Instant download Domain decomposition methods in science and engineering xxiii 1st edition chang-ock

Page 1


Visit to download the full and correct content document: https://textbookfull.com/product/domain-decomposition-methods-in-science-and-engin eering-xxiii-1st-edition-chang-ock-lee/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Domain Decomposition Methods in Science and Engineering

XXV Ronald Haynes

https://textbookfull.com/product/domain-decomposition-methods-inscience-and-engineering-xxv-ronald-haynes/

Computational and Analytic Methods in Science and Engineering 1st Edition Constanda

https://textbookfull.com/product/computational-and-analyticmethods-in-science-and-engineering-1st-edition-constanda/

Approximation Methods in Science and Engineering Reza N. Jazar

https://textbookfull.com/product/approximation-methods-inscience-and-engineering-reza-n-jazar/

Computational and Analytic Methods in Science and Engineering Christian Constanda

https://textbookfull.com/product/computational-and-analyticmethods-in-science-and-engineering-christian-constanda/

Splitting Methods in Communication Imaging Science and Engineering Roland Glowinski

https://textbookfull.com/product/splitting-methods-incommunication-imaging-science-and-engineering-roland-glowinski/

Mathematical Methods in Science and Engineering 2nd Edition Selçuk S. Bayin

https://textbookfull.com/product/mathematical-methods-in-scienceand-engineering-2nd-edition-selcuk-s-bayin/

Essentials of Mathematical Methods in Science and Engineering Selçuk ■. Bayin

https://textbookfull.com/product/essentials-of-mathematicalmethods-in-science-and-engineering-selcuk-s-bayin/

Essentials of Mathematical Methods in Science and Engineering 2nd Edition S. Selcuk Bayin

https://textbookfull.com/product/essentials-of-mathematicalmethods-in-science-and-engineering-2nd-edition-s-selcuk-bayin/

Microfluidic Methods for Molecular Biology 1st Edition Chang Lu

https://textbookfull.com/product/microfluidic-methods-formolecular-biology-1st-edition-chang-lu/

Chang-Ock Lee · Xiao-Chuan Cai

David E. Keyes · Hyea Hyun Kim

Axel Klawonn · Eun-Jae Park

Olof B. Widlund Editors

D.Roose

T.Schlick

LectureNotes inComputationalScience andEngineering

Editors:

TimothyJ.Barth

MichaelGriebel

DavidE.Keyes

RistoM.Nieminen

DirkRoose

TamarSchlick

Moreinformationaboutthisseriesat http://www.springer.com/series/3527

Chang-OckLee•Xiao-ChuanCai•

DavidE.Keyes•HyeaHyunKim•AxelKlawonn• Eun-JaePark•OlofB.Widlund

Editors

DomainDecomposition MethodsinScience andEngineeringXXIII

Editors

Chang-OckLee

Dept.ofMathematicalSciences

KAIST

Daejeon,RepublicofKorea

DavidE.Keyes AppliedMath&ComputationalScience

KAUST Thuwal,SaudiArabia

AxelKlawonn

MathematischesInstitut Universit R atzuK R oln K R oln,Germany

OlofB.Widlund CourantInstituteofMathematicalSciences NewYorkUniversity NewYork,NY,USA

Xiao-ChuanCai Dept.ofComputerScience UniversityofColorado Boulder,CO,USA

HyeaHyunKim Dept.ofAppliedMathematics KyungHeeUniversity Yongin,RepublicofKorea

Eun-JaePark Dept.ofComputationalScience& Engineering YonseiUniversity Seoul,RepublicofKorea

ISSN1439-7358ISSN2197-7100(electronic) LectureNotesinComputationalScienceandEngineering ISBN978-3-319-52388-0ISBN978-3-319-52389-7(eBook) DOI10.1007/978-3-319-52389-7

LibraryofCongressControlNumber:2017934523

MathematicsSubjectClassification(2010):65F10,65N30,65N55

©SpringerInternationalPublishingAG2017

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

PrefaceofDD23BookofProceedings

Theproceedingsofthe23rdInternationalConferenceonDomainDecompositionMethodscontaindevelopmentsupto2015invariousaspectsofdomain decompositionmethodsbringingtogethermathematicians,computationalscientists, andengineerswhoareworkingonnumericalanalysis,scientificcomputing,and computationalsciencewithindustrialapplications.TheconferencewasheldonJeju Island,Korea,July6–10,2015.

BackgroundoftheConferenceSeries

TheInternationalConferenceonDomainDecompositionMethodshasbeenheld in14countriesthroughoutAsia,Europe,andNorthAmericabeginninginParisin 1987.Heldannuallyforthefirst14meetings,ithasbeenspacedoutsinceDD15at roughly18-monthintervals.Acompletelistofthepastmeetingsappearsbelow.The 23rdInternationalConferenceonDomainDecompositionMethodswasthefirstone heldinKorea,andittookplaceonthebeautifulJejuIsland.

ThemaintechnicalcontentoftheDD conferenceserieshasalwaysbeen mathematical,buttheprincipalmotivationwasandistomakeefficientuseof distributedmemorycomputersforcomplexapplicationsarisinginscienceand engineering.Asweapproachthedawnofexascalecomputing,wherewewill command 1018 floating-pointoperationspersecond,clearlyefficientandmathematicallywell-foundedmethodsforthesolutionoflarge-scalesystemsbecome moreandmoreimportant—asdoestheirsoundrealizationintheframeworkof modernHPCarchitectures.Infact,themassiveparallelism,whichmakesexascale computingpossible,requiresthedevelopmentofnewsolutionmethods,which arecapableofefficiently exploitingthislargenumberofcoresastheconnected hierarchiesformemoryaccess.Ongoingdevelopmentssuchasparallelizationin timeasynchronousiterativemethodsornonlineardomaindecompositionmethods showthatthismassiveparallelismdoesnotonlydemandfornewsolutionand discretizationmethodsbutalsoallowstofosterthedevelopmentofnewapproaches.

Theprogressobtainedindomaindecompositiontechniquesduringthelast decadeshasledtoabroadeningofthe conferenceprogramintermsofmethods andapplications.Multiphysics,nonlinear problems,andspace-timedecomposition methodsaremoreprominentthesedaysthantheyhavebeenpreviously.Domain decompositionhasalwaysbeenanactiveandvividfield,andthisconferenceseries isrepresentingwellthehighlyactiveandfastadvancingscientificcommunity behindit.Thisisalsoduetothefactthatthereisbasicallynoalternativetodomain decompositionmethodsasageneralapproach formassivelyparallelsimulationsat alargescale.Thus,withgrowingscaleandgrowinghardwarecapabilities,alsothe methodscan—andhaveto—improve.

However,evenifdomaindecompositionmethodsaremotivatedhistoricallyby theneedforefficientsimulationtoolsforlarge-scaleapplications,therearealso manyinterestingaspectsofdomaindecomposition,whicharenotnecessarilymotivatedbytheneedformassiveparallelism.Examplesarethechoiceoftransmission conditionsbetweensubdomains,newcouplingstrategies,ortheprincipalhandling ofinterfaceconditionsinproblemclassessuchasfluid-structureinteractionor contactproblemsinelasticity.

Whileresearchindomaindecompositionmethodsispresentedatnumerous venues,theInternationalConference onDomainDecompositionMethodsisthe onlyregularlyoccurringinternationalforumdedicatedtointerdisciplinarytechnicalinteractionsbetweentheoreticiansandpractitionersworkinginthedevelopment,analysis,softwareimplementation,andapplicationofdomaindecomposition methods.

ThelistofpreviousDomainDecompositionConferencesisthefollowing:

1.Paris,France,January7–9,1987

2.LosAngeles,USA,January14–16,1988

3.Houston,USA,March20–22,1989

4.Moscow,USSR,May21–25,1990

5.Norfolk,USA,May6–8,1991

6.Como,Italy,June15–19,1992

7.UniversityPark,Pennsylvania,USA,October27–30,1993

8.Beijing,China,May16–19,1995

9.Ullensvang,Norway,June3–8,1996

10.Boulder,USA,August10–14,1997

11.Greenwich,UK,July20–24,1998

12.Chiba,Japan,October25–29,1999

13.Lyon,France,October9–12,2000

14.Cocoyoc,Mexico,January6–11,2002

15.Berlin,Germany,July21–25,2003

16.NewYork,USA,January12–15,2005

17.St.Wolfgang-Strobl,Austria,July3–7,2006

18.Jerusalem,Israel,January12–17,2008

19.Zhangjiajie,China,August17–22,2009

20.SanDiego,California,USA,February7–11,2011

21.Rennes,France,June25–29,2012

22.Lugano,Switzerland,September16–20,2013

23.JejuIsland,Korea,July6–10,2015

InternationalScientificCommitteeonDomainDecomposition Methods

•PetterBjørstad,UniversityofBergen,Norway

•SusanneBrenner,LouisianaStateUniversity,USA

•Xiao-ChuanCai,CUBoulder,USA

•MartinGander,UniversityofGeneva,Switzerland

•LaurenceHalpern,UniversityParis13,France

•DavidE.Keyes,KAUST,SaudiArabia

•HyeaHyunKim,KyungHeeUniversity,Korea

•AxelKlawonn,UniversitätzuKöln,Germany

•RalfKornhuber,FreieUniversitätBerlin,Germany

•UlrichLanger,UniversityofLinz,Austria

•AlfioQuarteroni,EPFL,Switzerland

•OlofB.Widlund,CourantInstitute,USA

•JinchaoXu,PennState,USA

•JunZou,ChineseUniversityofHongKong,HongKong

Aboutthe23rdConference

The23rdInternationalConferenceon DomainDecompositionMethodshad108 participantsfromover22countries.ItwasthefirstonetobeheldinKorea.

Asinpreviousmeetings,DD23featuredawell-balancedmixtureofestablished andnewtopics,suchasspace-timedomaindecompositionmethods,isogeometric analysis,exploitationofmodernHPCarchitectures,optimalcontrolandinverse problems,andelectromagneticproblems.Fromtheconferenceprogram,itisevident thatthegrowingcapabilitiesintermsoftheoryandavailablehardwareallowfor increasinglycomplexnonlinearandmultiscalesimulations,confirmingthehuge potentialandflexibilityofthedomaindecompositionidea.Theconference,which wasorganizedoveranentireweek,featured presentationsofthreedifferenttypes: Theconferencecontained:

•Eleveninvitedpresentations,fosteringalsoyoungerscientistsandtheirscientific development,selectedbytheInternationalScientificCommittee

•Apostersession,whichalsogaverisetointensediscussionswiththemostly youngerpresentingscientists

•Nineminisymposia,arrangedaroundaspecialtopic

•Sevensessionsofcontributedtalks

Thepresentproceedingsvolumecontainsaselectionof42papers,splitinto8 plenarypapers,21minisymposiumpapers,and13contributedpapersandposters.

SponsoringOrganizations

•KAISTMathematicsResearchStation

•NationalInstituteforMathematicalSciences

•TheKoreanFederationofScienceandTechnologySocieties

•KISTISupercomputingCenter

•A3ForesightProgram

•NVIDIA

•JejuConvention&VisitorsBureau

Theorganizingcommitteewouldliketothankthesponsorsforthefinancialsupport.

LocalOrganizing/ProgramCommitteeMembers

•Chang-OckLee(KAIST;Chair)

•KumWonCho(KISTI)

•TaeyoungHa(NIMS)

•HyeonseongJin(JejuNationalUniversity)

•HyeaHyunKim(KyungHeeUniversity)

•Eun-HeePark(KangwonNationalUniversity)

•Eun-JaePark(YonseiUniversity)

ResearchActivityinDomainDecompositionAccording toDD23andItsProceedings

Theconferenceandtheproceedingscontainthreeparts:theplenarypresentations, theminisymposiumpresentation,andthecontributedtalksandposters.

PlenaryPresentations

Theplenarypresentationsoftheconferencehavebeendealingwithestablished topicsindomaindecompositionaswellaswithnewapproaches:

•Globalconvergenceratesofsomemultilevelmethodsforvariationalandquasivariationalinequalities,LoriBadea(InstituteofMathematicsoftheRomanian Academy,Romania)

•Robustsolutionstrategiesforfluid-structureinteractionproblemswithapplications,YuriBazilevs(UniversityofCalifornia,SanDiego,USA)

•BDDCalgorithmsfordiscontinuousPetrov-Galerkinmethods,ClarkDohrmann (SandiaNationalLaboratories,USA)

•Schwarzmethodsforthetime-parallelsolutionofparaboliccontrolproblems, FelixKwok(HongKongBaptistUniversity,HongKong)

•ComputationalscienceactivitiesinKorea,JysooLee(KISTI,Korea)

•Recentadvancesinrobustcoarsespaceconstruction,FrédéricNataf(Université Paris6,France)

•Domaindecompositionpreconditionersforisogeometricdiscretizations,LucaF. Pavarino(UniversityofMilano,Italy)

•Developmentofnonlinearstructuralanalysisusingco-rotationalfiniteelements withimproveddomaindecompositionmethod,SangJoonShin(SeoulNational University,Korea)

•Adaptivecoarsespacesandmultiplesearchdirections:toolsforrobustdomain decompositionalgorithms,NicoleSpillane(UniversidaddeChile,Chile)

•Element-basedalgebraiccoarsespaces withapplications,PanayotVassilevski (LawrenceLivermoreNationalLaboratory,USA)

•Preconditioningfornonsymmetryandtimedependence,AndrewWathen(UniversityofOxford,UnitedKingdom)

Minisymposia

TherearenineminisymposiaorganizedwithinDD23:

1.Space-timedomaindecompositionmethods (UlrichLanger,OlafSteinbach)

Thespace-timediscretizationoftransientpartialdifferentialequationsby usinggeneralspace-timefiniteandboundaryelementsinthespace-timecomputationaldomainallowsforanalmostoptimal,adaptivespace-timeresolutionof wavefrontsandmovinggeometries.Theglobalsolutionoftheresultingsystems ofalgebraicequationscaneasilybedoneinparallel,butrequiresappropriate preconditioningtechniquesbymeansofmultilevelanddomaindecomposition methods.Thisminisymposiumpresentsrecentresultsongeneralspace-time discretizationsandparallelsolutionstrategies.

2.Domaindecompositionwithadaptivecoarsespacesinfiniteelementandisogeometricapplications(DurkbinCho,LucaF.Pavarino,OlofB.Widlund)

Theaimoftheminisymposiumistobringtogetherresearchersinbothfields offiniteelementsandisogeometricanalysis(IGA)todiscussthelatestresearch developmentsindomaindecompositionmethodswithadaptivecoarsespaces. Whilecoarsespacesareessentialforthedesignofscalablealgorithms,theycan becomequiteexpensiveforproblemswithalargenumberofsubdomains,or veryirregularcoefficients/domains,orforIGAdiscretizationswherethehigh irregularityoftheNURBSbasisfunctionsyieldslargeinterfaceandcoarse

problems.Thisminisymposiumwillfocusonrecentlyproposednoveladaptive coarsespaces,generalizedeigenproblems,andprimalconstraintsselection.

3.Domaindecompositionandhigh-performancecomputing(SantiagoBadia,Jakub Šístek,KabSeokKang)

Thenextgenerationofsupercomputers, abletoreach1exaflop/s,isexpected toreachbillionsofcores.Thesuccessofdomaindecompositionforlargescalescientificcomputingwillbestronglyrelatedtotheabilitytoefficiently exploitextremecorecounts.ThisMSismainlyorientedtonovelalgorithmic andimplementationstrategiesthatwillboostthescalabilityofdomaindecompositionmethodsandtheirapplicationforlarge-scaleproblems.Sincelarge-scale computingisdemandedbythemostcomplexapplications,generallymultiscale, multiphysics,nonlinear,and/ortransientinnature,tailoredalgorithmsforthese typesofapplicationswillbeparticularlyrelevant.

4.Domaindecompositionmethodsandparallelcomputingforoptimalcontroland inverseproblems(HuibinChang,Xue-ChengTai,JunZou)

Thisminisymposiumwillbringtogetheractiveexpertsworkingondomain decompositionmethodsandparallelcomputingforlarge-scaleill-posedproblemsfromimageprocessing,optimalcontrol,andinverseproblemstodiscuss andexchangethelatestdevelopmentsintheseareas.

5.Efficientsolversforelectromagneticproblems(VictoritaDolean,ZhenPeng)

Inthisminisymposiumweexploredomaindecomposition-typesolversfor electromagneticwavepropagationproblems.Theseproblemsareverychallenging(especiallyintime-harmonicregimewheretheproblemisindefiniteinnature andmostoftheiterativesolverswillfail).Themini-symposiumwilldiscuss differentareasofrecentprogressasparalleldomaindecompositionlibraries, sweepingpreconditioners,iterativemethodsbasedonmulti-traceformulations, ornewresultsonoptimizedSchwarzmethods.

6.DomaindecompositionmethodsformultiscalePDEs(EricChung,HyeaHyun Kim)

Itiswellknownthatclassicalwaystoconstructcoarsespacesarenotrobust andgivelargeconditionnumbersdependingontheheterogeneitiesandcontrasts ofthecoefficients.Recently,thereareincreasinginterestsinconstructingdomain decompositionmethodswithenrichedcoarsespacesoradaptivecoarsespaces. Thepurposeofthisminisymposiumistobringtogetherresearchersinthearea ofdomaindecompositionmethodsforPDEswithhighlyoscillatorycoefficients andprovideaforumforthemtopresentthelatestfindings.

7.BirthdayminisymposiumRalfKornhuber(60thBirthday)(RolfKrause,Martin Gander)

ThisMSwillbringtogethertalkswhicharerelatedtothescientificworkof RalfKornhuber.Thisincludesfastnumericalmethodsforvariationalinequalities,multigridmethods,numericalmethodsforphasefieldequations,and biomechanics.

8.Recentapproachestononlineardoman decompositionmethods(AxelKlawonn, OliverRheinbach)

Forafewdecadesalready,Newton-Krylovalgorithmswithsuitablepreconditionerssuchasdomaindecomposition(DD)ormultigrid(MG)methods (Newton-Krylov-DDorNewton-Krylov-MG)havebeentheworkhorseforthe parallelsolutionofnonlinearimplicitproblems.ThestandardNewton-Krylov approachesarebasedonagloballinearizationandtheefficientparallelsolution oftheresultinglinear(tangent)systemsineachlinearizationstep(“firstlinearize, thendecompose”).Increasinglocalcomputationalworkandreducingcommunicationarekeyingredientfortheefficientuseoffutureexascalemachines.In Newton-Krylov-DD/Newton-Krylov-MGmethods,theseaspectscanbemainly treatedatthelevelofthesolutionofthelinearsystemsbythepreconditioned Krylovmethods.Computationalworkcanbelocalized,andcommunicationcan bereducedbyacompletereorderingofoperations:thenonlinearproblemisfirst decomposedandthenlinearized,leadingtononlineardomaindecomposition methods.AnearlyapproachinthisdirectionistheASPIN(additiveSchwarz preconditionedinexactNewton)method byCaiandKeyes.Recently,therehas beenworkonnonlinearFETI-DPandBDDCmethodsbyKlawonn,Lanser, andRheinbach.Inthisminisymposiu m,recentapproachestononlineardomain decompositionmethodswillbepresented.

9.TutorialfordomaindecompositiononheterogenousHPC(JunardLee) Atthisminisymposium,wewillhaveatutorialsession.Wewillcover heterogeneousHPCarchitecture, CUDAprogramminglanguage,OpenACC directives,andhowtoimplementthesetechnologiestoacceleratePDEsolvers speciallydomaindecompositionmethod.

ContributedPresentationsandPosters

Thecontributedtalkshavebeendistributedoversevendifferentsessions:

1.DomainDecompositionMethodsforApplications

2.OptimizedSchwarzMethods

3.FastSolversforNonlinearandUnsteadyProblems

4.DomainDecompositionMethodswithLagrangeMultipliers

5.EfficientMethodsandSolversforApplications

6.MultiphysicsProblems

7.CoarseSpaceSelectionStrategies

Theproceedingspartwithposterpresentationsisalsoarealtreasuretrovefornew ideasindomaindecompositionmethods.

Acknowledgements Inclosing,wewouldliketothankalltheparticipantsgatheredonJejuIsland fortheircontributionstothescientificsuccessofthisconference.Moreover,itisourpleasureto expressoursincerethankstoeverybodywhohassupportedthisconferenceontheadministrative side.Thisincludesthechairsoftheconferencesessions,thevolunteersfromKAISTandJeju

NationalUniversityhelpingonthepracticalandtechnicalissues,andlastbutnotleasttheKSIAM staffwhohasprovidedinvaluablesupport.

Daejeon,RepublicofKoreaC.-O.Lee Boulder,CO,USAX.-C.Cai Thuwal,SaudiArabiaD.E.Keyes Yongin,RepublicofKoreaH.H.Kim Köln,GermanyA.Klawonn Seoul,RepublicofKoreaE.-J.Park NewYork,NY,USAO.B.Widlund November24,2016

Organization

ProgramChairs

Chang-OckLeeKAIST

ProgramCommittee

Xiao-ChuanCaiUniversityofColoradoatBoulder DavidE.KeyesKAUST HyeaHyunKimKyungHeeUniversity

AxelKlawonnUniversitätzuKöln

Eun-JaeParkYonseiUniversity OlofB.WidlundCourantInstitute

Contents

PartIPlenaryTalks(PT)

GlobalConvergenceRatesofSomeMultilevelMethods forVariationalandQuasi-VariationalInequalities ...........................3 LoriBadea

ParallelSumPrimalSpacesforIsogeometricDeluxeBDDC Preconditioners ...................................................................17 L.BeirãodaVeiga,L.F.Pavarino,S.Scacchi,O.B.Widlund, andS.Zampini

DevelopmentofNonlinearStructuralAnalysisUsing Co-rotationalFiniteElementswithImprovedDomain DecompositionMethod ..........................................................31 HaeseongCho,JunYoungKwak,HyunshigJoo, andSangJoonShin

AnAdaptiveCoarseSpaceforP.L.LionsAlgorithm andOptimizedSchwarzMethods ..............................................43 RyadhHaferssas,PierreJolivet,andFrédéricNataf

OntheTime-DomainDecompositionofParabolicOptimal ControlProblems ................................................................55 FelixKwok

ParallelSolverfor H (div)ProblemsUsingHybridizationandAMG ......69 ChakS.LeeandPanayotS.Vassilevski

PreconditioningforNonsymmetryandTime-Dependence ..................81 EleanorMcDonald,SeanHon,JenniferPestana,andAndyWathen

AlgebraicAdaptiveMultipreconditioningApplied toRestrictedAdditiveSchwarz .................................................93 NicoleSpillane

PartIITalksinMinisymposia(MT)

ClosedFormInverseofLocalMulti-TraceOperators .......................107

AlanAyala,XavierClaeys,VictoritaDolean,andMartinJ.Gander

SchwarzPreconditioningforHighOrderEdgeElement DiscretizationsoftheTime-HarmonicMaxwell’sEquations ...............117

MarcellaBonazzoli,VictoritaDolean,RichardPasquetti, andFrancescaRapetti

OnNilpotentSubdomainIterations ............................................125

FaycalChaouqui,MartinJ.Gander,andKévinSantugini-Repiquet

ADirectEllipticSolverBasedonHierarchicallyLow-Rank SchurComplements .............................................................135

GustavoChávez,GeorgeTurkiyyah,andDavidE.Keyes

OptimizedSchwarzMethodsforHeterogeneousHelmholtz andMaxwell’sEquations ........................................................145

VictoritaDolean,MartinJ.Gander,ErwinVeneros,andHuiZhang

OntheOriginsofLinearandNon-linearPreconditioning ..................153

MartinJ.Gander

TimeParallelizationforNonlinearProblemsBased onDiagonalization ...............................................................163

MartinJ.GanderandLaurenceHalpern

TheEffectofIrregularInterfacesontheBDDCMethod fortheNavier-StokesEquations ................................................171

MartinHanek,JakubŠístek,andPavelBurda

BDDCandFETI-DPMethodswithEnrichedCoarseSpaces forEllipticProblemswithOscillatoryandHighContrastCoefficients ....179 HyeaHyunKim,EricT.Chung,andJunxianWang

AdaptiveCoarseSpacesforFETI-DPinThreeDimensions withApplicationstoHeterogeneousDiffusionProblems ....................187 AxelKlawonn,MartinKühn,andOliverRheinbach

Newton-Krylov-FETI-DPwithAdaptiveCoarseSpaces ....................197 AxelKlawonn,MartinLanser,BalthasarNiehoff,PatrickRadtke, andOliverRheinbach

NewNonlinearFETI-DPMethodsBasedonaPartial NonlinearEliminationofVariables ............................................207 AxelKlawonn,MartinLanser,OliverRheinbach, andMatthiasUran

DirectandIterativeMethodsforNumericalHomogenization ..............217 RalfKornhuber,JoschaPodlesny,andHarryYserentant

NonlinearMultiplicativeSchwarzPreconditioninginNatural ConvectionCavityFlow .........................................................227

LuluLiu,WeiZhang,andDavidE.Keyes

TreatmentofSingularMatricesintheHybridTotalFETIMethod ........237 A.Markopoulos,L. ˇ Ríha,T.Brzobohatý,P.Jir˚utková,R.Ku ˇ cera, O.Meca,andT.Kozubek

FromSurfaceEquivalencePrincipletoModular DomainDecomposition ..........................................................245

FlorianMuth,HermannSchneider,andTimoEuler

Space-TimeCFOSLSMethodswithAMGeUpscaling ......................253 MartinNeumüller,PanayotS.Vassilevski,andUmbertoE.Villa

ScalableBDDCAlgorithmsforCardiacElectromechanicalCoupling ....261

L.F.Pavarino,S.Scacchi,C.Verdi,E.Zampieri,andS.Zampini

ABDDCAlgorithmforWeakGalerkinDiscretizations .....................269 XueminTuandBinWang

ParallelSumsandAdaptiveBDDCDeluxe ...................................277 OlofB.WidlundandJuanG.Calvo

AdaptiveBDDCDeluxeMethodsforH(curl) .................................285 StefanoZampini

PartIIIContributedTalks(CT)andPosters

AStudyoftheEffectsofIrregularSubdomainBoundaries onSomeDomainDecompositionAlgorithms .................................295

ErikEikeland,LeszekMarcinkowski,andTalalRahman

OntheDefinitionofDirichletandNeumannConditions fortheBiharmonicEquationandItsImpactonAssociated SchwarzMethods ................................................................303

MartinJ.GanderandYongxiangLiu

SHEM:AnOptimalCoarseSpaceforRASandItsMultiscale Approximation ...................................................................313

MartinJ.GanderandAtleLoneland

OptimizedSchwarzMethodsforDomainDecompositions withParabolicInterfaces ........................................................323

MartinJ.GanderandYingxiangXu

AMortarDomainDecompositionMethodforQuasilinearProblems .....333

MatthiasA.F.GsellandOlafSteinbach

DeflatedKrylovIterationsinDomainDecompositionMethods ............345

Y.L.Gurieva,V.P.Ilin,andD.V.Perevozkin

ParallelOverlappingSchwarzwithanEnergy-Minimizing CoarseSpace ......................................................................353

AlexanderHeinlein,AxelKlawonn,andOliverRheinbach

VolumeLockingPhenomenaArisinginaHybridSymmetric InteriorPenaltyMethodwithContinuousNumericalTraces ...............361 DaisukeKoyamaandFumioKikuchi

Dual-PrimalDomainDecompositionMethods fortheTotalVariationMinimization ..........................................371 Chang-OckLeeandChangminNam

AParallelTwo-PhaseFlowSolveronUnstructuredMeshin3D ...........379 LiLuo,QianZhang,Xiao-PingWang,andXiao-ChuanCai

TwoNewEnrichedMultiscaleCoarseSpacesfortheAdditive AverageSchwarzMethod .......................................................389 LeszekMarcinkowskiandTalalRahman

RelaxingtheRolesofCornersinBDDCbyPerturbedFormulation .......397 SantiagoBadiaandHieuNguyen

SimulationofBloodFlowinPatient-specificCerebralArteries withaDomainDecompositionMethod ........................................407 Wen-ShinShiu,ZhengzhengYan,JiaLiu,RongliangChen, Feng-NanHwang,andXiao-ChuanCai

PlenaryTalks(PT)

GlobalConvergenceRatesofSomeMultilevel MethodsforVariationalandQuasi-Variational Inequalities

1Introduction

Thefirstmultilevelmethodforvariationalinequalitieshasbeenproposedin Mandel(1984a)forcomplementarityproblems.Anupperboundoftheasymptotic convergencerateofthismethodisderivedinMandel(1984b).Themethodhasbeen studiedlaterinKornhuber(1994)intwovariants,standardmonotonemultigrid methodandtruncatedmonotonemultigridmethod.Thesemethodshavebeen extendedtovariationalinequalitiesofthesecondkindinKornhuber(1996, 2002). Also,versionsofthismethodhavebeenappliedtoSignorini’sprobleminelasticity inKornhuberandKrause(2001).InBadea(2003, 2006)globalconvergencerates ofsomeprojectedmultilevelrelaxationmethodsofmultiplicativetypearegiven. Also,aglobalconvergenceratewasderivedinBadea(2008)foratwo-leveladditive method.Two-levelmethodsforvariationalinequalitiesofthesecondkindandfor somequasivariationalinequalitieshavebeenanalyzedinBadeaandKrause(2012). InBadea(2014),itwastheoreticallyjustifiedtheglobalconvergencerateofthe standardmonotonemultigridmethodsand,inBadea(2015),thisresulthasbeen extendedtothehybridalgorithms,wherethetypeoftheiterationsonthelevelsis differentfromthetypeoftheiterationsoverthelevels.Finally,amultigridmethod forinequalitiescontainingatermgivenbyaLipschitzoperatorisanalyzedin Badea(2016).Evidently,theabovelistofcitationsisnotexhaustiveand,forfurther information,wecanseethereviewarticle(GräserandKornhuber, 2009).

L.Badea( )

InstituteofMathematicsoftheRomanianAcademy,P.O.Box1-764,RO-014700Bucharest, Romania

e-mail: lori.badea@imar.ro

©SpringerInternationalPublishingAG2017

C.-O.Leeetal.(eds.), DomainDecompositionMethodsinScience andEngineeringXXIII,LectureNotesinComputationalScience andEngineering116,DOI10.1007/978-3-319-52389-7_1

Thisisareviewpaperregardingtheconvergencerateofsomemultilevel methodsforvariationalinequalitiesandalso,formorecomplicatedproblemssuch asvariationalinequalitiesofthesecondkind,quasi-variationalinequalitiesand inequalitieswithatermcontainingaLipschitzoperator.Themethodsarefirst introducedassomesubspacecorrectionalgorithmsinareflexiveBanachspaceand, undersomeassumptions,generalconvergenceresults(errorestimations,included) aregiven.Inthefiniteelementspaces,weprovethattheseassumptionsaresatisfied andthattheintroducedalgorithmsareinfactone-,two-,multilevelormultigrid methods.Theconstantsintheerrorestimationsareexplicitlywritteninfunctions oftheoverlappingandmeshparametersfortheone-andtwo-levelmethodsandin functionofthenumberoflevelsforthemultigridmethods.

Inthispaper,wedenoteby V areflexiveBanachspaceand K V isanonempty closedconvexsubset.Also, F W K ! R isaGâteauxdifferentiablefunctionaland weassumethatthereexisttworealnumbers p; q >1 suchthatforany M >0 there exist ˛M ;ˇM >0 forwhich

forany u;v 2 K , jjujj; jjv jj M .Inviewoftheseproperties,wecanprovethat F is aconvexfunctionaland 1< q 2 p.

2One-andTwo-LevelMethods

Inthissectionweintroduceone-andtwo-levelmethodsofmultiplicativetype,first asageneralsubspacecorrectionalgorithm.Detailsconcerningtheproofofitsglobal convergencecanbefoundinBadea(2003).Theone-andtwo-levelmethodsare derivedfromthisalgorithmbytheintroductionofthefiniteelementspacesand detailsaregiveninBadea(2006).Similarresultscanbeprovedfortheadditive variantofthemethods[seeBadea(2008)].

Weconsiderthevariationalinequality u 2 K : < F 0 .u/;v u > 0; forany v 2 K ; (1) andif K isnotbounded,wesupposethat F iscoercive,i.e. F .v/ !1 as jjv jj! 1.Then,problem(1)hasanuniquesolution.Let V1 ; ; Vm besomeclosed subspacesof V forwhichwemakethefollowing.

Assumption1 ThereexistsaconstantC0 >0 suchthatforanyw;v 2 Kand wi 2 Vi withw C Pi jD1 wj 2 K,i D 1; ; m,thereexist vi 2 Vi ,i D 1; ; m, satisfying w C

Forlinearproblems,thelastconditionhasamoresimpleformandisnamedthe stabilityconditionofthespacedecomposition.Tosolveproblem(1),weintroduce thefollowingsubspacecorrectionalgorithm.

Algorithm1 Westartthealgorithmwithanarbitraryu0 2 K.Atiterationn C 1, havingun 2 K,n 0,wesequentiallycomputefori D 1; ; m,

forany vi 2 Vi ;

Thefollowingresultprovestheglobalconvergenceofthisalgorithm[seeTheorem2 inBadea(2003)].

Theorem1 OntheaboveconditionsonthespacesandthefunctionalF,if Assumption 1 holds,thenthereexistsanM >0 suchthat jjun jj M,forany n 0,andwehavethefollowingerrorestimations:

(i)ifp D q D 2

(ii)ifp > qwehave

Thevalueof intheexpressionof C1 canbearbitraryin .0;1/,butwecanalso chosea 0 2 .0;1/ suchthat C1 .

forany

One-levelmethodsareobtainedfromAlgorithm 1 byusingthefiniteelement spaces.Tothisend,weconsiderasimplicialregularmeshpartition Th ofmeshsize h over ˝ Rd .Also,let ˝ D[m iD1 ˝i beadomaindecompositionof ˝ ,the overlappingparameterbeing ı ,andweassumethat Th suppliesameshpartition foreachsubdomain ˝i , i D 1;:::; m.In ˝ ,weusethelinearfiniteelementspace Vh whosefunctionsvanishontheboundaryof ˝ and,foreach i D 1;:::; m,we considerthelinear finiteelementspace V i h Vh whosefunctionsvanishoutside ˝i Spaces Vh and V i h , i D 1;:::; m,areconsideredassubspacesof W 1; , 1 1, andlet Kh Vh beaconvexsetsatisfying.

Property1 If v; w 2 Kh ,andif 2 C 0 .˝/, j 2 C 1 . / forany 2 Th ,and 0 1,then Lh . v C .1 /w/ 2 Kh ; where Lh isthe P1 -Lagrangianinterpolation. Weseethattheconvexsetsofobstacletypesatisfythisproperty,andwehave(see Proposition3.1inBadea(2006)fortheproof)

Proposition1 Assumption 1 holdsforthelinearfiniteelementspaces,V D Vh and Vi D V i h ,i D 1;:::; m,andforanyconvexsetK D Kh Vh havingProperty 1.The constantC0 inAssumption 1 canbewrittenasC0 D C .m C 1/.1 C m 1 ı /; whereC isindependentofthemeshparameterandthedomaindecomposition.

Inthecaseofthetwo-levelmethods,weconsidertworegularsimplicialmesh partitions Th and TH on ˝ Rd , Th beingarefinementof TH .Besidesthefinite elementspaces Vh , V i h , i D 1;:::; m andtheconvexset Kh ,definedfortheonelevelmethods,weintroducethelinearfiniteelementspace V 0 H correspondingtothe H -level,whosefunctionsvanishontheboundaryof ˝ .Thetwo-levelmethodis obtainedfromthegeneralsubspacecorrectionAlgorithm 1 for V D Vh , K D Kh , andthesubspaces V0 D V 0 H , V1 D V 1 h , V2 D V 2 h , ::: , Vm D V m h .Also,thesespaces areconsideredassubspacesof W 1; , 1 1,andwehavethefollowing(see Proposition4.1inBadea(2006)fortheproof)

Proposition2 Assumption 1 issatisfiedforthelinearfiniteelementspacesV D Vh andV0 D V 0 H ,Vi D V i h ,i D 1;:::; m,andanyconvexsetK D Kh havingProperty 1. TheconstantC0 canbetakenoftheformC0 D Cm 1 C .m 1/ H ı Cd ; .H ; h/; whereCisindependentofthemeshanddomaindecompositionparameters,and

; .H ; h/

SomenumericalresultshavebeengiveninBadea(2009)tocomparethe convergenceoftheone-levelandtwo-levelmethods.Theyconcernthetwo-obstacle problemofanonlinearelasticmembrane,

where ˝ R2 , K D Œa; b , a b, a; b 2 W 1; 0 .˝/, 1< < 1.Thesenumerical experimentshaveconfirmedtheprevioustheoreticalresults.

3MultilevelandMultigridMethods

DetailsconcerningtheresultsinthissectioncanbefoundinBadea(2014, 2015). Asinthecaseoftheone-andtwo-levelmethods,weconsiderproblem( 1).Let Vj , j D 1;:::; J ,beclosedsubspacesof V D VJ whichwillbeassociatedwiththe leveldiscretizations,and Vji , i D 1;:::; Ij ,beclosedsubspacesof Vj whichwillbe associatedwiththedomaindecompositionsonthelevels.Weconsider K V anon emptyclosedconvexsubsetandwrite I D max jDJ ;:::;1 Ij .

Togetsharpererrorestimationsinthecaseofthemultigridmethod,weconsider someconstants 0<ˇjk 1, ˇjk D ˇkj , j; k D J ;:::;1,forwhich hF 0 .v C vji / F 0 .v/;vkl i ˇM ˇjk jjvji jjq 1 jjvkl jj; forany v 2 V , vji 2 Vji , vkl 2 Vkl with jjv jj, jjv C vji jj, jjvkl jj M , i D 1;:::; Ij and l D 1;:::; Il .Also,wefix aconstant p p qC1 p andassumethatthereexistsaconstant C1 suchthat jj PJ jD1 PIj iD1 wji jj C1 .PJ jD1 PIj iD1 jjwji jj / 1 ; forany wji 2 Vji , j D J ;:::;1, i D 1;:::; Ij .Evidently,ingeneral,wecantake ˇjk D 1; j; k D J ;:::;1 and C1 D .IJ / 1 : Inthemultigridmethods,theconvexsetswherewelookforthecorrections areiterativelyconstructedfromaleveltoanotherduringtheiterationsinfunction ofthecurrentapproximation.Inthisgeneralbackgroundwemakethefollowing.

Assumption2 Foragivenw 2 K,werecursivelyintroducethelevelconvexsets Kj ,j D J ; J 1;:::;1,satisfying

-atlevelJ:weassumethat 0 2 KJ ; KJ fvJ 2 VJ :w C vJ 2 K g andconsider awJ 2 KJ , -atalevelJ 1 j 1:weassumethat 0 2 Kj ; Kj fvj 2 Vj :w C wJ C ::: C wjC1 C vj 2 K g andconsiderawj 2 Kj . Also,wemakeasimilarassumptionwiththatinthecaseofthe-oneandtwo-level methods,

Assumption3 ThereexiststwoconstantsC2 ; C3 >0 suchthatforanyw 2 K, wji 2 Vji ,wj1 C ::: C wji 2 Kj ,j D J ;:::;1,i D 1;:::; Ij ,andu 2 K,thereexist uji 2 Vji ,j D J ;:::;1,i D 1;:::; Ij ,whichsatisfy uj1 2 Kj andwj1 C ::: C wji 1 C uji 2 Kj ; i D 2;:::; Ij ; j D J ;:::;1; u w D J X jD1 Ij X iD1 uji ; J X jD1 Ij X iD1 jjuji jj C2 jju wjj C C3 J X jD1 Ij X iD1 jjwji jj

Theconvexsets Kj ,j D J ;:::;1,areconstructedasinAssumption 2 withtheabove

wandwj D Ij X iD1 wji ,j D J ;:::;1.

Thegeneralsubspacecorrectionalgorithmcorrespondingtothemultigridmethod iswrittenas[seeAlgorithm2.2inBadea(2014)orAlgorithm1.1inBadea(2015)],

Algorithm2 Westartwithanarbitraryu0 2 K.Atiterationn C 1 wehaveun 2 K, n 0,andsuccessivelyperform:

-atlevelJ:asinAssumption 2,withw D un ,weconstruct KJ .

Then,wewritewn J D 0,and,fori D 1;:::; IJ ,wesuccessivelycalculatewnC1 Ji 2 VJi ,w nC i 1 IJ J

forany vJi 2 VJi ,w n

i 1 IJ J C vJi 2 KJ ,andwritew nC i IJ J

-atalevelJ 1 j 1:asinAssumption 2,weconstruct Kj withw D un and wJ D w nC1 J ;:::; wjC1 D w nC1 jC1 .

Then,wewritewn j D 0,andfori D 1;:::; Ij ,wesuccessivelycalculatewnC1 ji 2 Vji , w nC i 1 Ij j C w nC1 ji 2 Kj ,

forany vji 2 Vji ,w n

. -wewriteunC1 D un C J X jD1 w nC1 j

Convergenceofthisalgorithmisgivenby[seeTheorem1.1inBadea(2015)]

Theorem2 UndertheaboveconditionsonthespacesandthefunctionalF,if Assumptions 2 and 3 hold,thenthereexistsanM >0 suchthat jjun jj M,for anyn 0,andwehavethefollowingerrorestimations: (i)ifp D q D 2 wehave jjun

.

/ ; (ii)ifp > qwehave jju un jjp p

TogetthemultilevelmethodcorrespondingtoAlgorithm 2,weconsiderafamily ofregularmeshes Thj ofmeshsizes hj , j D 1;:::; J ,overthedomain ˝ Rd and assumethat ThjC1 isarefinementof Thj .Let,ateachlevel j D 1;:::; J , f˝ i j g1 i Ij beanoverlappingdecompositionof ˝ ,ofoverlappingsize ıj .Wealsoassumethat, for 1 i Ij ,themeshpartition Thj of ˝ suppliesameshpartitionforeach ˝ i j , diam.˝ i jC1 / Chj and I1 D 1.

Weintroducethelinearfiniteelementspaces, Vhj Dfv 2 C .˝j / : v j 2 P1 . /; 2 Thj ;v D 0 on @˝j g, j D 1;:::; J ,correspondingtothelevelmeshes, and V i hj Dfv 2 Vhj : v D 0 in ˝j n˝ i j g, i D 1;:::; Ij ,associatedwiththelevel decompositions.Spaces Vhj j D 1;:::; J 1,willbeconsideredassubspacesof W 1; , 1 1.

Themultilevelandmultigridmethods willbeobtainedfromAlgorithm 2 fora twosidedobstacleproblem(1),i.e.theconvexsetisoftheform K Dfv 2 VhJ : ' v g; with '; 2 VhJ , ' .Concerningtheconstructionofthelevelconvex sets,wehave[Proposition3.1inBadea(2014)]

Proposition3 Assumption 2 holdsfortheconvexsets Kj ,j D J ;:::;1,defined as,

-forw 2 K,atthelevelJ,wetake 'J D ' w; J D w; KJ D Œ'J ; J ; andconsideranwJ 2 KJ ; -atalevelj D J 1;:::;1,wedefine 'j D Ihj .'jC1 wjC1 /; j D Ihj . jC1 wjC1 /; Kj D Œ'j ; j ; andconsideranwj 2 Kj ,Ihj :VhjC1 ! Vhj ; j D 1;:::; J 1; beingsomenonlinearinterpolationoperatorsbetweentwoconsecutivelevels. Also,oursecondassumptionholds[seeProposition2inBadea(2015)],

Proposition4 Assumption 3 holdsfortheconvexsets Kj ,j D J ;:::;1,definedin

Proposition 3.TheconstantsC2 andC3 arewrittenas

WeprovedthatAssumptions 2 and 3 hold,andhaveexplicitlywrittenconstants C2 and C3 infunctionofthemeshandoverlappingparameters.Wecanthenconclude fromTheorem 2 thatAlgorithm 2 isgloballyconvergent.Convergenceratesgivenin Theorem 2 dependonthefunctional F ,themaximumnumberofthesubdomainson eachlevel, I ,andthenumberoflevels J .Sincethenumberofsubdomainsonlevels canbeassociatedwiththenumberofcolorsneededtomarkthesubdomainssuch thatthesubdomainswiththesamecolordonotintersectwitheachother,wecan concludethattheconvergencerateessentiallydependsonthenumberoflevels J .

Inthegeneralframeworkofmultilevelmethodswetake C1 D CJ 1 maxk D1; ;J PJ jD1 ˇkj D J and,asfunctionsdependingonlyof J ,wehave

Intheabovemultilevelmethodsameshistherefinementofthatoneonthe previouslevel,butthedomaindecompositionsarealmostindependentfromone leveltoanother.Weobtainsimilarmultigridmethodsbydecomposingthedomain bythesupportsofthenodalbasisfunctionsofeachlevel.Consequently,the subspaces V i hj , i D 1;:::; Ij ,areone-dimensionalspacesgeneratedbythenodal basisfunctionsassociatedwiththenodesof Thj , j D J ;:::;1.Inthecaseof themultigridmethods,wecantake C1 D C andmaxk D1; ;J PJ jD1 ˇkj D C Nowwecanwritetheconvergencerate ofthemultigridmethodcorrespondingto Algorithm 2 infunctionofthenumberoflevels J foragivenparticularproblem.In Badea(2014),theconvergencerateofthemultigridmethodfortheexamplein(2) hasbeenwritten.

Remark1(SeealsoBadea(2014))

1.Theaboveresultsreferredtoproblemsin W 1; withDirichletboundaryconditions,buttheyalsoholdforNeumannormixedboundaryconditions.

2.Similarconvergenceresultscanbeobtainedforproblemsin .W 1; /d

3.Theanalysisandtheestimationsoftheglobalconvergenceratewhicharegiven abovereferstotwosidedobstacleproblemswhicharisefromtheminimization offunctionalsdefinedon W 1; , 1< < 1

4.Wecancomparetheconvergencerateswehaveobtainedwithsimilaronesinthe literatureinthecaseof H 1 (p D q D 2)and d D 2.Inthiscase,wegetthat theglobalconvergencerateofAlgorithm 2 is 1 1 1CCJ 3 .Thesameestimate,of 1 1 1CCJ 3 ,isobtainedbyR.Kornhuberfortheasymptoticconvergencerateof thestandardmonotonemultigridmethods forthecomplementarityproblems.

Algorithm 2 isofmultiplicativetypeoverthelevelsaswellasoneachlevel,i.e. thecurrentcorrectionisfoundinfunctionofallcorrectionsonboththeprevious levelsandthecurrentlevel.Wecanalsoimaginehybridalgorithmswherethetype oftheiterationoverthelevelsisdifferentfromthetypeoftheiterationonthe levels.ThisideacanbealsofoundinSmithetal.(1996).InBadea(2015),such hybridalgorithms(multiplicativeoverthelevels—additiveonlevels,additiveover thelevels—multiplicativeonlevelsandadditiveoverthelevelsaswellasonlevels) havebeenintroducedandanalyzedinasimilarmannerwiththatofAlgorithm 2.The followingremarkcontainssomeconclusionswithdrawninBadea(2015)concerning theconvergencerate(expressedonlyinfunctionof J )ofthesehybridalgorithmsfor problem(2).

Remark2

1.Regardlessoftheiterationtypeonlevels,algorithmshavingthesametypeof iterationsoverthelevelshavethesameconvergencerate,providedthatadditive iterationsonlevelsareparallelized.

2.Thealgorithmswhichareofmultiplicativetypeoverthelevelsconvergebetter, byafactorofbetween 1=J and 1 (dependingon ),thantheiradditivesimilar variants.

4One-andTwo-LevelMethodsforVariationalInequalities oftheSecondKindandQuasi-VariationalInequalities

TheresultsinthissectionaredetailedinBadeaandKrause(2012)whereone-and two-levelmethodshavebeenintroducedandanalyzedforthesecondkindandquasivariationalinequalities.Inthecaseofthevariationalinequalitiesofthesecondkind, let ' W K ! R beaconvex,lowersemicontinuous,notdifferentiablefunctionaland, if K isnotbounded,weassumethat F C ' iscoercive,i.e. F .v/ C '.v/ !1,as kv k!1;v 2 K .Weconsiderthevariationalofthesecondkind

u 2 K : hF 0 .u/;v uiC '.v/ '.u/ 0; forany v 2 K (3) which,inviewofthepropertiesof F and ' ,hasauniquesolution.Anexample ofsuchaproblemisgivenbythecontactproblemswithTrescafriction.Tosolve problem(3),weintroduce

Algorithm3 Westartthealgorithmwithanarbitraryu0 2 K.Atiterationn C 1,havingun 2 K,n 0,wecomputesequentiallyfori D 1; ; m,thelocal correctionswnC1 i 2 Vi ; unC i 1

C wnC1 i 2 Kasthesolutionofthevariational inequality

forany vi 2 Vi ; unC i 1 m C vi 2 K,andthenweupdateunC i m D unC

.

Toprovetheconvergenceofthealgorithm,weintroduceatechnicalassumption,

for v; w 2 K ,and vi ; wi 2 Vi , i D 1;:::; m,inAssumption 1.Ingeneral, ' has notsuchapropertyandtoshowthatthisassumptionholdswhenthefiniteelement spacesareused,wehavetotakeanumericalapproximationof ' .Theconvergence ofAlgorithm 3 isprovedbythefollowing

Theorem3 UndertheaboveassumptionsonV,Fand ' ,letubethesolutionof theproblemandun ,n 0,beitsapproximationsobtainedfromAlgorithm 3.If Assumption 1 holds,thenthereexistsM >0 suchthatsuchthat kunC i m k M, n 0;1 i m,andwehavethefollowingerrorestimations:

Inthecaseofthequasivariationalinequalities,weconsideronlythecaseof p D q D 2 andlet ' W K K ! R beafunctionalsuchthat,forany u

, '.u; / W K ! R isconvex,lowersemicontinuousand,if K isnotbounded, F . / C '.u; / is coercive,i.e. F .v/ C '.u;v/ !1 as kv k!1;v 2 K .Weassumethatforany M >0 thereexistsaconstant cM >0 suchthat j'.v1 ; w2 / C '.v2 ;

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.