail:kacprzyk@ibspan.waw.pl

LakhmiC.Jain,UniversityofCanberra,Canberra,Australia; BournemouthUniversity,UK; KESInternational,UK

e-mail:jainlc2002@yahoo.co.uk;jainlakhmi@gmail.com URL:http://www.kesinternational.org/organisation.php

AboutthisSeries

TheaimofthisseriesistopublishaReferenceLibrary,includingnoveladvances anddevelopmentsinallaspectsofIntelligentSystemsinaneasilyaccessibleand wellstructuredform.Theseriesincludesreferenceworks,handbooks,compendia, textbooks,well-structuredmonographs,dictionaries,andencyclopedias.Itcontains wellintegratedknowledgeandcurrentinformationinthe fieldofIntelligent Systems.Theseriescoversthetheory,applications,anddesignmethodsof IntelligentSystems.Virtuallyalldisciplinessuchasengineering,computerscience, avionics,business,e-commerce,environment,healthcare,physicsandlifescience areincluded.

Moreinformationaboutthisseriesathttp://www.springer.com/series/8578

ComputationalGeometry,VisualImage

StructuresandObjectShapeDetection

ElectricalandComputerEngineering

UniversityofManitoba

Winnipeg,MB

Canada

ISSN1868-4394ISSN1868-4408(electronic)

IntelligentSystemsReferenceLibrary

ISBN978-3-319-52481-8ISBN978-3-319-52483-2(eBook) DOI10.1007/978-3-319-52483-2

LibraryofCongressControlNumber:2016963747

© SpringerInternationalPublishingAG2017

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardto jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Thisbookisdedicatedto AnnaDiConcilio,ArturoTozziandsweet P forthemanyshapesandpullbacksthey havegiventome

Preface

Thisbookintroducesthefoundationsofcomputervision.Theprincipalaimof computervision(also,calledmachinevision)istoreconstructandinterpretnatural scenesbasedonthecontentofimagescapturedbyvariouscameras(see,e.g., R.Szeliski[191]).Computervisionsystemsincludesuchthingsassurveysatellites, roboticnavigationsystems,smartscanners,andremotesensingsystems.Inthis studyofcomputervision,thefocusison extractingusefulinformationfromimages (see,e.g.,S.Prince[162]).Computervisionsystemstypicallyemulatehuman visualperception.Thehardwareofchoiceincomputervisionsystemsissomeform ofdigitalcamera,programmedtoapproximatevisualperception.Hence,thereare closetiesbetweencomputervision,digitalimageprocessing,optics,photometry andphotonics(see,e.g.,E.StijnsandH.Thienpont[188]).

Fromacomputervisionperspective, photonics isthescienceoflightinthe captureofvisualscenes. Imageprocessing isthestudyofdigitalimageformation (e.g.,conversionofanalogueopticalsensorsignalstodigitalsignals),manipulation (e.g.,image filtering,denoising,cropping),featureextraction(e.g.,pixelintensity, gradientorientation,gradientmagnitude,edgestrength),description(e.g.,image edgesandtexture)andvisualization(e.g.,pixelintensityhistograms).See,e.g.,the mathematicalframeworksforimageprocessingbyB.Jähne[87]andS.G.Hoggar [82],extendingtoanumberofpractitionerviewsofimageprocessingprovided, forexample,byM.SonkaandV.HlavacandR.Boyle[186],W.Burgerand M.J.Burge[21],R.C.GonzalezandR.E.Woods[58],R.C.GonzalezandR.E. WoodsandS.L.Eddins[59],V.Hlavac[81],andC.SolomonandT.Breckon [184].Thisusefulinformationprovidesthebedrockforthefocalpointsofcomputer visionists,namely,imageobjectshapesandpatternsthatcanbedetected,analyzed andclassified(see,e.g.,[142]).Ineffect, computervision isthestudyofdigital imagestructuresandpatterns,whichisalayerofimageanalysisabovethatof imageprocessingandphotonics.Computervisionincludesimageprocessingand photonicsinitsbagoftricksinitspursuitofimagegeometryandimageregion patterns.

Inaddition,itishelpfultocultivateanintelligentsystemsviewofdigitalimages withaneyetodiscoveringhiddenpatternssuchasrepetitionsofconvexenclosures

ofimageregionsandembeddedimagestructuressuchasclustersofpointsinimage regionsofinterest.Thediscoveryofsuchstructuresismadepossiblebyquantizers. A quantizer restrictsasetofvalues(usuallycontinuous)toadiscretevalue.Inits simplestformincomputervision,aquantizerobservesaparticulartargetpixel intensityandselectsthenearestapproximatingvaluesintheneighbourhoodofthe target.TheoutputofaquantizeriscalledacodebookbyA.GershoandR.M.Gray [55, §5.1,p.133](see,also,S.Ramakrishnan,K.RoseandA.Gersho[164]).

Inthecontextofimagemeshoverlays,theGersho–Grayquantizerisreplacedby geometry-basedquantizers.A geometry-basedquantizer restrictsanimageregion toitsshapecontourandobservesinanimageaparticulartargetobjectshape contour,whichiscomparedwithothershapecontoursthathaveapproximatelythe sameshapeasthetarget.Inthefoundationsofcomputervision,geometry-based quantizersobserveandcompareimageregionswithapproximatelythesame regionssuchasmeshmaximalnucleusclusters(MNCs)comparedwithother nucleusclusters.A maximalnucleuscluster (MNCs)isacollectionofimagemesh polygonssurroundingameshpolygoncalledthenucleus(see,e.g.,J.F.Petersand E. İnanonEdelsbrunnernervesinVoronoï tessellationsofimages[150]).An imagemeshnucleus isameshpolygonthatisthecentreofacollectionofadjacent polygons.Ineffect,everymeshpolygonisanucleusofaclusterofpolygons. However,onlyoneormoremeshnucleiaremaximal.

A maximalimagemeshnucleus isameshnucleuswiththehighestnumberof adjacentpolygons.MNCsareimportantincomputervision,sincewhatwewillcall aMNCcontourapproximatestheshapeofanunderlyingimageobject.A Voronoï tessellation ofanimageisatilingoftheimagewithpolygons.AVoronoï tessellationofanimageisalsocalledaVoronoï mesh.Asampletilingofamusician imageinFig. 0.1.1isshowninFig. 0.1.2.Asamplenucleusofthemusicianimage tilingisshowninFig. 0.2.1.Thered dotsinsideeachofthetilingpolygonsare examplesofVoronoï region(polygon)generatingpoints.Formoreaboutthis,see Sect. 1.22.1.Thismusicianmeshnucleusisthecentreofamaximalnucleuscluster showninFig. 0.2.2.ThisistheonlyMNCinthemusicianimagemeshinFig. 0.1.2. ThisMNCisalsoanexampleofaVoronoï meshnerve.ThestudyofimageMNCs takesustothethresholdofimagegeometryandimageobjectshapedetection.For moreaboutthis,seeSect. 1.22.2.

Each imagetilingpolygon isaconvexhulloftheinteriorandvertexpixels. A convexhull ofasetofimagepointsisthesmallestconvexsetofthesetofpoints. Asetofimagepoints A isa convexset,providedallofthepointsoneverystraight linesegmentbetweenanytwopointsintheset A iscontainedintheset.Inother words,knowledgediscoveryisattheheartofcomputervision.Bothknowledgeand understandingofdigitalimagescanbeusedinthedesignofcomputervision systems.Invisionsystemdesigns,thereisaneedtounderstandthecomposition andstructureofdigitalimagesaswellasthemethodsusedtoanalyzecaptured images.

Thefocusofthisvolumeisonthestudyofrasterimages.Thesequeltothis volumewillfocusonvectorimages,whicharecomposedofpoints(vectors),lines andcurves.Thebasiccontentofeveryrasterimageconsistsofpixels

(e.g.,distinguishedpixelscalledsitesormeshgeneratingpoints),edges(e.g., common,parallel,intersecting,convex,concave,straight,curved,connected, unconnected),angles(e.g.,vectorangle,anglebetweenvectors,pixelangle),image geometry(e.g.,Voronoï regions[141],Delaunaytriangulations[140]),colour, shape,andtexture.Manyproblemsincomputervisionandsceneanalysisare solvedby findingthemostprobablevaluesofcertainhiddenorunobservedimage variablesandstructures(see,e.g.,P.KohliandP.H.S.Torr[96]).Suchstructures andvariablesincludethetopologicalneighbourhoodofapixel,convexhullsofsets ofpixels,nearness(andapartness)ofimagestructuresandpixelgradientdistributionsaswellasfeaturevectorsthatdescribeelementsofcapturedscenes.

Othercomputervisionproblemsincludeimagematching,featureselection, optimalclassi fierdesign,imageregionmeasurement,interestpointidentification, contourgrouping,segmentation,registration,matching,recognition,imageclustering,patternclusteringinF.Escolono,P.Suau,B.Bonev[45]andinN.Paragios, Y.Chen,O.Faugeras[138],landmarkandpointshapematching,imagewarping,

0.2.1: Musician mesh nucleus
0.2.2: Musician maximal nucleus cluster
Fig.0.2 Maximalnucleusclusteronmusicianimage
0.1.1: Muscian
0.1.2: Muscian tiling
Fig.0.1 Voronoï tessellationofmusicianimage

shapegradients[138],falsecolouring,pixellabelling,edgedetection,geometric structuredetection,topologicalneighbourhooddetection,objectrecognition,and imagepatternrecognition.

Incomputervision,thefocusisonthedetectionofthebasicgeometricstructures andobjectshapescommonlyfoundindigitalimages.Thisleadsintoastudyofthe basicsofimageprocessingandimageanalysisaswellasvectorspaceandcomputationalgeometryviewsofimages.Thebasicsofimageprocessinginclude colourspaces, filtering,edgedetection,spatialdescriptionandimagetexture. DigitalimagesareexamplesofEuclideanspaces(both2Dand3D).Hence,vector spaceviewsofdigitalimagesareanaturaloutcomeoftheirbasiccharacter. A digitalimagestructure isbasicallyageometricoravisualtopologicalstructure. Examplesofimagestructuresareimageregions,linesegments,generatingpoints (e.g.Lowekeypoints),setofpixels,neighbourhoodofapixel,halfspaces,convex setsofpixelsandconvexhullsofsetsofimagepixels.Forexample,suchstructures canbeviewedintermsofimageregionsnearestselectedpointsorcollectionsof imageregionswithaspeci fiedrangeofdiameters.An imageregion isasetof imagepoints(pixels)intheinteriorofadigitalimage.The diameter ofanyimage regionisthemaximumdistancebetweenapairofpointsintheregion).Such structurescanalsobefoundinlinesegmentsconnectedbetweenselectedpointsto formtriangularregionsin2Dand3Dimages.

Suchstructuresarealsocommonlyfoundin2Dand3Dimagesintheintersectionofclosedhalfspacestoformeitherconvexhullsofasetofpointsorwhat G.M.Zieglercalls polytopes [221].An imagehalfspace isthesetofallpoints eitheraboveorbelowaline.Inallthreecases,weobtainaregionalviewofdigital images.Formoreaboutpolytopes,seeAppendixB.15.

Everyimageregionhasashape.Someregionshapesaremoreinterestingthan others.Theinterestingimageregionshapesarethosecontainingobjectsofinterest. Theseregionalviewsofimagesleadstovariousformsofimagesegmentationsthat havepracticalvaluewhenitcomestorecognizingobjectsinimages.Inaddition, detectionofimageregionshapesofinterestviewsleadtothediscoveryofimage patternsthattranscendthestudyoftexelsinimageprocessing.A texel isanimage regionrepresentedbyanarrayofpixels.Formoreaboutshapes,seeAppendixB.18 onshapeandshapeboundaries.

Imageanalysisfocusesonvariousdigitalimagemeasurements(e.g.,pixelsize, pixeladjacency,pixelfeaturevalues,pixelneighbourhoods,pixelgradient,closenessofimageneighbourhoods).Threestandardregion-basedapproachesinimage analysisareisodatathresholding(binarizingimages),watershedsegmentation (computedusingadistancemapfromforegroundpixelstobackgroundregions), andnon-maximumsuppression(findinglocalmaximabysuppressingallpixelsthat arelesslikelythantheirsurroundingpixels)[212].

Inimageanalysis,objectandbackgroundpixelsareassociatedwithdifferent adjacencies(neighbourhoods)byT.Aberra[3].Therearethreebasictypesof neighbourhoods,namely,Rosenfeldadjacencyneighbourhoods[171,102], Hausdorffneighbourhoods[74,75]anddescriptiveneighbourhoodsinJ.F.Peters [142]andinC.J.Henry[77,76].Usingdifferentgeometries,anadjacency

neighbourhoodofapixelisdefinedbythepixelsadjacenttoagivenpixel.An image Rosenfeldadjacencyneighbourhood ofapixel p isasetofpixelsthatare adjacentto p.Adjacencyneighbourhoodsarecommonlyusedinedgedetectionin digitalimages.

A Hausdorffneighbourhood ofapoint p isdefinedby findingallpixelswhose distancefrom p islessthatapositivenumber r (calledtheneighbourhoodradius).

A descriptiveneighbourhood ofapixel p (denotedby N(img (x, y), r)isthesetof pixelswithfeaturevectorsthatmatchoraresimilartothefeaturevectorthat describes img(x, y)(theneighbourhood ‘centre’ ofadigitalimage img)andwhich arewithinaprescribedradius r.

Unlikeanadjacencyneighbourhood,adescriptiveneighbourhoodcanhave holesinit,i.e.,pixelswithfeaturevectorsthatdonotmatchtheneighbourhood centreandarenotpartoftheneighbourhood.Othertypesofdescriptiveneighbourhoodsareintroducedin[142,Sect.1.16,pp.29–34].

Thechaptersinthisbookgrewoutofmynotesforanundergraduateclassin ComputerVisiontaughtoverthepastseveralyears.Manytopicsinthisbookgrew outmydiscussionsandexchangeswithanumberofresearchersandothers, especially,S.Ramanna(thosemanyshapes,especiallyincrystals),AnnaDi Concilio(thoseproximities,region-freegeometry,andseascapeshapeslikethosein Fig. 0.3),ClaraGuadagni(those flowernervestructures),ArturoTozzi(those Borsuk-UlamTheoreminsightsandGibsonshapes,Avenariusshapes),Romy Tozzi(remember8, ∞),ZdzisławPawlak(thoseshapesinpaintingsofthePolish countryside),LechPolkowski(thosemereological,topologicalandroughset structures),PiotrArtiemjew(thosedragonflywings),GiangiacomoGerla(thosetips (points)–vertices–ofUNISAcourtyardtrianglesandspatialregions),GeraldBeer (thosemomentsinSomNaimpally’slife),GuiseppeDiMaio(thoseinsightsabout proximities),Somashekhar(Som)A.Naimpally(thosetopologicalstructures), ChrisHenry(thosecolourspaces,colourshapesets),MacekBorkowski(those3D viewsofspace),HomaFashandi,DanLockery,IrakliDochviri,Ebubekir İnan (thosenearnessrelationsandneargroups),MehmetAli Öztürk(thosebeautiful algebraicstructures),MustafaUçkun,NickFriesen(thoseshapesofdwellings), ÖzlemUmdu,DoungratChitcharoen, ÇenkerSandoz(thoseDelaunaytriangulations),SurabiTiwari(thosemanycategories),KyleFedoruk(applicationofcomputervision:SubaruEyeSight®),AmirH.Meghdadi,ShabnamShahfar,Andrew Skowron(thoseproximitiesatBanacha),AlexanderYurkin,MarcinWolksi(those sheaves),PiotrWasilewski,LeonSchilmoeler,JerzyW.Grzymala-Busse(those insightsaboutroughsetsandLATEXhints),ZbigniewSuraj(thosemanyPetrinets), JarosławStepaniuk,WitoldPedrycz,RobertThomas(thoseshapesoftilings), Marković G.oko(polyforms),MiroslawPawlak,PradeepaYahampath,Gabriel Thomas,Anthony(Tony)Szturm,SankarK.Pal,DeanMcNeill,Guiseppe(Joe)Lo Vetri,WitoldKinsner,KenFerens,DavidSchmidt(settheory),WilliamHankley (time-basedspecifi cation),JackLange(thosechalkboardtopologicaldoodlings), IrvingSussman(goldnuggetsintheoremsandproofs)andBrianPeters(those fleetingglimpsesofgeometricshapesonthewalls).

Anumberofourdepartmenttechnologistshavebeenveryhelpful,especially, Mount-FirstNg,KenBiegun,GuyJonatschickandSinisaJanjic.

Andmanyofmystudentshavegivenimportantsuggestionsconcerningtopics coveredinthisbook,especially,DrewBarclay,BradenCross,BinglinLi,Randima Hettiarachchi,EnochA-iyeh,Chidoteremndu(Chido)ChinonyelumUchime, D.Villar,K.Marcynuk,MuhammadZubairAhmad,andArminaEbrahimi.

Chapterproblemshavebeenclassifi ed.Thoseproblemsthatbeginwith are thekindyoucanrunwith,andprobablywillnottakemuchtimetosolve.Problems thatbeginwith arethekindyoucanprobablysolveinaboutthetimeittakesto drinkacupofteaorcoffee.Theremainingproblemswillneedvaryinglengthsof timetosolve.

Winnipeg,CanadaJamesF.Peters

Fig.0.3 SeascapeshapesalongthecoastlineofVietri,Italy

2.7.1ComplementingandLogicalnotofPixelIntensities

2.7.2XorOperationonPairsofBinaryImages

2.8SeparatingImageForegroundFromBackground

2.9ConjunctionofThresholdedColourChannels

3.1.5WireframeSurfacePlot

3.2Isolines

4.4LinearConvolutionFiltering

4.5SelectingaRegion-of-Interest

4.6AddingNoisetoImage

5.3DoublePrecisionLaplacianFilter

5.4EnhancingDigitalImageEdges

5.5GaussianKernel

5.6GaussianFilter

5.7GaussianFilterandImageRestoration

5.8LaplaceofGaussianFilterImageEnhancement

5.12DetectingImageCorners

5.13ImageCorner-BasedVoronoï MeshesRevisited

5.13.1Voronoï TessellationDetails

5.13.2SitesforVoronoï Polygons

5.14StepstoConstructaCorner-BasedVoronoï

5.15ExtremeImageCornersinSetofMeshGenerators

5.16Voronoï MeshonanImagewithExtremeCorners ............

5.17ImageGradientApproachtoIsolatingImageEdges

5.18Corners,EdgesandVoronoÏ Mesh ........................

6.1DelaunayTriangulationGeneratesaTriangularMesh

6.2TriangleCircumcircles

6.3ConstructingaCorner-BasedDelaunayMesh

6.4Centroid-BasedDelaunayImageMesh .....................

6.4.1FindingImageCentroids .........................

6.4.2FindingImageCentroidalDelaunayMesh............

6.4.3FindingImageCentroidalVoronoï Mesh ............

6.4.4FindingImageCentroidalVoronoï Superimposed onaDelaunayMesh

7VideoProcessing.AnIntroductiontoReal-Time andOfflineVideoAnalysis

7.1BasicsofVideoProcessing

7.1.1FramePointProcessing

7.1.2ImageAcquisition

7.1.3Blobs

7.1.4FrameTilingandFrameGeometry

7.2Voronoï TilingofVideoFrames

7.3DetectionofShapesinVideoFrames ......................

7.4MeasuringShapeSimilarityandtheVoronoï VisualHull

.........................................

7.5MaximalNucleusClusters ..............................

7.8WeightFunctionforEdgelets

7.9MaximumEdgelets ....................................

7.9.1CoarseContourEdgelets

7.9.2ConnectedMeshRegionsthatareMNCs

8LoweKeypoints,MaximalNucleusClusters,Contours

8.5ShapeTheoryandtheShapesof2DImageObjects: TowardsImageObjectShapeDetection

8.6ImagePixelGradientOrientationandMagnitude

8.7Difference-of-Gaussians

8.8ImageKeypoints:D.G.Lowe’sSIFTApproach

8.9Application:KeypointBoundariesofImageMeshNuclei

8.10Supra(Outer)NucleusContours

8.11QualityofaMNCContourShape

8.12CoarseS2PandS3P(Levels2and3)MNCContours

8.13ExperimentingwiththeNumberofKeypoints

Chapter1 BasicsLeadingtoMachineVision

Fig.1.1 Voronoïgeometricviewsofimagestructures

©SpringerInternationalPublishingAG2017 J.F.Peters, FoundationsofComputerVision,IntelligentSystems ReferenceLibrary124,DOI10.1007/978-3-319-52483-2_1

Delaunaygeometricviewsofimagestructures

p , q ∈ S , ( pqr ) = Delaunaytriangle

1.1WhatIsComputerVision?

Theprincipalaimofcomputervisionistoreconstructandinterpretnaturalscenes basedonthecontentofimagescapturedbydigitalcameras[190].A naturalscene isthatpartofvisualfieldthatiscapturedeitherbyhumanvisualperceptionorby opticalsensorarrays.

Fig.1.2
Fig.1.3

Aopticalsensorarray-basednaturalsceneiseitherasasingledigitalimage capturedbycameraorasvideoframeimagecapturedbyavideocamerasuchasa webcam.

Thebasiccontentofeveryimagesceneconsistsofpixels(e.g.,adjacent,nonadjacent),edges(e.g.,common,parallel,intersecting,convex,concave,straight, curved,connected,unconnected),angles(e.g.,vector,betweenvectors,pixels),image geometry(e.g.,Voronoïregions[141],Delaunaytriangulations[140]),colour,shape, andtexture.

1.2DivideandConquerApproach

Thereconstructionandinterpretationofnaturalscenesismadeeasierbytiling(tessellating)asceneimagewithknowngeometricshapessuchastriangles(Delaunay triangulationapproach)andpolygons(Voronoïdiagramapproach).Thisisadivideand-conquerapproach.Examplesofthisapproachincomputervisionarefoundin

Shapedetection:VideoframeshapedetectionusingDelaunaytriangulationis giveninC.P.Yung,G.P.-T.Choi,K.ChenandL.M.Lui[214](see,e.g.,Fig. 1.4). Silhouettes:Usesilhouettestofindepipolarlinestocalibrateanetworkofcameras,anapproachusedbyG.Ben-Artzi,T.Halperin,M.WermanandS.Pelegin [14].Thebasicgoalhereistoachievebinocularvisionanddeterminethescene positionofa3Dobjectpointviatriangulationonapairof2Dimages(whateach singlecamerasees).Pointscalledepipolesareusedtoextract3Dobjectsfrom apairof2Dimages.An epipole isthepointofintersectionofthelinejoining opticalcenterswithanimageplane.Thelinebetweenopticalcentersiscalleda baseline.An epipolarplane istheplanedefinedbya3Dpoint m andtheoptical

Fig.1.4 Triangulatedvideoframefrom[214]

Fig.1.5 Epipolesandepipolarlines

Fig.1.6 StagesoftheVoronoïsegmentationmethodfrom[79]

centers C and C .See,forexample,thepairofepipolesandepipolarlinesin Fig. 1.5.

Videostippling:Stipplingrendersanimageusingpointsets,elementaryshapes andcolours.ThecoretechniqueinvideostipplingisVoronoïtessellationofvideo frames.ThisistheapproachbyT.HouitandF.Nielsenin[85].Thisarticlecontain agoodintroductiontoVoronoïdiagramssuperimposedonvideoframeimages(see [85,Sect.2,pp.2–3]).Voronoïdiagramsareusefulinsegmentingimages.This leadstowhatareknownasDirichlettessellatedimages,leadinganewformofkmeansclustersofimageregions(seeFig. 1.6 forstepsintheVoronoïsegmentation method).Thisformofimagesegmentationusesclustercentroidproximityto findimageclusters.ThisisapproachusedbyR.HettiarachchiandJ.F.Petersin

1.2DivideandConquerApproach5 [79].VoronoïmanifoldsareintroducedbyJ.F.PetersandC.Guadagniin[146]. A manifold isatopologicalspacethatislocallyEuclidean,i.e.,aroundeverypoint inthemanifoldthereisanopenneighbourhood.Anonemptyset X withatopology τ onit,isa topologicalspace.Acollectionofopensets τ onanonemptyopen set X isa topology on X ,providedithascertainproperties(seeAppendixB.19 forthedefinitionsofopensetandtopology).An openset isanonemptysetof points A inspace X containsallpointssufficientlycloseto A butdoesnotinclude itsboundarypoints.

Fig.1.7 Openset A = { , , , , , }

Example1.1 Sampleopensets

applepulp Applewithoutitsskin. egginterior Eggyokewithoutitsshell. wall-lessroom Roomwithoutitswalls. OpenSubimage Asubimagethatdoesincludeitsboundarypoints.Asample2 × 3 subimage A inatiny4 × 5digitalimage Img isshowninFig. 1.7.Theset A is open,sinceitcontainsonlyblacksquares anddoesnotcontainthegraypixels alongitsboundaryrepresentedby

Amanifold M isa Voronoïmanifold,provided M isaVoronoïdiagram.Any digitalimageorvideoframeimagewithatopologydefinedonit,isaVoronoï manifold.Thisisimportantincomputervision,sinceimagesthatareVoronoï manifoldshavegeometricstructuresthatareanaidinthestudyofthecharacter ofimageshapesandobjects.

CombinedGeodesicDelaunayandVororonïTessellation:DelaunaytriangulationandVoronoïdiagramsarecombinedinthestudyofgeodesiclinesandgraphs isintroducedbyY.-J.Lin,C.-XuXu,D.FanandY.Hein[112].Agraph G isa

geodeticgraph,provided,foranytwovertices p , q on G ,thereisatmostone shortestpathbetween p and q .A geodeticline isastraightline,sincetheshortest pathbetweentheendpointsofastraightlineisthelineitself.Formoreaboutthis, seeJ.Topp[195].Forexamples,seeAppendixB.7.

ConvexHulls:A convexhullofasetofpoints A (denotedbyconvh A )isthe smallestconvexsetcontaining A .Anonemptyset A inan n -dimensionalEuclideanspaceisa convexset (denotedbyconv A ),providedeverystraightlinesegment betweenanytwopointsinthesetisalsocontainedintheset.Voronoïtessellation ofadigitalimageresultsinimageregionclustersthatarehelpfulinshapedetectionandtheanalysisofcomplexsystemssuchasthecosmicweb.Thisapproach isusedbyJ.Hidding,R.vandeWeygaert,G.Vegter,B.J.T.JonesandM.Teillaud in[80].Forapairof3Dconvexhulls,seeFig. 1.8.Formoreaboutconvexhulls, seeAppendixB.3.

Fig.1.8 Sample3Dconvexhullsofasetof89points

Thesemethodsuseimageareasinsteadofpixelstoextractimageshapeandobject information.Inotherwords,weusecomputationalgeometryintheinterpretationand analysisofsceneimages.

1.3VoronoïDiagramsSuperimposedonImages

Let S beanysetofselectedpixelsinadigitalimageandlet p ∈ S .Thepixelsin S arecalled sites (or generatingpoints)todistinguishthemfromotherpixelsinan image.RecallthatEuclideandistancebetweenapairofpoints x , y intheEuclidean planeisdenotedby x y anddefinedby

Voronoïregion of p ∈ S (denoted V p )isdefinedby

Everysitein S belongstoonlyoneVoronoïregion.Adigitalimagecoveredwith Voronoïregionsiscalleda tessellatedimage.NoticethateachVoronoïregionis a convexpolygon.Thismeansthatallofthepointsonastraightedgeconnecting anypairofpointsinaVoronoïregionbelongstotheregion.Andacompletesetof Voronoïregionscoveringanimageiscalleda Voronoïdiagram or Voronoïmesh.

Example1.2 SampleVoronoïandDelaunayImageMeshes

SampleVoronoïregionsonanfMRIimageareshowninFig. 1.1.1withtheextracted VoronoïmeshshowninFig. 1.1.2.Inthiscase,eachVoronoïregionisaconvex polygoninthemeshthatsurroundsanimagecorner.ADelaunaytriangleisformed byconnectingthesitepointsofneighbouringVoronoïregions.AsampleDelaunay triangulationmeshisshowninFig. 1.2.1.ThisgivesusanotherviewofimagegeometryformedbytheinteriorpointssurroundingameshgeneratorofeachDelaunay triangle.TheextractedDelaunaytriangulationisshowninFig. 1.2.2.

Manyproblemsincomputervisionandsceneanalysisaresolvedbyfindingthe mostprobablevaluesofcertainhiddenorunobservedimagevariablesandstructures[96].SuchstructuresandvariablesincludeVoronoïregions,Delaunaytriangles,neighbourhoodsofpixels,nearness(andapartness)ofimagestructuresand pixelgradientdistributionsaswellasvaluesofencodeddesiredpropertiesofscenes. Othercomputervisionproblemsincludeimagematching,featureselection,optimalclassifierdesign,imageregionmeasurement,interestpoint,contourgrouping, segmentation,registration,matching,recognition,imageclustering,patternclustering[45, 138],landmarkandpointshapematching,imagewarping,shapegradients[138],falsecolouring,pixellabelling,edgedetection,geometricstructure detection,topologicalneighbourhooddetection,objectrecognition,andimagepatternrecognition.Typicalapplicationsofcomputervisionareindigitalvideostabilization[49,Sect.9,startingonp.261]andinrobotnavigation[93,Sect.5,starting onp.109].

Theterm camera comesfromLatin cameraobscura (darkchamber).Manydifferentformsofcamerasprovideaplaygroundforcomputervision,e.g.,affinecamera,pinholecamera,ordinarydigitalcameras,infraredcameras(alsothermographic camera),gamma(tomography)cameradevices(in3Dimaging).Anaffinecamera isalinearmathematicalmodelthatapproximatestheperspectiveprojectionderived fromanidealpinholecamera[218].Apinholecameraisaperspectiveprojection device,whichisaboxwithlight-sensitivefilmonitsinteriorbackplaneandwhich admitslightthroughapinhole.

Inthiswork,thefocusisonthedetectionofthebasiccontentandstructures indigitalimages.Aninterestin imagecontent leadsintoastudyofthebasicsof imageprocessingandimageanalysisaswellasvectorspaceandcomputational geometryviewsofimages.Thebasicsofimageprocessingincludecolourspaces, filtering,edgedetection,spatialdescriptionandimagetexture.Thestudyof image structures leadstoacomputationalgeometryviewofdigitalimages.Thebasicidea istodetectandanalyzeimagegeometryfromdifferentperspectives. DigitalimagesareexamplesofsubsetsofEuclideanspaces(both2Dand3D). Hence,vectorspaceviewsofdigitalimagesareanaturaloutcomeoftheirbasic character.Digitalimagestructuresarebasicallygeometricstructures.Suchstructures canbeviewedintermsofimageregionsnearestselectedpoints(see,e.g.,thetiny regionnearestthehighlightedpixelcenteredat(5.5,2.5)inFig. 1.9).Suchstructures canalsoviewedwithrespecttolinesegmentsconnectionbetweenselectedpoints toformtriangularregions.Botharegionalviewandatriangulationviewofimage structuresleadstovariousformsofimagesegmentationsthathavepracticalvalues whenitcomestorecognizingobjectsinimagesandclassifyingimages.Inaddition, bothregionalandtriangleviewsleadtothediscoveryofpatternshiddenindigital images.

BasicApproachinImageComputationalGeometry

Thebasicapproachistodescribeadigitalimageobjectwithaknown geometricstructure.

1.4ABriefLookatComputationalGeometry

Toanalyzeandunderstandimagescenes,itisnecessarytoidentifytheobjectsin thescenes.Suchobjectscanbeviewedgeometricallyascollectionsofconnected edges(e.g.,skeletonizationsoredgesbelongingtoshapesoredgesinpolygons)or

Fig.1.9 Pixelcenteredat(5.5,2.5)inaverysmallimagegrid

imageregionsviewedassetsofpixelsthatareinsomesenseneareachotherorsetof pointsnearafixedpoint(e.g.,allpointsnearasite(also,seedorgeneratingpoint)ina Voronoïregion[38]).Forthisreason,itishighlyadvantageoustoassociategeometric structuresinanimagewithmesh-generatingpoints(sites)derivedfromthefabricof animage.Imageedges,corners,centroids,criticalpoints,intensities,andkeypoints (imagepixelsviewedasfeaturevectors)ortheircombinationsprovideidealsources ofmeshgeneratorsaswellassourcesofinformationaboutimagegeometry.

ComputationalgeometryisthebrainchildofA.Rosenfeld,whosuggested approachingimageanalysisintermsofdistancefunctionsinmeasuringthe separationbetweenpixels[168]andimagestructuressuchassetsofpixels[169, 170].Rosenfeld’sworkeventuallyledtotheintroductionoftopologicalalgorithms usefulinimageprocessing[99]andtheintroductionofafull-scaledigitalgeometry inpictureanalysis[94].

FoundationsofSceneAnalysis

ThefoundationsfordigitalimagesceneanalysisarebuiltonthepioneeringworkbyA.Rosenfeldworkondigitaltopology[98, 168–172](later calleddigitalgeometry[94])andothers[39, 99, 102, 104, 105].The workondigitaltopologyrunsparallelwiththeintroductionofcomputationalgeometrybyM.I.Shamos[175]andF.P.Preparata[158, 159], buildingontheworkonspatialtessellationsbyG.Voronoï[201, 203] andothers[27, 53, 64, 103, 124, 196].

Computationalgeometry (CG)isanalgorithmicapproachinthestudyof geometricstructures.InCG,algorithms(step-by-stepmethods)areintroducedto constructandanalyzethelinesandsurfacesofobjects,especiallyrealworldobjects. ThefocusinCGisonhowpoints,lines,polygons,smoothcurves(in2D)and polyhedraandsmoothsurfaces(in3D)areeitherconstructedordetectedandanalyzed byacomputer.ForamoregeneralviewofCPfromalinegeometryperspective,see, forexample,H.PottmannandJ.Wallner[157].

Inthecontextofdigitalimages,computationalgeometryfocusesontheconstructionandanalysisofvarioustypesofmeshoverlaysonimages.Ontheground floor,thetwomaintypesofmeshesresultfromDelaunaytriangulationsandVoronoï tessellationsonsetsofimagepixels.A Delaunaytriangulation isacoveringofa digitalimagewithtriangleswithnon-intersectinginteriors.WithDelaunaytriangulation,thefocusisonconstructingmeshesoftrianglesderivedfromselectedsetsof pixelscalledsitesorgeneratorsandwhichcovereithera2Dor3Ddigitalimage. Aprincipalbenefitofimagetriangulationsisthedetectionofimageobjectshapes coveredbymeshtriangles.Thankstotheknownpropertiesoftriangles(e.g.,uniform shape,sumoftheinteriorangles,perimeter,area,lengthsofsides),objectshapes canbedescribedinaveryaccuratefashion.FormoreaboutDelaunaytriangulation, seeJ.A.Baerentzen,J.Gravesen,F.AntonandH.Aanaes[8,Sect.14].

ImageobjectshapescanalsobecloselyapproximatedbycollectionsofVoronoï polygons(alsocalledVoronoïregions)inaVoronoïtessellationofanimage.A 2D Voronoïdiagram representsatessellationoftheplaneregionbyconvexpolygons. A 3DVoronoïdiagram representsatessellationofa3Dsurfaceregionbyconvex polygons.

Aconvexpolygonisanexampleofaconvexset.A convexset ofpoints A (denoted byconv A )hasthepropertythat,foreachpairofpoints p , q inconv A ,allofthepoints onthestraightlinesegmentconnectedbetween p and q alsobelongtoconv A .For moreaboutconvexsets,seeAppendixB.3.

Sinceobjectshapestendtoirregular,thevaryingshapesofpolygonsinatypical Voronoïimagecoveringanimagegiveamorepreciseviewoftheshapesofimage objects.ItisimportanttonoticethatDelaunaytriangleshaveemptyinteriors(only thesidesofthetrianglesareknown).Bycontrast,Voronoïpolygonshavenon-empty interiors.ThismeansthatweknowboththesidesaswellasthecontentoftheinteriorofeachVoronoïpolygon.AprincipalbenefitofimageVoronoïtessellationisthe detectionofimageobjectshapescoveredbymeshpolygons.Thankstotheknown propertiesofVoronoïpolygons(e.g.,shape,interiorangles,edgepixelgradientorientation,perimeter,diameter,area,lengthsandnumberofsides),objectshapescan bedescribedinaveryaccuratefashion.Forthisreason,Voronoïpolygonsthatcover animageneighbourhoodcontaininganobjectprovideaverydetailedviewofimage objectshapesandcontent.

AsampledigitalimagegeometryalgorithmusefulineithertriangulatingortessellatingadigitalimageisgiveninAlgorithm1.

Algorithm1:DigitalImageGeometryviaMeshCoveringImage

Input :Readdigitalimage img .

Output :Mesh M coveringanimage.

MeshSite ← MeshGeneratingPointType ; 1 img −→ MeshSitePointCoordinates ; 2

S ← MeshSitePointCoordinates ; 3

/* S containsMeshSitePointTypecoordinatesusedasmeshgeneratingpoints(seedsor 4 sites).*/;

MeshType ← MeshChoice ; 5

/* MeshType identifiesachosenformofmesh,e.g.,Voronoï,Delaunay,polynomial.*/; 6

S −→ MeshType M ; 7

MeshType M −→ img ; 8

/*Use M togaininformationaboutimagegeometry.*/; 9

Algorithm1leadstoameshcoveringadigitalimage.Imagemeshescanvary considerably,dependingonthetypeofimageandthetypemeshgeneratingpointsthat arechosen.Imagegeometrytendstoberevealed,wheneverthechoiceofgenerating pointsaccuratelyreflectstheimagevisualcontentandthestructureoftheobjectsin animagescene.Forexample,cornerswouldbethelogicalchoiceforimagescenes containingbuildingsorobjectswithsharplyvaryingcontourssuchashandsorfacial profiles.

Fig.1.10 Huntinggroundsforsceneinformation:corner-basedDelaunayandVoronoïmeshes

Example1.3 MeshesCoveringaSalernoPosteAutoScene Acorner-basedVoronoïmeshcoveringanimagescenecontainingaPosteautoparked outsidethetrainstationinSalerno,ItalyisshowninFig. 1.10.1.ThisVoronoïmesh isalsocalleda Dirichlettessellation.Usingthesamesetofcornergeneratingpoints, aDelaunaytriangulationcoverinthePosteautosceneisshowninFig. 1.10.2.For

aDelaunaytriangulationviewoffMRIs(functionalMagneticResonanceImages), seeFig. 1.2.FormoreaboutDelaunaytriangulation,seeSect. 6.1.

ForaVoronoïtessellationofthesamefMRIs,seeFig. 1.1.Oneimportantthing tolookforinVoronoïtessellationofanimageisthepresenceofclustersofmesh polygons,eachwithacentralpolygonthathasamaximumnumberofadjacent polygons.Thecentralpolygonofameshclusteriscalledthe clusternucleus.Inthat case,theclusteriscalleda maximalnucleuscluster (MNC).ImagemeshMNCs approximatetheshapeoftheunderlyingimageobjectcoveredbytheMNC.For moreaboutMNCs,seeSect. 7.5

1.5FrameworkforDigitalImages

A digitalimage isadiscreterepresentationofvisualfieldobjectsthathavespatial (layout)andintensity(colourorgreytone)information. Fromanappearancepointofview,a greyscaledigitalimage1 isrepresentedby a2Dlightintensityfunction I ( x , y ),where x and y arespatialcoordinatesandthe valueof I at ( x , y ) isproportionaltotheintensityoflightthatimpactedonanoptical sensorandrecordedinthecorrespondingpictureelement(pixel)atthatpoint. Ifwehaveamulticolourimage,thenapixelat ( x , y ) is1 × 3arrayandeacharray elementindicatesared,greenorbluebrightnessofthepixelinacolourband(or colourchannel).Agreyscaledigitalimage I isrepresentedbyasingle2Darrayof numbersandacolourimageisrepresentedbyacollectionof2Darrays,oneforeach colourbandorchannel.Thisishow,forexample,Matlabrepresentscolourimages. A binaryimage consistsentirelyofblackpixels(pixelintensity = 0)andwhite pixels(pixelintensity = 1).Forsimplicity,weusetheterm binaryimage toreferto ablackandwhiteimage.Bycontrast,a greyscaleimage isanimagethatconsists entirelyofpixelswithvaryingshadesofblack,greytonesandwhite(greytones). Binaryimagesandgreyscaleimagesare2-dimensionalintensityimages.Bycontrast,anRGB(redgreenblue) colourimage (isa3-dimensionalor multidimensionalimage)image,sinceeachcolourpixelisrepresentedby3colourchannels, onechannelforeachcolour.RGBimagesliveinawhatisknownasanRGBcolour space.Therearemanyotherformsofcolourspaces.Themostcommonalternative toanRGBspaceistheHSV(Hue,Saturation,Value)spaceimplementedbyMatlab ortheHSB(Hue,Saturation,Brightness)spaceimplementedbyMathematica.

1 A greyscaleimage isanimagecontainingpixelsthatarevisibleasblackorwhiteorgreytones (intermediatebetweenblackandwhite).

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.