Natural Gas and Nuclear Energy 1st Edition Ricardo Guerrero-Lemus Visit to download the full and correct content document: https://textbookfull.com/product/low-carbon-energy-in-africa-and-latin-america-renewa ble-technologies-natural-gas-and-nuclear-energy-1st-edition-ricardo-guerrero-lemus/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Advances in Carbon Management Technologies-Carbon Removal, Renewable and Nuclear Energy, Volume 1 1st Edition Subhas Sikdar (Editor)
https://textbookfull.com/product/advances-in-carbon-managementtechnologies-carbon-removal-renewable-and-nuclear-energyvolume-1-1st-edition-subhas-sikdar-editor/
Low Carbon Energy Supply Technologies and Systems 1st Edition Atul Sharma
https://textbookfull.com/product/low-carbon-energy-supplytechnologies-and-systems-1st-edition-atul-sharma/
Chemical energy from natural and synthetic gas 1st Edition Shah
https://textbookfull.com/product/chemical-energy-from-naturaland-synthetic-gas-1st-edition-shah/
Multiphase Reactor Engineering for Clean and Low Carbon Energy Applications 1st Edition Yi Cheng
https://textbookfull.com/product/multiphase-reactor-engineeringfor-clean-and-low-carbon-energy-applications-1st-edition-yicheng/
Low carbon Energy Security from a European Perspective
1st Edition Patrizia Lombardi
https://textbookfull.com/product/low-carbon-energy-security-froma-european-perspective-1st-edition-patrizia-lombardi/
Renewable energy technologies for water desalination
1st Edition Hacene Mahmoudi
https://textbookfull.com/product/renewable-energy-technologiesfor-water-desalination-1st-edition-hacene-mahmoudi/
Hydroelectric energy: renewable energy and the environment 1st Edition Bikash Pandey
https://textbookfull.com/product/hydroelectric-energy-renewableenergy-and-the-environment-1st-edition-bikash-pandey/
Energy Technology 2016 Carbon Dioxide Management and Other Technologies 1st Edition Li Li
https://textbookfull.com/product/energy-technology-2016-carbondioxide-management-and-other-technologies-1st-edition-li-li/
Carbon Nanomaterials for Electrochemical Energy Technologies: Fundamentals and Applications 1st Edition Shuhui Sun
https://textbookfull.com/product/carbon-nanomaterials-forelectrochemical-energy-technologies-fundamentals-andapplications-1st-edition-shuhui-sun/
Ricardo Guerrero-Lemus
Les E. Shephard
Low-Carbon Energy in Africa and Latin America Renewable Technologies, Natural Gas and Nuclear Energy
LectureNotesinEnergy Volume38
LectureNotesinEnergy(LNE)isaseriesthatreportsonnewdevelopmentsinthe studyofenergy:fromscienceandengineeringtotheanalysisofenergypolicy.The series’ scopeincludesbutisnotlimitedto,renewableandgreenenergy,nuclear, fossilfuelsandcarboncapture,energysystems,energystorageandharvesting, batteriesandfuelcells,powersystems,energyefficiency,energyinbuildings, energypolicy,aswellasenergy-relatedtopicsineconomics,managementand transportation.BookspublishedinLNEareoriginalandtimelyandbridgebetween advancedtextbooksandtheforefrontofresearch.ReadersofLNEinclude postgraduatestudentsandnon-specialistresearcherswishingtogainanaccessible introductiontoa fieldofresearchaswellasprofessionalsandresearcherswitha needforanup-to-datereferencebookonawell-de finedtopic.Theseriespublishes singleandmulti-authoredvolumesaswellasadvancedtextbooks.
Moreinformationaboutthisseriesathttp://www.springer.com/series/8874
RicardoGuerrero-Lemus
LesE.Shephard RicardoGuerrero-Lemus DepartmentodeFísica UniversidaddeLaLaguna LaLaguna Spain
LesE.Shephard
DepartmentofCivilandEnvironmental Engineering
UniversityofTexasatSanAntonio SanAntonio,TX USA
ISSN2195-1284ISSN2195-1292(electronic)
LectureNotesinEnergy
ISBN978-3-319-52309-5ISBN978-3-319-52311-8(eBook) DOI10.1007/978-3-319-52311-8
LibraryofCongressControlNumber:2017930945
© SpringerInternationalPublishingAG2017
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardto jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
Printedonacid-freepaper
ThisSpringerimprintispublishedbySpringerNature
TheregisteredcompanyisSpringerInternationalPublishingAG
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
ToInés,Claudia(pichi-pichi)andmami
ToDarlene 831!
Preface AfricaandLatinAmericaarecomprisedofsomeoftheworld’smostprosperous nationsandsomeoftheworld’spoorest.Withmorethan20%oftheglobalpopulation,thesenationsallstrivetoenhancetheireconomicprosperityandtobuilda socialfabricandabusinesscommunitythatallowstheircitizens ’ opportunitiesfor successinthefuture.Formanynations,intheseregions,anygoalsbeyondbasic sustenancerepresentamarkedimprovementinthestandardoflivingandbasic services,butallnationsrecognizetheinextricablelinkbetweeneconomicprosperityandenergyconsumptionandthechallengesassociatedwithbuildingasecure energyfuturethatfuelstheirlong-termeconomicgrowth.
Thisbookisintendedtoserveasanintroductionandinitialsourceofinformationforstudents,researchers,andotherprofessionalsinterestedintheenergy sectorsfornationsthatcomprisebothAfricaandLatinAmerica(Fig. 1)witha speci ficfocusonlow-carbonenergysystems.Thisbookcoalescesinformationthat isoftendiffi cultto findinthepublishedliteraturetoprovidethemostcurrent materialonhowtheenergysectorisevolvinginthesecountriesandthechallenges theyfaceinmovingfromadisaggregated,nonstandardenergysectorframeworkto afullyintegrated,yetdistributedsector.Themostimportantup-to-datenumerical datarelatedtoenergyproduction,capacity,efficiencies,productioncosts,etc.,are exposedin14chapters,208 figures,and52tables,integratedintermsofunitsand methodology.Wehaveattemptedtorelyontherecent(2014–2016)technical peer-reviewedliteratureinourassessmentsofeachtechnologyandtherolethey playinthesenations,butformanycountries,thisinformationisoftenlimitedand forsomenearlynonexistent.Assuch,wehavealsoreliedongovernment, non-government,andtradeorganizationpublicationswherenecessarytosupplementinsightsgainedfromtherefereedliterature.
Thisbookbeginswithanassessmentofthecurrentenergysituationandtrendsin AfricaandLatinAmericaandthesigni ficantconstraintsonmeetingtheirfuture energyneedswithcurrentpractices.Theseconstraintsincludesocial,political, regulatory, financial,technical,economic,andpolicyconsiderationsandchallenges.WebeginbyexaminingthecurrentenergytrendsinAfricaandLatin Americaandtheconstraintsthatcurrentpracticesplaceonmeetingfutureenergy
AfricanandLatinAmericanprioritycountriesandothercountriesconsideredinthisbook
needs.Laterchapterspresentamoredetaileddescriptionandanalysesofeach low-carbonenergytechnologyandtheroletheyplayincountriesthatcomprise thesetworegions.Thesechaptersaresupportedbyalargenumberofillustrations anddatasummarytablestooffervaluableinsightsintothetopicsandtechnologies discussed.Wehaveintegrated94 “Caseexamples” fromtherefereedliteraturein eachofthechaptersthatidentifyspecificexamplesoftechnologydevelopmentsand deploymentsorasynthesisofthechallenges,successes,anddeliberationsrelatedto speci fictechnologiesand/orthecomplementarycapabilitythathasarisenasaresult ofaccesstolow-carbonenergyresources(e.g.,ethanolgelstoves).Ourcase examplesincorporateexperiencesfromnearlyeverynationinthesetworegionsand areintendedinparttoserveas “modelsforsuccess” thatmaybeemulatedelsewherewithinAfricanandLatinAmericancountries.
Thisbookisintendedtoprovideabasisforunderstandingtheenergycontextfor bothAfricaandLatinAmericabyservingasaresourcetohelpdefinestrategiesthat acceleratethedeploymentofindigenouslow-carbonenergytechnologiesina mannerthatenhanceslong-termeconomicprosperity.Theauthorsenjoy “real-worldexperience” inteachingenergyconceptsandprinciplesin “emerging” countries,andthisbooksummarizesmuchoftheinformationweuseinthe classroominteractionswithourstudents.Bothofouruniversitiesdrawsignifi cantly uponstudentsfromAfricanandLatinAmericancountries,andourcitiesserveas gatewaystotheseregionsfortrade,commerce,andeducation.Also,weplantouse thisbookasourresourceforteachingclassroomandonlinecoursesinthecoming yearsinourrespectiveuniversities.Theauthorswillbeavailableforreadersto discussanydataoranalysispublishedinthebook(rglemus@ull.edu.es),andthe readerswillbeencouragedtoproposeanyadditionalandrecognizedcontentthat theyconsidercanenrichfutureeditions.Thereaderswhocollaborateinthe
Fig.1
enrichmentoffutureeditioncontentwillbementionedintheacknowledgements oftheeditionwherethiscontentisadded.
Prioritycountriesforthisbookwereidenti fiedbasedontheavailablereliable dataontheenergysector.
AfricanCountries Algeria,Angola,Benin,Botswana,Cameroon,Congo,DemocraticRepublicof Congo,Coted’Ivore,Egypt,Eritrea,Ethiopia,Gabon,Ghana,Kenya,LibyanArab Jamahiriya,Morocco,Mozambique,Namibia,Nigeria,Senegal,SouthAfrica, Sudan(coveringSouthSudan),UnitedRepublicofTanzania,Togo,Tunisia, Zambia,Zimbabwe,andotherAfricancountriesbrieflyconsidered(BurkinaFaso; Burundi;CapeVerde;CentralAfricanRepublic;Chad;Comoros;Djibouti; EquatorialGuinea;Gambia;Guinea;Guinea-Bissau;Lesotho;Liberia;Madagascar; Malawi;Mali;Mauritania;Mauritius;Niger;Reunion;Rwanda;SaoTomeand Principe;Seychelles;SierraLeone;Somalia;Swaziland;Uganda;andWestern Sahara).
LatinAmericanCountries Argentina,Bolivia,Brazil,Chile,Colombia,CostaRica,Cuba,Dominican Republic,ElSalvador,Ecuador,Guatemala,Haiti,Honduras,Mexico,Nicaragua, Panama,Paraguay,Peru,Uruguay,Venezuela,andotherLatinAmericancountries brieflyconsidered(AntiguaandBarbuda;Aruba;Bahamas;Barbados;Belize; Bermuda;BritishVirginIslands;CaymanIslands;Dominica;FalklandIslands; FrenchGuyana;Grenada;Guadeloupe;Guyana;Jamaica;Martinique;Montserrat; NetherlandsAntilles;PuertoRico;St.KittsandNevis;SaintLucia;SaintPierreet Miquelon;St.VincentandtheGrenadines;Suriname;TrinidadandTobago;and TurksandCaicosIslands).
Todiscussregionalenergy figures(mainlysupply,capacities,andproduction), weusetheIEAandUSEIAStatisticsDatabases.Weconsiderthesesourcesvery rigorous,butthemethodologyemployedproduces2-yeardelayeddatawithrespect topresent.Tocompensatethisdrawback,inmanychapters,moreupdatedestimations,providedbyglobalandprestigiousassociationsrelatedtothespeci fic technology,arereferred.
Thisbookwouldnothavebeenpossiblewithouttheselflesssupportofmany thatbelieveaswedothatwemustimprovetheeconomicprosperityofglobal citizenseverywhereandthatenergyiskeytoaprosperousfuture.BrookeL.E.S. Fontenot-Amedeehasbeengraciouswithhertimeandinsightoninformation technology,andTheGoodShephardFoundationhasprovided fi nancialandmoral
Preface
supportfromtheonset.AlsoProf.José ManuelMartínez-DuartandProf.Antonio Lecuonahaveprovidedsignifi cantcontenttothisbook.
TheUniversityofLaLaguna,theUniversityofTexasSystem,andthe UniversityofTexasatSanAntoniohavecontinuouslyencouragedcollaborative researchopportunitiesonrenewableenergybetweenouruniversities.Dr.Alfonso “Chico” Chiscano,MDhasdedicatedhislifetothespiritofcollaborationbetween SanAntonioandtheCanaryIslandsandhascontinuouslynourishedthisrelationshipoverdecades.
Wealsowanttomakespecialmentiontoourimagedesigner,Aneliya Stoyanova,andtoOyinkansolaAdeoye,whohascontributedalongwithmany otherstechnicalsupport.
LaLaguna,SpainRicardoGuerrero-Lemus SanAntonio,TX,USALesE.Shephard December2016 x
5.3.2ForestandArableLand
5.4ConclusionsandFuturePerspectives
6.2.1Wafer-BasedSolarTechnology
6.2.2ThinFilmSolarTechnology
6.2.3ThirdGenerationSolarCells
6.2.4Ef
6.2.5Inverters
RicardoGuerrero-LemusandLesE.Shephard 7.1Introduction
7.2.6SolarCookers
7.2.7OtherSolarThermalApplications
7.2.8ThermalInsulation
7.2.9Costs
7.3RegionalandNationalPerspectivesonTechnology
RicardoGuerrero-LemusandLesE.Shephard
RicardoGuerrero-LemusandLesE.Shephard
11.2.4EthanolasaCookingFuelOption
11.3RegionalandNationalPerspectivesonTechnology
RicardoGuerrero-LemusandLesE.Shephard
13.2.6InternalCombustionEngines(ICE)andOffGrid
Acronyms ACAlternatingcurrent
ACSRAluminumconductorsteelreinforced
ADAnaerobicdigestion
AHWRAdvancedheavywaterreactor
BMPBiochemicalmethanepotential
BWRBoilingwaterreactor
CANDUCANadaDeuteriumUranium
CAPPCentralAfricanPowerPool
CCCombinedcycle
CCGTCombinedcyclegasturbine
CCSCarboncaptureandstorage
CFLCompact fluorescentlight
CHPCombinedheatandpower
CODChemicaloxygendemand
DMDrymatter
DSODistributionsystemoperator
DUDepleteduranium
EAPPEastAfricanPowerPool
EIAUSEnergyInformationAdministration
EPAUSEnvironmentalProtectionAgency
ETCEvacuatedtubecollector
FBRFastbreederreactor
FPCFlatplatecollector
GCRGas-cooledreactor
GCVGrosscalori ficvalue
GDPGrossdomesticproduct
GHGGreenhousegases
HLWHigh-levelwaste
HTCHydrothermalcarbonization
HTGRHigh-temperaturegas-cooledreactor
HVHighvoltage
HVACHigh-voltagealternatingcurrent
HVDCHigh-voltagedirectcurrent
IAEAInternationalAtomicEnergyAgency
ICEInternalcombustionengine
IEAInternationalEnergyAgency
IGBTInsulated-gatebipolartransistor
ILWIntermediatelevelwaste
IMFInternationalMonetaryFund
IPPIndependentpowerproducer
IRInferredresources
IRENAInternationalRenewableEnergyAgency
ISOIndependentsystemoperator
LCALifecycleanalysis
LCOELevelizedcostofelectricity
LEDLight-emittingdiode
LHVLowerheatingvalue
LLWLow-levelwaste
LNGLiquidnaturalgas
LPGLiqui fiedpropanegas
LRMCLong-runmarginalcost
LVLowvoltage
lwgLiveweightgain
LWGR(RBMK)Lightwatergasreactor
LWRLightwaterreactor
MOXMixedoxide
MSRMoltensaltreactor
MSWMunicipalsolidwaste
MVMediumvoltage
NEPNationalenergyplan
NGNaturalgas
NGONongovernmentalagency
NGVNaturalgas-fueledvehicles
NORMNaturallyoccurringradioactivematerial
OCGTOpencyclegasturbine
OTECOceanthermalenergyconversion
PHWRPressurizedheavywaterreactor
PPAPowerpurchaseagreement
PWRPressurizedwaterreactor
RARReasonablyassuredresources
RDFRefusedderivedfuel
RepUReprocesseduranium
RESRenewableenergysources
RPSRenewablepurchasestandards
RTORegionaltransmissionorganization
SAPPSouthAfricanPowerPool
SHCSolarheatingandcooling
SMRSmallmodularreactor
SRFSolidrefusefuel
SRMCShort-runmarginalcost
STPStandardtemperatureandpressure
SWHSolarwaterheating
SWTSmallwindturbine
SWUSeparativeworkunit
TPECTotalprimaryenergyconsumption
TPESTotalprimaryenergysupply
TRETradablerenewableenergy
TSOTransmissionsystemoperator
UMAArabMaghrebUnion
USECUnitedStatesEnrichmentCorporation
VATValue-addedtax
VLLWVerylow-levelwaste
WAPPWestAfricanPowerPool
WtEWastetoenergy
Countries
AGOAngola
ARGArgentina
ATGAntiguaandBarbuda
BDIBurundi
BENBenin
BFABurkinaFaso
BHSBahamas,The
BLZBelize
BMUBermuda
BOLBolivia
BRABrazil
BRBBarbados
BWABotswana
CAFCentralAfricanRepublic
CHLChile
CIVCoted’Ivoire
CMRCameroon
CODCongo,Dem.Rep
COGCongo,Rep
COLColombia
COMComoros
CPVCaboVerde
CRICostaRica
CUBCuba
CUWCuracao
CYMCaymanIslands
DJIDjibouti
DMADominica
DOMDominicanRepublic
DZAAlgeria
ECUEcuador
EGYEgypt,ArabRep
ERIEritrea
ETHEthiopia
EUEuropeanUnion
GABGabon
GHAGhana
GINGuinea
GMBGambia,The
GNBGuinea-Bissau
GNQEquatorialGuinea
GTMGuatemala
GUYGuyana
HNDHonduras
HTIHaiti
JAMJamaica
KENKenya
LBRLiberia
LBYLibya
LSOLesotho
MARMorocco
MDGMadagascar
MEXMexico
MLIMali
MOZMozambique
MRTMauritania
MUSMauritius
MWIMalawi
NAMNamibia
NERNiger
NGANigeria
NICNicaragua
PANPanama
PERPeru
PRYParaguay
RWARwanda
SDNSudan
SENSenegal
SLESierraLeone
SLVElSalvador
SOMSomalia
SSDSouthSudan
STPSãoTomé andPrincipe
SURSuriname
SWZSwaziland
SYCSeychelles
TCDChad
TGOTogo
TTOTrinidadandTobago
TUNTunisia
TZATanzania
UGAUganda
URYUruguay
USAUnitedStates
VCTSt.VincentandtheGrenadines
VENVenezuela,RB
ZAFSouthAfrica
ZMBZambia
ZWEZimbabwe
ListofCaseExamples CaseExample4.1.MobilePhoneCallDataasaelectricityproxy indicatorinCôted’Ivoire
CaseExample4.2.Electrifi cationplanningtoolappliedtoGhana
CaseExample4.3.Socioeconomicimpactsofaccesstoelectricity inaBrazilianAmazonreserve
CaseExample4.4.Humanbehaviourinhouseholdenergyeffi ciency inatowninNigeria ..........................
CaseExample4.5.Flowbatteryforatelecommunicationsbase transceiversite(TBS)inDominicanRepublic .......
CaseExample4.6.Uganda’sliberalizedenergymarket andenergypoverty ...........................
CaseExample4.7.Batteryselectionforaoff-gridschoollighting inAngola ..................................
CaseExample4.8.Adaptationoffeed-intariffforremotemini-grids inTanzania .................................
CaseExample4.9.TheeconomicsofgridinterconnectioninAfrica
CaseExample4.10.Simulatingelectricitymarketcouplingbetween ColombiaandEcuador
CaseExample4.11.TheenergypovertypenaltyinaruralareainPeru
CaseExample4.12.LocalandnationalenergyplanninginSenegal
CaseExample4.13.RuraldistributionmeterfailuresinColombia
CaseExample5.1.Briquettesasanalternativeto firewood andcharcoal
CaseExample5.2.The flexibleroleofcharcoalproductionin smallholdersinMozambique
CaseExample5.3.Householdfuelmixvs.incomeintransition economies,Botswana..........................
CaseExample5.4.Cornfoodprocessingandthegasi ficationofcobs inCameroon ................................
CaseExample5.5.Gabonland-basedstrategyforcontributingtothe UNFrameworkConventiononClimateChange .....
CaseExample5.6.Rwanda’spoliciesforreducingtheimpact ofusingbiomassforcooking ................... 140
CaseExample5.7.PositiveimpactsoffuelwoodsourcinginMaun, Botswana ................................... 141
CaseExample5.8.Fuelwoodcharacteristicsoffast-growthspecies inCostaRica 146
CaseExample6.1.ProtectionofPVsystemsagainsttheftinSouth AfricaandZimbabwe 157
CaseExample6.2.Ghana’sPVdevelopment 157
CaseExample6.3.ThelowestbidforPVworldwidein2016:Chile
CaseExample6.4.Brazilauctionsandcurrencydepreciation, andMexico
CaseExample6.5.ThelowestbidforPVinAfrica
CaseExample6.6.Anoff-gridpowerkioskinruralZambia 163
CaseExample6.7.Pay-as-you-goapproachesforsolarhomesystems inKenya ...................................
CaseExample6.8.AppliancesadaptedforAfricanruralareas .........
CaseExample6.9.MediumsizePV-diesel-batterysystemforan isolatedpowersysteminNamibia ................
CaseExample6.10.AsmallPVpoweredreverseosmosissystem forwaterpuri ficationinaremote Mexicancommunity .......................... 169
CaseExample6.11.Chile’sPVplantssellingelectricity inthespotmarket ............................ 170
CaseExample7.1.Realsolaradsorptionrefrigerationsystemworking inBou-Ismail,Algeria
CaseExample7.2.SolarcookingexperiencesinCentralAmerica
CaseExample7.4.PROSOLprogramtopromotesolarwaterheating inTunisia
CaseExample7.5.SolarthermalrefrigerationinKenya
CaseExample7.6.Solarwaterheatertechnologytransferredtorural communitiesinArgentina 199
CaseExample7.7.CSPinTunisiaandinterconnectionwithEurope ..... 201
CaseExample7.8.IntegrationofCSPintheBrazilianelectricpower system .....................................
CaseExample8.1.Designingamicro-damreservoir innorthernEthiopia ...........................
CaseExample8.2.HydropowerconflictsandresettlementsinBrazil .... 215
CaseExample8.3.WaveenergyresourceassessmentinUruguay ....... 219
CaseExample8.4.Beachresponsetowaveenergyconverterfarms actingascoastaldefenseinMexico ...............
CaseExample8.5.Lackofmaintenanceanddroughteffects
CaseExample8.6.Potentialuseofwaterspilledforproducing hydrogeninEcuador ..........................
CaseExample8.7.GrandInga .................................
CaseExample8.8.LaEsperanzarun-of-riverhydroelectricproject inHonduras .................................
CaseExample8.9.Hydropowerplanninginfragileandconflictstates: SouthSudan
CaseExample8.10.AlternativeuseofthespilledwateratItaipu 14GWhydraulicplantinParaguay
CaseExample8.11.EconomicchangesaftertheNGO-based implementationofasmall-scaleoff-gridhydropower systeminTanzania
CaseExample9.1.Studyofasolar-geothermalhybridpowerplant innorthernChile
CaseExample9.2.Geothermalpowerplantsimpactonsurrounding plantsandsoilinKenya .......................
CaseExample9.3.Evaluationofearth-airheatexchangerforcooling andheatingapoultryhouseinMorocco ...........
CaseExample9.4.Self-powereddesalinationofgeothermalsaline groundwaterinTunisia ........................
CaseExample9.5.TheCorbettiGeothermalPowerPlantinEthiopia ....
CaseExample9.6.KenGenandgeothermalpolicysupportinKenya ....
CaseExample9.7.SanJacinto-Tizategeothermalpowerplant inNicaragua ................................
CaseExample9.8.GeothermalenergyinElSalvador
CaseExample10.1.Socialresponsetotheinstallationofawindfarm inChile
CaseExample10.2.Determinantsofcommunityacceptanceofawind energyprojectinTunisia
CaseExample10.3.Windpumpsforgreenhousemicroirrigationin Ciegode Ávila,Cuba
CaseExample10.4.GridparityforwindenergyinBrazil
CaseExample10.5.Cabeolicawindfarm
CaseExample10.6.310MWLakeTurkanawindfarm ...............
CaseExample10.7.Thelargestwindfarm inCentralAmerica(Panama) ....................
CaseExample11.1.Casestudyofasmallscaleethanolproduction inBrazil ...................................
CaseExample11.2.Failureofmanylarge-scalejatrophaplantationsin Ethiopia ....................................
CaseExample11.3.SouthAfricanAirways fi rst flightusingbiofuels .....
CaseExample11.4.Thesustainabilityofsugarcane-ethanolsystemsin Guatemala
CaseExample11.5.EvolutionofthebiofuelpolicyinZimbabwe
CaseExample11.6.Impactofbiofuelprojectsinfoodsecurity inMozambique ..............................
CaseExample11.7.JatrophaadoptionbysmallholdersinMexico .......
CaseExample12.1.Landfi llgasprojectsinAfrica ...................
CaseExample12.2.Methaneproductionfromsanitationimprovement inHaiti
CaseExample12.3.Biogastechnologyandproductionoffertilizers inBolivia
CaseExample12.4.Factorsaffectinghousehold’sdecisionsinbiogas technologyadoptioninnorthernEthiopia
CaseExample12.5.DevelopmentofbiogastechnologyinColombia
CaseExample12.6.Planningwaste-to-energyintegrationinthe Venezuelangrid
CaseExample12.7.Anaerobicdigestioninabeefcattlefeedlot inBrazilandGHGemissions
CaseExample12.8.OverviewofsolidwasteinLibya ................
CaseExample12.9.Thepotentialofbiogasproductionfromwaste inUruguay .................................
CaseExample13.1.Gas flaringanditsimpactonelectricitygeneration inNigeria ..................................
CaseExample13.2.Towardthehybridizationofgas-fi redpowerplants inAlgeria ..................................
CaseExample13.3.Naturalgasenginestopoweragoldmineandthe gridintheDominicanRepublic ..................
CaseExample13.4.Developingcompressednaturalgasforvehiclesin AfricaandLatinAmerica
CaseExample13.5.LPG’spoliciesinBrazil
CaseExample13.6.EffectoflownaturalgaspricesinBolivia
CaseExample13.7.Dieselvs.naturalgasfuellingforpowerdistribution inNigeria
CaseExample13.8.TheimpactofnaturalgasconsumptioninTunisia’s output
CaseExample13.9.Decision-makingtoolforaLNGregasificationplant inArgentina .................................
CaseExample14.1.Multicriteriadecisionanalysisforthelocationofa nuclearpowerplantinEgypt ....................
CaseExample14.2.SouthAfrica-MovingFullCycle onNon-Proliferation ..........................
CaseExample14.3.Argentinabuildstheworld’s firstSMR ............
CaseExample14.4.CalibrationoftheNigeriaResearch Reactor-1(NIRR-1) ...........................
Chapter1 ExecutiveSummary RicardoGuerrero-LemusandLesE.Shephard
Abstract EnergyconsumptioninAfricaandLatinAmericahasgrownatarate greaterthanthetotalenergyconsumptionworldwidesince1980,consumingnearly 10%ofthetotalglobalenergyand *20%ofglobalrenewableenergy,largely biomass.Othersignificantsourcesofrenewablesincludehydropowerand geothermal.Bothregionshavediverseenergyresourcesdistributednon-uniformly betweennations.Coal,oilandnaturalgasproductionisrestrictedtoafewnations butisoftenusedforelectricityproductionacrossseveralcountries.Naturalgas reservesareproli ficinpartsofbothregionsandarelikelytocontributetoexpanded electricityproductioninfuturedecadesparticularlyifinvestmentsinenergy infrastructureoccurassuggested.
Keywords Africa LatinAmerica Energy Electricity Renewabletechnologies Naturalgas Nuclearenergy Carbonemissions
EnergyconsumptioninAfricaandLatinAmericahasgrownatarategreaterthan thetotalenergyconsumptionworldwidesince1980,consumingnearly10%ofthe totalglobalenergyand *20%ofglobalrenewableenergy,largelybiomass.Other signifi cantsourcesofrenewablesincludehydropowerandgeothermal.Bothregions havediverseenergyresourcesdistributednon-uniformlybetweennations.Coal,oil andnaturalgasproductionisrestrictedtoafewnationsbutisoftenusedfor electricityproductionacrossseveralcountries.Naturalgasreservesareprolificin partsofbothregionsandarelikelytocontributetoexpandedelectricityproduction infuturedecadesparticularlyifinvestmentsinenergyinfrastructureoccuras suggested.
Intermsofproduction,AfricaandLatinAmericarepresentmorethan23%of theglobalrenewableenergyproduced,withmost(*21%)ofthisenergyprovided bytraditionalbiofuelsandwaste(36%oftotalglobalproduction)tosupportdaily sustenanceneedsforheatingandcookingratherthanelectricityproductioncharacteristicofnationswithmatureeconomies.Theseregionspossesstremendous potentialforsignifi cantgrowthofrenewableenergyresourcesderivedfromaccess tolargelandareas(morethan37%ofthecombinedglobalsurfacearea),the availabilityofabundantrenewableresources(i.e.,wind,waterandsolar),regional
© SpringerInternationalPublishingAG2017
R.Guerrero-LemusandL.E.Shephard, Low-CarbonEnergyinAfrica andLatinAmerica,LectureNotesinEnergy38, DOI10.1007/978-3-319-52311-8_1
commitmentstocutglobalemissionsby2030andagrowingrecognitionbysome nationsthatlowcarbondevelopmentcanenhanceeconomicprosperitywhile reducingpotentialimpactsonclimatechange.Considerationsthatinfluencefuture energydecisionsforAfricanandLatinAmericannationsincludelifecycleCO2, landrequirements,waterconsumption,surfacearea,populationandpopulation density,costandtheeaseofbusinesstransactionsincluding financing.Astheease oftransactionswithinthebusinessenvironmentimprovesthereislikelytobe greaterdiversifi cationofenergysourcesandexpansionofentrepreneurialactivities. Moreover,AfricaandLatinAmericahavediverseenergyreservesthatvary betweennationsbutseldomachievecapacitylevelsnecessaryforthelong-term sustainment,ormoreimportantlygrowth,ofanindividualnationalorregional economy.Currentdemandforenergyinmanynationsislow(i.e.,energyconsumptionpercapita)soexistingfossilfuelreservesareoftenadequatetomeet existingneedsandprojectionsforgrowthinthefuture.Anenergyparadoxexists forAfricaandLatinAmericadrivenlargelybysocioeconomicsthatsuggests currentenergyresourcesareadequateforsustainment,butsubstantialenergy resourcedevelopmentisnecessarytoimproveregionalGDP.ComparisonsofGDP andCO2 emissionspercapitaforthedifferentcountriesinAfricaandLatin AmericashowthatonlyafewnationshavebeencapableofincreasingtheirGDP percapitawhileatthesametimereducingtheirCO2 emissions(Figs. 1.1 and 1.2). However,bothregionshavesubstantialopportunitiestoincreasetheirGDPbased ontheexpandedpenetrationoflowcarbonindigenousenergytechnologiesinto theirinfrastructure(Fig. 1.3).
ChangesinCO2 emissions(2000–2013)andGDP(2000–2015)forAfricancountries
Fig.1.1
Fig.1.2 ChangesinCO2 emissions(2000–2013)andGDP(2000–2015)forLatinAmerican countries
Fig.1.3 VariationsincostfortraditionalrenewableenergyresourceslocatedinAfricaandLatin America
• Energyinfrastructure hasasigni ficantimpactonenergyconsumptioninboth LatinAmericaandAfrica.ElectricgridintegrationinbothAfricaandLatin Americaislimitedbyvariationsinfrequency,sub-regionalpowerpoolsthat lackinterconnections,geographicbarriersandpoliticaldifferences(Fig. 1.4).
Fig.1.4 InterconnectionsoftheelectricgridinAfricaandLatinAmericalimitsthesharingof electricitybetweennations
Signi ficanteffortsinbothregionsaredirectedatimprovingtheconnectivity betweennationsbutstilllessthan8%ofpowercrossesinternationalbordersin anyAfricanregion.Sub-SaharanAfricacontainsoneoftheleastelectri fied regionsintheworldwithanoverallelectri ficationratebelow50%andwith17 nationshavingelectrificationrateslessthan20%.Thiscontrastssignificantly withNorthAfricaandthemajorityofurbanLatinAmerica(Haitiisan exception),wheremorethan99%ofthepopulationhasaccesstoelectricity. Electricityconsumptioninbothregionsremainwellundertheglobalaverage (21and60%oftheworldelectricityoutputpercapita,respectively).Rural electri ficationremainschallengingforbothregions,andthosenationsthatrely heavilyonbiomasstypicallylackamodernenergyinfrastructureofanytype, henceaccesstoelectricityisverylimited.
• Electricgridreliability remainsproblematicinmanynationswhereproper maintenanceislimited,powertheftisprevalentandpoweroutagesfrequent, limitingtheavailabilityofpowerinmanycountrieswiththeconcomitantimpact onlocaleconomies.Inmanycountriesthetraditionalgridextensionmodel requiresamultidimensionalapproachcoveringregulation, finance,economic developmentandsocialdimensionstoanalyzethebusinesscaseofeachelectrificationproject.
• De-centralizedandoff-gridelectricitysupply isrelatedtoscaleandtovariationsindailypowerdemand(e.g.,lightingload3–4haftersunset).Thebase loadformanynationswithdecentralizedgenerationapproacheszero,further reducingthe financialviabilityofthesystemuntilthelocaleconomydevelopsto
Another random document with no related content on Scribd:
FRUITS (DRIED) FRUITS (FRESH OR COOKED) DAIRY PRODUCTS CAKES, PASTRY, PUDDINGS AND DESSERTS SWEETS AND PICKLES [16]Syrup, maple Four
NUTS, EDIBLE PORTION Crackers,
CEREALS Wheat, flour, e’t’e w’h’t, av.
[16]Wheat, flour, graham, av.
[16]Wheat, flour, patent, family and straight grade spring wheat, av Four
[16]
MISCELLANEOUS Tables Showing Average Height, Weight, Skin Surface and Food Units Required Daily With Very Light Exercise
BOYS GIRLS WOMEN NOTE—With active exercise an increase of about 20 per cent total food units may be needed.
DIETARY CALCULATION WITH FOOD VALUES IN CALORIES PER OUNCE DIETARY CALCULATION WITH FOOD SERVED IN 100 CALORIES PORTIONS Hourly Outgo in Heat and Energy from the Human Body as Determined in the Respiration Calorimeter by the U. S. Dept. of Agriculture
FOOTNOTES: [14] The following receipts for fruit beverages are adapted from Practical Diatetics by Alida Frances Pattee, Publisher, Mt Vernon, N Y
[15] “Nutrition and Diatetics” by Dr. W. S. Hall, D. Appleton & Co., New York.
[16] Chemical Composition of American Food Materials, Atwater and Bryant, U. S. Department of Agricultural Bull. No. 28.
[17] Experiments on Losses in Cooking Meats (1900-03), Grindley, U S Department of Agricultural Bull No 141
[18] Laboratory number of specimen, as per Experiments on Losses in Cooking Meat.
Contents Abnormal Conditions, diet in, 233-282
Absorption of foods, 78-80
Achlochlorhydria Achlorhydria, 248
Adolescence, diet in, 228
Aged, diet for, 231
Albuminoids, 66, 122
Albuminized drinks, 287-289
Alcohol, 83-84
Alkali, 122
Anaemia, 49, 133, 210, 236
Appendix, 281
Appetite, 95-98
Apples, 125
Apricots, 125
Asparagus, 120
Bananas, 125-126
Barley water, 90, 175, 289
Beans, 120, 163
Beef, 128
Beef Extracts, 133
Beets, 116-118
Beverages, 183, 284-287
Bile, Influence on Digestion, 75
Biscuits, 146
Blackberries, 125
Bouillons, 133, 196
Bran, 141
Bread, 138, 143
Breathing, Effect of, 104-107
Breakfast foods, 150
Bright’s Disease, 270
Brussels Sprouts, 120
Butter, 55, 172
Buttermilk, 172
Carbo-nitrogenous foods, 137-139
Carbon, 20
Carbonaceous foods, 37, 28, 51, 115, 137
Candy, 61
Carrots, 116, 118
Cabbage, 120
Caffein, 184
Cancer of Stomach, 250
Casein, 172
Carbonized drinks, 186
Catarrh of Stomach, 242-250
Catarrh of Intestines, 254
Celery, 120
Cereals, 137-138
Cereals, Cooking of 199, 201
Cereal Coffee, 160
Cerealin, 140
Chemical Comp. of foods, etc., 20-24
Chemical action of plants, 21
Cherries, 125
Chard, 121
Chocolate, 161, 185
Cheese, 172
Citrates, 123, 125
Citrous fruits, 123, 125
Classification of foodstuffs, 37
Classification of foods, 115
Cod Liver Oil, 56
Cotton Seed Oil, 56
Corn, 138, 148
Cornstarch, 115-116
Coffee 161, 184
Coffee Eggnog, 287
Cocoa 161, 185
Condiments, 187
Cooking, 191
Constipation, 253
Cream, 55, 172
Cranberries, 123, 125
Creatin, 132-133
Crackers, 138
Cracked wheat, 155
Crust Coffee, 290
Cucumbers, 120
Currants, 123, 125
Custards (receipts), 295-296
Dates, 125
Dandelions, 121
Dextrin, 57, 153
Dextrose, 63, 74
Diabetes, 264
Diets, 207
Diets, Classification of, 284-292
Diet, vegetable, 219-222
Dilation of Stomach, 248
Digestion, 67-80
Intestines, 74-77
Stomach, 69-71
Drinking at meals, 43
Dyspepsia, 239
Dysentery, 256
Economy in food, 99-101
Eggs, 133
Eggs, ways of serving, 287-288
Egg broth, 287
Egg lemonade, 135, 285
Eggnog, 135, 287
Egg malted milk, 287
Enteritis, 254
Exercise, Effects of, 104-107
Extractives, 132
Farinaceous beverages, 289
Fat, 52, 75-76
Figs, 125
Fish, 129-130
Flours, 138, 141-143
Food Supply, 19
Food Values, 211-218, 299
Fruits, 122
Fruit juices, receipts for, 285-287
Fruit drinks, 286
Frequency of meals, 102-104
Gall stones, 75-76, 263
Gastric juice, 71-74
Gastritis, 242-250
Gelatin, 132
Gelatinoids, 132
Glycogen, 81-82
Gluten, 140-142
Gout, 273
Gooseberries, 123-125
Greens, 121
Green Vegetables, 119-122
Grapes, 125
Grape fruit, 123
Grape juice, 286
Grape nectar, 286
Grape lithia, 286
Grape yolk, 288
Gruels, receipts for, 297
Habit and regularity of eating, 101-102
Heat and energy, 24
Hydrochloric acid, 71, 123, 175
Hydrogen, 20
Hyperchlorhydria, 246
Hypochlorhydria, 247
Indigestion, 239-254
Intestinal disorders, 251-255
Intestines, Work of, 89-91
Intestines, Inflammation of, 256
Iron, 48
Jellies, Receipts for, 295
Junket, Receipts for, 296
Kidneys, 87-93
Kidneys, derangement of, 268
Legumes, 163
Lemons, 123-125
Lemonades, 186, 285-286
Lemon Whey, 286
Lentils, 168
Lettuce, 120
Limes, 123
Limewater, Proportions of, 176
Limewater, How to prepare, 175
Liver, Work of, 81-84, 92
Liver, Derangements of, 258
Lobsters, 129-130
Lungs, 87-93
Macaroni, 147
Magnesium, 122
Malted Milk, 178
Malates, 122
Maltose, 63, 69, 74
Meat, 127, 192, 199
Meat juice, how prepared, 290-291
Meat tea, how prepared, 291
Meat broth, how prepared, 291
Measures and Weights, 281-283, 299
Menus, 223-282
Milk, 170
Milk, clabbered, 180
Milk, skimmed, 161
Milk, condensed, 180
Milk, ways of serving, 287
Milk, tests, 176
Milk, sugar, 180
Milk junket, 186
Mind, Influence of, 110, 113
Mixed diet, 219-222
Mould, 146
Muscles, Work of, 84-86, 93
Mulberries, 125
Mutton, 128
Nerves, work of, 86-87, 93
Nervous disorders, 272
Neurasthenia, 273
Nephritis, 269
Nitrogen, 20
Nitrogenous foods, 38-39, 65-66, 127
Nutrition, 13, 14
Nutri-meal, 143
Nut Oil, 57
Nuts, 169
Oatmeals, 156
Oatmeal water, 175, 290
Oats, 138
Obesity, 278
Olive Oil, 57
Onions, 117
Oranges, 123-125
Orangeade, 286
Oxidation, 26
Oxygen, 20
Oysters, 129-130
Pancreatic trypsin, 259
Pancreatin, 245
Pastry, 201
Pasteurized milk, 177
Parsnips, 119
Peas, 120, 163-165-166
Peaches, 125
Peanuts, 163-164
Pears, 125
Peristalsis, 73, 76
Peptone, 72, 74
Pepsin, 71
Peptonized Milk, 244
Phosphorous, 20, 21
Pineapples, 123, 125
Pineapple juice, 286
Plums, 125
Pork, 128-131
Poultry, 128-131
Potatoes, 116-117
Potassium, 122
Predigested Foods, 153
Preservation of Foods, 189
Proteins, 21, 22, 39
Prunes, 125
Puffed Rice, 158
Puffed Wheat, 159
Purpose of Food, 19
Raisins, 125
Raspberries, 125
Rectal Feeding, 256
Rennin, 71
Rennet, 175
Rheumatism, 275
Rhubarb, 120, 123
Rice, 138, 147
Rice Water, 290
Roots and Tubers, 115-119
Rye, 138
Salt, 47
Sago, 115-116
Saliva, office of, 69, 91
Salivary Digestion, 69, 71