Instant download The soils of the usa 1st edition l.t. west pdf all chapter

Page 1


Visit to download the full and correct content document: https://textbookfull.com/product/the-soils-of-the-usa-1st-edition-l-t-west/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Soils of the Laurentian Great Lakes, USA and Canada

James G. Bockheim

https://textbookfull.com/product/soils-of-the-laurentian-greatlakes-usa-and-canada-james-g-bockheim/

The Soils of Ecuador 1st Edition José Espinosa

https://textbookfull.com/product/the-soils-of-ecuador-1stedition-jose-espinosa/

The Soils of Argentina Gerardo Rubio

https://textbookfull.com/product/the-soils-of-argentina-gerardorubio/

The Soils of Nevada Paul W. Blackburn

https://textbookfull.com/product/the-soils-of-nevada-paul-wblackburn/

Making the White Man s West Whiteness and the Creation of the American West 1st Edition Jason E. Pierce

https://textbookfull.com/product/making-the-white-man-s-westwhiteness-and-the-creation-of-the-american-west-1st-editionjason-e-pierce/

Westward on the High Hilled Plains The Later Prehistory of the West Midlands The Making of the West Midlands 1st Edition Derek Hurst Editor

https://textbookfull.com/product/westward-on-the-high-hilledplains-the-later-prehistory-of-the-west-midlands-the-making-ofthe-west-midlands-1st-edition-derek-hurst-editor/

Urban

Soils 1st Edition Lal

https://textbookfull.com/product/urban-soils-1st-edition-lal/

How the West Was Drawn Mapping Indians and the Construction of the Trans Mississippi West David Bernstein

https://textbookfull.com/product/how-the-west-was-drawn-mappingindians-and-the-construction-of-the-trans-mississippi-west-davidbernstein/ Properties and Management of Soils in the Tropics 2nd Edition Pedro A. Sanchez

https://textbookfull.com/product/properties-and-management-ofsoils-in-the-tropics-2nd-edition-pedro-a-sanchez/

L.T. West

M.J. Singer

A.E. Hartemink Editors

The Soils of the USA

WorldSoilsBookSeries

Serieseditor

Prof.AlfredE.Hartemink

DepartmentofSoilScience,FDHoleSoilsLaboratory

UniversityofWisconsin–Madison Madison USA

Aimsandscope

The WorldSoilsBookSeries bringstogethersoilinformationandsoilknowledgeofaparticular countryinaconciseandreader-friendlyway.Thebooksincludesectionsonsoilresearch history,geomorphology,majorsoiltypes,soilmaps,soilproperties,soilclassi fication,soil fertility,landuseandvegetation,soilmanagement,andsoilsandhumans.

InternationalUnionofSoilSciences

Moreinformationaboutthisseriesathttp://www.springer.com/series/8915

Editors L.T.West

USDA-NaturalResourcesConservation Service

Lincoln,NE USA

M.J.Singer

UniversityofCalifornia–Davis

Davis,CA USA

UniversityofWisconsin–Madison

Madison,WI USA

ISSN2211-1255ISSN2211-1263(electronic)

WorldSoilsBookSeries

ISBN978-3-319-41868-1ISBN978-3-319-41870-4(eBook) DOI10.1007/978-3-319-41870-4

LibraryofCongressControlNumber:2016948605

© SpringerInternationalPublishingAG2017

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproduction onmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelieved tobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty, expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthatmayhavebeen made.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Foreword

Thelandresourceregionsshowninthisbookareaconvenientwaytoillustratethediversityof naturalresourcesoftheUSA.Acenturyago,weknewlittleaboutthepropertiesanddiversity ofnaturalresourcesoftheUSA,includingsoilresources;howthelandwasused;anddidit matterhowthenaturalresourcesweremanaged.Overthepastcentury,muchprogresshas beenmadetowardunderstandingtheproperties,genesis,distribution,andmanagementofthe soilresource,andthisbookhighlightsourcurrentknowledgeoftheUSA’ssoilresources.

Prof.HansJennyinhis1941booknotedthat “clearlyitistheunionofthegeographicand thefunctionalmethodsthatprovidesthemosteffectivemeansofpedologicalresearch.” Soil distributionsresultfromformationandevolutionofsoilsandtheirlandscapes.Theexperimentsofnaturehavealreadybeendoneandtheexistingheterogeneitysuggeststhatscalesare importantinunderstandingwhatandwheresoilsoccur.Soilfunctionsdealwithactivebiogeochemicalprocessesandrelatetouseandmanagementofsoil.Experimentscanbedesigned andimplementedtoevaluatevarioustreatmentsandhowsoilsrespondtomanipulations.The mainpurposeofcombiningscienti ficworksaboutsoildistributionsandtheirfunctioningisto transfertechnologytoappropriatelocations.

ThehistoryoftheNationalCooperativeSoilSurveyinvolvestheever-increasingcooperationoffederal,state,county,andprivatesoilscientists.Interdisciplinaryresearchintosoil processesandfunctionsastheyrelatetothelandscapesofthenationhascontinuallyevolved sincethefoundingofagriculturalexperimentstationsandlandgrantuniversities.Today,the expansiononthislegacyincooperativeeffortssuchastheCriticalZoneObservatoriesand similarexpansiveprojectsistrulyphenomenal.

Inthetwenty-firstcentury,thereisanincreasingconcernaboutthedegradationandlossof soilresourcesbecausetheseaffectfoodand fibersuppliesforcivilizationtosurviveand prosper.Theauthorsofthisbookhavegraciouslydedicatedtheirknowledgeandeffortsto helpusunderstandandactaccordinglytotheconceptthat Sustainabilityistheacceptanceof resourcestewardship locallyandglobally.

Preface

Thisbookreviewstheproperties,behavior,distribution,genesis,andmanagementofsoils acrosstheUSA.Ithighlightsthediversityofsoilsandtheimportanceofsoilstoecosystem servicesandproductivity,agriculture,forestry,andurbaninfrastructure.Soilsareacritical componentofnaturalandmanagedecosystemsandperformfunctionsthatsupporttheneeds andwell-beingoftheglobalhumanpopulation;theseincludenutrientandwaterstorageand supplyforplantgrowth,hydrologicbuffering,disposalandrenovationofanthropogenic wastes,habitatforsoilorganisms,andsupportforroads,buildings,andotherinfrastructure. Soilsareamajorreservoirofglobalcarbonandcan,withpropermanagement,serveasasink foratmosphericcarbontoreducegreenhousegasses.Althoughmostsoilsarerelatively resilient,theyaresubjectedtodegradationifmanagedimproperlyorotherwisedisturbed. Thus,conservationofthesoilresourceanditscontinuedusetoperformecosystemfunctions tosupporttheever-increasingglobalpopulationdependsonunderstandingthepropertiesof andprocessesoccurringinthesoilatanypointinthelandscape.

Discussionsofthesoilresourceinthisbookarestrati fiedgeographically,basedonland resourceregions(LRRs)and,withintheLRRs,majorlandresourceareas(MLRAs).The majorpartofthebookconsistsofchaptersthatdiscusssoilsthatoccurineachLRRinthe USAanditsterritories.SeveralchaptersaddressmultipleLRRsthathavesimilarlandscape andenvironmentalcharacteristics.Thebookincludeschaptersthatprovidebackground informationthatmaybeneededtobetterunderstandconceptspresentedincludingprocesses importanttosoilformation,conceptsandproductsofsoilsurvey,andthestructureand nomenclatureof SoilTaxonomy.Alsoincludedarechaptersdiscussingchangesinsoil propertiesrelatedtohumanactivities,andchallengesfacingsoilscienceandsoilsurveyinthe future.

ThewidediversityofsoilconditionsacrosstheUSAprecludesanyoneindividualthatcan synthesizethelargeamountofknowledgeaboutthesoilsacrossthenation.Thus,multiple authors,eachwithextensiveunderstandingofsoilswithintheirregion,havewrittenthe chapters.Thecontentofeachchaptervariessomewhatandreflectsthediversityintheregions aswellastheauthors’ interestandexperience.Weexpressourappreciationtoallofthe contributingauthorsfortheirdedicationandeffortinpreparationoftheirchapter.Wealso appreciatethecooperationwereceivedfromtheUSDA-NaturalResourcesConservation ServiceinallowingmanyNRCSstafftodevotetimetoauthoringchapters,providingdataon propertiesandextentofsoilsineachLRR,andassistancewithpreparationofmap figures.

Systematicmappingofsoilsonthelandscapeandinterpretationoftheirexpectedbehavior hasbeentheobjectiveoftheNationalCooperativeSoilSurvey(NCSS)sincethelate1800s. Thousandsofsoilscientistsfromuniversities,stateandfederalagencies,andtheprivatesector havestrivedtounderstandthesoilresourceandtodeveloptheinventoryofsoilsthatisnow widelyavailable.Withouttheeffortsofallthesescientistsandsoilpractitioners,thisbook wouldnothavebeenpossible.Wededicatethisbooktothisunnamedcadreofdedicatedsoil scientists.Thankyou!

ThecomprehensiveinventoryandavailabilityofsoilinformationacrosstheUSAisan exampleformanycountries.Itwillcontinuetoenablescientistsandproducerstodesignand

implementsoilmanagementsystemsthatallowsustainableproductionoffood, fiber,andfuel cropsnecessarytomaintainthequalityoflife.Theinventoryofthesoilresourcewillalso allowresearchanddirectiononnewchallengesincludingsustainingandimprovingsoil qualityandhealth,soilsequestrationofatmosphericcarbon,renovationofwastewater,and storageanddeliveryofwaterandnutrientsforplantproduction.Itisourhumblehopethatthe knowledgebroughttogetherinthisbookwillbeusedtoeducateagenerationthatwill continuetodeliversolutionstotheenvironmentalchallengesthatweface,nowandinthe future.

Fayetteville,USAL.T.West Davis,USAM.J.Singer Madison,USAA.E.Hartemink

1Introduction ................................................1 L.T.West,M.J.Singer,andA.E.Hartemink

2ConceptsofSoilFormationandSoilSurvey ........................9 RobertC.GrahamandSamuelJ.Indorante

3SoilPropertiesandClassification(SoilTaxonomy) ....................29 CraigA.Ditzler

4SoilsoftheUSA:TheBroadPerspective ...........................43 JamesG.Bockheim

5SoilsofthePacificCoastRegion:LRRsAandC ....................77 SusanBurlewSouthard,RandalJ.Southard,andScottBurns

6SoilsoftheRockyMountainandInlandPacificNorthwestRegion: LRRsBandE ..............................................101 PaulA.McDaniel

7SoilsoftheWesternRangeandIrrigatedLandResource Region:LRRD .............................................115 CraigRasmussen,RebeccaA.Lybrand,CaitlinOrem, JenniferKielhofer,andMollyHolleran

8SoilsoftheGreatPlains .......................................131 DanielRichardHirmasandRolfeDavidMandel

9SouthwestPlateausandPlainsRangeandCottonRegion andSouthwesternPrairiesCottonandForageRegion:LRRsIandJ ......165 DavidEmmanuelRuppert

10SoilsoftheNorthernLakeStatesForestandForageRegion:LRRK ......191 RandallJ.Schaetzl

11SoilsoftheCentralFeedGrainsandLivestockRegionandLake StateFruit,TruckCrop,andDairyRegionUSA:LRRsMandL ........209 ZamirLibohova,PhilipSchoeneberger,DougWysocki,andPhillipR.Owens

12EastandCentralFarmingandForestRegionandAtlanticBasin DiversifiedFarmingRegion:LRRsNandS ........................227 BradD.LeeandJohnM.Kabrick

13SoilsoftheSoutheasternUSA:LRRsO,P,andT ....................243 L.T.West,J.N.Shaw,andE.P.Mersiovsky

14NortheasternForageandForestRegion:LRRR .....................261 M.A.WilsonandR.K.Shaw

15SoilsofFloridaandtheCaribbean:LRRsUandZ ...................281 MaryE.Collins

16SoilsofHawaiiandtheUSTerritoriesinthePacific:LRRsQandV ......305 MichaelP.Robotham,RobertT.Gavenda,andChristopherW.Smith

17SoilsofAlaska:LRRsW1,W2,X1,X2,andY ......................329 C.L.Ping,M.H.Clark,D.D’Amore,G.J.Michaelson,andD.K.Swanson

18HumanLand-UseandSoilChange ...............................351 SkyeA.Wills,CandissO.Williams,MichaelC.Duniway, JessicaVeenstra,CathySeybold,andDeAnnPresley

19FutureChallengesforSoilScienceResearch,Education, andSoilSurveyintheUSA ....................................373 PatrickJ.Drohan

Index .......................................................385

Contributors

JamesG.Bockheim UniversityofWisconsin–Madison,Madison,WI,USA

ScottBurns PortlandStateUniversity,Portland,OR,USA

M.H.Clark USDA-NRCS,Palmer,AK,USA

MaryE.Collins UniversityofFlorida,Gainesville,FL,USA

CraigA.Ditzler USDA-NaturalResourcesConservationService,Lincoln,NE,USA

PatrickJ.Drohan PennsylvaniaStateUniversity,StateCollege,PA,USA

MichaelC.Duniway USGeologicalSurvey,Moab,UT,USA

D.D’Amore USDAForestService,Juneau,AK,USA

RobertT.Gavenda USDA-NRCS,Merizo,Guam

RobertC.Graham UniversityofCalifornia,Riverside,CA,USA

A.E.Hartemink UniversityofWisconsin–Madison,Madison,WI,USA

DanielRichardHirmas UniversityofKansas,Lawrence,KS,USA

MollyHolleran TheUniversityofArizona,Tucson,AZ,USA

SamuelJ.Indorante USDA-NaturalResourcesConservationService,Carbondale,IL,USA

JohnM.Kabrick USDAForestService,NorthernResearchStation,Columbia,MO,USA

JenniferKielhofer TheUniversityofArizona,Tucson,AZ,USA

BradD.Lee UniversityofKentucky,Lexington,KY,USA

ZamirLibohova USDA-NRCS,Lincoln,NE,USA

RebeccaA.Lybrand TheUniversityofArizona,Tucson,AZ,USA

RolfeDavidMandel KansasGeologicalSurvey,Lawrence,KS,USA

PaulA.McDaniel UniversityofIdaho,Moscow,ID,USA

E.P.Mersiovsky USDA-NRCS,LittleRock,AR,USA

G.J.Michaelson UniversityofAlaskaFairbanks,Palmer,AK,USA

CaitlinOrem TheUniversityofArizona,Tucson,AZ,USA

PhillipR.Owens USDA-AgriculturalResearchService,Booneville,AR,USA

C.L.Ping UniversityofAlaskaFairbanks,Palmer,AK,USA

DeAnnPresley KansasStateUniversity,Manhattan,KS,USA

CraigRasmussen TheUniversityofArizona,Tucson,AZ,USA

MichaelP.Robotham USDA-NRCS,Lincoln,NE,USA

DavidEmmanuelRuppert TexasA&MUniversity-Kingsville,Kingsville,TX,USA

RandallJ.Schaetzl MichiganStateUniversity,EastLansing,MI,USA

PhilipSchoeneberger USDA-NRCS,Lincoln,NE,USA

CathySeybold USDA-NRCS,Lincoln,NE,USA

J.N.Shaw AuburnUniversity,Auburn,AL,USA

R.K.Shaw USDA-NRCS,Somerset,NJ,USA

M.J.Singer UniversityofCalifornia,Davis,Davis,CA,USA

ChristopherW.Smith USDA-NRCS,Washington,DC,USA

RandalJ.Southard UniversityofCalifornia,Davis,Davis,CA,USA

SusanBurlewSouthard USDA-NRCS,Davis,CA,USA

D.K.Swanson USDI-NationalParkService,Fairbanks,AK,USA

JessicaVeenstra FlaglerCollege,St.Augustine,FL,USA

L.T.West USDA-NRCS,Lincoln,NE,USA

CandissO.Williams USDA-NRCS,Lincoln,NE,USA

SkyeA.Wills USDA-NRCS,Lincoln,NE,USA

M.A.Wilson USDA-NRCS,Lincoln,NE,USA

DougWysocki USDA-NRCS,Lincoln,NE,USA

Abbreviations

AlAluminum

AWCAvailablewatercapacity

B.P.Beforepresent

CCarbon

CaCalcium

CaCO3 Calciumcarbonate

CCECalciumcarbonateequivalent

CECCationexchangecapacity

CH4 Methane

cmCentimeter(s)

cmolCentimole(s)

CNMICommonwealthoftheNorthernMarianaIslands

CO2 Carbondioxide

dDay

dSDecisemen(s)

EAAEvergladesAgriculturalArea

ECElectricalconductivity

ECTEasternCrossTimbers

ESPExchangeablesodiumpercentage

FeIron

gGram(s)

GPGrandPrairie

HHydrogen

h,hrHour

haHectare

HClHydrochloricacid

HCO3 Bicarbonate

KPotassium

kaThousandyears

KClPotassiumchloride

kmKilometer

KOHPotassiumhydroxide

kPaKilopascal(s)

Ks Saturatedhydraulicconductivity

lLiter

LRRLandresourceregion

mMeter(s)

MAATMeanannualairtemperature

MaMillionyears

MAPMeanannualprecipitation

MASTMeanannualsoiltemperature

MATMoistacidtundra

MgMagnesium

MgMegagram(s)

MJTMeanJulytemperature

MLRAMajorlandresourcearea

mmMillimeter(s)

MnManganese

MNTMoistnonacidtundra

NaSodium

NaOHSodiumhydroxide

NBPNorthernBlacklandPrairie

NCPTexasClayPanArea,NorthernPart

NCSSNationalCooperativeSoilSurvey

NCTNorthernCrossTimbers

NLSFFRNorthernLakeStatesForestandForageRegion

NRCSNaturalResourcesConservationService

PPhosphorus

PETPotentialevapotranspiration

SARSodiumadsorptionratio

SBPSouthernBlacklandPrairie

SCPTexasClayPanArea,SouthernPart

SCSSoilConservaitonService,nowNaturalResourcesConservationService

SiSilicon

SiO2 Silicondioxide

SMRSoilmoistureregime

SO4 Sulfate

SOCSoilorganiccarbon

SOMSoilorganicmatter

SSDSoilScienceDivision

SSSASoilScienceSocietyorAmerica

STRSoiltemperatureregime

SWISummerwarmthindex

TTon,megagram

TCBTexasCentralBasin

USDAUnitedStatesDepartmentofAgriculture w/wWeightperweight

WATWetacidtundra

WCTWesternCrossTimbers

WNTWetnonacidtundra

y,yrYear

oCDegreesCelsius

Introduction

1.1Introduction

ThisisabookaboutsoilsoftheUnitedStates.Soilsarea criticalandoftenunappreciatedresourcebecausetheyare belowfootandmostlyoutofsight.Thisbookbringstoyoua comprehensiveoverviewofthediversity,beauty,andvital importanceofsoilstoecosystems,agriculture,forestry,and urbaninfrastructure.Itisintendedtobeareferenceand learningtoolthatwillenhanceyourknowledge,understanding,andappreciationofthesoilresourcesintheUSA. Soilsupportsallterrestriallifeforms,andperformsfunctions criticaltothewell-beingoftheglobalpopulationincluding nutrientandwaterstorageandsupplyforplantgrowth, partitioningofprecipitationintogroundandsurfacewaters, disposalandrenovationofanthropogenicwastes,habitatfor soilorganisms,andsupportforroads,buildings,andother infrastructure.Soilsareamajorreservoirofglobalcarbon andcan,withpropermanagement,serveasasinkforatmosphericcarbontoreducegreenhousegasses.Soilsare relativelyresilient,butaresubjecttodegradationifmanaged improperly.Onlybyunderstandingthepropertiesofand processesoccurringinthesoil,canthesoilresourcebe conservedandsustainedforcontinuedsupportoftheEarth’s population.

1.2DiversityofSoilsintheUSA

SoilTaxonomyisthetaxonomicsystemusedtoclassify soilsintheUSAaswellasinmanyothercountriesacross theglobe(Fig. 1.1).Itdefinessoilas “anaturalbodycomprisedofsolids(mineralsandorganicmatter),liquid,and gasesthatoccursonthelandsurface,occupiesspace,andis characterizedbyoneorbothofthefollowing:horizons,or layers,thataredistinguishablefromtheinitialmaterialasa resultofadditions,losses,transfers,andtransformationsof energyandmatterortheabilitytosupportrootedplantsina naturalenvironment” (SoilSurveyStaff 2014).Thisisthe definitionthatwasusedinthisbook.Fromtheinitialparent material(rock,sediment,etc.),soilsbecomeverticallydifferentiatedbynaturalprocessesovertimeintolayerscalled “horizons”.Thepropertiesandarrangementofsoilhorizons reflecttheparentmaterial,vegetation,climate,andthe interactingchemical,physical,andbiologicalprocessesthat havebeenimportantindevelopmentofthesoil.Theconglomerationoftheseprocessesisknownassoilformation. Thepropertiesandarrangementofhorizonsdefinesthesoil andmakesoilsondifferentlandscapesegmentsdifferent fromthoseonothersegments.

L.T.WestretiredfromUSDA-NRCS

L.T.West(&) USDA-NRCS,Lincoln,NE,USA e-mail:larrywestar@gmail.com

M.J.Singer UniversityofCalifornia,Davis,Davis,CA,USA e-mail:mjsinger@dcn.org

A.E.Hartemink UniversityofWisconsin,Madison,Madison,WI,USA e-mail:hartemink@wisc.edu

© SpringerInternationalPublishingAG2017

L.T.Westetal.(eds.), TheSoilsoftheUSA,WorldSoilsBookSeries, DOI10.1007/978-3-319-41870-4_1

Propertiesofthesoilatanypointinthelandscapearedue totheactionofandinteractionamong fiveenvironmental factors;climate,parentmaterial,reliefortopography,biology,andtime(Jenny 1941).AcrosstheUSA(landareaof about9,857,000km2),anearlyinfiniterangeinclimatic, geologic,geomorphologic,andvegetativeconditionshas resultedinaenormousrangeinsoilmorphological,chemical,physical,mineralogical,andbiologicalcharacteristics. Thisrequirescompartmentalizationofsoilsintogroupsasan aidincommunicationofsoilpropertiessothatsoilinformationcanbeuseful.Thisgroupingofknowledgeisoneof themajorrolesofSoilTaxonomy.

Climate,speci ficallytemperatureandprecipitation, influencestheprocessesthatconvertparentmaterialinto soil.Airtemperaturesvaryfromthoseofthetundrain northernAlaskatothoseofDeathValleyintheCalifornia

Fig.1.1 UseofSoilTaxonomy andothersoilclassification systemsacrosstheworld

MojaveDeserttothoseintherainforestintropicalPuerto Rico.Annualprecipitationvariesfromafewmillimetersin thesouthwesterndesertsandtheleesideoftheHawaiian Islandstomorethan10monthewindwardsideofsomeof thePaci ficIslands.Becauseofthewiderangesinclimate foundacrosstheUSA,nativevegetationisextremelydiverse andincludesdenseevergreenforests,hardwoodforests,savannahs,mountainmeadows,prairiesofalltypes,mangrove swamps,coastalmarshes,tropicalrainforests,andmany othercommunities.

Avastrangeoftypesandcompositionofrocksoccurs acrossthecountryincludinggranites,schists,gneisses, limestones,sandstones,shales,andmanyothers.Continental andmountainglaciershaveleftlargedepositsofglacial sediments.Streamshavebuiltalluvialterracesanddeltas. Volcanoeshavedepositedashandlavaoverlargeareas,and windhasformedextensivedunesandblanketedvastareas withloess.Uplandlandformsvaryfrombroadlevelplainsto steepmountainslopestocloseddepressionspondedwith waterforperiodsoftheyear.

1.3Objective

Theprimaryobjectiveofthisbookistopresentanoverview ofthesoilsoftheUSAincludingproperties,genesis,and landscaperelationshipsofimportantsoilsacrossthecountry astheserelatetothe fi vefactorsofsoilformation.Asecondaryobjectiveistodescriberelationshipsbetweenthe soilsandlandusepatternsandtohighlightsoilvulnerabilitiesrelatedtohumanuseofthesoils.

Thisbookisintendedtoserveasareferenceforearthscientists,ecologists,biologists,forestersandallothersinterested inanoverviewofthepropertiesofsoilsintheUSA.Although useasatextbookinuniversitysettingswasnotaprimary objective,allorpartsofthistextmaybeusefultoeducate studentsingeography,earthsciences,ecology,andotherdisciplinesabouttheproperties,genesis,anddistributionofsoils intheUSA.Thebookwillalsoaiddevelopmentofstudents’ understandingofthedynamicsofthesoilsystem,theinfluence ofsoilsonecosystemcharacteristicsanddynamics,andthe importanceofsoilsandpropersoilmanagementforsustaining agriculturalandsilviculturalproductionwhilemaintainingor improvingenvironmentalconditions.

1.4Organization

Althoughthe fi rstsoilmapsintheUSAweremadeinthe 1820s(BrevikandHartemink 2013),systematicmappingof differentsoilsonthelandscapeandinterpretationoftheir expectedbehaviorhasbeenongoingsince1899.Aspartof theNationalCooperativeSoilSurvey(NCSS),variousstate andfederalagenciesanduniversitiesacrossthecountryhave contributedtothisinventoryofsoils.Theseeffortshave resultedintheSoilSurveyoftheUSA,whichcontainssoil informationformorethan90%ofthecountry.TheSoil Surveyincludesmapsofsoildistribution,descriptionsofhow thesoilsinanarearelatetospecifi clandforms,descriptionsof thepropertiesofthesoils,interpretationsofsoilbehavior,and suitabilityandlimitationsofsoilsforspecifi cuses.This informationservesasthebasisforthisoverviewofthesoils

acrosstheUSAandwithoutit,assemblingtheinformation includedinthistextwouldnotbepossible.

Over21,000differentsoilseriesarenowrecognizedin theUSA,anditisvirtuallyimpossibletoprovideameaningfuloverviewoftheirgreatdiversityandincludespeci fic informationonthemostextensiveand/orimportantofthese soilswithoutameaningfulstratificationofthesoils.Since thepublicationofSoilTaxonomy(SoilSurveyStaff 1975), severalauthorsoftextsdiscussingsoilpropertiesandgenesis haveusedthe12soilorders(thehighestlevelofthissystem ofsoilclassification)tostratifyglobalsoilresourcesinto meaningfuldivisions,e.g.Wildingetal.(1983),Westand Wilding(2011),Buoletal.(2011),Bockheim(2014)and Lal(2016).Thisapproachhasbeenwellreceived,extremely useful,andhashelpedearthscientistsacrosstheworldto developanunderstandingofthebasisforsoilclassification usingSoilTaxonomyandtheproperties,genesis,andglobal distributionofsoilsineachorder.Thismeansofgrouping soilshasalsoproventobeusefulforuniversityPedology coursesaspropertiesandgenesisofsoilscanbepresentedin asystematicmannerthatemphasizessimilaritiesanddifferencesamongsoilsworldwide.

Incontrasttostratifyingsoilsbasedontheirclassification, thediscussionsofthesoilresourceinthistextareorganized geographically,i.e.soilproperties,genesis,anduseofsoils aredescribedfordifferentregionsoftheUSA.Several publicationsareavailablethatdiscussdistributionand propertiesofsoilsforspeci ficstatesandregionsoftheUSA, e.g.Buol(1973),Hole(1976),Montague(1982),Springer andElder(1980),Danielsetal.(1999)andBryeetal. (2013),andbetween1883andthepresent,129statesoil mapshavebeenproduced(BockheimandGennadiyev

2015).Atextthatattemptstodescribeanddiscussthesoil resourceforallofUSAanditsterritories,however,hasnot beenpublishedinrecentyears.Thelastcomprehensive treatmentofsoilpropertiesfortheentirecountrywaspublishedin1936(Marbut 1936).Morerecently,Bockheim (2014)providedacountry-wideoverviewofthedistribution ofdiagnostichorizons.

1.4.1TheBaseforThisBook

ThegeographicbasischosentostratifysoilsintheUSAfor thisbookisthelandresourceregion(LRR)andwithinthe LRRs,themajorlandresourcearea(MLRA)(USDA-NRCS 2006).Theseareregionallandscapeunitsderivedbyaggregationofsoilandlandscapeunitsfromdetailedsoilmapsup totheregionalscale.EachLRRandMLRAhassimilar topography,climate,waterresources,potentialnaturalvegetation,landuse,elevation,andsoils(USDA-NRCS 2016). RelationshipsbetweenLRRsandMLRAs,USEPALevelIII Ecoregions(USEPA 2003;Omernik 1987),andU.S.Forest Serviceecologicalsections(Clelandetal. 2005;McNab etal. 2005)aswellasdetaileddiscussionsofthegeology, physiography,waterresources,andlanduseforeachLRR andMLRAcanbefoundinUSDA-NRCS(2006).

Themajorpartofthisbookisaseriesofchaptersthat discussthesoilsinthevariousLRRsrecognizedintheUSA anditsterritories.EachLRRisdesignatedbyacapitalletter andnamedfortheirlocationandprimarylanduses.LRRA isinthePaci ficNorthwestregionoftheUSA,andtheletters designatingtheLRRsgenerallyincreaseinaneasterlyand southerlydirection(Fig. 1.2).TheLRRsrangeinareafrom

Fig.1.2

260km2 fortheHawaiiRegionto1,400,000km2 for LRRDofthearidsouthwesternUSA.

Severalofthechaptersincludediscussionsofthesoilsin twoormoreLRRs.Inmanyofthechaptersthataddress multipleLRRs,aLRRwithrelativelysmalllandareais combinedwithanadjoininglargerLRRwithsimilarsoils, climate,topography,andsoilparentmaterials.Inother cases,LRRswithsimilarandrelatedsoils,topography,and parentmaterialsareaggregatedintoasinglechapter.For example,LRRsF,G,andHcomprisethecentraland northernpartsoftheGreatPlainsoftheUSAandare combinedintoasinglechapter.Similarly,parentmaterials, climate,topography,andsoilsforLRRsP,T,andOare similarandrelated,andthesearecombinedintoasingle chaptertoreduceredundancy.

1.4.2AboutThisBook

Nooneindividualhastheknowledgeandexperienceto adequatelydescribeanddiscussthediversityofsoilsacross theUSA.Thus,amulti-authorapproachwasusedinorderto haveknowledgeablescientistswhoarefamiliarwiththesoils inthevariousregionsofthecountryassembletheinformationineachchapter.Assuch,theemphasisofandinformationincludedineachchapterreflectstheauthors’ interestand experience,andwillthusvarysomewhat.Allchapters, however,discussrelationshipsofsoilpropertiesanddistributiontotheclimatic,geomorphic,geologic,andvegetative conditionsineachregion.Similarly,theimpactofsoiluse andmanagementonthesoilresourceisincludedtoagreater orlesserextentfortheLRRsincludedineachchapter.

Theinformationincludedandlevelofdetailvariesamong thechapters.Thisvariationisoftenduetotheauthor ’s conceptsofthetypesofinformationthatshouldbeincluded inthechapter.Theavailabilityofdataandresearchspeci ficto soilsintheLRR(s)includedineachchaptervaries,however, anddetailsmaynotbeincludedbecausetheyareunknown. ResearchonsoilgenesisandbehaviorinotherLRRsis extensive.Forthese,detailsofproperties,genesis,anduseof manyextensiveandimportantsoilshavebeenomittedor generalizedtokeepthesizeofthebookmanageable.Referencesareincludedforeachchaptertoenablereadersto find additionaldetailsconcerningpropertiesofparticularsoils and/orgenesisanddistributionofsoilsinparticularregions.

WhilethechaptersgenerallyemphasizethemostextensivesoilsineachLRR,mostalsohaveincludeddiscussions ofimportantsoilsoflimitedextent,importantsoilfeatures, anduniquesoilconditions.Additionalinformationondistributionandpropertiesofsoilsforspeci ficlocalareas withintheUSAisavailablefromtheWebSoilSurvey(Soil SurveyStaff 2016a; http://websoilsurvey.nrcs.usda.gov), fromtheSoilWebapp(UC-DavisCaliforniaSoilResource

Lab 2015; http://casoilresource.lawr.ucdavis.edu/soilwebapps),andfromPurdueUniversity’sIntegratedSpatial EducationExperience(ISEE)site(Schulzeetal. 2015; http://isee.purdue.edu).Additionaldataandinformationon soilsacrosstheUSAisavailablefromtheUSDA-NRCS soilswebsite(http://www.nrcs.usda.gov/wps/portal/nrcs/site/ soils/home/).

1.4.3TheFocusofThisBook

Thefocusofthisbookisthechaptersoncharacteristics, genesis,anduseofthesoilsineachLRR.Becausenotall readersmaybefamiliarwithconceptsandterminology relatedtosoilformationandsoilsurvey,Chap. 2 (Concepts ofSoilFormationandSoilSurvey)providesanoverviewof importantprocessesthatareinvolvedinformationofsoils. Thischapteralsoincludesasectiondescribingimportant conceptsrelatedtothesoilsurveyoftheUSAincluding typesofsoilmaps,mapscaleandresolution,andproductsof theUSAsoilsurvey.

Soilclassi ficationisnotaprimaryfocusofthisbook. Becauseitisthelanguageofsoilscience,however,namesof taxafromSoilTaxonomy(SoilSurveyStaff 2014)areused throughoutthechapterstorefertosoilsthatoccurinthe variousLRRsandMLRAs.Thus,ageneralunderstandingof thestructureandnomenclatureofSoilTaxonomyisneeded tounderstandtheinformationpresentedineachchapter. Eachtaxonisdefinedbycertainproperties,andoftenthese propertiescanbeinferredfromthenameofthetaxonwithout knowingthespeci ficsofcriteriausedforplacement.Chapter 3 (SoilPropertiesandClassi fication)providesanoverviewof SoilTaxonomyincludingitsstructureandderivationof namesoftaxathatcanbeusedtoinferproperties.Additional detailsofSoilTaxonomycanbefoundintheIllustrated GuidetoSoilTaxonomy(SoilSurveyStaff 2016b),Soil Taxonomy(SoilSurveyStaff 1999),theKeystoSoilTaxonomy(SoilSurveyStaff 2014),andvarioustextbooks,e.g. Wildingetal.(1983),FanningandFanning(1989),Buol etal.(2011)andSchaetzlandThompson(2015).

Wherepossible,soilseriesnameswereavoidedindiscussionsofthesoilsineachregionsinceseriesnamescarry noadditionalinformationandhavelittlemeaningtothose unfamiliarwiththeseries.Seriesnamesareusedininstances,however,becausetheyarethebasisfororganizingdata andotherinformationwithintheNCSS.The “OfficialSeries Descriptions” includedescriptionofthepropertiesofeach seriesusedintheNCSSalongwithitsclassification, descriptionoftypicallandformsandparentmaterial,and relatedinformation(SoilSurveyStaff 2016c).

Chapter 4 (SoilsoftheUSA:TheBroadPerspective) providesabroadoverviewofthesoilresourcesfortheUSA. Itincludesgeneralinformationondistributionofsoilorders

andsubordersacrosstheUSAanditsterritoriesaswellasan overviewofimportantsoilformingfactorsandprocessfor eachLRR.Thechapteralsoincludesbriefdiscussionsofthe climate,geology,geomorphology,andsoilresourcesineach LRRaswellasanoverviewofthediversityofsoilsand relativeabundanceofvarioustaxaforeachLRRandMLRA.

Chapters 5 through 17 comprisethemajorfocusofthis work,whichisadiscussionofproperties,genesis,anduseof soilsinoneormoreofthe28LRRsthatcomprisetheUSA anditsterritories(Figs. 1.2, 1.3, 1.4).

The fi nalchapterofthiswork,Chap. 19 (FutureChallengesforSoilScienceResearch,Education,andSoilSurveyintheUSA)attemptstodiscussthecurrentstateofsoil scienceandpedologicresearchandeducationintheUSA. Thechapteralsoofferssolutionstoafewoftheissuesthat arelimitingsoilscienceeducationandresearch.Theintent ofthechapteristohighlightissuesfacingsoilscienceand offeronescientist’sconceptsofpotentialactionsthatmight overcometheseissues.Theconceptsputforwardinthis chaptermayencourageacontinuingdialogamongsoilscientists,policymakers,agencyadministrators,andthepublic todevelopastrategytopromoteadvancementinthestudy andteachingofthesoil oneofthenation’smostcritical non-renewablenaturalresources.

1.5Summary

Itistheeditors’ andauthors’ desirethatreadersofthisbook will findausefulreferenceandlearningtoolandthatitwill enhancetheirknowledgeoftheUSA’ssoilresources.Soilis

Pedologistshavelongrecognizedthatsoilschangeover time.Thechangesinpropertiesrelatedtosoilformation havebeenrelatedtoprocessesoperatingovercenturiesto millenniaandchangesinthelandscapethathaveoccurred overgeologictime.Recently,therehasbeenwiderrecognitionthatchangesinsoilpropertiesareoftenrelatedto humanuseofsoil.Tounderstandsoilchangeandapplythat knowledgetosustainablelandmanagement,wemust understandhowhumanactivitiesimpactthesoilitselfand soil’sinteractionswiththewiderenvironment.Chapter 18 (HumanLand-UseandSoilChange)providesanoverview ofimportantconceptsforevaluatingandunderstandingsoil changeandpresentsexamplesofsoilsthathaveundergone majorchangesduetoagriculturalmanagement,mining,and othertypesofdrasticdisturbance.

Fig.1.3 LRRsofAlaskaandthe CaribbeanArea

Alaska LRRs

Fig.1.4 LRRsandMLRAsofHawaiiandthePacificIslands

thethinskincoveringourplanetthatisanessentialcomponentofallecosystems.Soilsupportsallterrestriallife forms,andperformsanumberoffunctionscriticaltothe well-beingoftheglobalpopulationincludingnutrientsupply andstorageforterrestrialandaquaticecosystems,partitioningofrainfallandsnowintogroundandsurfacereservoirs,disposalandrenovationofanthropogenicwastes, habitforsoilorganisms,andsupportforroads,buildings, andotherinfrastructure.Soilsarealsoanimportantpartof theglobalcarboncycleandpotentiallycansequesteratmosphericcarbontoreducegreenhousegasconcentrations. Soilsarerelativelyresilientandwillperformtheseandother functionsalmostinde finitelywithpropermanagement.In contrast,improperuseandmanagementwillquicklydestroy thisvaluablenon-renewableresource.Onlybyunderstandingthepropertiesofandprocessesoccurringinthesoil,can managementsystemsbedesignedandimplementedthatwill ensurethelong-termsustainabilityofthesoil,thisandall othernation’smostvaluablenaturalresource.

References

BockheimJG(2014)SoilgeographyoftheUSA.Springer,Dordrecht BockheimJ,GennadiyevAN(2015)Generalstatesoilmapsinthe USA.Geoderma253–254:78–89

BrevikE,HarteminkAE(2013)SoilmapsoftheUnitedStatesof America.SoilSciSocAmJ77:1117–1132

BryeKR,MersiovskyE,HernandezL,WardL(2013)Soilsof Arkansas.ArkansasAgricExpStn,UniversityofArkansasDivof Agric,Fayetteville

BuolSW(ed)(1973)SoilsofthesouthernstatesandPuertoRico. SouthernCoop.Seriesbull.no.174

BuolSW,SouthardRJ,GrahamRC,McDanielPA(2011)Soilgenesis andclassification,6thedn.Wiley-Blackwell,Ames ClelandDT,FreeoufJA,KeysJE,NowackiGJ,CarpenterCA, McNabWH(2005)Ecologicalsubregions:sectionsandsubsections oftheconterminousUnitedStates.U.S.DepartmentofAgriculture, ForestService,Washington DanielsRB,BoulSW,KleissHJ,DitzlerCA(1999)Soilsystemsin NorthCarolina.Tech.Bull.314,NCStateUniversity,Raleigh FanningDS,FanningMCB(1989)Soil:morphology,genesis,and classification.Wiley,Hoboken

HoleFD(1976)SoilsofWisconsin.UniversityofWisconsinPress, Madison JennyH(1941)Factorsofsoilformation.McGraw-Hill,NewYork LalR(ed)(2016)Encyclopediaofsoilscience.Marcel-Dekker,New York

McNabWH,ClelandDT,FreeoufJA,KeysJE,NowackiGJ, CarpenterCA(2005)Descriptionofecologicalsubregions:sections oftheconterminousUnitedStates.U.S.DepartmentofAgriculture, ForestService,Washington

MarbutCF(1936)PartIII,soilsoftheUnitedStates.AtlasofAmerican Agriculture,USDA,Washington

MontagueC(1982)SoilsofMontana.Bull744,MontanaAgricExp Stn,Bozeman

OmernikJM(1987)EcoregionsoftheconterminousUnitedStates.Ann AssocAmGeogr77:118–125

SchaetzlRJ,ThompsonML(2015)Soils:genesisandgeomorphology, 2ndedn.CambridgeUniversityPress,Cambridge

SchulzeDG,MillerCC,GlotzbachRJ,KocurLA(2015)Integrated spatialeducationalexperience(ISEE). http://isee.purdue.edu SpringerME,ElderJA(1980)SoilsofTennessee.Bull596,Tenn AgricExpStn,Knoxville

SoilSurveyStaff(1975)SoilTaxonomy:abasicsystemofsoil classificationformakingandinterpretingsoilsurveys.Handbook 436,USDA-NaturalResourcesConservationService.USGovernmentPrintOffice,Washington

SoilSurveyStaff(1999)SoilTaxonomy:abasicsystemofsoil classificationformakingandinterpretingsoilsurveys,2nded. Handbook436,USDA-NaturalResourcesConservationService. USGovernmentPrintOffice,Washington

SoilSurveyStaff(2014)KeystoSoilTaxonomy,12thedn. USDA-NaturalResourcesConservationService,Washington

SoilSurveyStaff(2016a)Websoilsurvey.USDA-NaturalResources ConservationService. http://websoilsurvey.nrcs.usda.gov

SoilSurveyStaff(2016b)IllustratedguidetoSoilTaxonomy.USDA, NaturalResourcesConservationService. http://www.nrcs.usda.gov/ wps/portal/nrcs/main/soils/survey/class/

SoilSurveyStaff(2016c)Officialseriesdescriptions.USDA-Natural ResourrcesConservationService. http://www.nrcs.usda.gov/wps/ portal/nrcs/detailfull/soils/survey/class/data/?cid=nrcs142p2_ 053587

UC-DavisCaliforniaSoilResourceLab(2015)SoilWebApps. http:// casoilresource.lawr.ucdavis.edu/soilweb-apps

USDA-NRCS(2006)Landresourceregionsandmajorlandresource areasoftheUnitedStates,theCaribbean,andthePacificBasin. Handbook296,USDA-NaturalResourcesConservationService. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/? cid=nrcs142p2_053624

USDA-NRCS(2016)Landresourceregionsandmajorlandresource areas.InPart649,Nationalsoilsurveyhandbook,title430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/ref/?cid= nrcs142p2_054242

UnitedStatesEnvironmentalProtectionAgency(2003)LevelIII ecoregionsoftheconterminousUnitedStates.Revisedfrom Omernik,1987.USEPANationalHealthandEnvironmentalEffects ResearchLaboratory(NHEERL). http://www.epa.gov/wed/pages/ ecoregions/level_iii.htm

WestLT,WildingLP(2011)Classificationofsoils.In:HuangPM, LiY,SumnerME(eds)Handbookofsoilscience,propertiesand processes,2ndedn.CRCPress,BocaRaton,pp33-1–33-190 WildingLP,SmeckNE,HallGF(eds)(1983)PedogenesisandSoil TaxonomyII.Thesoilorders.Elsevier,Amsterdam

ConceptsofSoilFormationandSoilSurvey

2.1SoilFormation

2.1.1FactorsofSoilFormation

Oneoftheearliestconceptsinsoilscienceisthatsoilformationisinfluencedby fivefactors:parentmaterial,climate, topography,organisms,andtime.Thesefactorswere fi rst identi fiedbyV.V.Dokuchaevinthelate1800sashe inventoriedsoilsoftheRussiansteppes.TheywerepopularizedintheUSAbythebook, TheFactorsofSoilFormation,inwhichJenny(1941)soughtmathematical expressionsofsoilformationbasedonthevariableshe referredtoascl,o,r,p,andt(climate,organisms,relief, parentmaterial,andtime).Thesevariablesprovidean effectivecontextforconsideringsoilformation.

Humanshavehadconsiderableinfluenceonsoilsfor thousandsofyears,butthisinfluencehasvastlyincreased sincethebeginningofthetwentiethcentury.Nowextensive areasofsoilsworldwidehavebeenirrevocablyaltered. Becauseoftheirhugeimpactonsoils,humanshavebeen consideredasaspecificagentofsoilformation(Amundson andJenny 1991)andsoilchange(Chap. 18).

2.1.1.1ParentMaterial

Inanycase,theparentmaterialprovidesthegeochemical foundationofthesoil.Themineralsthatcomposetheparent materialarethesourcesofelementsthatserveasnutrients forplantsorprecipitateasclayminerals.Aparentmaterial thatlackscertainelementsmaylimitthenutrientstatusof thesoilsthatformfromitaswellasthekindsofminerals thatcanformbyweathering.Forexample,ultrama ficrock containshighlevelsofFe,Mg,andSi,butverylowlevelsof Ca,K,andAl.Asaresult,thesoilssupportdistinctive vegetationcommunitiesadaptedtolowCa:Mgratiosand minimalK.Thesilicateclaysthatforminthesoilsare enrichedinMgorFeratherthanAl.

Likewise,theparentmateriallimitsthetexturalrangeof thesoilsderivedfromit.Soiltexturesaretypically fi nerthan thegrainsizesoftheoriginalparentmaterialbecause weatheringreducesthesizeoftheoriginalgrainsandprecipitatesclay-sizematerial,thusreducingthegrainsize overall.Coarsesoiltexturesresultfromparentmaterials suchassandstonesandgranites(Fig. 2.4)thathave sand-sizequartzgrains,whichareresistanttoweathering. Finetexturesresultfromsedimentsthatarealreadyclay-and silt-rich,suchasshale(Fig. 2.5),orrocksthatarecomposed ofeasilyweatheredprimaryminerals,suchasbasalt.

2.1.1.2Climate

Theinitialmaterialfromwhichsoilsformisconsideredthe parentmaterial.InthecaseofHistosols(organicsoils),the parentmaterialisplantdebris,butformostsoils,itismineralmatter.Theparentmaterialmaybesolidrockthat weathersinplacetoformsoil(Fig. 2.1),oritmaybe transportedanddepositedbeforehavingsoilsforminit (Fig. 2.2).Transportedparentmaterialsincludethose depositedbyrunningwater(alluvium),gravity(colluvium), glaciers(till),wind(loess,aeoliansand),andvolcanic eruptions(tephra).Incertainpartsofthecountry,itis commonto findsoilswithloess,tephra,orotherdepositson topofsoilsformedfromotherparentmaterials.Inthese cases,thesoilsformintwoparentmaterials:onebelowand oneabove(Fig. 2.3).

R.C.Graham(&)

UniversityofCalifornia,Riverside,CA,USA

e-mail:robert.graham@ucr.edu

S.J.Indorante

USDA-NaturalResourcesConservationService,Carbondale,IL, USA

e-mail:sam.indorante@il.usda.gov

© SpringerInternationalPublishingAG2017

L.T.Westetal.(eds.), TheSoilsoftheUSA,WorldSoilsBookSeries, DOI10.1007/978-3-319-41870-4_2

Theinfluenceofclimateonsoilformationislargelythrough thecombinedeffectsofwaterandtemperature,although windandsolarradiationalsoplayimportantroles.

Water,deliveredtothesoilasrain,snowmelt,orfogdrip, isrequiredforweathering,biologicalactivity,andthetransportofmaterialsthroughsoils.Thedispositionofwaterin soilscanbeconsideredusingthewaterbalancerelationship:

Fig.2.1 AnUltisol(Bethlehemseries)formedfromtheinsituweatheringofschistbedrockontheNorthCarolinaPiedmont.The10–60cm depthzoneisakandichorizonandisredduethepigmentationof hematite,anironoxide.Thezonebelow100cmissaprolite(bedrockso thoroughlyalteredbyweatheringthatitissoftandclayenriched).

Photographcredit:JohnA.Kelley,SoilScientist,USDA-NRCS

Changeinstorageinthesoil ¼ Precipitation Runoff

Evapotranspiration

Deeppercolation

Thewaterstoredinthesoilisavailableforweathering reactionsandbiologicalactivity,andtheinfluxofwaterto fillthestoragemovesmaterialsthroughthesoilinsolution andsuspension.

Bothrunoffanddeeppercolationaredependentonpropertiesofthesoilitself.Runoffoccurswhenwaterisunableto infiltrateintothesoil,eitherbecausealloftheporesarealready filledwithwater,orbecausetheporesaretoofew,small,or unconnectedtoallowinfiltrationataratethatcanaccommodatetherainfallorsnowmelt.Deeppercolationoccurswhen morewaterinfiltratesintothewholesoilvolumethanitcan retainagainsttheforceofgravity.Asoil’swater-holding capacityvarieswithtexture,suchthatsandysoilsholdless waterandhavemoredeeppercolationthanclayeysoils.

Fig.2.2 AnEntisolformedinadebris flowdepositintheSan BernardinoMountains,California.Thepineneedles,twigs,andother plantpartsthatcomposetheOhorizonatthesurfacebecomemore decomposedwithdepth.Photographcredit:JudithTurk

Fig.2.3 AnAridisolnearQuartzsite,Arizona.Desertpavement overliesaVhorizonwithcolumnarstructurethatformedineolian dust(0–6cmdepth),whichoverliesaBhorizonformedinalluvium.

Photographcredit:JudithTurk

Fig.2.4 AnEntisol(Wakeseries)formedfromweatheringofgranite ontheNorthCarolinaPiedmont.Thesoiltexturesabove50cmare sandy,andbelowthisdepthissaprock(bedrocksoftenedby weathering,butnotthoroughlyaltered).Photographcredit:JohnA. Kelley,SoilScientist,USDA-NRCS

Precipitationandevapotranspirationaretheclimatic variablesinthewaterbalanceequation.Thebalance betweentheinputofwater(precipitation)anditslosstothe atmosphere(evapotranspiration)defi nestheclimaticeffect onsoilmoisture.Fourclimate-dependentsoilmoisture regimesrecognizedbytheUSDAsoiltaxonomicsystemare showninFig. 2.6.Audicsoilmoistureregimeoccursmainly inthemidwesternandeasternstateswhereprecipitation inputisgreaterthanevapotranspirationlosses,suchthat deepleachingisexpected.Theusticsoilmoistureregimeis mostlyinthePlainsstateswhereamoderatesoilwater deficitexists.Thearidicsoilmoistureregimereflectsa strongwaterdeficitwithnodeepleachingandiscommonin thewesternstates.Thexericsoilmoistureregimeisunique inthatitdefi nessoilsthataremoistinthewinter,eventothe pointofbeingstronglyleached,butaredryduringthe summer.ThesesoilsaremostlyinCaliforniaandOregon. Theaquicsoilmoistureregime,alsoshowninFig. 2.6,is morerelatedtotopographicconditionsthanstrictlyclimate. Aquicsoilsarefoundinlow-lyingareaswherethewater

Fig.2.5 AMollisolformedfromtheweatheringofshalenear Laramie,Wyoming.TheAhorizonisdarkenedbyhumifiedorganic matterfromthedecompositionofgrassrootsandotherplantparts.The dark,organic-richsoilmaterialisredistributedtothe90cmdepthby burrowinganimals(notethebackfilledburrows).Photographcredit:R. C.Graham

tableishighsothatatsometimeduringtheyearreducing conditionsprevail.Asaresult,thesesoilsgenerallyhave reducingconditionsandconcentrationsofironoxidesandan accumulationoforganicmatter(Fig. 2.7).

Climatedictatessoiltemperatureaswellassoilmoisture, andtemperatureaffectstheratesofchemicalandbiological reactionsinsoils.Ingeneral,chemicalreactionsincrease exponentiallywithincreasingtemperature,soweatheringof mineralstoproduceclaysandironoxidesisvastlyincreased inwarmclimates(e.g.,Hawaii)comparedtocoldclimates (e.g.,Alaska),assumingmoistureisavailable.Anotable exceptioniscalcite(CaCO3),acommonsoilmineral.Calcite ismoresolubleatlowtemperatures;thus,allelsebeing equal,itismorelikelytoprecipitateandbepresentinsoils withhightemperatures.

Soilbiologicalactivityisgenerallyminimalbelowabout 5°Candincreasesrapidlytothe30–37°Crange,above

Fig.2.6 Mapofthedistribution ofsoilmoistureregimesinthe contiguousUSA(basedon Winzeleretal. 2013)

Fig.2.7 AnUltisolwithanaquicsoilmoistureregime(Paxville series)formedinapoorlydraineddepressiononabroadinterstream divideonthemiddleCoastalPlainofNorthCarolina.The43–120cm depthisanargillichorizonwithgrayredoxdepletionsandyellow–red redoxconcentrations.TheAhorizon(abovethe27cmdepth)is darkenedbyhumifiedorganicmatter.Photographcredit:R.C.Graham

whichitdropsprecipitously.Suchhightemperaturesarenot sustainedinsoils,exceptthoseinfluencedbygeothermal conditions,butverylowsoiltemperaturesarecommonat highlatitudesandaltitudes.Theinhibitoryeffectoflow temperaturesonmicrobialactivitydecreasesorganicmatter decompositionratesandresultsinorganicmatteraccumulationincoldsoils.Thus,soilsofhigherlatitudes(and altitudes)generallycontainmoreorganicmatterthanthose atlowlatitudes(andaltitudes).

Temperatureswithintheupper50cm,orso,ofsoilare subjecttodiurnal fluctuationandareaffectedbyvariationsin day-to-dayweatherconditions.Yet,itisthecumulative effectofsoiltemperaturethatdeterminestheoverallratesof organicmatterdecompositionandmineralweathering, therebymakingavisibleimprintonthesoilmorphology. Thus,soilsofhigherlatitudestendtobedarkerincolordue toorganicmatteraccumulationandsoilsoflowlatitudes tendtoberedderduetoenhancedweatheringandironoxide (hematite)formation(Fig. 2.1).

Windisanaspectofclimatethatimpactssoilformation throughitsroleinerosionanddeposition.Winderosion occursondry,baresoils,suchasthosefoundonglacial outwash,playas,andpost-wild firelandscapes.Ofcourse, winderosioncanalsooccuronsoilsthatarelaidbareby humanactivitiessuchasplowingandovergrazing.Severe windstormscanuproottreesoverlargeareas,especially whenthesoilhaslostcohesivestrengthbecauseitissaturatedwithwater.Whenthetreesfallover,avolumeofsoilis liftedupbytheroots,mixingthesoilhorizons.Sometimes, largeareasofforestareaffectedsothatthesoilsareessentiallyplowedbythis “treethrow.”

Solarradiationisanimportantclimaticfactorinsoil formationinthatitdrivesphotosynthesisthat fixescarbonin organicmatter,someofwhichisultimatelyincorporatedinto thesoil.Solarradiationistheoverallsourceofheat fluxto thesoil.

2.1.1.3Topography

Theshapeoftheland’ssurface,ortopography,influences howwater flowsontoandoffofthesoil,aswellashowit movesintoandthroughthesoil.Consequently,itexertsa strongcontrolonthebalancebetweensoilorganicmatter additionsanddecomposition,erosionanddeposition, leachingandaccumulation,andevenoxidationandreduction.Topographyisformedbydepositionalfeatures,suchas lava flows,moraines,alluvialfans,anddunes,andbygeologicerosion,suchasstreamincision,glaciation,andmass wasting.

Slopeshapedeterminesthedispositionofwateronthe landscape.Onnearlylevelsurfaces,water flowislargely vertical,intothesoil,sorunoffandrun-onareminimaland soareerosionanddeposition.Thus,nearlylevellandsurfaces,suchasstreamterracesandbroadhillsummits,are stablelocationsforprolongedsoildevelopment.Onthe otherhand,slopinglandremoveswaterfromonepartofthe landscapeanddeliversittoanother.Alinearslopesimply deliverswaterfromupperslopepositionstolowerslopes, makingtheselowerslopepositionsmoisterthanonewould inferfromtheclimate.Slopesthatareconvexacrossand downslope,suchasthenoseofaridge,dispersewater flow andarethedriestpartsofthelandscape(Fig. 2.8).Soilsare lessleachedthanonotherlandscapepositions,andvegetationdensityisrelativelylow;hence,organicmatteradditions tothesoilarealsolow.Slopesthatareconcaveacrossand downslope,suchastheheadslopeofawatershed,concentratewater flowsothatthelowerslopesoftheseplacesare thewettestpartsofthelandscape(Fig. 2.8).Asaresult,the soilstendtohavethehighestorganicmattercontentsand

Fig.2.8 Simplifieddiagramoflandscapecomponents(modifiedfrom Schoenebergeretal. 2012)

mayexperiencereducingconditions,atleastperiodically, qualifyingthemashavinganaquicsoilmoistureregimeor placingtheminaquicsubgroupclassifi cations.

Topographyalsointroduceslocalizedvariationsinsoil climate,mostcommonlyintheformofslopeaspect.Inthe NorthernHemisphere,south-facingslopesmostdirectly interceptthesun’sraysand,consequently,arewarmerand drierthannorth-facingslopes.Becausetheyarecoolerand moister,soilsonnorth-facingslopestendtocontainmore organicmatterthanthoseonotherslopeorientations.

2.1.1.4Organisms

Soilsprovidehabitatsforamultitudeoforganisms,and theseplants,animals,andmicrobesstronglyimpactthesoils aswell.Plantsareprimaryproducers,acquiringcarbonfrom theatmospherebyphotosynthesis.Theyalsoscavengethe soilformineral-derivedelements(calcium,magnesium, potassium,phosphorus,etc.),andsomehavesymbiotic relationshipswithbacteriathatobtainnitrogenfromthe atmosphere.Alloftheelementsthatplantsincorporateinto theirbiomassareaddedtothesoilviabiocycling,sosoilA horizonsbecomeenrichedincarbon,nitrogen,andother nutrientions.Plantrootsalsohavedirectimpactsonsoil physicalpropertiesastheycreateporesandpromotesoil aggregation.

Burrowinganimalsmixthesoil,incorporatingorganic matter,homogenizingsoilhorizons,andconvertingparent materialintosoil(Fig. 2.5).Burrowinganimals,including earthworms,ants,gophers,andgroundsquirrels,create porosityforpreferentialwater flowandrootgrowth.Certain animalscreatedistinctivesoilstructures,suchasearthworm andcicadacasts.

Theintegratedeffectsoforganismscanbeobservedby comparingsurfacesoilhorizonsdevelopedunderconiferous forestwiththosedevelopedundergrass.Muchoftheorganic matterinconiferousforestsoilsisderivedfromfoliagethat fallsfromthetrees.Thismaterialaccumulatesonthesoil surfaceasanOhorizon(Fig. 2.2)and,becauseitislargely unpalatabletoearthwormsandburrowingrodents,itisonly slowlymixedintotheunderlyingmineralsoil.Asaresult,A horizonsarerelativelythin.Incontrast,grasslandsoilshave virtuallynoOhorizon,butaprofusionof finerootsinthe near-surfacezonecontributesabundantorganicmatter.Roots andabovegroundplantmaterialserveasfoodforgophersand otherburrowingrodents,which,togetherwithearthworms, mixthesoilandcreatethick,darkAhorizons(Fig. 2.5).

Asidefromitsessentialroleinthedecompositionof organicmatter,microbialactivityalterssoilmorphologyby reducingironoxidesinwater-saturatedsoilswherefree oxygenisabsent.Theyellowishandreddishcolorsofiron oxidesarereplacedbythebackgroundgraycolorsof thesilicatemineralsastheironisreducedandsolubilized (Fig. 2.7).

2.1.1.5Time

Theenvironmentalfactorsofclimate,organisms,topography,andparentmaterialmustinteractoveraperiodoftime toproducesoil.Thelongerthesefactorsareabletoact together,themoredevelopedandverticallydifferentiated anddistinctivethesoilwillbecome.Thus,thestabilityofthe soillandscapegovernsthedurationofsoilformation,andthe characterofthesoilreflectshowlongtheotherenvironmentalfactorshaveexertedtheirinfluence.

MostlandscapesintheUSAhavebeenstable(e.g.,neitherextensivelyerodedordepositedupon)formuchless thanamillionyears.Theyoungestsoilsarethoseformedon recentlydepositedsediments,suchas floodplainalluvium,or verysteepslopeswithongoingerosion.Theoldestsoilsare thoseonlongstablegeomorphicfeatures,suchasalluvial terracesandlava flows.Soilsthataretensofthousandsof yearsoldandolderhavegenerallyexperiencedpronounced changesinclimateandorganismsoverthecourseoftheir formation.

GlaciationhasaffectedmuchofthenorthernUSAand farthersouthinalpineregionssuchastheRockyMountains, theCascadeRange,andtheSierraNevada.Glacierswiped awaypreviouslyformedsoilsanddepositedfreshparent material(knownasdrift).Inasense,theclockforsoilformationonglaciatedlandscapeswasresettozerocorrespondingtothemostrecentglacialdeposits.Thelastmajor periodofglaciationended11,700yearsago(theendofthe PleistoceneEpoch),somanysoilsofhighlatitudesand altitudesareyoungerthanthis.

2.1.2GeneralSoilProcesses

Theenvironmentalconditionsdefinedbythe five soil-formingfactorsgenerateprocessesthatdeterminehow soilsfunctionanddevelop.Theseprocessescanbegenerally categorizedasthosethatcauseadditions,losses,translocations,andtransformationswithinsoils(Simonson 1959). Thebalanceamongtheseprocessesdeterminesthesoil behaviorandobservablecharacteristics.

2.1.2.1Additions

Themostnotableadditiontomostsoilsisorganicmatter derivedfromplantparts(Fig. 2.2).Plantlitterthatfallson thesurfaceofsoilsisbrokendownbyinsects,earthworms, fungi,andotherdecomposersandmixedintothemineral soilbyburrowinganimals,includingants,earthworms,and gophers.Organicmatterisalsoaddeddirectlytothesubsurfacebyplantroots,whichcanmakeupalargeproportion ofthetotalplantbiomass.Rootsareanespeciallylarge contributoroforganicmattertograsslandsoils.Iftherateof organicmatterlossbydecompositionislessthantherateof addition,thenorganicmatterwillaccumulateinthesoil,and

athick,darkAhorizonwillresult(Figs. 2.5, 2.7 and 3.2),or inverycoldorwetsoils,theorganicmatterwillaccumulate toformthickOhorizons.

Dustisaubiquitousadditiontosoilsinaridregions.It blowsoffofdrylakebedsandintermittentstreamchannels, incorporatingvery finesand-andsilt-sizeparticlesaswellas varioussaltsintoatmosphericsuspension.Thesematerials areblownontouplandpartsofthelandscapewheretheyare trappedbyroughsurfacesandincorporatedintothesoil surfacetoformaVhorizon(Fig. 2.3).Dustoriginatesfrom anybaresurfacewith fineearthmaterials.Whilethese conditionsarecommonindeserts,theyarealsocommonon themarginsofactiveglaciation.Dustisblownbetween continents,so,tosomedegree,allsoilsonearthreceiveat leastabackgroundinputofdust.

Volcanicashisanothermaterialaddedfromtheatmosphere.Thindepositsareincorporatedintotheunderlying soilbymixingprocesses,butthickdepositsburyexisting soilsandsoilformationstartsanewinthefreshvolcanic deposit.IntheUSA,theinfluenceofvolcanicashisstrongestinthePaci ficNorthwest,Alaska,Hawaii,andthe Paci ficIslands,butvolcanicashfromCascadeRangevolcanoeshasbeendepositedatleasthalfwayacrosstheNorth Americancontinent.

Alluvialdepositsaddedto floodplainsbuildthesoils upwardand,again,ifthinenough,aremixedintothe existingsoils.Thesealluvialadditionsarecommonon floodplainsofmajorriversacrossthecountry.

2.1.2.2Losses

Themostobviousprocessleadingtolossfromasoilis erosion,aprocessthatcanoccurinanypartofthecountry. Erosioncanbebyeitherwaterorwind,butbothprocesses arefacilitatedbybare,poorlyaggregatedsoil.Erosion removesthesoilsurfacematerialspreferentially,andthese surfacehorizonsareusuallythemostenrichedinorganic matterandnutrients.Erosionnotonlyreducestheoverall soilthickness,butspecificallyremovesthesoilnutrient supply.

Aswaterpercolatesthroughthesoil,itcarriesmaterialsin suspension(colloids)andinsolution(ions,dissolvedorganic matter).Ifthewaterbalanceissuchtoallowdeeppercolation,thesewaterbornematerialsarecarrieddowninto groundwaterorotherwiseoutofthesoilzone.Thisformof lossfromsoilsismostcommoninthehumidregionsofthe USA,whereprecipitationgreatlyexceedsevapotranspiration.Ultimately,thisprocessisdepletingthesoilof weatheringproductsandislikelytoresultintheformation ofUltisols.

Alessvisiblelossoccursduringsoilorganicmatter decomposition.Asmicrobesdecomposeorganicmatter,they respireCO2 gas.Thus,thelossofcarbonfromthesoil duringsoilorganicmatterdecompositionoccursthroughthe

gasphaseandcanbesubstantialonanannualbasis onthe orderof200–1000gm 2,dependingontheecosystem (RaichandPotter 1995).Thislossthroughdecompositionis sogreatinwarm,humidregionsthatorganicmatteraccumulationinsoilsisminimal.Conversely,incoolregions,the carbonlossviaCO2 respirationislessthantherateoforganicmatteradditions,sothesoilsbecomeenrichedin storedorganicmatter.Whensoilsaresaturatedwithwater, organicmatterdecomposesslowlybyanaerobicprocesses, andmethane(CH4)isreleased,notCO2.Theevolutionof carbonasgasfromdecomposingorganicmatterrepresents notonlyalossfromthesoil,butaverysignificantaddition ofgreenhousegasestotheatmosphere.Morecarbonis storedinsoilsasorganicmatterthaniscontainedinthe atmosphereorvegetation,sothisparticularlossfromsoilsis ofspecialinteresttoclimatechangemodelers.

2.1.2.3Translocations

Translocationsofmaterialsfromonepartofthesoilto anothercanresultindistinctivesoilhorizons.Materialsare commonlymovedbywaterasitpercolatesthroughthesoil. Thezonefromwhichmaterialsareremovedistermedthe eluvialzoneandthezoneintowhichmaterialsaretranslocatedisknownastheilluvialzone.Someofthecommonly translocatedmaterialsandthehorizonstheyformare addressedbelow.

Clay

Soilsarecomposedofvariouslysizedmineralparticles,butthe smallest,theclay-sized(<2 µmdiameter)particlesaremost easilymovedthroughthesoilmatrix.Thesecolloidalparticles canbephysicallydislodgedby flowingwater,buttheyare mosteffectivelymobilizedfortransportiftheyarechemically dispersed.Chemicaldispersionmeansthattheclayselectrostaticallyrepeleachothersotheyremainthoroughlysuspended inthesoilsolution.Thisdispersionisenhancedwithincreasing pH,Naonthecationexchangesites,dilutesoilsolutions,and dissolvedorganiccompounds.

Onceclayisinsuspension,itmoveswiththewaterasit percolatesthroughthesoil.Theclayisdepositedwhenthe waterstopsmovinginalowerpartofthesoil.Often,thewater movespreferentiallythroughmacropores,suchasrootchannels orcracksbetweensoilstructuralunits.Asthesuspension flows downthroughthesepores,capillaryforcespullthewaterinto thematrixoftheporewalls.Whenthishappens,theclayis filteredoutandremainsasa “clay film” or “claylining” onthe porewallsurface.Claycanmovethroughthemicroporesofthe soilmatrixaswell,butjustnotasfarorasfast.Overtime, enoughtranslocatedclayaccumulatesinthesubsoiltoforma distincthorizonlabeledasaBthorizonor,accordingtoSoil Taxonomy,anargillic,natric,orkandichorizon(Figs. 2.1,

2.7).Thesehorizonsarecommoninlandscapesthathavebeen stablelongenoughforsignificantamountsofclaytoaccumulate,whichisoftenontheorderofthousandsofyears. Consideringthatinmanysoils theclaymustbeproducedby mineralweatheringbeforeitcanbemovedandthatmineral weatheringismuchsloweratlowtemperatures,itisuncommonto findargillichorizonsinsoilslessthantenthousand yearsoldorinverycoldclimates.

Fe-andAl-HumusComplexes

Incertainsoils,organiccompoundsareleachedfromvegetationandorganicmaterialonthesoilsurface(Ohorizons). Asthesedissolvedorganicmoleculesmovethroughthesoil, theyactaschelatestobindwithFeandAlcations,strip themfrommineralsintheupperpartofthesoil(Ehorizon), andtransporttheminsolutiontoalowerzone.Asthe organicmoleculesmovethroughthesoil,theypickupmore FeandAluntilalltheirchelatesitesarefull,atwhichpoint theyprecipitate.Thezoneinwhichtheyprecipitateand accumulatetakesonadarkreddish-browncolorandis knownasaBhshorizon,oraspodichorizon(Fig. 2.9.The organicmatterinthesehorizonsundergoesdecomposition, losingcarbonthroughmicrobialrespiration,andreleasing theFeandAltoreprecipitateasoxides.Subsequentpercolatingdissolvedchelatesbecomeadsorbedontheseoxides, furtheringtheaccumulationoforganic-metalcomplexes. Thisprocessoperatesbestinsandysoils,throughwhich waterleachesreadily.Whilemostprevalentinthenorthern latitudesorhighelevations,italsooperatesinsoilswitha fluctuatingwatertableeveninwarmclimates.Soilswith spodichorizonsarecommoninthenortheasternstates,the northernmidwesternstates,thePaci ficNorthwest,andalong theAtlanticandGulfcoastsinthesoutheasternUSA.

Calcite

Aswaterpercolatesthroughthesoil,CO2 frommicrobial respirationandCafrommineralweathering,rainfall,dust input,andothersourcesaredissolvedinit.Undercertain conditions,thedissolvedcarbonateandCawillprecipitateas calcite(CaCO3).Themostcommoncauseofprecipitationis concentrationofthesolutionbyevapotranspiration.Inarid regions,rainfallisinsufficienttocausedeepleaching. Instead,percolatingwatercarryingdissolvedcarbonateand Caionsonlyreachesthesubsoil.Asthesoilsolutiondries, calciteprecipitates.Asthisprocessisrepeatedoverthousandsofyears,adistinctsubsoilzoneofcalciteaccumulationforms,knownasaBkhorizon,orcalcichorizon (Figs. 2.10, 3.2).Initsinitialstagesofformation,thecalcite occursasisolatedwhitemassesor filamentsorasconcentrationsontheundersidesofgravel.Withthepassageoftime formoreaccumulation,thewholehorizonbecomeswhite withpowderycalcite(Bkkhorizon),andwithevenmore

Fig.2.9 ASpodosol(Leonseries)formedinsandymarinesediments ontheSouthCarolinacoastatBaruchNorthIslandReserve.Chelates leachedfromtheOhorizon(upper10cm)havestrippedironand aluminumfromtheEhorizon(10–40cmdepth).Themetal-organic complexesareprecipitatedinthespodichorizon(50–70cm).Photographcredit:JohnA.Kelley,SoilScientist,USDA-NRCS

time(hundredsofthousandsofyears),thehorizonbecomes cementedbycalcitesothatitisrockhard.Atthisstage,itis indicatedasaBkkm,orpetrocalcic,horizon(Fig. 2.10).

Inaridregions,calciteisoftenaddedtothesoilsurfaceas dust,blowinginfromotherpartsofthelandscape.This calcitecanbedissolvedbyinfi ltratingwaterandreprecipitatedinthesubsoilasdescribedabove.

Calciumcarbonatecanbeprecipitatedinanotherwayin moistsoils.IfCO2 islostasagasfromthesoilsolution, calcitewillprecipitate,muchasitdoestoformstalactitesin caves.ThiscanhappenwhenCO2 isdegassedfromahigh watertableinthesoil.Acalcichorizonwillforminthezone ofthewatertable.Thesearethekindsofcalcichorizonsthat canoccurinthemorehumidpartsofthecountry.

SolubleSalts

Inaridregions,theamountofwatersuppliedbyrainfallis muchlessthancanbelostbyevapotranspiration.Asaresult,

Fig.2.10 AnAridisol(Roturaseries)nearLasCruces,NewMexico. Anargillichorizon(30–70cmdepth)andacalcichorizon(70–110cm) overlieapetrocalcichorizon(topat110cm).Photographcredit:Curtis Monger

leachingisinsufficienttoremovesolublesaltsfromthesoils. Furthermore,insomebasins,capillaryriseofgroundwater reachesthesurfaceandevaporationconcentratesthedissolvedsaltssotheyprecipitateasa finepowderoracruston thesoilsurface(Fig. 2.11).

Theultimatesourceofthesaltsisthereleaseofionsduring rockweathering,ofteninmorehumidregionsadjacenttothe deserts.InthewesternUS,mountainrangesreceivemuch moreprecipitationthanadjacentdeserts.Thedissolvedions aretransportedinsolutioneitherintogroundwaterorinsurfacestreams,bothofwhich flowtothetopographiclow position,e.g.,abasin.ManybasinsinthewesternUSAare drylakebeds(playas)thatwere filledwithwaterduringthe muchwetter,coolerclimateofthePleistocene.Thedissolved ionsthatreachthebasinsareprecipitatedassaltsasthewater dries,oftenfromcapillaryrisetothesurface.Saltsonthe surfaceinandaroundplayasareblownwithdustontoupland areas,suchasalluvialfansandmountains,whereinfiltrating rainwatercarriestheminto,butnotoutof,thesoils.Over thousandsofyears,thesaltsaccumulateinthesubsoilsof theseuplandsoils.Sodiumchlorideisacommonsalt,but

Another random document with no related content on Scribd:

F. 242.

A–D. Angiopteris evecta.

A. Apex of sporangium showing “annulus.”

B. Sori.

C. Sporangium.

D. Section of sporangium, showing the two lateral bands of thick-walled cells.

E. Danaea: a, roof of synangium, with pores; b, sporangial cavities; v, vascular bundle; i, indusium.

(D, after Zeiller.)

The roots of Marattiaceous ferns (fig. 244) are characterised by the larger number of xylem and phloem groups; the stele is polyarch and not diarch, tetrarch or hexarch as in most Leptosporangiate ferns.

F. 243. Angiopteris evecta. Section of petiole (considerably reduced) and of a single vascular bundle (magnified): px, protoxylem; st, sievetubes.

F. 244. Angiopteris evecta. Transverse section of root, with part of the stele magnified: s, sieve-tubes; p, phloem; px, protoxylem.

Archangiopteris. This monotypic genus, discovered by Mr Henry in South Eastern Yunnan, was described by Christ and Giesenhagen in 1899[751] . The comparatively slender rhizome has a fairly simple vascular system[752] . The simply-pinnate leaves bear pinnules like

those of Danaea, but the sori agree with those of Angiopteris except in their greater length and in the larger number of sporangia.

Marattia This genus, which extends “all round the world within the tropics[753],” includes some species which closely resemble Angiopteris, while others are characterised by more finely divided leaves with smaller ultimate segments. The fleshy stipules occasionally have an irregularly pinnatifid form (fig. 241, B). The sporangia are represented by oval synangia[754] (fig. 245, A; the black patches at the ends of the lateral veins) composed of two valves, which on ripening come apart and expose two rows of pores formed by the apical dehiscence of the sporangial compartments (fig. 245, A′, B). In Marattia Kaulfussii the sori are attached to the lamina by a short stalk (fig. 245, B, B′) and the leaf bears a close resemblance to those of the Umbelliferous genera Anthriscus and Chaerophyllum. The vascular system is constructed on the same plan as that of Angiopteris but is of simpler form.

F. 245.

A. Marattia fraxinea. A′. A single synangium showing the two valves and pores of the sporangial compartments.

B, B′. M. Kaulfussii.

C. Kaulfussia (synangium showing pores of sporangial compartments).

D, E. Marattiopsis Münsteri. (C, after Hooker; D, E, after Schimper.)

Danaea. Danaea, represented by about 14 species confined to tropical America, is characterised by simple or simply pinnate leaves with linear segments bearing elongated sori extending from the midrib almost to the margin of the lamina. Each sorus consists of numerous sporangia in two parallel rows united into an oblong mass partially overarched by an indusium (fig. 242, E, i) which grows up from the leaf between the sori. In the portion of a fertile segment shown in fig. 242, E, the apical pores are seen at a; and at b, where the roof of the synangium has been removed, the spore-bearing

compartments are exposed. The vascular system[755] agrees in general plan with that characteristic of the family.

Kaulfussia. The form of the leaf (Vol. I. p. 97, fig. 22) closely resembles that of the Horse Chestnut; the stem is a creeping dorsiventral rhizome with a vascular system in the form of a “much perforated solenostele[756].” The synangia are circular, with a median depression; each sporangial compartment opens by an apical pore on the sloping sides of the synangial cup (fig. 245, C)[757] .

Copeland has recently described a Marattiaceous leaf which he makes the type of a new genus, Macroglossum alidae The sori are nearer the margin than in Angiopteris and are said to consist of a greater number of sporangia. The photograph[758] of a single pinna which accompanies the brief description hardly affords satisfactory evidence in support of the creation of a new genus. The structure of a petiole which I have had an opportunity of examining, through the kindness of Mr Hewitt of Sarawak, shows no distinctive features.

III. Ophioglossales. (Isosporous and Eusporangiate.)

The three genera, Ophioglossum, Botrychium, and Helminthostachys, are characterised by the division of the leaves into a sterile and a fertile lobe. The fertile lobe in Ophioglossum bears two rows of spherical sporangia sunk in its tissue; in Botrychium and Helminthostachys the spores are contained in large sporangia with a stout wall[759] . The prothallus is subterranean and without chlorophyll. In the British species of Ophioglossum, O. vulgatum (the adder’s tongue fern), an almost cosmopolitan species, the sterile part of the frond is of oval form and has reticulate venation. In O. pendulum and O. palmatum the lamina is deeply lobed. In the genus Botrychium, represented in Britain by B. Lunaria, both sterile and fertile branches of the frond are pinnately divided, while in Helminthostachys the sporangia are borne on sporangiophores given off from the margin of the fertile branch of a frond similar in habit to a leaf of Helleborus.

F. 246. Ophioglossum vulgatum. Transverse section of petiole and single bundle: p, phloem; px, endarch protoxylem.

F. 247. Botrychium virginianum: e, endodermis; c, cambium; x, xylem. A, diagrammatic section of stem; B, portion of the stele and endodermis enlarged. (A, after Campbell; B, after Jeffrey.)

The stem of Ophioglossum is characterised by a dictyostele of collateral bundles with endarch protoxylem: the vascular system of the leaf-stalk is also composed of several separate strands (fig. 246). In Botrychium the stele is a cylinder of xylem surrounded externally by phloem. This genus affords the only instance among ferns of a

plant in which the addition of secondary tracheae occurs on a scale large enough to produce a well-defined cylinder of secondary xylem traversed by radial rows of medullary-ray cells[760] (fig. 247). The unsatisfactory nature of the evidence in regard to the past history of the Ophioglossales renders superfluous a fuller treatment of the recent species.

CHAPTER XXI.

FOSSIL FERNS.

Osmundaceae.

F the Culm of Silesia, Stur[761] described impressions of sterile fronds which he named Todea Lipoldi on the ground of the similarity of the finely divided pinnules to those of Todea superba and other filmy species of the genus. The type-specimen of Stur (in the Geological Survey Museum, Vienna) affords no information as to sporangial characters and cannot be accepted as an authentic record of a Lower Carboniferous representative of the family. Another more satisfactory but hardly convincing piece of evidence bearing on the presence of Osmundaceae in pre-Permian floras has been adduced by Renault[762] , who described petrified sporangia from the Culm beds of Esnost in France as Todeopsis primaeva (fig. 256, F). These pyriform sporangia are characterised by the presence of a plate of large cells comparable with the subapical group of “annulus” cells in the sporangia of the recent species (fig. 221).

Zeiller[763] has published a figure of some sporangia described by Renault from Autun resembling the Osmundaceous type in having a plate of thick-walled cells instead of a true annulus, but the plate is larger than the group of cells in the recent sporangia, and both sporangia and spores are smaller in the fossil. The sporangia from Carboniferous rocks described by Weiss as Sturiella[764] bear some resemblance to those of recent Osmundaceae, but there is no adequate reason for referring them to this family.

The generic name Pteridotheca is employed by Scott as a convenient designation for unassigned petrified sporangia of Palaeozoic age with an annulus and other characters indicating fernaffinity. In the species P. Butterworthi[765] the sporangia are

characterised by a group of large cells suggesting comparison with the annulus, or what represents the annulus, in Osmundaceae and Marattiaceae. Scott has also described a sporangium from the CoalMeasures containing germinating spores[766]; the structure is similar to that of recent Osmundaceous sporangia, and it is interesting to note that germinating spores have been observed in the recent species Todea hymenophylloides[767] .

Additional evidence of the same kind is afforded by fertile specimens of a quadripinnate fern with deeply dissected ovallanceolate pinnules described by Zeiller from the Coal-Measures of Heraclea in Asia Minor as Kidstonia heracleensis[768] (fig. 256, E). Carbonised sporangia were found at the base of narrow lobes of the ultimate segments and, as seen in fig. 256, E, the sporangial wall is distinguished by a plate of larger cells occupying a position like that of the “annulus” of recent Osmundaceae. Zeiller regards the sporangia as intermediate between those of Osmundaceae and Schizaeaceae. From the same locality Zeiller describes another frond bearing somewhat similar sporangia as Sphenopteris (Discopteris) Rallii (fig. 256, D)[769]: the term Discopteris was instituted by Stur for fertile fronds referred by him to the Marattiaceae[770] .

It is by no means safe to assume that these and such Upper Carboniferous sporangia as Bower[771] compared with those of Todea were borne on plants possessing the anatomical characters of Osmundaceae rather than those of the extinct Palaeozoic family Botryopterideae. This brings us to the important fact, first pointed out by Renault, that the Botryopterideae are essentially generalised ferns exhibiting many points of contact with the Osmundaceae[772] It is clear that whether or not we are justified in tracing the Osmundaceae as far back as the Lower Carboniferous period, some of the characteristics of the family were already foreshadowed in rocks of this age.

Through a fortunate accident of preservation, unequivocal evidence of the existence of Osmundaceae in the Palaeozoic era is supplied by the Russian Upper Permian genera Zalesskya and Thamnopteris.

Zalesskya.

This generic title has been instituted by Kidston and GwynneVaughan[773] for two Russian stems of Upper Permian age, one of which was named by Eichwald[774] Chelepteris gracilis, but the probability that the type of the genus Chelepteris is generically distinct from Eichwald’s species necessitated a new designation for the Permian fern.

In habit the stem of Zalesskya resembles that of an Osmunda or a Todea, but it differs in the possession of a stele composed of a continuous cylinder or solid column of xylem surrounded by phloem, and by the differentiation of the xylem into two concentric zones. The leaves are represented by petiole-bases only; the sporangia are unknown. The stem and leaf-base anatomy fully justifies the inclusion of Zalesskya in the Osmundaceae.

Zalesskya gracilis (Eichwald). Fig. 248.

The type-specimen is a partially decorticated stem, from Upper Permian beds in Russia, provided with a single stele, 13 mm. in diameter, surrounded by a broad thin-walled inner cortex containing numerous leaf-traces and occasional roots: this was doubtless succeeded by a sclerotic outer cortex. In its main features Zalesskya gracilis agrees closely with Z. diploxylon represented in fig. 249. The stele consists of a continuous cylinder of xylem exhibiting a fairly distinct differentiation into two zones, (i) a broader outer zone of narrower scalariform tracheae (x ii, fig. 248) in which 20 to 25 protoxylem strands (px) occur just within the edge, (ii) an inner zone of broader and shorter tracheae (fig. 248, x i). The protoxylem elements (px, fig. 248) are characterised by a single series of scalariform pits, while the metaxylem elements have multiseriate pits like those on the water-conducting elements of recent Osmundaceae. The tracheae show an interesting histological character in the absence of the middle substance of their walls, a feature recognised by Gwynne-Vaughan[775] in many recent ferns. External to the xylem and separated from it by a parenchymatous sheath is a ring of phloem, ph, composed of large sieve-tubes and parenchyma separated from the inner cortex by a pericycle 4 to 5

layers in breadth. The occurrence of a few sclerotic cells beyond the broad inner cortex points to the former existence of a thick-walled outer cortex. The leaf-traces are given off as mesarch strands from the edge of the xylem; they begin as prominences opposite the protoxylem and become gradually detached as xylem bundles, at first oblong in transverse section, then assuming a slightly crescentic and reniform shape, while the mesarch protoxylem strand takes up an endarch position. As a trace passes further out the curvature increases and the protoxylem strands undergo repeated bifurcation; it assumes in fact the form and general type of structure met with in the leaf-traces of Todea and Osmunda. Numerous diarch roots, given off from the stele at points just below the outgoing leaf-traces, pass outwards in a sinuous horizontal course through the cortex of the stem.

F. 248. Zalesskya

(Eich.). Transverse section of part of the stele: ph, phloem; x i, x ii, xylem; px, protoxylem. (After Kidston and Gwynne-Vaughan. × 20.)

gracilis

F. 249. Zalesskya diploxylon. Kidston and Gwynne-Vaughan.

Transverse section of stem. ph, phloem. (After Kidston and Gwynne-Vaughan. × 2½.)

In Zalesskya gracilis the xylem cylinder was probably wider in the living plant than in the petrified stem. In Zalesskya diploxylon[776] , in all probability from the same Russian locality, there can be little doubt that the xylem was originally solid to the centre (fig. 249). In this species also the phloem forms a continuous band (ph, fig. 249) consisting of four to six layers of sieve-tubes.

Thamnopteris.

Thamnopteris Schlechtendalii (Eich.). Figs. 250, 312, A, Frontispiece.

In 1849 Brongniart[777] proposed the name Thamnopteris for a species of fern from the Upper Permian of Russia originally described by Eichwald as Anomopteris Schlechtendalii. A new name was employed by Brongniart on the ground that the fossil was not generically identical with the species previously named by him Anomopteris Mougeotii[778] . Eichwald’s specimen has been thoroughly investigated by Kidston and Gwynne-Vaughan[779] . The stem (Frontispiece) agrees in habit with those of Zalesskya and recent Osmundaceae; on the exposed leaf-bases the action of the weather has etched out the horse-shoe form of the vascular strands and laid bare numerous branched roots boring their way through the petiole stumps. The centre of the stem is occupied by a protostele 13 mm. in diameter consisting of solid xylem separated by a parenchymatous sheath from a cylinder of phloem. The xylem is composed mainly of an axial column of short and broad reticulately pitted tracheae (fig. 250, b and Frontispiece), distinguished from the sharply contrasted peripheral zone of normal scalariform elements, a, by their thinner walls and more irregular shape. The protoxylem, px, is represented by groups of narrower elements rather deeply immersed in the peripheral part of the metaxylem. A many-layered pericycle, per, and traces of an endodermis, en, succeed the phloem, ph, which is characterised by several rows of large contiguous sieve-tubes; beyond the endodermis is a broad thinwalled inner cortex. The leaf-traces arise as in Zalesskya, but the protoxylem in Thamnopteris is at first central; as the trace passes outwards a group of parenchyma appears immediately internal to the protoxylem elements and gradually assumes the form of a bay of thin-walled tissue on the inner concave face of the curved xylem. The next stage is the repeated division of the protoxylem strand until, in the sclerotic outer cortex, the traces acquire the Osmundaceous structure (fig. 312, A, p. 453). The petiole bases have stipular wings as in Todea and Osmunda.

F. 250. Thamnopteris Schlechtendalii (Eich.). Part of stele: a, outer xylem; b, inner xylem. (After Kidston and Gwynne-Vaughan. × 13.)

OSMUNDACEAE

The striking feature exhibited by these Permian plants is the structure of the protostele, which in Thamnopteris and probably in Zalesskya diploxylon consists of solid xylem surrounded by phloem: this may be regarded as the primitive form of the Osmundaceous stele. In Osmunda regalis and in other recent species of the genus the xylem cylinder has the form of a lattice-work; in other words, the departure of each leaf-trace makes a gap in the xylem and the overlapping of the foliar-gaps results in the separation of the xylem into a number of distinct bundles. In Zalesskya gracilis the continuity of the xylem is not broken by overlapping gaps; in this it agrees with

Lepidodendron In Thamnopteris the centre of the stele was occupied by a peculiar form of xylem obviously ill-adapted for conduction, but probably serving for water-storage and comparable with the short and broad tracheae in Megaloxylon[780] . There is clearly a well-marked difference in stelar anatomy between these two Permian genera and Todea and Osmunda: this difference appears less when viewed in the light of the facts revealed by a study of the Jurassic species Osmundites Dunlopi.

F. 251. Lonchopteris virginiensis. (After Fontaine. ½ nat. size.)

As possible examples of Triassic Osmundaceae reference may be made to some species included in Stur’s genus Speirocarpus[781] . S. virginiensis was originally described by Fontaine[782] from the Upper Triassic rocks of Virginia as Lonchopteris virginiensis (fig. 251) and has recently been figured by Leuthardt[783] from the Keuper of Basel. The sporangia, which are scattered over the lower surface of the pinnules, are described as globose-elliptical and as having a rudimentary apical annulus; no figures have been published. In habit the frond agrees with Todites Williamsoni, but the lateral veins form an anastomosing system like that in the Palaeozoic genus

Lonchopteris (fig. 290, B). There would seem to be an a priori probability of this species being a representative of the Osmundaceae and not, as Stur believed, of the Marattiaceae. Seeing that Lonchopteris is a designation of a purely provisional kind, it would be convenient to institute a new generic name for Triassic species having the Lonchopteris venation, which there are good reasons for regarding as Osmundaceous ferns.

Similarly Speirocarpus tenuifolius (Emmons) (= Acrostichites tenuifolius Font.), which resembles Todites Williamsoni (see p. 339) not only in habit and in the distribution of the sporangia but also in the venation, is probably an Osmundaceous species.

Osmundites.

Osmundites Dunlopi, Kidston and Gwynne-Vaughan[784] , fig. 252

This species was found in Jurassic rocks in the Otago district of New Zealand in association with Cladophlebis denticulata[785] (fig. 257). The type-specimen forms part of a stem 17 mm. in diameter surrounded by a broad mass of crowded leaf-bases. The stele consists of an almost continuous xylem ring (fig. 252) enclosing a wide pith: the phloem and inner cortex are not preserved but the peripheral region of the stem is occupied by a sclerotic outer cortex. The mass of encasing leaf-bases resolves itself on closer inspection into zones of foliage-leaf petioles and the petioles of scale-leaves with an aborted lamina. A similar association of two forms of leaf is seen in the existing American species Osmunda Claytoniana and O. cinnamomea. The cortex and armour of leaf-bases are penetrated by numerous diarch roots. The xylem cylinder, six to seven tracheae broad, is characterised by the narrower diameter of its innermost elements and—an important point—by the fact that the detachment of a leaf-trace does not break the continuity of the xylem cylinder (fig. 252). Each leaf-trace is at first elliptical in section; it then becomes curved inwards and gradually assumes the horse-shoe form as in Zalesskya and in the recent species. The single endarch protoxylem becomes subdivided until in the petiole it is represented by 20 or more strands.

F. 252. Osmundites Dunlopi Kidst. and G.-V. Portion of xylem showing the departure of a leaf-trace. (After Kidston and GwynneVaughan; × 36.)

In the continuity of the xylem cylinder this species of Osmundites shows a closer approach to Todea barbara or T. superba (fig. 221, B) than to species of Osmunda; it differs from Zalesskya in having reached a further stage in the reduction of a solid protostele to one composed of a xylem cylinder enclosing a pith. This difference is of the same kind as that which distinguishes the stele of Lepidodendron rhodumnense from L. Harcourtii. In Lepidodendron short tracheae occasionally occur on the inner edge of the xylem cylinder, and in recent species of Todea the same kind of reduced tracheae are met with on the inner edge of the xylem[786] . In both cases the short tracheae are probably vestiges of an axial strand of conducting elements which in the course of evolution have been converted into parenchymatous cells. In Lepidodendron vasculare the mixed parenchyma and short tracheae in the centre of the stele represent an intermediate stage in xylem reduction, and the arrangement in vertical rows of the medullary parenchyma in Lepidodendron is precisely similar to that described by Kidston and Gwynne-Vaughan

in Thamnopteris In both cases the rows of superposed short cells have probably been produced by the transverse septation of cells which began by elongating as if to form conducting tubes and ended by assuming the form of vertical series of parenchymatous elements.

In another Jurassic species, Osmundites Gibbiana[787], the xylem is of the Osmunda type and consists of about 20 strands instead of a continuous or almost continuous cylinder.

F. 253. Osmundites Kolbei Sew. (⅓ nat. size.)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.