Instant download A modern approach to biofilm-related orthopaedic implant infections: advances in mi

Page 1


A Modern Approach to Biofilm-Related Orthopaedic Implant Infections: Advances in Microbiology, Infectious Diseases and Public Health Volume 5 1st Edition Lorenzo Drago (Eds.)

Visit to download the full and correct content document: https://textbookfull.com/product/a-modern-approach-to-biofilm-related-orthopaedic-im plant-infections-advances-in-microbiology-infectious-diseases-and-public-health-volu me-5-1st-edition-lorenzo-drago-eds/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Fungal Biofilms and related infections Advances in Microbiology Infectious Diseases and Public Health Volume 3 1st Edition Christine Imbert (Eds.)

https://textbookfull.com/product/fungal-biofilms-and-relatedinfections-advances-in-microbiology-infectious-diseases-andpublic-health-volume-3-1st-edition-christine-imbert-eds/

Emerging and Re-emerging Viral Infections: Advances in Microbiology, Infectious Diseases and Public Health

Volume 6 1st Edition Giovanni Rezza

https://textbookfull.com/product/emerging-and-re-emerging-viralinfections-advances-in-microbiology-infectious-diseases-andpublic-health-volume-6-1st-edition-giovanni-rezza/

Advances in Microbiology, Infectious Diseases and Public Health: Volume 14 Gianfranco Donelli

https://textbookfull.com/product/advances-in-microbiologyinfectious-diseases-and-public-health-volume-14-gianfrancodonelli/

Advances in Microbiology Infectious Diseases and Public Health Volume 1 1st Edition Gianfranco Donelli (Eds.)

https://textbookfull.com/product/advances-in-microbiologyinfectious-diseases-and-public-health-volume-1-1st-editiongianfranco-donelli-eds/

Advances in Microbiology Infectious Diseases and Public Health Volume 2 1st Edition Gianfranco Donelli (Eds.)

https://textbookfull.com/product/advances-in-microbiologyinfectious-diseases-and-public-health-volume-2-1st-editiongianfranco-donelli-eds/

Advances in Microbiology, Infectious Diseases and Public Health: Volume 7 1st Edition Gianfranco Donelli (Eds.)

https://textbookfull.com/product/advances-in-microbiologyinfectious-diseases-and-public-health-volume-7-1st-editiongianfranco-donelli-eds/

Infectious Diseases, Microbiology and Virology: A Q&A Approach for Specialist Medical Trainees Luke S. P. Moore

https://textbookfull.com/product/infectious-diseasesmicrobiology-and-virology-a-qa-approach-for-specialist-medicaltrainees-luke-s-p-moore/

Practical clinical microbiology and infectious diseases: a hands-on guide First Edition Gronthoud

https://textbookfull.com/product/practical-clinical-microbiologyand-infectious-diseases-a-hands-on-guide-first-edition-gronthoud/

Infectious Diseases: A Case Study Approach Jonathan Cho

https://textbookfull.com/product/infectious-diseases-a-casestudy-approach-jonathan-cho/

Advances in Microbiology, Infectious Diseases and Public Health

A Modern Approach to Biofilm-Related Orthopaedic Implant Infections

Advances in Microbiology, Infectious Diseases and Public Health Volume 5

AdvancesinExperimentalMedicine andBiology

AdvancesinMicrobiology,InfectiousDiseases andPublicHealth

Volume971

EditorialBoard

IrunR.Cohen,TheWeizmannInstituteofScience,Rehovot,Israel N.S.AbelLajtha,KlineInstituteforPsychiatricResearch,Orangeburg,NY,USA

JohnD.Lambris,UniversityofPennsylvania,Philadelphia,PA,USA RodolfoPaoletti,UniversityofMilan,Milan,Italy

SubseriesEditor

GianfrancoDonelli,MicrobialBiofilmLaboratory,FondazioneSantaLucia IRCCS,Rome,Italy

TheAdvancesinMicrobiology,InfectiousDiseasesandPublicHealthSeries willprovidemicrobiologists,hygienists,epidemiologistsandinfectious diseasesspecialistswithwell-choosencontributedvolumescontaining updatedinformationintheareasofbasicandappliedmicrobiologyinvolving relevantissuesforpublichealth,includingbacterial,fungalandparasitic infections,zoonosesandanthropozoonoses,environmentalandfoodmicrobiology.Theincreasingthreatofthemultidrug-resistantmicroorganismsand therelatedhostimmuneresponse,thenewstrategiesforthetreatmentof biofilm-based,acuteandchronicmicrobialinfections,aswellasthedevelopmentofnewvaccinesandmoreefficaciousantimicrobialdrugstoprevent andtreathumanandanimalinfectionswillbealsoreviewedinthisseriesin thelightofthemostrecentachievementsinthesefields.Specialattentionwill bedevotedtothefastdiffusionworldwideofthenewfindingsofthemost advancedtranslationalresearchescarriedoutinthedifferentfieldsof microbiologicalsciences,withtheaimtopromoteapromptvalidationand transferatclinicallevelofthemostpromisingexperimentalresults.Thebook seriespublishesreviewandoriginalresearchcontributions,short(data) reportsaswellasguesteditedthematicbookvolumes.Allcontributions willbepublishedonlinefirstandcollectedin(thematic)bookvolumes.There arenopublicationcosts.ThisseriesisasubseriesofAdvancesinExperimentalMedicineandBiology2015ImpactFactor:1.953AdvancesinExperimentalMedicineandBiologyhasbeenpublishingexceptionalworksinthe fieldforover30yearsandisindexedinMedline,Scopus,EMBASE, BIOSIS,BiologicalAbstracts,CSA,BiologicalSciencesandLiving Resources(ASFA-1),andBiologicalSciences.

Moreinformationaboutthisseriesathttp://www.springer.com/series/13513

Milan,Italy

ISSN0065-2598ISSN2214-8019(electronic)

AdvancesinExperimentalMedicineandBiology

ISBN978-3-319-52273-9ISBN978-3-319-52274-6(eBook) DOI10.1007/978-3-319-52274-6

LibraryofCongressControlNumber:2016935504

# SpringerInternationalPublishingAG2017

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeor partofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway, andtransmissionorinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesare exemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationin thisbookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernor theauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerial containedhereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisher remainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Contents

TheConceptofBiofilm-RelatedImplantMalfunction and“Low-GradeInfection” .............................1 CarloLucaRomano ` ,DeliaRomano ` ,IlariaMorelli, andLorenzoDrago

MechanismsofBacterialColonizationofImplants andHostResponse ....................................15 ChristofWagnerandG.MariaHansch

AnimalModelsofImplant-RelatedLow-Grade Infections.ATwenty-YearReview ........................29 AriannaBarbaraLovati,MartaBottagisio,ElenadeVecchi, EnricoGallazzi,andLorenzoDrago

MicrobiologicalDiagnosisofImplant-Related Infections:ScientificEvidenceandCost/Benefit AnalysisofRoutineAntibiofilmProcessing ..................51 LorenzoDragoandElenaDeVecchi

TheRoleofBiomarkersfortheDiagnosisofImplant-Related InfectionsinOrthopaedicsandTrauma ....................69 AbtinAlvand,MaryamRezapoor,andJavadParvizi AntibacterialBioactiveGlass,S53P4,forChronicBone Infections–AMultinationalStudy ........................81 NinaLindfors,JanGeurts,LorenzoDrago,J.J.Arts, VesaJuutilainen,PekkaHyvonen,ArnoldJ.Suda, AlojDomenico,StefanoArtiaco,ChingizAlizadeh, AdrianBrychcy,JertzyBialecki,andCarloL.Romano ` ProstheticJointInfectionsandCostAnalysis? ...............93 F.S.Haddad,A.Ngu,andJ.J.Negus

AlgorithmtoDiagnoseDelayedandLatePJI:Role ofJointAspiration ....................................101 OlivierBorens,PabloS.Corona,LarsFrommelt,StergiosLazarinis, MichaelRichardReed,andCarloLucaRomano

Erratum:MicrobiologicalDiagnosisofImplant-Related Infections:ScientificEvidenceandCost/BenefitAnalysis ofRoutineAntibiofilmProcessing .........................113 LorenzoDragoandElenaDeVecchi

Erratum:AntibacterialBioactiveGlass,S53P4, forChronicBoneInfections–AMultinationalStudy ..........115 NinaLindfors,JanGeurts,LorenzoDrago,J.J.Arts, VesaJuutilainen,PekkaHyv€ onen,ArnoldJ.Suda, AlojDomenico,StefanoArtiaco,ChingizAlizadeh, AdrianBrychcy,JertzyBialecki,andCarloL.Romano `

Index

AdvExpMedBiol-AdvancesinMicrobiology,InfectiousDiseasesandPublicHealth(2017)5:1–13

DOI10.1007/5584_2016_158

# SpringerInternationalPublishingSwitzerland2016

Publishedonline:19October2016

TheConceptofBiofilm-RelatedImplant Malfunctionand“Low-GradeInfection”
CarloLucaRomano

` ,DeliaRomano ` ,IlariaMorelli, andLorenzoDrago

Abstract

Biofilmshaveatremendousimpactonindustrialmachinesworkingin moistenvironments,whileinbiologicalsystemstheireffectisfurther complicatedbythehost’sresponse.

Implant-relatedinfectionsareacomplexprocess,startingwithbacterialadhesionandbiofilmformation,followedbythevariableinteraction betweenhost,implant,microorganismsandtheirby-products.Depending onthebalanceofthesefactors,differentclinicalpresentationsare observed,whichmayeventually,attimes,shiftfromoneintotheother.

–“Implantmalfunction”displaysonlymildclinicalsigns/symptoms–light painand/orslightsofttissuecontractureorfunctionalimpairment–with negativeinfection/inflammatorymarkers;itrequiresprolongedcultures, antibiofilmandeventuallygenomicinvestigationsforpathogendetection; –“Low-gradeinfection”featuresrecurrentorpersistentpainand/orsoft tissuecontracturewithvariousfunctionalimpairmentandmixedpositive/ negativemarkersofinfection/inflammation;pathogenidentification requiresprolongedculturesandantibiofilmtechniques;

–“High-gradeinfection”displaysclassicalsigns/symptomsofinfection/ inflammationwithpositivetests;pathogenidentificationisoftenpossible withtraditionalmicrobiologicaltechniques,butisbetterachievedwith prolongedculturesandantibiofilmprocessing.

C.L.Romano ` (*)

CenterforReconstructiveSurgeryofOsteoarticular Infections(CRIO)andMilanoBiofilmCenter(MBM), I.R.C.C.S.,GaleazziOrthopaedicInstitute,Milan,Italy

e-mail: carlo.romano@grupposandonato.it

D.Romano ` andI.Morelli

CenterforReconstructiveSurgeryofOsteoarticular Infections(CRIO),I.R.C.C.S.,GaleazziOrthopaedic Institute,Milan,Italy

e-mail: delia-romano@libero.it; ilaria.morelli@gmail.com

L.Drago

LaboratoryofClinicalChemistryandMicrobiologyand MilanoBiofilmCenter(MBM),I.R.C.C.S.,Galeazzi OrthopaedicInstitute,Milan,Italy

e-mail: lorenzo.drago@unimi.it

Understandingbiofilms-relatedclinicalpresentationsiscrucialfor physicians,toimplementthebestdiagnosticandtherapeuticmeasures, andforregulatorybodies,todefinetheevaluationprocessoftechnologies aimedatreducingimplants’malfunctionsandinfections,likeantiadhesiveandantibiofilmcoatings,thatshouldberegulatedas(partof) medicaldevices,requiringasuitablepost-marketingsurveillance.

Onlyaneffectiveantibiofilm-targetedapproachfromallplayerswill hopefullyallowthemedicalcommunitytomitigatethecurrentunacceptablesocialandeconomicalburdenofimplant-relatedinfectionsand malfunctions.

Keywords

Biofilm•Implant•Malfunction•Infection•Low-gradeinfection

1Introduction

Biofilmsaredefinedascommunitiesofmicrobial cellsandintercellularmatrix,attachedto surfacesinmoistenvironments,whilebiofouling orbiologicalfoulingistheaccumulationof biofilmsonwettedsurfaces.

Leeuwenhoek(1684),usinghisprimitive lightmicroscope,foundmicrobesattachedto toothsurfaces,formingsessilecommunities, whichcouldbeconsideredasthefirstobservationofmicrobialbiofilms.

Biofilmsareprobablytheprevalentmodeof lifeformicroorganismsinnature,butitwas notuntilthe1920sthattheconceptofbacterial biofilmswasformulated.Angst(1923)observed thatthenumberofmarinebacteriaonthesurface ofshipshullswashigherthanthesurrounding floatingcells,andproposedthatbacterial biofilmsledtoseriouscorrosionsofshipshulls. Bythe1980s,bacteriawereobservedonthesolid surfacesofmanyecologicalenvironments includingwastewatertreatmentsystems,industrialwatersystems,equipmentusedtomanufacturevinegar,etc.

Nowweknowthatthegeneralprinciplesof biofilmformationandfactorsleadingtosettlementonhardsurfacesaresimilarinmedical, marineandindustrialapplications(Bixler etal. 2014).

Intheindustrialandmarinesettingbiofouling hasawellknownimpactonperformance,

causingbiodegradation,malfunctionandfinally energyloss(Fig. 1)andhundredsbilliondollar costseveryyear.

Intheindustrialenvironment,biofoulingis oftenassociatedwithmicrobiologically influencedcorrosion(MIC)orbiocorrosionand inorganicfouling.Biocorrosionisthedegradationofmaterials,usuallymetals,duetotheactivityofmicroorganisms(Table 1),whileinorganic foulingistheaccumulationofnonbiological particles,thatmayforminadditiontoor indipendentlyfrombiofouling.

Ontheotherhand,inthemedicalsetting,and particularlyinimplant-relatedinfections,the effectsofbacterialadhesionandbiofilmformationontissuesandimplantedbiomaterialsare complicatedbythevariablehost’sresponse, whileconsequencesareequallydevastating.

Infact,itisestimatedthat20%offatalities worldwideareduetoinfectiousdiseases,of whichapproximately80%arebiofilm-related (Harrisonetal. 2005;Prenticeetal. 2004), includingthegreatmajorityofchronicbacterial andfungalinfectionsandvirtuallyall biomaterials-associatedinfections(Gristina etal. 1990;Romano ` etal. 2014;Stoodley etal. 2011;Nanaetal. 2016).

Thepresenceofbiofilmsmakesboththediagnosisandtreatmentparticularlychallenging (Dragoetal. 2013;Romano ` etal. 2013a, b), giventheprotectionofferedbytheextra-cellular matrixtothemicroorganisms.Infact,bacterial

Fig.1 Effectofbiofoulingonworkingmachinesand systems.Maindetrimentaleffectsonperformanceconcernimplantsdegradationandmalfunctionandenergy

loss.Theeconomicalimpactintheindustrialfieldranges from10to >30%oftheoperatingcosts,dependingon differentsettingsandreports(seetextformoredetails)

Table1 Mechanisms(CoetserandCloete 2005)andprocesses(Leeetal. 1995)underlyingMicrobiological InfluencedCorrosion(MIC)intheindustrialenvironment

Mechanisms

Utilizationofoxygenbyaerobicorganismsresultinginanodicareas.Localizeddifferencesinconcentrationshiftthe potentialofmetalsurfacesresultinginthecreationoflocalizedcorrosioncells.

Utilizationofhydrogenbymicroorganismsviaacathodicreactiondepolarizesthecathodewhichincreasestherateof metallossattheanode

Microbialdegradationofprotectivecoatingsonmetalsurfaces

Microbialdegradationofcorrosion-inhibitingchemicalsaddedtoprotectmetalsinindustrialwatersystems–corrosionorscalinginhibitors

Microbialproductionofmetaboliteswhicharecorrosiveorganicandinorganicacidsareoftenend-productsofthe metabolismofmicroorganisms

Metabolicby-productssuchasH2Scanprecipitatemetalions,suchasirontoformFeS,whichiscorrosiveitself.

Processes

Transportandaccumulationofmaterialsfromthebulkliquidtothemetalsurface.Thesematerialscanbesoluble (microbialnutrientsandcorrosivechemicals)orparticulate(viablemicroorganismsorinorganicparticles)

Microbialandelectrochemicaltransformationprocesseswithinthebiofilmandthemetalsurface.Microorganisms excreteextra-cellularpolymers,whichcontributetothebiofilmdepositandpromoteadherenceofcorrosionproducts. Microbialtransformationprocessesinfluencethecorrosivityofthemicroenvironmentatthebiofilm-metalinterface. Abioticprocessesinfluencetherate,extent,anddistributionofcolonizingmicrobialspecies,aswellasthechemical compositionandphysicalpropertiesoftheresultingbiofilm.

Erosionanddetachmentfromthesurfaceofthefilm.Theseprocesseslimittheoverallextentoffoulingdeposit accumulation.

slimenotonlyreducestheimmunesystemability tofightinfections,butmayincreaseantibiotic resistancebymorethan1000times;inlinewith thisobservation,introducingantibiofilm strategiesshouldprobablyberegardedasabetter responsethaninvestinginnewantibioticsin ordertoovercomethealarmingincreasingantibioticresistanceworldwide(WHOReport, 2014).

Bothintheindustrialandinthemedical settings,theprocessfrombacterialadhesionto

theprogressivelossofperformanceisinfluenced bymanyvariablesandtheimpacttotheoverall performanceoftheaffecteddeviceorsystem mayrangefromadifficult-to-detectlightmalfunctiontoaseverefunctionalimpairment.

Here,afterabriefreviewoftheimpactof biofoulingonindustrialsystems,wefocuson implantedbiomaterials,introducingtheconcept ofbiofilm-relatedimplantmalfunction,low-and high-gradeinfection,withitspossiblepractical implications.

2BiofoulinginIndustry andWorkingMachines

Industrialbiofoulingandbiocorrosionis estimatedtocosttogovernmentsandindustries overtwohundredsbilliondollarsperyear (Colauttietal. 2006;Schmitt 2009;Schultz etal. 2011).

Microbialbiofilmscontaminateandclog waterandwaterfiltrationunits(affectingdrinkingwater,wastewater,desalinizationandindustrialcoolingwater)(ChmielewskiandFrank 2003),corrodeandblockpipelinesandinterfere withoilandgasextractionprocesses,affecting severalindustrialsystemsandmanufactures (Table 2).

Industrialprocesswaterorpotablewateris notsterile,sothereisbiofilminallsystemsthat isinherentlypresentwithoutcausingproblems. Problemsoccurwhenthebiofilmbuildsup,creatingdeadbiomassandthereforeanutrient sourcethatleadstore-growthoforganismsin thewater.Biofilmstructuresvaryaccordingto flowconditionsinawatersystem,forexample,a turbulentflowproduceshomogeneousandslimy biofilms,whicharehardertoinactivatethanbiofilmproducedbylaminarflows.Alsotheeffectivenessofadisinfectantorbiocidedependson theageofthebiofilmaswellasitsparticular physicalandchemicalstructure.Thepresent trendinindustrialwatersystemsistominimize bothwaterconsumptionandwaterdischargeby recirculation.Thisresultsintheconcentrationof dissolvedandsuspendedsubstancespromoting

Table2 Listofsomeofthemainindustrialand manufacturingsectorsinwhichbiofoulinghasamajor impactonperformanceandefficiency

Waterproductionandpipelines

Foodandbeverageindustry

Petrochemicalindustry

Pharmaceuticalandcosmeticmanufacturing

Shippingindustry

Heatexchangerandcoolingsystems

Paperproduction

Automotiveindustry

Steelproduction

Nuclearandhydro-electricplants

growthofwaterbornemicrobes,andshiftingthe microbialcommunitytoamorecopiotrophic state.

Theoilindustryhascitedmanyproblems resultingfrombiofilmformationbysulphatereducingbacteria.Examplesincludepipeand rigcorrosion,blockageoffiltrationequipment andoilspoilage(Voordouwetal. 1996).

Thepresenceofbiofilmsiscommoninfood industry.Biofilmscanexistonalltypesof surfacesinfoodplantsrangingfromplastic, glass,metal,wood,tofoodproducts (ChmielewskiandFrank 2003),causingserious engineeringproblemssuchasimpedingtheflow ofheatacrossasurface,increasesinfluidfrictionalresistanceofsurfacesandincreasesinthe corrosionrateofsurfacesleadingtoenergyand productionlosses(VerranandJones 2000).Pathogenicmicrofloragrownonfoodsurfacesandin processingenvironmentscancross-contaminate andcausepost-processingcontamination (GaneshandAnand 1998).Ifthemicroorganisms fromfood-contactsurfacesarenotcompletely removed,theycanleadtomaturebiofilmformationandsoincreasethebiotransferpotential. Examplesofthefoodsectorsthatpayparticular attentiontothepossibilityofcrosscontaminationarethemilkindustry(Chye etal. 2004)andtheslaughterindustry(Petrak etal. 1999).Agriculturalcropsarealsonegativelyimpactedbycertainpathogenicmicrobial biofilms,whichcause“blights”andotheragriculturaldiseasethatcanruincrops.

Themostcommonfoodbornebiofilm producersbelongtothegenera Pseudomonas spp., Listeria, Salmonellaspp.,Escherichia coli,Enterobacter, Flavobacterium,Alcaligenes, Staphylococcus,Bacillusspp.,etc. (Chmielewski andFrank 2003;ShiandZhu 2009).

Inthemarineshippingindustry,biofilmsthat formonshiphullsleadtocorrosionandcause “drag,”whichresultsinmuchhigherconsumptionoffuelduringtransportaswellashighership hullmaintenancecosts(Flemming 2011; Kamino 2013).Itisinfactestimatedthat 25–50 μmbiofilmsonashiphullincreasehydrodynamicdragby8–22%respectively,withan increaseinfuelconsumptionthatmayraiseupto

40%andadditionalgreenhousegasproduction (estimatedtobe384milliontonnesperannum) (Townsin 2003;Schultzetal. 2011).

Theinfluenceofbiofoulingoncoastaland oceanographicmeasuringinstruments,which areroutinelyusedinmarineandcoastalresearch andmonitoringprograms,isverystrongandthe earlieststagesofbiofouling,withinafewdaysof immersion,significantlyaffectdataqualityand instrumentperformance.Thereisaneedtoprotecttheinstrumentsfrombiofoulingsothatthey areabletogatherbetterqualitydataandrequire lessmaintenance.Currentlytherearenoeffectivecoatingstocontrolthisproblem,theonly solutioninvolvesexpensivemanualcleaningby divers.

Biofoulingofintakestructures,screens,seawaterpipingsystemsandheat-exchangertubes indesalinationandpowerplantscausesanoveralldeclineinplantefficiencyatgreateconomic cost.Forexamplethepresenceofabiofilmon transfersurfacesofheatexchangerscooledby seawaterreducestheheattransferrateby 20–50%andincursaglobalexpenditureof over$15billionsperannumtocontroltheproblem.Themajorityofcurrentmeasurestocontrol biofoulinginvolvetheuseofbiocides.

Intheareaofmembranetechnology, microfiltrationandultrafiltrationmembranesare usedfordrinkingwaterproductionandwastewatertreatment.Theprimarylimitationtothemore widespreadadoptionofmembranefiltrationis foulingwithmicroorganismsandorganic moleculeswhichleadstoasignificantdecline ofthepermeateflux,higherenergyconsumption, andeventually,failuretomeettheregulatory standards(FlemmingandSchaule 1988).Frequentcleaningofthemembranesiscostlyand maydamagethemembranematerials/barrier layers(Flemming 2009).

3BiofilmsandBiofouling inImplantedBiomaterials

Thepresenceofaforeignbody,suchasanorthopedicimplant,hasbeenshowntosignificantly increasesusceptibilitytoinfection.Whilethisis

atleastpartiallyduetoalocallyacquiredgranulocytedefect,biofilmformationisofmajor importance(Zimmerlietal. 1982;Costerton etal. 1995).

Adherenceofmicro-organismstothesurface oftheimplantinvolvesrapidattachmentbyspecific(e.g.adhesins)ornon-specificfactors (e.g.surfacetension,hydrophobicity,andelectrostaticforces).Thisinitialphaseisfollowedby anaccumulativephaseduringwhichbacterial cellsadheretoeachotherandformabiofilm. Depletionofnutrientsand/orwasteproductaccumulationinbiofilmscausesmicro-organismsto enteraslowornon-growing(stationary)state makingthemupto1000timesmoreresistantto mostantimicrobialagentsthantheirplanktonic (freeliving)counterpartsandallowthemto eventuallypersistformonthsoryears(Donlan 2002).

Orthopedicsisamongtheleadingspecialties forimplantedbiomaterials.Inspiteoftheaverageexcellentclinicalresults,implant-related infectionsisthefirstreasonsforfailureinthe first2yearsafterimplant.Evenifcurrentperioperativeinfectionpreventionmethods,like antibioticprophylaxis,havesignificantly reducedtheincidenceofsurgicalsiteinfections, upto2.5%ofprimaryhipandkneejoint replacementandto10%ofrevision arthroplastiescanstillbecomplicatedby periprostheticjointinfection(PJI)(Lentino 2003)(Fig. 2).

Moreover,accordingtorecentanalysis,these figurescouldevenbeunderestimatedandareon therise(Daleetal. 2009).

Thepresenceofbiofilmsandofsessilebacteriaonjointprosthesismakespathogen (s)detectionmoredifficultandoftenleadsto treatmentfailures.Infact,theoccurrenceofPJI isconsideredadevastatingcomplication,often requiringimplantremoval,prolongedhospitalizationandlong-lastingmedicaltreatment,with highmorbidityandpossiblelong-terminfection recurrence(Costertonetal. 1999;Scarponi etal. 2013;Romano ` etal. 2014);PJIhasbeen showntobeassociatedwithmortalityraise (Zmistowskietal. 2013)andelevatedeconomicalandsocialcosts(Kurtzetal. 2012).

Asimilarworryingimpactisassociatedwith biofilm-relatedinfectionsafterosteosynthesisfor fracturefixation(GomezandPatel 2011), pacemakers,cathetersandcardio-vascularprosthesis(Baddouretal. 2010),maxillo-facialsurgery(Prakasametal. 2016),breastimplants (Pittetetal. 2005)andvirtuallyallsurgeries involvingimplantedbiomaterials,withanaverageriskofbiofilm-relatedinfectionrangingfrom 0.5tomorethan20%,depending,amongother variables,onthetypeofimplant,thelengthofthe operation,thedegreeofsurgicalfieldcontaminationandhost’sco-morbiditiesandriskfactors (Table 3).

4Biofilm-RelatedMalfunction, Low-andHigh-GradeInfection andThresholdsforClinical Interference

Intheindustrialsetting,biofoulingworksasan operationaldefinition,referringtothatamountof biofilmsdevelopmentthatinterfereswithtechnical,aestheticoreconomicalrequirements.

Forexample,virtuallyallnonsteriletechnical watersystemsbearbiofilms,butnotallofthem sufferfrombiofouling.Thetermbiofoulingisin factrelatedtotheinterferenceofbiofilmswith theefficiencyandtheperformanceofagiven

machineorasystemandathresholdlevelexists abovewhichbiofoulingbegins.

Inindustry,this“levelofinterference”, illustratedbythecurveproposedmorethantwo decadesagobyFlemmingetal.(1994)(rewritten inFig. 3),isdefinedmostlybyeconomical considerations,connectedtotheextenttowhich biofilmeffectscanbetoleratedwithoutunacceptablelossesinprocessperformanceorproductqualityandquantity.Beyondthispoint, whichcanbequitedifferentinvariousindustries, biofoulingbegins.

Thisthresholdofinterferenceisafeltlimit, whichreflectsthefoulingtoleranceofanoperator.Flemming(2009)speculatedthat,althoughit maybefeltdifferentlyindifferenttechnical fields,itmaybeassumedthata30%lossof productivity,productqualitylossorprocessefficacywillalertanyoperator,whowilltryto identifyandeliminatethereason.

Weherehypothesizethat,intheclinical setting,asimilarthresholdofinterferencecan betracedforbiofilmformationonimplanted biomaterials.Atvariancewithitsindustrial counterpart,thethresholdof“clinical”interferenceismostlydefinedbytheclinicalperformanceoftheimplanteddeviceandbyour abilitytodetectandinterpretsignsand symptomsofimplantfailure;infact,hereare inflammatorysymptomsorinfectionmarkers

Fig.2 Visiblebiofilm remnantsonthetitanium surfaceofafailedhip

TheConceptofBiofilm-RelatedImplantMalfunctionand“Low-GradeInfection”7

Table3 Listofmostcommonlyusedbiomaterialsbyapplication

Cardiovascular

Stents–Pacemaker–Implantablecardiacdefibrillators–Heartvalves–Catheters–Guidewires–Vasculargrafts–Sensors–Others(ventricularassistdevice(VAD),sternumclosuredevices,andintroducersheaths)

Orthopedic

Jointreplacement(Knee-,Hip-,Shoulder-,Ankle-,Elbow-,Wrist-,Finger-arthroplasty)

Spine(spinalfusion,motionpreservation/dynamicstabilization,interspinousspacers,discarthroplasty)

Bioresorbable(Sutureanchors,Interferencescrews,Meniscalrepairtacks,mesh)

Orthobiologics(Allografts,bonesubstitutes,autografts)

Dental

Dentalimplants

Dentalbonegrafts&substitutes

Dentalmembranes

Plasticsurgery

Acellulardermalmatrices

Craniofacialsurgery

Bioengineeredskins

Breastimplants

Trauma

Fracturefixationdevice(boneplates,screws,pins,rods,wires

Tissueengineering

Scaffoldsforregenerativemedicine

Ophthalmology

Contactlens

Intraocularlens

Functionalreplacementsofoculartissues

Syntheticcorneas

Others

Neurologicaldisorders/CentralNervousSystems

Shuntingsystems

Corticalneuralprostheticsandimplantableneurostimulators

Otherapplications

Drugdeliverysystems

Urinarycathetersandprosthesis

Fig.3 Schematicbiofilm developmentbelowand abovethearbitrary “thresholdofinterference” (dottedline)(rewritten afterFlemming etal. 1994). Δ represents theeffectofbiofilms development(e.g.: thickness,friction resistance,etc.)

thatmaytriggeran“alert”totheinvolved “operators”,thepatientandhis/herphysician, raisingthesuspectofabiofilm-relatedimpaired performanceoftheimplantedmedicaldevice; thisinturnwilleventuallyelicitfurther investigationsandanappropriateresponseor treatment.

Inanygivenpatient,thethresholdof“clinical”interferencedependsonthenetbalanceof differentvariables,includingthetypeof

microorganism(s)andoftheimplant,the antibacterialprophylaxis/treatmentand,most importantly,theextentofthehost’simmune andinflammatoryresponse.

Accordingtothelevelsetasanalerttodefine thepresenceofapathologicalcondition,thefollowingclinicalscenarios(Fig. 4),withrespective thresholdsofinterference,canbedistinguished (Fig. 5).

Fig.4 Schematicrepresentationofpossibleclinical scenarios,inthepresenceofamedicalimplantandadheringbiofilm-producingmicroorganisms.(a)Subclinical presentation.Bacteriaandbiofilmsdonotinterferein anydetectablewaywithimplantfunction.Symptoms andmarkersofinfectionareabsentandthedeviceisfelt asnormallyfunctioning.(b)Implantmalfunction.Bacteriaandbiofilmsinduceonlyminorclinicalsignsand

symptoms,butmarkersofinfectionremainnegative.(c) Low-gradeinfection.Bacteriaandbiofilminteraction induceamildhost’sreaction,withmoderateclinical signsandsymptomsandslightchangesininflammatory markers.(d)High-gradeinfection.Aconditioninwhich theclassicalsignsandsymptomsofinfectionandinflammationarepresent,withpositivemarkers

Fig.5 Schematicbiofilmdevelopmentbelowandabove arbitrary“thresholdsofclinicalinterference”forimplant malfunction,low-andhigh-gradeinfection.Subclinical presenceofbacteriaandbiofilmsistheoreticallypossible andisrepresentedbythe dottedgreycurve. Δ represents theeffectofbiofilmsdevelopment(clinicalsignsand

4.1SubclinicalContamination andImplantMalfunction

Whilesubclinicalcontaminationisdefinedasthe presenceofbacteriaandbiofilmsthatdonot interferewiththenormalfunctionofthe implantedmedicaldevice,implantmalfunction isassociatedwithmildclinicalsigns/symptoms, thatmaybereportedasmildbutpersistentor recurrentpainatthesiteofsurgeryand/ormild softtissuecontractureorfunctionalimpairment, withnegativelaboratoryandimagingmarkersof infection/inflammation;theidentificationofthe slow-growingmicroorganisms,thatgenerally causethiscondition,requiresprolonged microbiologicalcultures,antibiofilmandeventuallygenomicormoleculartechniques(Drago etal. 2013;Palmeretal. 2011).

4.2Low-GradeInfection

Low-gradeinfectionisaconditioninwhichthe patientcomplainsaboutrecurrentorpersistent painand/orsofttissuecontracturewithvarious functionalimpairment,withmixedpositive/negativemarkersofinfection/inflammation;

symptoms,positivemarkersofinfection/inflammation) andistheresultoftheinteractionbetweenthe microorganismsandtheirby-products,thehostresponse, thetypeofimplantandtheantibacterialprophylaxis/ treatment

pathogenidentificationrequiresprolonged culturesandantibiofilmtechniques.

4.3High-GradeInfection

High-gradeinfectionsdisplaytheclassicalsigns/ symptomsofinfection/inflammation,including variousdegreesofredness,swelling,painand localwarmthand/ordelayedwoundhealingor drainingsinus,withpositivelaboratoryand imaginginvestigations;inthesecases,pathogen identificationisoftenpossiblewithtraditional microbiologicaltechniques,butisbetter achievedwithprolongedculturesandantibiofilm processing,especiallyifpatientsunderwent empiricalantibiotictreatmentpriortocultural examination.

Ontheaverage,theestimatedincidenceof high-gradeinfectionlaysinarangebetween approximately0.5–2.5%aftercleansurgery;on theotherhand,low-gradeinfectionsandbiofilmrelatedmalfunctionsprobablyoccurinapproximately8–12%ofthepatientsreceivingan implantedbiomaterial,accountingforunexplainedpain,softtissuecontractures,jointstiffness,delayedbonehealingornon-unionafter

fracturefixation,etc.,thatmayeventuallybeleft untreatedofmanagedonlybymedicationsor rehabilitationmeasuresandneverleadtoimplant removal.

Examplesofimplantmalfunctionor low-gradeinfectionscanbeobservedinvarious surgicalfields.

Inplasticsurgery,Pajkosetal.(2003) reportedastatisticallysignificantpositive,direct relationshipbetween Staph.epidermidis sonicationcolturesinremovedbreastimplantsandthe degreeofcapsularcontracture,intheabsenceof clinicalsignsofinfection.

Beswicketal.(2012),inarecentsystematic reviewofprospectivestudiesinpatients undergoingtotalhiporkneereplacementforosteoarthritis,foundaproportionofpeoplewithlongtermpainofunknownoriginrangingfromabout 7–23%afterhipandfrom10to34%afterknee replacement,whileotherstudieshaveshownthat “between4%and13%ofpatientswithpreoperativediagnosisofasepticlooseningwere infected”,whenretrievedimplantswereanalyzed withgenomicidentificationmethods(Moojen etal. 2010).Furthermore, P.acnes hasbeen identifiedinrecentyearsasanoccultcausative agentofpainaftershoulderprosthesis(Millett etal. 2011).

Infracturefixation,ananimalmodelshowing theimpactoflow-gradeinfectionoftherateof non-uniondueto Staph.epidermidis hasbeen recentlypublished(Lovatietal. 2016),while “aseptic”tibialnon-unionin23patientshad beenrecentlyreportedbyGilleetal.(2012)to beassociatedin2cases(8.7%)withpathogens thatcouldonlybedetectedbyinvestigatingbacterialrRNAwithpolymerasechainreaction (PCR).

Eachoneoftheabovementionedclinical conditionsmayeventually,attimes,shiftfrom onetotheother,dependingontreatments,host’s immunesystem,bacteriallifecycle,etc.(Fig. 6).

Forexample,itisacommonobservationin theclinicalsettingthata wellconductedantibiotictreatmentmaysometimessuppressinflammatorysignsassociate dwithaperi-prosthetic jointinfection,thuschangingahigh-grade infectiontoalow-gradeoneoreventoamild

Fig.6 Theclinicalpresentationofbiofilm-related infectionsofmedicaldevicesandbiomaterialsis influencedbymanyfactorsandshiftsfromoneclinical conditiontoanothermayoccasionallyhappen

implantmalfunction,withonlyminorclinical signsandnegativeserummarkersofinflammation.Ontheotherside,abreachintheimmune systemcompetence,dueforexampletoanconcurrentchemotherapy,mayeventuallyshifta previouslow-gradeinfectiontoahigh-grade, acutesepsis.

5Conclusions

Biofilmsandbiofoulinghaveawellknowndetrimentalimpactonmostindustrialand manufacturingprocesses.

Thresholdofinterferenceinindustrydepends mostlyoneconomicalconsiderationsandis believedtobereachedinanycasewhena30% lossofproductivity,productqualitylossorprocessefficacyoccurs.

Implantedbiomaterialsalsoaregreatly affectedbypossiblebacterialcontaminationand biofilmformation,thatmayultimatelyinterfere withimplantfunction,durabilityandperformanceorpatient’swellbeing.

Similartothethresholdofinterferencein industry,herethresholdsof“clinical”interferencecanbeimagined,whichidentifyvarious possibleclinicalconditions,rangingfroman implantmalfunctiontoahigh-gradeinfection. Theoccurrenceofeachoftheseclinical conditionsdependsontherelativebalance betweenthetypeofimplant,theantibacterial

prophylaxis,thebehaviorofthecolonizing microorganismsandthehost’sresponse.

Itacommonobservationthat,eventhemedicalfieldtheperceivedthresholdofclinicalinterferenceissetataratherhighlevelandusually onlythehigh-gradeinfectionstriggersomeadequateresponseintheoperators.However,abetterunderstandingofbiofilms-relatedclinical presentationsandacknowledgingthefactthat biofilmsonanimplantcanbeassociatedwith onlyminorornosignsofinfection,iscrucial forphysicians,inordertoimplementthebest diagnosticandtherapeuticmeasuresforall patientswithlow-performingimplant;apractical exampleistheintroductioninthesurgical

Fig.7 Removedimplant,abonecementspacer,issent formicrobiologicalexaminationwithchemical antibiofilmprocessingbymeansofdithiothreitol(DTT), apureantibiofilmagentthatdoesnotinterferewithbacterialgrowth.Thedisposablekit(microDTTect,4iSrl, Monza,Italy)allowstocollectsamplesatsurgeryandto transportandprocesstheminacompletelyclosedsystem, avoidingcontamination,andincreasingsensitivityofculturalexamination

routineofsystemsthatmayallowculturalexaminationwithantibiofilmprocessingofallfailed implants(Fig. 7).

Ontheotherhand,recognizingbacteriaand biofilmsasapossiblereasonofimplantmalfunction,shouldpromptregulatorybodiestoconsider anti-adhesiveandantibiofilmimplantcoating technologiesasa(partof)medicaldevice aimedatreducingimplantmalfunction,thus adoptingtherelativeevaluationprocessandcertificationprocedure,alsoinconsiderationofthe promisingclinicaloutcomesreportedindifferent clinicaltrials(Tsuchiyaetal. 2012;Romano ` etal. 2015, 2016).

Aneffectiveantibiofilm-targetedapproach fromallplayersistheonlywaythemedical communitymayhavetomitigatethecurrent unacceptablesocialandeconomicalburdenof implant-relatedinfectionsandmalfunctions.

References

AngstEC(1923)Thefoulingofshipbottomsbybacteria. Report,BureauConstructionandRepair,United StatesNavyDepartment,Washington,DC BaddourLM,EpsteinAE,EricksonCC,etal.,American HeartAssociationRheumaticFever,Endocarditis,and KawasakiDiseaseCommittee,CouncilonCardiovascularDiseaseinYoung,CouncilonCardiovascular SurgeryandAnesthesia,CouncilonCardiovascular Nursing,CouncilonClinicalCardiology,InterdisciplinaryCouncilonQualityofCare,AmericanHeart Association(2010)Updateoncardiovascularimplantableelectronicdeviceinfectionsandtheirmanagement:ascientificstatementfromtheAmericanHeart Association.Circulation121:458–477

BauerTW,GrossoMJ(2013)Thebasicscienceofbiofilm anditsrelevancetothetreatmentofperiprosthetic jointinfection.OrthopKnowlOnlineJ11(9):12–20 BeswickAD,WyldeV,Gooberman-HillRetal(2012) Whatproportionofpatientsreportlong-termpain aftertotalhiporkneereplacementforosteoarthritis? Asystematicreviewofprospectivestudiesinunselectedpatients.BMJOpen2:e000435.doi:10.1136/ bmjopen-2011-000435

Bixleretal(2014)JcolloidInterfaceSci419:114–133 ChmielewskiRAN,FrankJF(2003)Biofilmformation andcontrolinfoodprocessingfacilities.ComprRev FoodSciFoodSaf2:22–32.doi:10.1111/j.1541-4337. 2003.tb00012.x

ChyeFYF,AbdullahA,AyobMK(2004)Bacteriological qualityandsafetyofrawmilkinMalaysia.Food Microbiol21:535–541

CoetserSE,CloeteTE(2005)Biofoulingand biocorrosioninindustrialwatersystems.CritRev Microbiol31:213–232

ColauttiRI,BaileySA,VanOverdijkCD,AmundsenK, MacisaacHJ(2006)Characterisedandprojectedcosts ofnonindigenousspeciesinCanada.BiolInvasions 8:45–59.doi:10.1007/s10530-005-0236-y

CostertonJW,LewandowskiZ,CaldwellDE,KorberDR, Lappin-ScottHM(1995)Microbialbiofilms.Ann RevMicro49:711–745

CostertonJW,StewartPS,GreenbergEP(1999)Bacterial biofilms:acommoncauseofpersistentinfections. Science284:1318–1322

DaleH,HallanG,HallanG,EspehaugB,HavelinLI, EngesaeterLB(2009)Increasingriskofrevisiondue todeepinfectionafterhiparthroplasty.ActaOrthop 80:639–645

DonlanRM(2002)Biofilms:microbiallifeonsurfaces. EmergInfectDis8(9):881–890

DragoL,SignoriV,DeVecchiE,VassenaC,PalazziE, CappellettiL,Romano ` D,Romano’CL(2013)Useof dithiothreitoltoimprovethediagnosisofprosthetic jointinfections.JOrthopRes31:1694.doi:10.1002/ jor.22423

FlemmingHC(2009)Microbialbiofouling:unsolved problems,insufficientapproaches,andpossible solutions.In:FlemmingHCetal.(eds)Biofilm highlights.SpringerSeriesonBiofilms5.SpringerVerlag,Berlin/Heidelberg.doi:10.1007/978-3-64219940-0_5,2011

FlemmingHC(2011)Microbialbiofouling:unsolved problems,insufficientapproaches,andpossible solutions.In:FlemmingH-C,WingenderJ,Szewzyk U(eds)Biofilmhighlights.Springer,Essen,pp 81–109

FlemmingHC,SchauleG(1988)Biofoulingon membranes–amicrobiologicalapproach.Desalination70:95–119

FlemmingH-C,SchauleG,McDonoghR,RidgwayHF (1994)Mechanismandextentofmembranebiofouling.In:GeeseyGG,LewandowskiZ,FlemmingH-C (eds)Biofoulingandbiocorrosioninindustrialwater systems.Lewis,Chelsea,pp63–89

GaneshCK,AnandSK(1998)Significanceofmicrobial biofilmsinfoodindustryareview.IntJFood Microbiol42:9–27

GilleJ,WallstabeS,SchulzAPetal(2012)Isnon-union oftibialshaftfracturesduetononculturablebacterial pathogens?AclinicalinvestigationusingPCRand culturetechniques.JOrthopSurgRes7:20–25

GomezE,PatelR(2011)Laboratorydiagnosisofprostheticjointinfection,partI.ClinMicrobiolNewsl33 (8):55–60

GristinaAG,NaylorPT,WebbLX(1990)Molecular mechanismsinmusculoskeletalsepsis:theracefor thesurface.InstrCourseLect39:471–482

HarrisonJJ,TurnerRJ,MarquesLLR,CeriH(2005) Biofilms.Anewunderstandingofthesemicrobial

communitiesisdrivingarevolutionthatmaytransformthescienceofmicrobiology.AmSci93:508–515

KaminoK(2013)Mini-review:barnacleadhesivesand adhesion.Biofouling29:735–749

KurtzSM,LauE,WatsonH,SchmierJK,ParviziJ(2012) Economicburdenofperiprostheticjointinfectionin theUnitedStates.JArthroplast27:61–65

LeeW,LewandowskiZ,NielsenPH,HamiltonWA (1995)Roleofsulfate-reducingbacteriaincorrosion ofmildsteel:areview.Biofouling8:165–194

LentinoJR(2003)Prostheticjointinfections:baneof orthopedists,challengeforinfectiousdisease specialists.ClinInfectDis36:1157–1161

LovatiAB,Romano ` CL,BottagisioM,MontiL,De VecchiE,PrevidiSetal(2016)Modeling Staphylococcusepidermidis-inducednon-unions:subclinical andclinicalevidenceinrats.PLoSOne11(1): e0147447.doi:10.1371/journal.pone.0147447

MillettPJ,YenYM,PriceCS,HoranMP,vander MeijdenOA,ElserF(2011)Propionibacterium acnesinfectionasanoccultcauseofpostoperative shoulderpain:acaseseries.ClinOrthopRelatRes 469(10):2824–2830

MoojenDJF,vanHellemondtD,VogelyHCetal(2010) Incidenceoflow-gradeinfectioninasepticloosening oftotalhiparthroplasty:aprospectivemulticenter studyusingextensiveroutineandbroad-range16S PCRwithreverselineblotdiagnostics.ActaOrthop 81(6):667–673

NanaA,NelsonSB,McLarenA,ChenAF(2016)What’s newinMusculoskeletalinfection:updateonbiofilms. JBoneJointSurgAm98:1226–1234

PajkosA,DevaAK,VickeryKetal(2003)Detectionof subclinicalinfectioninsignificanbreastimplant capsules.PlastRecontrSurg111:1605–1610

PalmerM,CostertonW,SeweckeJ,AltmanD(2011) Moleculartechniquestodetectbiofilmbacteriainlong bonenonunion:acasereport.ClinOrthopRelatRes 469:3037–3042

PetrakT,KaloderaZ,NovakovicPetal(1999)Bacteriologicalcomparisonofparallelandcounterflowwater chillingofpoultrymeat.MeatSci53:269–271

PittetB,MontandonD,PittetD(2005)Infectioninbreast implants.LancetInfectDis5:94–106

PrakasamS,SteinK,LeeMK,RampaS,NalliahR, AllareddyV,AllareddyV(2016)Prevalenceand predictorsofcomplicationsfollowingfacialreconstructionprocedures.IntJOralMaxillofacSurg45 (6):735–742

PrenticeT,BeagleholeR,IrwinA(2004)TheWorld HealthReport,2004:changinghistory.WorldHealth Organization,Geneva

Romano ` CL,DeVecchiE,VassenaC,ManziG,DragoL (2013a)Acaseofalateandatypicalkneeprosthetic infectionbyno-biofilmproducerPasteurella multocidastrainidentifiedbypyrosequencing.PolJ Microbiol62(4):435–438

Romano ` CL,ToscanoM,Romano ` D,DragoL(2013b) Antibiofilmagentsandimplant-relatedinfectionsin

orthopaedics:wherearewe?JChemother25 (2):67–80

Romano ` CL,LogolusoN,DragoL,PeccatiA,Romano ` D (2014)RoleforirrigationandDebridementin Periprostheticinfections.JKneeSurg27:267

Romano ` CL,ScarponiS,GallazziE,Romano ` D,DragoL (2015)Antibacterialcoatingofimplantsinorthopaedicsandtrauma:aclassificationproposalinan evolvingpanorama.JOrthopSurgRes10:157–163

Romano ` CL,MalizosK,CapuanoN,MezzopreteR, D’ArienzoM,VanDerStraetenC,ScarponiS, DragoL(2016)Doesanantibiotic-loadedhydrogel coatingreduceearlypost-surgicalinfectionafterjoint arthroplasty?BoneJointInfect1:34–41

ScarponiS,DragoL,Romano ` D,LogolusoN,PeccatiA, MeaniE,Romano ` CL(2013)Cementlessmodular intramedullarynailwithoutbone-on-bonefusionasa salvageprocedureinchronicallyinfectedtotalknee prosthesis:long-termresults.IntOrthop35:413

SchmittG(2009)Globalneedsforknowledgedissemination,research,anddevelopmentinmaterialsdeteriorationandcorrosioncontrol.WorldCorrosion Organization,NewYork

SchultzMP,BendickJA,HolmER,HertelWM(2011) Economicimpactofbiofoulingonanavalsurface ship.Biofouling27:87–98.doi:10.1080/08927014. 2010.542809

ShiX,ZhuX(2009)Biofilmformationandfoodsafetyin foodindustries.TrendsFoodSciTechnol20:407–413

StewartPS,CostertonJW(2001)Antibioticresistanceof bacteriainbiofilms.Lancet358(9276):135–138

StoodleyP,EhrlichGD,SedghizadehPP,Hall-StoodleyL,BaratzME,AltmanDT,SotereanosNG,Costerton

JW,DemeoP(2011)Orthopaedicbiofilminfections. CurrOrthopPract22(6):558–563

ThurlowLR,HankeML,FritzT,AngleA,AldrichA, WilliamsSH,EngebretsenIL,BaylesKW,Horswill AR,KielianT(2011)Staphylococcusaureusbiofilms preventmacrophagephagocytosisandattenuate inflammationinvivo.JImmunol186(11):6585–6596

TownsinRL(2003)Theshiphullfoulingpenalty.Biofouling19(Suppl):9–15

TsuchiyaH,ShiraiT,NishidaH,MurakamiH,KabataT, YamamotoNetal(2012)Innovativeantimicrobial coatingoftitaniumimplantswithiodine.JOrthop Sci17(5):595–604

VerranJ,JonesM(2000)Industrialbiofouling.Wiley, NewYork

VoordouwG,ArmstrongSM,ReimerMFetal(1996) Characterizationof16SrRNAgenesfromoilfield microbialcommunitiesindicatesthepresenceofa varietyofsulfate-reducing,fermentative,andsulfideoxidizingbacteria.ApplEnvironMicrobiol 62:1623–1629

WorldHealthOrganization(2014)Antimicrobialresistance:globalreportonsurveillance2014. http://www. who.int/drugresistance/documents/surveillancereport/ en/

ZimmerliW,WaldvogelFA,VaudauxP,NydeggerUE (1982)Pathogenesisofforeignbodyinfection: descriptionandcharacteristicsofananimalmodel.J InfectDis146(4):487–497

ZmistowskiB,KaramJA,DurinkaJB,CasperDS,Parvizi J(2013)Periprostheticjointinfectionincreasesthe riskofone-yearmortality.JBoneJointSurgAm 95:2177–2184

AdvExpMedBiol-AdvancesinMicrobiology,InfectiousDiseasesandPublicHealth(2017)5:15–27

DOI10.1007/5584_2016_173

# SpringerInternationalPublishingSwitzerland2016

Publishedonline:5November2016

MechanismsofBacterialColonization ofImplantsandHostResponse

ChristofWagnerandG.MariaHa ¨ nsch

Abstract

Thereviewfocusesonthecurrentknowledgeandthemostpertinent hypothesesregardingthelocalhostimmuneresponseasthekeyfactor forthepathogenesisofimplant-associatedinfections.Althoughbacterial biofilmshavelongbeenrecognizedascausativeagents,thelinkbetween theinfectionandthedevastatinginflammatoryresponse,particularlythe localizedtissuedestructionandbonedegradationislesswellunderstood. Understandingtheseconsequencesofinfection,however,isofutmost importance,becausesuppressinginflammationandpreventingbone destructioncouldbeanovel,alternativetherapeuticoptionincases wheneradicatingtheinfectionsfails.

Keywords

Implantinfection•Bacterialbiofilm•Immuneresponse•Neutrophils• Osteolysis

1Introduction

Theauthorsstatethatthereisnoactualorpotential conflictofinterestregardingthestudy.

C.Wagner(*)

ZentrumfürOrthopadieundUnfallchirurgie,Klinikum Ingolstadt,Krumenauerstraße25,85049Ingolstadt, Germany

e-mail: christof.wagner@klinikum-ingolstadt.de

G.M.Hansch

InstitutfürImmunologiederUniversita ¨ tHeidelberg,Im NeuenheimerFeld305,69120Heidelberg,Germany

e-mail: N50@ix.urz.uni-heidelberg.de

Implant-associatedinfectionisaverycomplex, interactiveandmultifactorialevent.Consequently,whenlookingformeanstodetect,to treatorevenbettertopreventinfection,an in-depthunderstandingofthepathophysiology andtheunderlyingmolecularprocessesis required.Sinceformationofbacterialbiofilms ontheimplantshavebeenrecognizedasthe “ultimatecauseofpersistentinfection” (Costertonetal 1999),awealthofdatahave beenaccumulatedanalyzingthetransitionof free-swimmingplanktonicbacteriatobiofilms (excellentreviewse.g.inO’Tooleetal. 2000;

DonlanandCosterton 2002;Stoodleyetal 2002; Hall-Stoodleyetal 2004;Jefferson 2004; Wuertzetal 2004;KaratanandWatnick 2009; Bjarnsholtetal 2012).Ofnote,themajority ofthesedataarederivedfromstudyingbiofilm formation invitro oninertcarriermaterials, whichisjustified,becausebiofilminfections areusuallyderivedfromthecolonizationofartificialsurfaces(Agarwaletal 2010;Wagneretal 2011;McLeanetal 2012).Althoughourknowledgeofbiofilmbiologyhasgreatlyincreased bythe invitro models,itisbecomingincreasinglyapparentthatcomparabilityoftheavailable dataisverylimited(Lourencoetal 2014). Moreover,thetransferfrom invitro experiments tothe invivo situationisratherlimited,among othersduetothemicroenvironment,comprising theadjacenttissuecellsandthelocalimmune response(Bjarnsholtetal 2013;Robertsetal 2015,reviewedinHansch 2012a).Thisreview willfocusonthelatter.Abetterunderstanding ofthelocalhostresponseexplainsnotonlythe devastatingconsequencesofimplantinfection, suchasboneresorptionandsepticloosening, butitalsomighthelpdesigningalternative therapeuticoptions.

2BacteriaandHost:AComplex andMultifacetedRelationship

Bacteriaareubiquitous.Ourentireenvironment, includingfoodandwater,isnotsterile,which meansthatweareconstantlyexposedtobacteria, someofwhichhavingthepotentialtodestroythe integrityofthebody.Wesurvivewithinthat hazardousandthreateningenvironment,because numerousprotectivemechanismshavebeen developedduringevolution,notablymechanical barrierssuchasskinormucousmembranes,as wellastheadaptiveandnon-adaptive(innate) immunesystem.Thecrucialimportanceof thesedefensesystemsbecomeobvious,when consideringinfectionsinpatientswithlarge skindefects,compromisedmucousmembranes, oracquiredorcongenitalmalfunctionsofthe

immunesystem(e.g.Robins 1989;Bowler 2002;Berlineretal 2004;Percivaletal 2015). Furthermore,inadditiontoenvironmentalbacteria,itisimportanttorealize,thatthehumanbody isalsocolonizedwithbacteria,particularlythe skinandthemucousmembranes,includingthe intestinalmucosa.The“healthy”humanbody hostsabout1014 bacteria(approx.1–2kgof bodyweight)withanestimated10-foldhigher numberofbacteriacomparedtotissuecells.In this perse “highlyinfected”environmentbacteriaandhostcoexistinmutualacquiescencewithoutadverseeffectorevenbenefitingthehost. Basicprinciplesofthisfriendlyco-existenceare hidingfromorsilencingoftheimmuneresponse, andthenon-invasionpolicy–thebacteriadonot crossthebarriers(reviewedinHansch 2012a). Disturbanceorinjuryofthephysiological barriers–asitoccurse.g.duringsurgery–allows invasionofbacteria,resultinginactivationofthe hostimmunesystemandtransitionofthesymptomlesscolonizationtoinfection.Inthiscontext, bycreatingsurgicalincisionsallowingentryof bacteriaatthewoundsite,andbycompromising thelocalandpossiblealsothesystemicimmune responseduetotheunderlyingiatrogenictissue damage,surgerycanbeconsideredasamajor perturbationoftheprotectiveshield.Thus, despiteongoingattemptstoachieve“sterile” conditions(reviewedinBusscheretal 2012; Dumvilleetal 2015;Levyetal 2016;Tanner etal 2016),theperioperativeriskofinfection remainsakeyfactor,apresumptionsupported bytheobservationthatthemajorityofimplant infectionsoccurswithinthefirst2years (reviewedinTandeandPatel 2014).Furthermore,thecausativemicroorganismsfoundmost commonlyattheinfectedsitearestaphylococci species,frequentlythesameasthosecolonizing theoutersurfaceas“opportunists”,aspartof thephysiologicalskinflora(Schierholzand Beuth 2001;Otto 2009,reviewedinTandeand Patel 2014).Takentogether,bythesefactsan infectionbythepatient’s“own”opportunistic bacteriabecoming“accidentalpathogenic”is suggested.

3ColonizationofImplants:The FirstStepofImplantInfection

Afterbreakageofthephysiologicalbarriers invadingbacteriarapidlyseekadequatesurfaces tosettledownandformbiofilms,alifestyle,in which–incontrasttotheirplanktonic counterparts–theyareprotectedagainsthost defensemechanisms.Accordingtothephrase “racetothesurface”introducedbyGristina (Gristina 1987)microbialadhesioncompete withtissuecellintegrationforcolonizationof thebiomaterial’ssurface.Gristina’sconceptis stillvalid,andisnowsupportedbyanabundance ofdata,particularlyregardingthesuitable surfaces,meansofbacterialattachmenttothe saidsurfaces,andsignalscontrollingbiofilmformation.Itisnowapparent,thatbiofilmsformationisarathercomplex,geneticallydriven process,mediatedbynumberofbacteria-derived signalingmolecules,alsoknownas“quorum sensing(QS)molecules”orautoinducers.The basicstepsofbiofilmformationarequitesimilar amongthebacteriaspecies:bacteriaattachtoa surfacebymeansofspecializedadhesion molecules,thensignalingmoleculesarereleased, whichinturndrivethebiofilmformationby inducingtheproductionoftheextracellular matrix(extracellularpolymersubstances,EPS), thename-giving,insomeinstancesvisible,film orslime,andalsobyalteringbacteria-inherent featuresandproperties,forexamplethelossof flagella.Thebacteriaarethenembeddedinthe extracellularmatrix,themostconspicuousfeatureofthebiofilm,yieldingawell-organized bacterialcommunity.Ofnote,althoughthe basicmechanismsappeartobesimilar,theadhesionmoleculesaswellasthesignalingquorumsensingmoleculesdiffergreatlyamongthespecies,asdoesthequalityandcompositionofthe extracellularmatrix(Heilmann 2011;Vander MeiandBusscher 2012;Fosteretal 2014, reviewedinDickschat 2010;Gargetal 2014; Büttneretal 2015).Thisisimportanttorealize whenattemptingtointerferewithattachmentor biofilmformationasapreventiveregimen (Dragoetal 2013,reviewedinArciola 2009;

Shunmugaperumal 2010;Beloinetal 2014; Wilkinsetal 2014).

Biofilmsareconsideredasaninteractivesymbiotic“cityofmicrobes”.Biofilmsareanefficientandprotectivesurvivalstrategyina potentiallyaggressiveenvironment(forin-depth understandingofthemolecularmechanismsof biofilmformationandresistanceresp.tolerance pleaseseee.g.thefollowingreferencesand reviews:Costertonetal 1999;O’Tooleetal. 2000;DonlanandCosterton 2002;Greenberg 2003;Wuertzetal 2004;Costertonetal 2005; Williamsetal 2007;KaratanandWatnick 2009; Agarwaletal 2010;Ha ¨ nsch 2012a;Wolcottetal 2013;Olsen 2015)(Fig. 1).

Colonizationoftheimplantisthedecisive stepinimplant-relatedinfections(reviewedin Hall-Stoodleyetal 2004),anddependsonthe abilityofbacteriatoadheretoagivensurface. Adhesionisinfluencedbyagreatvarietyof components,includingbacteriaspecies,properties oftheimplantsurface,suchasmicroarchitecture, roughness,orelectricalcharge,asareenvironmentalparameters,includingflowconditions,rheology,ortemperature.Adhesioninvolvesthe classicalphysicochemicalforces(VanderWaals attraction,electrostaticcharges,gravitational forcesand/orhydrophobicinteractions),and specializedadhesionmoleculesonthebacteria (reviewede.g.inPavithraandDoble 2008; Harmsenetal 2010;Otto 2014;Persatetal 2015). Invitro,colonizationappearswithina fewhours,slimeproductionwithinseveraldays, dependingonexperimentalconditions,particularlye.g.species,initialnumberofbacteria,or flowconditions.However,verylittleisknown aboutthe invivo situation,andinsightsprovided bystudiesinanimalmodelsarealsolimited.

Biofilmformationisadynamicprocess.Singlebacteriacanleaveormaybearereleasedfrom thebiofilm,andalsotheorganizationofbacteria withinthebiofilmandthequalityoftheextracellularmatrixissubjecttomodifications,reconstructionorself-inhibition(NagarandSchwarz 2015).Thecomponentsoftheextracellular matrixvaryamongspecies(reviewedin Sutherland 2001;FlemmingandWingender

bacterial adhesion molecules

surface structures promoting adhesion

surface

binding of bacteria to implant

formation of microcolonies production of extracellular polymeric substances (EPS) („slime“) in which bacteria then are embedded maturation of biofilm to complex threedimensional structure

Fig.1 Biofilmformationonimplantsurface. (a)Sequenceofbiofilmformation:From right to left: Bindingofbacteriatoimplant(adhesion,colonization), formationofbacterialmicrocoloniesandproductionof extracellularpolymericsubstances(EPS,slime)inwhich thebacteriaareembedded,finallybiofilmmaturationtoa complexthree-dimensionalstructure. Top:schematic

2010),whichisalsoimportanttotakeinto accountwhenattemptingtosanitizeortodisrupt biofilms.Onimplants,bacterialbiofilmsmaybe

cartoon; below:illustrationofstep-by-stepformationof biofilms(white:bacteria)usinglaserscanmicroscopy (b+c).Detectionofbiofilmformationonimplantby scanningelectronmicroscopy(SEM)(b)(Courtesyof Prof.UrsulaObst,KarlsruherInstitutfürTechnologie) (c)andbystainingwithmira-ton(c)(Figureadapted fromWagnerandHansch 2015)

single-species,ormaycomprisemultiplespecies andalsofungae,suchas Candidaalbicans, can formbiofilms(RenduelesandGhigo 2012;

Sherryetal 2014,reviewedinLynchand Robertson 2008).

Artificialsurfacesareexcellentsubstratafor biofilmformation;however,itremainsstillelusivewhythey,comparedtohosttissue,arepreferentiallycolonizedbybacteria.Alikely explanationisthatartificialsurfacesareinert andhencelackdefensemechanismsasthereare foundontissuecellsthatpreventorfendoff colonization(Chunetal 2004;Hastings 2004). Moreover,afterimplantation,biomaterialsare readilycoveredbybloodandserumproteins (e.g.fibrinogen,fibronectin,vitronectin) resultingintheformationofaso-calledconditioningfilmorlayer,whichinturnpromotes adhesionofbacteriabyprovidingexclusive receptorsites(Rochfordetal 2012).Consistently,mimickingthe invivo microenvironment bycoatingnon-biologicalsurfaceswithhuman serumorplasma,itcouldbeshownthatbacterial adherenceandbiofilmformationisincreased (Wagneretal 2011).Takingintoaccountthat immersioninbloodoccursimmediatelyafter placingtheimplant insitu,strategiesmodifying theimplantsurface,e.g.bypotentially antibacterialsubstances(e.g.silverorcopper)–althoughshowingpromisingresultsinthe invitro experimentsorinanimalmodels (reviewedinSchmidmaieretal 2006;Goodman etal. 2013;Gbejuadeetal 2015;Francolinietal

Fig.2 Characteristic clinicalsignsoflocal inflammationfollowing osteosynthesisoftheright lateralclavicula

2015;Romanoetal 2015)–arenotreally promisinginalong-termsetting.

4Inflammation:AnEssential andTellingResponse toInfection

Entryofbacteriaintotissuesignals“danger”to thehost.Viamessengermolecules,systemicand localmeansofhostdefenseareactivated,and alsothetissueattheinfectedsitesisaltered,a processcollectivelyaddressedas“inflammation”.Majoralterationsaretheincreasedblood flow,theenhancedpermeabilityofbloodvessels andtheexpressionontheendothelialcellsof molecules,attractingandbindingphagocytic cells,whichconsequentlysqueezethroughthe vesselwallandmigrateactivelytowardsthe infectedsite.Additionally,alsoserumand bloodseepthroughtheopenings.Cytokinescontrolthemotilityandthedirectedmigrationofthe cells,aswellasthesurfacemoleculesonthe phagocyticcellsandontheendothelium,which areessentialforadhesionandorientation.The enhancedpermeabilityofbloodvesselsisusually restrictedtotheinfectedareaandaccountsfor thetraditionalsymptomsofinflammationknown as“rubor,calor,dolor,tumor,andfunction laesa”(Fig. 2).Thegenerationoftheso-called

“pro-inflammatoryenvironment”isanessential, indispensableresponseofthehosttoinjuryanda crucialprerequisiteforanefficienthostdefense.

Forclinicians,inflammationisanindicatorfor infection,anddetermininginflammationassociatedalterationssuchasincreasednumber ofleukocytesintheperipheralbloodorenhanced serumconcentrationsoftheC-reactiveprotein havealongtradition.Infact,bacterialinfections areprimarilyrecognizedbytheinflammatory responsetheyhavecreated,ratherthanbydetectionandidentificationofthebacteriathemselves. However,symptomsofinflammationoralack thereof,donotnecessarilyproveordisprove bacterialinfections,becausealsosterile irritationsoftissuescauseinflammation.Moreover,localizedbacterialinfectiondonotinevitablyinduceanotablesystemicinflammatory response.

5TheHostResponsetoBacterial Infection

Asdescribedabove,whenbacteriacrossthe defendingbarriers,forexamplefollowingdamagetotheskinorthemucousmembranes, respectively,thelocalcellssignal“danger”and alerttheimmuneresponse.Theexactpathway thatlinksthelocaldangersignaltoasystemic responseisstillunderinvestigation.Cytokines havebeenidentifiedthatinducetheincreaseof thebloodC-reactiveproteinconcentration,and thatmobilizegranulocytesfromthebonemarrow,resultinginleukocytosis,animportantindicatorofinfection.

Thefirstcellstorespondarephagocyticcells, especiallygranulocytes(polymorphonuclear neutrophils,PMN)as“firstlinedefense”, which,toefficientlycombatbacteria,infiltrate theinfectedsiteinacomplexandwell-regulated controlledmanner(thesequenceofthe neutrophil-mediatedinflammatoryhostresponse tobacteriaisillustratedinFig. 3).Briefly,dueto chemokines(e.g.complementC5),generatedat thesiteofinfectionanddiffusedintothetissues, thenearbyendothelialcellsbecome“sticky”by up-regulationofspecializedadhesionproteins,

thatcapturePMNfromtheperipheralblood. Afterbeingactivatedandattachedfirmly,PMN thensqueezebetweentheendothelialcells (so-calleddiapedesis)andmigrateactively towardsthebacteriaviachemotaxis.AsphagocyticcellsPMNbindandtakeupplanktonic bacteria,whichthen,afterbeingengulfedintoa plasmamembrane-derivedvacuole,the phagosome,arekilledintracellularly,predominantlybycytotoxicoxygenradicals,generated byasequentialreductionofoxygen.Inaddition tooxidativekilling,granulocytescarryalarge arsenalofbactericidalentities,amongthose e.g.lysozyme,defensins,collagenaseandelastase(anoverviewisshowninTable 1)(reviewed inFaurschouandBorregaard 2003),whichare storedpreformedinthecells,andarereleasedin responsetobacteria-derivedagentsorto cytokineseitherintothecellorintotheenvironment.Successfulphagocytosisinitiatesapoptosis oftheneutrophils,whichtheninturnarecleared byinvadingmacrophages;therebyspillingof PMN’scytotoxicandproteolyticcontentis prevented.Insummary,ideally,phagocytosis resultsintheclearanceoftheoffendingbacteria, theterminationoftheinflammatoryresponse, andtherestorationofthetissue,thewound healing.Inthat,thehostresponseislimitedina time-,andinmanyinstancesalsoinaspacedependentmanner(reviewedine.g.Savill 1997;Kobayashietal 2003;Leeetal 2003; WagnerandHansch 2005).

Invadingbacteriaalsoalerttheadaptive immuneresponse(Wagneretal 2008;Karauzum andDatta 2016).B-andT-lymphocytesare activated,andthegenerationofantibodiesis induced.Basically,anincreasedbloodantibody concentrationisanindicatorofanongoingadaptiveimmuneresponse,andcanbealsousedasa diagnostictool.However,becausethemajority ofbacteriafoundinimplantinfectionsarethe samethatarepermanentlycolonizingtheskinor themucousmembranesasopportunists, antibodiesarepresentatanytime,andtherefore arenotusefulasdiagnostictoolfordeviceassociatedinfections.

Becauseweareconstantlyexposedtobacteria,theimmunesystemispermanentlyinaction,

granulocytes

2.adhesion

1. release of mediators

3.diapedesis

endothelial cells ba

vascular leak

4.chemotaxis

bacteria

5a.phagocytosis

5.phagocytosis

5b.“frustrated phagocytosis“ release of bactericidal and cytotoxic entities bacterial biofilm

Fig.3 Theroleofgranulocytesinhostresponsetobacteria:(1)Mediatorsgeneratedandreleasedattheinfected site,actontheclose-byendothelium.(2)Byup-regulation ofadhesionproteins,theendothelialcellsbecome“sticky” andcapturecirculatinggranulocytesfromtheperipheral blood.(3+4)Afterbindinggranulocytestransmigratein betweentheendothelialcells(diapedesis)towardsthesite ofinfectioninadirectmanner(chemotaxis).(5)Having reachedthesitetheytakeupbacteria(phagocytosis)which

thenarekilledintracellularly.(5a)Dependingonmaturationstatebacterialbiofilmscanalsobephagocytosedby granulocytes(successfulphagocytosis);thesiteofinfectionwillbecleared.(5b)Incasethatthebiofilmresistthe attackofthegranulocytes,PMN,notabletotakeup bacteria(“frustratedphagocytosis”),arefurtheractivated andconsequentlyreleasetheirproteolyticandcytotoxic entitiesintothesurroundingscausingprogressivetissue destruction

Table1 Bactericidalandproteolyticcontentofneutrophilgranules(selection)

AzurophilgranulesSpecificgranulesGelatinasegranules α1-antitrypsinCollagenaseLeukolysin α-mannosidaseGelatinaseGelatinase

thoughmainlyunperceived.Thelatterbecomes obviouswhendealingwithpatientsonimmunosuppressivetherapy,orwithcongenitalor acquiredimmunodeficiencysyndromes(e.g. reviewedinArmengaud 1976;Doriaetal 2008; ShadyabandCrum-Cianflone 2012).

Theextentandtheefficiencyofthelocalhost responsedependsonvariousfactors,particularly thenumberofbacteria,thebacteriaspecies,the abilityofthebacteriatoinvadethetissue,and theirvirulence,thelatterdefinedasthepropensityofthebacteriatodamagehostcells,e.g.by producingcytotoxicsubstancesortoxinsthat interferewiththecellularsignalingorthecell metabolism(e.g.pertussistoxin).Ontheother hand,alsotheextentandqualityoftheimmune responsevarieswidelyamongindividuals.The geneticallydeterminedrepertoireofimmune cellsdeterminestherecognitionofforeignand potentiallydangerousmaterials(suchasbacteria);moreover,thealsogeneticallyimprinted capacitytoproducemessengermolecules(such asinterleukins)thatregulate,supportorcontrol theindividualimmuneresponsevariesamong individuals,asdoesthedensityofcytokine receptors,orthenumberofmoleculesthatsense “danger”.Consequently,theefficiencyof eliminatingagivenbacteriavariesamong individuals,asdoestheaccompanyinginflammatoryresponse.Thus,thehostdefensecanoccur “virtuallyunnoticedbythehost”,orleadto moderatelocalsymptomslikeswellingand redness,oreventoextremesystemicreactions, thesepsis.

6HostDefenseAgainstBacterial Biofilms

Howthehostreactstobiofilmsisnotreally known(reviewedinZimmerliandSendi 2011; Hansch 2012a).Inpatientswithimplantassociatedinfectionswesee–mostlikely–only anextremesituationwithfulminantinflammationandmoreorlessextensivetissuedamage. Ontheotherhand,onroutinelyremoved implants,bacterialbiofilmsarefoundwithout signsofinflammationoradversetissuereactions

(Neutetal 2003;Trampuzetal 2007;Obstetal 2012;Yanoetal 2014;Dapuntetal 2014b). Toreconcilethesetwoextremes,thefollowing scenariosarefeasible:

1.Thebacteriaarerecognizedbytheimmune response,andareeliminated,probablyeven beforeamaturebiofilmisformed.Because quorum-sensingmoleculesarerecognizedby cellsofthehostresponse,e.g.byphagocytes, itisadistinctpossibility(Vikstrometal 2005; Zimmermannetal. 2006;Maureretal 2015, reviewedinHansch 2012b).Suchanearlyand efficienthostresponsewouldgounnoticedby thehost

2.Alternatively,thebacteriaformabiofilmthat escapesrecognitionbytheimmuneresponse. Thebiofilmthenpersists,butwithouteliciting animmuneresponseoraninflammatory response.Thisisadistinctpossibility, becausethereistheclaimthatbacteriain biofilmshavealimitedmetabolismanddo nonotdivideoratleastnotthatasrapidlyas theirplanktoniccounterparts.Moreover,the surroundingextracellularmatrixmightnotbe recognizedasdangerous.

3.Bacterialbiofilmsarerecognizedbythe immunesystem,phagocyticcellsinfiltrate, butareunabletoeliminatethebiofilm.This wouldhavetwoimportantconsequences: (a)thebiofilmcontinuouslyactivatesthe hostresponse.Morephagocyticcellsand eventuallyalsoT-lymphocytesinfiltratethe sites(Wagneretal 2003;Wagneretal 2006),pro-inflammatorymediatorsareproducedwhichinturncausemorecellinfiltration,buteventuallyalsoactivationoflocal cells,forexampleosteoblasts.Theinflammatoryimmuneresponseisthusnotself-limited, butratherprogressesandexpands.(b)When phagocyticcellsarefurtheractivatedbutare unabletotakeupbacteria,theyreleasetheir cytotoxicandbactericidalentitiesintothe surroundings.However,eveninthiscase, thereisstillachancefortheneutrophilsto attackordestroyabiofilm,because invitro datashowclearlythatbiofilmsarenot inherentlyprotectedagainsttheattackby

MechanismsofBacterialColonizationofImplantsandHostResponse23

phagocyticcells(Wagneretal 2004;Günther etal 2009;Meyleetal 2010;Hansch 2012a). Incasethatthebiofilmresiststheattackbythe phagocyticcells(“frustratedphagocytosis”or “attemptwithoutsuccess”)(Fig. 3),thehost reactionatthelocalsiteproceedsandeven progresses,resultinginanongoingreleaseof cytotoxicandproteolyticentitieswith subsequentprogressivetissuedestruction (DallegriandOttonello 1997;Wardand

Lentsch 1999)(Fig. 4)asdirecollateraldamagebythelocalhostdefence(Wagneretal 2005).Bygenerationofaproinflammatory microenvironmentwithincreasedcytokine levels(e.g.tumornecrosisfactoralpha, TNFalpha;interleukin8,IL-8,MRP-14)the differentiationofboneresorbingosteoclasts (osteoclastogenesis)frommyeloidprecursor cellsisinduced(Fig. 5),perpetuatingthe self-inflictedtissuedamage,eventually

Fig.4 Progressivetissuedestructioninimplant-associatedinfectionfollowingplateosteosynthesis

Fig.5 Linkbetweeninflammationandosteolysis. Left: Schematicillustrationofdifferentiationandfusionof monocytesbypro-inflammatorymediatorswithformationofgiantcellsandfinallymulti-nucleatedbone-

resorbingosteoclasts. Right:bonebiopsyshowing osteoclasts(red kathepsinK, blue multiplenuclei)and infiltratedphagocyticcells(blue)inthesurrounding (FigureadaptedfromWagnerandHansch 2015)

Another random document with no related content on Scribd:

99

100

Fig. 101

Figs. 96 to 101.—Arrangement and Details of Collapsible Monoplane

At the other end of the fuselage is attached the hooks for the elastic, and the wire forming them is also utilised as a protector. The whole construction is made from a 10½-in. length of No. 18 ... piano wire, reinforced with a strip of thin bamboo, bent to shape over a blue flame and bound with silk tape. The part is shown unbound in

Fig.
Fig.

Fig. 101, and Fig. 102 shows an alternative protector; but it is not so effective.

The main plane is made of bamboo and piano wire of No. 18 ..., and measures 2 ft. 10 in. by 6¼ in. The leading edge is of bamboo 3 ft. 2 in. long, ³/₁₆ in. wide, tapering to ⅛ in. at the ends, with a uniform thickness of ⅛ in. When planed down the length should be heated over a blue flame, and bent to the shape shown in Fig. 96, the outside of the bamboo being kept on the outside of the curve. The trailing edge should now be attached to the ends of the leading edge, a length of ½ in. being bent up at each end of the wire, and securely bound to the bamboo. The ribs should now be cut from the same gauge wire. The ends should be bent out at an angle so that they may be bound to the leading and trailing edges, as shown in Fig. 103; the projecting ends should be about ⅜ in.

Fig. 102
Fig. 103
Fig. 104
Fig. 105
Fig. 106
Fig. 107
Fig. 108
Fig. 109

Figs. 102 to 109. Details of Collapsible Monoplane

The two centre ribs are shaped as shown in Fig. 104. It will be seen that the leading edge is raised ¼ in. above the fuselage, and the rear edge is level with it. The ends of the ribs are fitted into small holes drilled in the top of the fuselage, and kept in position by means of small metal clips, as shown in Figs. 105 and 106. Four of the clips are required, and they may be easily made from thin tinplate and soldered. The ribs should be soldered to the trailing edge so as to make them secure. The framework should be covered with proofed silk, and neatly glued on all edges.

Fig. 110.—Rear Skid

Fig. 111 Fig. 112

Figs. 111 and 112.—Details of Screw

The chassis is shown by Fig. 107, No. 18 gauge piano wire being used for the framing, and an ordinary cycle spoke for the axle. Figs. 108 and 109 show the flexible joints of the chassis, which folds up flat when the hooks at C (Fig. 107) are withdrawn.

The wheels are 2 in. in diameter, and are rubber tyred, the ends of the spoke being burred over to keep them in position.

The rear skid is shown in Fig. 110, and is made of No. 18 gauge piano wire. A single length is used, being bent to shape, passed through the end of the fuselage, and held to its work by the projecting end D, which fits in a hole in the under-side of one of the pieces of wood. When not in use the skid may be folded flat.

The two propellers are of the simple bentwood type, 10 in. in diameter and 1 ft. 8 in. pitch. They are made of ¹/₁₆-in. birch in the usual way. The shape of the blades is shown in Fig. 111, and the angle at which the blades are bent is shown in Fig. 112. Six strands of strip rubber should be attached to each propeller, ordinary soft soap being used as a lubricant.

CHAPTER XI Tractor Monoplane

Some of the competitions arranged by the Kite and Model Aeroplane Association have been for duration models of a minimum weight of 1 lb., capable of rising from the ground under their own power, carrying a dead weight of a quarter of their own total weight. Such a model is that here illustrated and described. It has flown repeatedly for thirty-eight seconds after rising from the ground, while its hand-launched duration is about half a minute, by no means a small accomplishment for a 16-oz. model. It will be seen that it has somewhat larger dimensions than the ordinary rubber-driven model.

The top main spar is of spruce, 4 ft. 6 in. long and ½ in. by ¼ in. in cross-section, the bottom one being 2 in. longer and ¼ in. by ³/₁₆ in. in section. The bottom member is to be bent by steam approximately to the shape shown in the side view of the machine (Fig. 113), and then fitted to make a clean butt joint to the top spar B (Fig. 114). Bearings for the two ⅝-in. gears, details of which are shown in Fig. 115, are bent to shape from No. 20 gauge sheet-brass, a lug being left projecting to engage with the bottom member of the fuselage. The holes for the shafts should be drilled so that the gears make a fairly tight mesh. The spindles are to be of No. 16 gauge piano wire, on to which the gears are to be soldered. The propeller shaft is continued forward of the bearing for 1½ in., and is bent back at an angle (as shown in detail at A in Fig. 116) to grip tightly in the propeller boss. The gears are kept central between the two bearings by means of pieces of brass tubing, which are slipped on the spindles at each side of the bearing and soldered in position.

Fig. 113.—Side Elevation
Fig. 114.—Spar Joint
Fig. 115.—Gearing
Fig. 116. Shaft Attachment
Fig. 118.—Chassis

Fig. 119. Main Plane Attachment

Elastic hooks, formed from No. 16 gauge wire, are fixed at the rear end of the fuselage, and serve the double purpose of providing an anchorage for the bottom spar, which is whipped and glued with the hooks to the top spar. Fig. 114 shows clearly what is meant. Bamboo, of ³/₁₆-in. by ₧-in. cross-section, is used for the tail skid, which is secured to the fuselage by thread binding. Piano wire is used for the landing chassis, and of the same gauge as hitherto used on the spindles.

The triangular side struts of the chassis should first be framed up from one continuous length of wire, lugs being bent at the point where they meet the fuselage, to be bound with fine tinned iron wire and soldered to the spar. Figs. 113, 117 and 118 clearly show its construction. Make the axle of such a length that a 12-in. wheel-base may be left after the wheels are placed on. The writer found that 2-in. rubber-tyred disc wheels left nothing to be desired for rising off short grass. Care should be taken that the measurement from the periphery of the wheel to the top spar, measured, of course, in a vertical direction, shall be 9 in. (see Fig. 113).

117.—Plan

Fig.

121.—Kingpost

Fig.

Fig. 122.—Wing Bracing Attachment

As twin gears of equal size are used, the torques of the oppositely revolving skeins of rubber will be balanced. Hence no bracing will be found necessary on the motor spar. The gearing, by the way, is bound to the top and bottom members of the fuselage with tinned iron wire, and soldered as shown in Fig. 115.

The main plane is of rather a large span, and it is essential that birch be used, ½ in. by ³/₃₂ in. in section. The wing spars are bent at their centres, to impart a tapering wing plan analogous to the Martinsyde monoplane. Seven ribs connect the spars, and these are cambered to ¾ in. The wing tapers from 10 in. at the centre to 7 in. at the tips, the centre rib projecting for ½ in. fore and after of the wing. The tin clips shown in detail in Fig. 119 slip over these, and so provide a means of adjustment to the centre of pressure of the complete machine.

Choice of covering must be left to the builder; but yellow Japanese silk, proofed with varnish, will be found quite suitable, and of a rather pleasing amber hue. A birch kingpost passes through the fabric, and to this the wings are braced by No. 35 gauge music wire. Sufficient tension should be placed on the top wires to give the wings a 3-in. dihedral angle, as in Fig. 120 The detail illustration of the kingpost (Fig. 121) is self-explanatory. The bracing wires are anchored to wire hooks forced through the wing in the manner shown in Fig. 122.

The correct position of the main plane should be found by trial. The kingpost can then be permanently fixed to the main spar by pinning and gluing.

No. 18 gauge wire of the music or piano variety should be used for the tail and rudder. Draw the plan form of the wing full-size on a board; pins may then be driven partly home on each side of the line

at spaces of about 3 in. The wire may now be pushed between the pins, cut off, and lapped for ½ in. The two cross ribs can be soldered to the tail before the tacks are withdrawn. It will be found on releasing the tacks that the wire will remain true to the shape of the template. This may seem a rather laborious process; but it is far quicker and easier than attempting to guess the correct curvature. The rudder may be made to any convenient shape, preferably that shown. The two ends should be sprung outwards after the form of the letter A to form a clearance for the rubber hooks, and then soldered to the tail. A very slight adjustment of this will be found necessary to obviate propeller torque.

Fig. 120.—Front Elevation

No provision has been made for the adjustment of the lift on the tail. Indeed, none was found necessary, it being quite an easy matter to bend the tail flaps up or down to increase or decrease the elevation. They should always, however, have a slight negative angle to maintain longitudinal stability. The tail should be bound to the fuselage with copper wire.

The propeller, of the usual integral type, is carved from the solid block, which measures 15 in. by ⁵/₈ in. by 2¼ in. It should be made of right-handed pitch, and must be placed on the right-hand gear, so that thrust balances torque. On each side, nine strands of ¼-in. strip rubber, lubricated with diluted soft soap, supply the motive power.

This will stand approximately 600 turns. Vaseline will suffice to minimise friction on the gears.

It is advisable to test the model down the wind with about 50 per cent. of the maximum turns. The main plane should be moved forwards to increase the elevation, and backwards to decrease it.

Fig. 123 shows the model in perspective.

Fig. 123.—Complete Tractor Monoplane

CHAPTER XII Hydro-monoplane

The present machine is capable of making a flight of about sixty seconds after rising from the water, which it does after travelling from 8 ft. to 10 ft. under normal conditions. This model is what is known as the “A” frame (see Chapter III.) type of monoplane fitted with a loaded elevator.

The framework or fuselage is not constructed in quite the orthodox manner, but in the manner shown in section at D and E (Fig. 124). These side members are made from two pieces of best silver spruce 3 ft. 3 in. long, ⅜ in. by ¼ in. at the forward or elevator end, ½ in. by ¼ in. in the middle, between the elevator and the main plane, and ⅜ in. by ³/₁₆ in. at the propeller end. This tapering is necessary in order to make the wood proportionate to the strain to which it will be subjected. This is called a cantilever. After each stick has been planed to the above sizes, a hollow chisel is used to channel out the wood on one side, the finish being given with a woodworker’s file. The opposite side is rounded off after the inside is finished. The front ends are bound together and glued, the forward hooks (to which the rubber is attached), and the protector, shown by Fig. 125, being incorporated at the same time; these are made of No. 18 and No. 20 ... piano wire respectively.

The other extremity of the fuselage is held 9½ in. apart by means of a bamboo distance strut, measuring ³/16 in. by ¹/16 in. This strut, together with the three others, is carefully shaped, the ends sharpened, and then fitted into a split in the side members as indicated in Fig. 126. Considerable care is needed in making this form of joint; but when the joints are glued and bound over with ¼-in. strip silk, they are wonderfully strong.

The propeller bearings are made of No. 18 wire, and resemble a lady’s plain hairpin bent at right angles midway, with a cupped washer soldered on the round end to take the thrust (see Fig. 127). These washers, known as French clock collets or cupped washers, may be procured at any watch repairer’s at 3d. per dozen. The propeller bearings should be bound to the fuselage at the same time as the end distance piece is fixed. The frame is trussed with two diagonal bracing wires; No. 30 ... piano wire should be used, this being strained with the aid of hooks as shown in Fig. 128. To tighten the wire, twist the hooks with a pair of round-nose pliers.

The main plane is 37 in. in span, with a maximum width of 7 in. at the centre, tapering to 6 in. at 3 in. from the tip. The camber is ¾ in. at the centre and ⅜ in. near the tip. The frame is constructed of bamboo, the leading edge and the end ribs being one long piece of selected yellow bamboo, ³/₁₆ in. by ³/₃₂ in., and is bent to the shape by holding over an incandescent gas burner. The trailing edge is made of similar material; but is straight when looked at in plan. This piece measures 34 in. by ³/₁₆ in. by ³/₃₂ in., and is joined to the end ribs as shown at C (Fig. 129), afterwards being bound with strip silk. The ribs are all ³/₁₆ in. by ¹/₁₆ in., being bent in the manner suggested above and split-jointed into the spars.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.