Core shell nanostructures for drug delivery and theranostics challenges strategies and prospects for

Page 1

Core-Shell Nanostructures for Drug Delivery and Theranostics : Challenges, Strategies and Prospects for Novel Carrier Systems Focarete

Visit to download the full and correct content document: https://ebookmass.com/product/core-shell-nanostructures-for-drug-delivery-and-thera nostics-challenges-strategies-and-prospects-for-novel-carrier-systems-focarete/

Core-ShellNanostructuresforDrugDelivery andTheranostics

Thispageintentionallyleftblank

WoodheadPublishingSeriesinBiomaterials

Core-ShellNanostructures forDrugDelivery andTheranostics

Challenges,Strategies,andProspects forNovelCarrierSystems

AnnaTampieri

WoodheadPublishingisanimprintofElsevier

TheOfficers’MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright © 2018ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-08-102198-9(print)

ISBN:978-0-08-102199-6(online)

ForinformationonallWoodheadPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: LauraOverend

EditorialProjectManager: ThomasVanDerPloeg

ProductionProjectManager: MohanapriyanRajendran

Designer: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

ListofContributorsix

PartIFundamentalsonNanotechnologyforDrug Delivery1

1Introductionto“Core-shellnanostructuresfordrugdelivery andtheranostics:Challenges,strategies,andprospectsfornovel carriersystems”3

MariaLetiziaFocareteandAnnaTampieri

2Physicochemicalpropertiesofnanosizedpolymericdrugcarrier systems7

NicolettaRescignanoandJoseMariaKenny

2.1Introduction7

3Biomineralizationprocessgeneratinghybrid nano-andmicro-carriers19

ElisabettaCampodoni,TatianaPatricio,MonicaMontesi, AnnaTampieri,MonicaSandriandSimoneSprio

3.1Introduction19

3.2Biomineralization20

3.3Magneticmaterialsinmedicine25

3.4Intrinsicallymagneticandhybridnanobeadsascarriersin nanomedicine26

3.5Intrinsicallymagnetichybridmicrospheresassmart releasesystems28

3.6Interactionbetweencellsandbiomimeticmagneticcarriers31

3.7Conclusionandfuturetrends33

Acknowledgment34 References34

Contents
References14
2.2Polymericnanocarriersystems8 2.3Maintherapeuticagentsencapsulated10 2.4Physicalproperties11 2.5Chemicalproperties13 2.6Conclusion14

4Clinicalapplicationsofnanostructureddrugdeliverysystems: frombasicresearchtotranslationalmedicine43

MariaMendes,Joa˜oSousa,AlbertoPaisandCarlaVitorino 4.1Introduction43 4.2Organic vs.inorganicNDS46 4.3ApplicationofNDSindifferenttherapeuticareas90 4.4Problemsassociatedtotranslationalnanomedicine94 4.5Conclusions96 Acknowledgments97 References97 PartIICore-ShellNanoparticles117
References135
5Core-shellnanoparticlesandtheiruseforinvitroandinvivo diagnostics119 SofiaDembski,ChristineSchneider,BastianChristandMarionRetter 5.1Introduction119 5.2Synthesisofcore-shellNPs120 5.3Applications131 5.4Conclusionandfuturetrends135
References168
6Core-shellnanoparticlesforcancerimagingandtherapy143 XindongWang,HuiLiandGuanyingChen 6.1Introduction143 6.2Bioimaging144 6.3Therapy153 6.4Conclusion168
7.2LiposomalhybridNPs179 7.3MicellarhybridNPs182 7.4ViralhybridNPs185 7.5Silica-basedhybridNPs187
vi Contents
7Multifunctionalhybridnanoparticlesfortheranostics177 TimurSaliev,AlmaAkhmetovaandGulsimKulsharova 7.1Introduction177
7.6PolymerichybridNPs200 7.7Gold-basedhybridNPs203 7.8Carbonnanotube-basedhybridNPs206 7.9HybridNPsforPDTandmolecularimaging210 7.10RadioactivehybridNPs220 7.11Conclusionsandfutureperspectives223 References224
8Stimuli-responsivecore-shellnanoparticles245 NicolettaRescignanoandJoseMariaKenny 8.1Introduction245 8.2DifferentcompositionofNPs247 8.3Stimuli-responsivemetalcore248 8.4Synthesisandcharacterization250 8.5Mainbiomedicalapplication253 8.6Conclusionandfutureperspectives254 References255 9Magneticcore-shellnanoparticles:Remotedriving,hyperthermia, andcontrolleddrugrelease259 AlessioAdamiano,MicheleIafiscoandAnnaTampieri 9.1Introduction259 9.2MCNPscompositionanddesign261 9.3Hyperthermiaandcontrolleddrugrelease272 9.4Remotemagneticdriving283 9.5Futureperspective285 References286 Furtherreading296 10Smartnanoconstructsfortheranosticsincancer andcardiovasculardiseases297 AntonioCervadoro,AlessandroCoclite,DanieleDiMascolo, MiguelFerreira,AnnaLisaPalange,RobertoPalomba,RuiC.Pereira andPaoloDecuzzi 10.1Introduction297 10.2Smartpolymericnanoconstructs298 10.3Multimodalimagingwithpolymericnanoconstructs302 10.4Combinationtherapywithpolymericnanoconstructs305 10.5Organ-on-chipsforassessingtheefficacyofpolymeric nanoconstructs308 10.6Modelingthevasculardynamicsofpolymericnanoconstructs310 10.7Conclusionsandfutureperspectives313 Acknowledgments313 References313 Furtherreading321 PartIIICore-ShellNanofiber323 11Blendelectrospinning,coaxialelectrospinning,andemulsion electrospinningtechniques325 MatejBuzgo,AndreaMickova,MichalaRampichova andMiroslavDoupnik 11.1Advancedelectrospinningtechniques325 vii Contents
11.2Nanofibersasadrugdeliverysystem325 11.3Functionalizationofnanofibersbysurfaceadsorption326 11.4Blendelectrospinning(co-electrospinning)328 11.5Coaxialelectrospinning329 11.6High-throughputelectrospinningtechnologies335 Acknowledgment337 References337 12Drugreleasekineticsofelectrospunfibroussystems349 DarioPuppiandFedericaChiellini 12.1Introduction349 12.2Drug-loadedelectrospunfibersapplications350 12.3Methodsforthepreparationofdrug-loadedelectrospunfibers353 12.4Drugreleasekinetics358 12.5Conclusionandfutureperspectives366 References367 13Applicationsofcore-shellnanofibers:Drugandbiomolecules releaseandgenetherapy375 ZeynepAytacandTamerUyar 13.1Introduction375 13.2Deliveryofdrugsfromcore-shellnanofibers376 13.3Deliveryofproteinsfromcore-shellnanofibers385 13.4Deliveryofenzymesfromcore-shellnanofibers386 13.5Deliveryofgrowthfactorsfromcore-shellnanofibers388 13.6Core-shellnanofibersforgenetherapy389 13.7Stimuli-responsivecore-shellnanofibersfordelivery ofbiomolecules390 13.8Deliveryofmultipledrugandbiomoleculesfromcore-shell nanofibers396 13.9Conclusion398 References399 14Advancesinmultidrugdeliveryfromelectrospunnanomaterials405 RobertoDiGesu`,AndreaMerlettini,ChiaraGualandi andMariaLetiziaFocarete 14.1Electrospinningasasmarttoolformultidrugdeliverysystems405 14.2Monolithicnanofibersformultidrugdelivery407 14.3Core-sheathnanofibersformultidrugdelivery412 14.4Nanocarrier-in-fibersasmultidrugdeliverysystems418 14.5Conclusionsandfutureperspectives426 References427 Index431 viii Contents

ListofContributors

AlessioAdamiano InstituteofScienceandTechnologyforCeramics, ISTEC CNR,Faenza,Italy

AlmaAkhmetova CentreforLifeSciences,NationalLaboratoryAstana, NazarbayevUniversity,AstanaKazakhstan;UniversityofEssex,Colchester, Essex,UnitedKingdom

ZeynepAytac InstituteofMaterialsScience&Nanotechnology,UNAM-National NanotechnologyResearchCenter,BilkentUniversity,Ankara,Turkey

MatejBuzgo InoCures.r.o.,Klimentska ´ 1652/36,11000Prague,CzechRepublic

ElisabettaCampodoni InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

AntonioCervadoro NEST,ScuolaNormaleSuperiorediPisa,Pisa,Italy

GuanyingChen MIITKeyLaboratoryofCriticalMaterialsTechnologyforNew EnergyConversionandStorage,SchoolofChemistryandChemicalEngineering& KeyLaboratoryofMicro-systemsandMicro-structures,MinistryofEducation, HarbinInstituteofTechnology,Harbin,People’sRepublicofChina

FedericaChiellini BIOLabResearchGroup,DepartmentofChemistryand IndustrialChemistry,UniversityofPisa,Pisa,Italy

BastianChrist TranslationalCenterRegenerativeTherapies,BranchofFraunhofer InstituteforSilicateResearchISC,Wurzburg,Germany

AlessandroCoclite LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

PaoloDecuzzi LaboratoryofNanotechnologyforPrecisionMedicine,Fondazione IstitutoItalianodiTecnologia,Genoa,Italy

SofiaDembski TranslationalCenterRegenerativeTherapies,BranchofFraunhofer InstituteforSilicateResearchISC,Wurzburg,Germany;DepartmentofTissue EngineeringandRegenerativeMedicine,UniversityHospitalWu ¨ rzburg,Wu ¨ rzburg, Germany

RobertoDiGesu ` DepartmentofChemistry“G.Ciamician”,Universityof Bologna,Bologna,Italy

DanieleDiMascolo LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

MiroslavDoupnik InoCures.r.o.,Klimentska ´ 1652/36,11000Prague,Czech Republic

MiguelFerreira LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

MariaLetiziaFocarete DepartmentofChemistry“G.Ciamician”,Universityof Bologna,Bologna,Italy

ChiaraGualandi DepartmentofChemistry“G.Ciamician”,Universityof Bologna,Bologna,Italy

MicheleIafisco InstituteofScienceandTechnologyforCeramics,ISTEC CNR, Faenza,Italy

JoseMariaKenny UniversityofPerugia,CivilandEnvironmentalEngineering Department,StradadiPentima4,Terni,Italy

GulsimKulsharova UniversityCollegeLondon,London,UnitedKingdom

HuiLi MIITKeyLaboratoryofCriticalMaterialsTechnologyforNewEnergy ConversionandStorage,SchoolofChemistryandChemicalEngineering&Key LaboratoryofMicro-systemsandMicro-structures,MinistryofEducation,Harbin InstituteofTechnology,Harbin,People’sRepublicofChina

MariaMendes FacultyofPharmacy,UniversityofCoimbra,Coimbra, Portugal;CentreforNeurosciencesandCellBiology(CNC),Universityof Coimbra,Coimbra,Portugal

AndreaMerlettini DepartmentofChemistry“G.Ciamician”,Universityof Bologna,Bologna,Italy

AndreaMickova InoCures.r.o.,Klimentska ´ 1652/36,11000Prague,Czech Republic

MonicaMontesi InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

AlbertoPais CoimbraChemistryCenter,DepartmentofChemistry,Universityof Coimbra,Coimbra,Portugal

x ListofContributors

ListofContributors

AnnaLisaPalange LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

RobertoPalomba LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

TatianaPatricio InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

RuiC.Pereira LaboratoryofNanotechnologyforPrecisionMedicine,Fondazione IstitutoItalianodiTecnologia,Genoa,Italy

DarioPuppi BIOLabResearchGroup,DepartmentofChemistryandIndustrial Chemistry,UniversityofPisa,Pisa,Italy

MichalaRampichova LaboratoryofTissueEngineering,InstituteofExperimental Medicine,AcademyofSciencesoftheCzechRepublic,v.v.i,Vı´de ˇ nska ´ 1083,142 20,Prague4,CzechRepublic

NicolettaRescignano UniversityofPerugia,CivilandEnvironmentalEngineering Department,StradadiPentima4,Terni,Italy

MarionRetter TranslationalCenterRegenerativeTherapies,BranchofFraunhofer InstituteforSilicateResearchISC,Wurzburg,Germany

TimurSaliev CentreforLifeSciences,NationalLaboratoryAstana,Nazarbayev University,AstanaKazakhstan

MonicaSandri InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

ChristineSchneider DepartmentofTissueEngineeringandRegenerative Medicine,UniversityHospitalWurzburg,Wurzburg,Germany

Joa ˜ oSousa FacultyofPharmacy,UniversityofCoimbra,Coimbra, Portugal;LAQVREQUIMTE,GroupofPharmaceuticalTechnology,Porto, Portugal

SimoneSprio InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

AnnaTampieri InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

xi

TamerUyar InstituteofMaterialsScience&Nanotechnology,UNAM-National NanotechnologyResearchCenter,BilkentUniversity,Ankara,Turkey

CarlaVitorino FacultyofPharmacy,UniversityofCoimbra,Coimbra, Portugal;CentreforNeurosciencesandCellBiology(CNC),Universityof Coimbra,Coimbra,Portugal;LAQVREQUIMTE,GroupofPharmaceutical Technology,Porto,Portugal

XindongWang MIITKeyLaboratoryofCriticalMaterialsTechnologyforNew EnergyConversionandStorage,SchoolofChemistryandChemicalEngineering& KeyLaboratoryofMicro-systemsandMicro-structures,MinistryofEducation, HarbinInstituteofTechnology,Harbin,People’sRepublicofChina

xii ListofContributors

PartI Fundamentalson NanotechnologyforDrug Delivery

Thispageintentionallyleftblank

Introductionto“Core-shell nanostructuresfordrugdelivery andtheranostics:Challenges, strategies,andprospectsfor novelcarriersystems”

MariaLetiziaFocarete1 andAnnaTampieri2

1DepartmentofChemistry“G.Ciamician”,UniversityofBologna,Bologna,Italy,

2InstituteofScienceandTechnologyforCeramics,ISTEC CNR,Faenza,Italy

Researchonnanoscienceandnanotechnologyisexperiencingadramaticdevelopment.Advancesinthepreparationofnanosystemswithapplicationsinthefieldof medicinehavegivenrisetonewchallengesinthedesignofsmartmaterialscapable ofrespondingtonewclinicalrequirements,amongwhichvarioustypesofnanoparticlesplayanimportantrole.Amaingoalinthisfieldistodevelopnewsystems abletodelivertherapeuticagentstothepatientinamoreeffectiveandsaferfashion,incomparisonwithsystemicadministration.Infact,inmanycasesthislatter approachimpliestheadministrationofhighdosagestoreachtherapeuticallyrelevantamountsofthedruginthetargetsite,whichcanhoweverinducepotentially harmfulsideeffects.Thisproblemisparticularlycriticalinoncologytreatments, wheretherisk benefitratioassociatedwithchemotherapyoftenmakesitdifficult totakeawisedecision,asaconsequenceofthedrugscytotoxicity.Therefore,the establishmentofnewtherapeuticapproachesactinglocally,specifically,andalong definedspatial temporalpatternsisahighlydesiredconditionthatmaterialscientistsarepursuingbydevelopingsmart,multifunctionalnanocarriers.Relevantfunctionalitiesinthisrespectinclude(1)loadandsubsequentreleaseofdifferentdrugs, (2)anchoringofbiomoleculessuchasproteins,vectoringagents,ornucleicacidsto theexternalsurfaceoftheparticleandtowardstherapeutictargets,(3)anchoringof fluorescentmoleculesoractivecomplexesformagneticresonanceimaging(MRI) toperformopticalmonitoring,(4)inclusionoffunctionalnanoparticlestoenable remoteactivationondemand,suitableforpersonalizedapplications.

Besidesnanomedicine,alsoregenerativemedicineapproachescanreceivegreat benefitbytheuseofnanocarriersenablingco-deliveryorsequentialpresentationof biologicalcuestocells,tomostefficientlyguidecellsalongadifferentiationor dedifferentiationpathway. Core-ShellNanostructuresforDrugDeliveryandTheranostics.DOI:

1
https://doi.org/10.1016/B978-0-08-102198-9.00001-6 © 2018ElsevierLtd.Allrightsreserved.

Potentialbenefitsofnanotechnologyinmedicineareoutstanding,asitcanopen torefined,highlytargeted,blood brainbarrier-crossingdrugdeliveryandimaging platforms,uniquetransfection,labeling,bioseparation,aswellasanalyticalandtissueengineeringapproaches.

Amongnanostructuresthathaverecentlyraisedgreatinterest,engineeredmagneticnanoparticles(MNPs)representacutting-edgetoolinmedicinebecausethey canbesimultaneouslyfunctionalizedandguidedbyamagneticfield,thusenabling integrativetheranostic(i.e.,therapeuticanddiagnostic)applications.Theuseof MNPsiseffectiveinadvancedMRI,guideddrugandgenedelivery,hyperthermiabasedcancertherapy,tissueengineering,celltracking,andbioseparation.The developmentofdrugdeliverysystemswithselectivitytopathologicsitesisan ambitiousgoal.TheprinciplesofmagneticguidanceofMNP-conjugateddrugs havebeenappliedexperimentallyandhavereachedclinicaltrialsasacancertherapy.FollowingintravenousdeliveryofMNPs,anexternalmagneticfieldisusedto concentrateMNPsataspecifictargetsite,byaprocedurewelltoleratedincancer patients.Nanoparticle-baseddrugandgenedeliverysystemsmaysolvethe insurmountableobstacleoftreatingneurologicaldiseases:deliveryacrosstheblood brainbarrier.ButissuesofpotentialembolizationwithMNPaggregatesincapillaries andtheneedoflargedistancesbetweenthepathologicalsiteandexternalmagnetic fieldarestillachallenge.

Therecentadvancementsinmaterialsscienceapproacheshavepromptedarapid progressinthepreparationofcore-shellnanostructureswithtailoredsurfacecharacteristics,namelycore-shellnanoparticlesandcore-shellnanofibers,thusopening newperspectivesintheirusefordiversifiedapplications.Encapsulationoftherapeuticagentsorbiologicallyactivemoleculesinnanostructureswithacore-shell configurationrepresentsausefulstrategytoimprovebioavailabilityofdrugswith poorwatersolubility;preventburstreleasewhichmightcausetoxicologicaleffects; obtainasustainedandprolongedrelease;generatetemporalandspatialcontrolled release;encapsulateunstablebioactivemoleculesprotectingtheirbiologicalactivity;loaddifferentdrugsatthesametimeinthecoreandshellregionofthenanostructuretoachieveadistinctmultidrugrelease;andobtainnanostructureswith multifunctionalitythusdevelopingmaterialsfor“theranostics.”Thecoalescenceof bioengineering,biomedical,andtoxicologydisciplineswillcontinuefostering developmentofrelevantstrategiestoengineeradvancednanodeviceswithbiocompatibleinterfaces.

Thisbookpresentsthestate-of-the-artresearchonthedesignandfabricationofcoreshellnanostructuredsystemsforthesmartdeliveryoftherapeuticandimagingagents. Themostimportantphysicochemicalpropertiesofbiocompatiblepolymeric nanodevices(molecularweight,hydrophobicity,surfacechargeandsize,etc.), incorporatingactivepharmaceuticalingredientsortherapeuticagents,arepresented andtheirinfluenceonthereleasekineticsofthedeliverysystemsarediscussed. Moreover,anoverviewoftheclinicalapplicationsofnanosystems,rangingfrom basicresearchtotranslationintoclinicalpracticeispresented,takingintoaccount regulatoryissues,includingthoseaddressingsafetyconcerns,aswellasquestions relatedtotheup-scalingprocessesandreproducibility.

4Core-ShellNanostructuresforDrugDeliveryandTheranostics

Novelbiocompatibleandbioresorbablemagneticmaterials,promisingfornew therapeuticapproachesandtoovercometheuseofcytotoxicsuperparamagnetic carriers,arepresented.Suchinnovativematerialsareobtainedthroughabiomineralizationprocessabletogeneratehybridnano-andmicro-carrierswithsuperparamagneticpropertiesforapplicationinnanomedicineasnoveldiagnosticnano-tools orassmartdrugdeliverysystems.

Thedifferenttechniquesusedforthepreparationofnanoparticleswithacoreshellstructure,aswellasstimuliresponsivecore-shellnanoparticles,areillustrated andnanoparticlepropertiesarediscussed.Inaddition,theuseofcore-shellnanoparticlesinmanyadvancedmedicalapplications,suchastheranostics,cancerimaging andtherapy,andcardiovasculardiseases,isthoroughlydescribed.

Thelastpartofthebookisrelatedtocore-shellnanofibersfordrugdelivery applicationsintissueengineering,woundhealing,anticancertherapy,etc. Electrospunfiberscanbeloadedwithdifferentagents,rangingfromsmallmoleculestogrowthfactorsandproteins.Variousloadingmethods,suchasblendelectrospinning,coaxialelectrospinning,andemulsionelectrospinningtechniquesare described.Moreover,anextensiveoverviewofdrugreleasekineticsinrelevant invitro and invivo environmentsisreported.Severalapplicationsofcore-shell nanofibersfordrugandbiomoleculerelease,aswellasforgenetherapy,arepresented,includingcutting-edgeapplicationssuchascontrolledmultidrugdelivery anddrugreleaseondemandbyexternaltriggering.

5 Introduction

Thispageintentionallyleftblank

Physicochemicalpropertiesof nanosizedpolymericdrugcarrier systems

2.1Introduction

Theadventofnanomedicinemarksanunparalleledopportunitytoadvancethetreatmentofvariousdiseases,includingcancer.Theuniquepropertiesofnanoparticles (NPs),suchaslargesurface-to-volumeratio,smallsize,theabilitytoencapsulate variousdrugs,andtunablesurfacechemistry,givethemmanyadvantagesovertheir bulkcounterparts.Thisincludesmultivalentsurfacemodificationwithtargeting ligands,efficientnavigationofthecomplex invivo environment,increasedintracellulartrafficking,andsustainedreleaseofdrugpayload.TheseadvantagesmakeNPs amodeoftreatmentpotentiallysuperiortoconventionalcancertherapies [1]

NPs,suchasliposomesorpolymericNPs,haveprovenadvantageousatsolubilizingtherapeuticcargos,substantiallyprolongingthecirculationlifetimesofdrugs [2].Evenso,itwasMaedaandco-workers [3] who,withtheirdiscoveryofthe enhancedpermeabilityandretention(EPR)effect,demonstratedthepotentialfor heightenedaccumulationoflong-circulatingmacromoleculesbyextravasation throughfenestratedbloodvesselsintumorsandopenedseveralexcitingavenues forsite-specificlocalizationofchemotherapeutics.Consequently,overthepasttwo decades,thischaracteristicofsolidtumorshasbeenamajorimpetusforextensive researcheffortsaimedatapplyingNPstochemotherapy.Withgrowingevidenceof theEPRphenomenoninpathologies,rangingfrominfection [4] toheartfailure [5], NP-baseddrugdeliveryisemergingasapowerfulstrategyinseveraldistinctdiseaseconditions,asdemonstratedbyclinicalapprovalofNPformulationsforfungal infections,hepatitisA,multiplesclerosis,andend-stagerenaldisease [6].Their longcirculationlifetimesandabilitytoextravasatetodiseasesiteslargelyimproved thesafetyandtolerabilityofNP-formulateddrugs,bestshownbythereducedcardiotoxicityobservedinpatientsafteradministrationofliposomaldoxorubicin(DOX) comparedwiththatinthoseundergoingtreatmentwiththeconventionalformulation [7].TheseimprovementsinpatientmorbidityledtotheUSFoodandDrug Administration(FDA)approvalofliposomalDOX(Doxil)forthetreatmentof Kaposi’ssarcomain1995 [8],aswellasapprovalofNPalbumin-boundpaclitaxel (Abraxane)10yearslater,whichsimilarlyreduceddetrimentalsideeffects Core-ShellNanostructuresforDrugDeliveryandTheranostics.DOI: https://doi.org/10.1016/B978-0-08-102198-9.00002-8

2
© 2018ElsevierLtd.Allrightsreserved.

8Core-ShellNanostructuresforDrugDeliveryandTheranostics

associatedwiththeconventionalpaclitaxelformulationbyeliminatingtheexcipient CremophorEL [9].

Althoughimprovementsinpatientsafetyandmorbidityledtoclinicalapproval ofNPplatforms,suchasDOXandpaclitaxel,efficaciouspatientresponsesremain modest;currently,theseplatformsofferonlymarginalimprovementsoverconventionalformulations [10].Despitetheirpotentialforincreaseddrughalf-livesand improvingadrug’spropensitytoaccumulateatsitesofinjury,theplatformsfacea complexseriesofbiologicalbarriersthatseverelylimitsite-specificbioavailability, preventingachievementofpropertherapeuticoutcomes.Theseobstaclesinclude opsonizationandsubsequentsequestrationbythemononuclearphagocytesystem, nonspecificdistribution,hemorheological/bloodvesselflowlimitations,pressure gradients,cellularinternalization,escapefromendosomalandlysosomalcompartments,anddrugeffluxpump [11].Inadditiontothesubstantialchallengespresentedbyeachindividualbiologicalbarrier,itisimportanttonotethatthesevary incomplexitydependingonfactors,suchasadministrationroute(oralversusintravenous),diseasetype(cancerversusinfection),andstateofdiseaseprogression (early-versuslate-stagecancers).

TheminimaltherapeuticimpactobservedfollowingNPdeliveryisadirectconsequenceoftheNP’sinabilitytoovercomemanyofthesebarriers.Avastamount ofresearchandresourcesarecontinuallyinvestedintheincorporationofinnovative designfeatureswithintraditionalnanocarrierconstructsforpropernegotiationof biologicalbarriers,resultinginthecreationofmultifunctionalNPs.Oftentimes, thesefeaturesincludeincorporationofactivetargetingmoietiesforenhanced uptakeinspecificcells [12] orconstituentcomponentsforstimulus-responsive release(e.g.,pH-sensitive,thermosensitive,andultrasound) [13].Althoughthese modificationshighlighttheimpressiveversatilityandpreclinicalpotentialofnanomedicine,veryfewNPsthatsimplyaddressoneorafewbiologicalbarriersprogresstotheclinicalarena.Thisrealizationhasledmanyexpertstoprovocatively question,andchallenge,thefieldofNP-baseddrugdeliveryinhopesoftransitioningthedisciplinefromplatformswithmerepotentialtothosecapableofdelivering positiveclinicaloutcomes.

2.2Polymericnanocarriersystems

2.2.1PolymerNPs(nanospheres,nanocapsules,andmicelles)

NP-baseddrugdeliveryplatformshaveemergedassuitablevehiclesforovercomingpharmacokineticlimitationsassociat edwithconventionaldrugformulations. Translationalresearchinpolymertherapeuticshasalreadytransferredproducts intothemarket [14] .Theseincludepolymericdrugs(e.g.,Copaxonefor multiplesclerosisandtheorallyadminist eredsequestrantsRenagelandWelchol), polymer proteinconjugates(e.g.,PEGylated interferons(Pegasys;Peg-Intron)), andpolymer aptamerconjugates(Macugenformaculardegeneration)currently inroutineclinicaluse [15].ImprovementonPEGchemistryandconjugation

strategies,e.g.,enzyme-mediatedaswellasrecombinanttechniques,hasimportantlycontributedtothissuccess.Althoughpolymer-drugconjugatesarenowin advancedclinicaltrials,progresshasbeenslowduetoclinicalfailuresresulting frompoorrationaldesignorcommercialiss ues.Lackofsuitabilityofthespecific polymersfromaclinicalviewpoint(safety),poorreproducibilityofmanufacture, andlackofvalidatedcharacterizationmethodsforsuchcomplexconjugatesand architectureshavelimitedthisprogress [16].

Polymerspreparedfrompolyesters:poly(lactic-co-glycolicacid)(PLGA)andits homopolymerspoly(lactide)(PLA)andpoly(glycolide)havebeenselecteddueto theirbiocompatibility,biodegradability,andhighstabilityinbiologicalfluidsand duringstorage [17].ThesepolymershavebeenapprovedbytheFDAfordrug delivery;theycandegradebynonenzymatichydrolysisoftheesterbackbonein bodyfluid.Thedegradationproducts(i.e.,lacticandglycolicacids)aremetabolic compoundsandreadilyeliminatedfromthebodythroughKrebscycle [18]

Polymersomes:Polymermicellesandpolymervesicles,asknownaspolymersomes,arestableandrobustpolymer-basedNPsthatcanbedesignedtodegrade, thusallowingthesecarrierstobeclearedfromthehumanbodyandavoidlong-term toxicitysideeffects [19].Furthermore,theversatilityofpolymerchemistryallows topreciselytunethepropertiesofthesepolymersomes,suchasmembranethickness andstimulussensitivity,andenablestheintroductionoffunctionalgroupsthatcan beusedtoattachtargetingligands(eitherbeforeassemblyofthepolymersintothe NPoronthefinalpolymerNPs).Particularexpertisehasbeendevelopedinpolypeptidedesign,conjugationofpolypeptidesandpolysaccharides,ringopeningpolymerizationofpolyesters,polycarbonate,andpolypeptides,andrecombinant productionofelastin-likepolymers [20].Severalmethodshavebeendevelopedto preparedrug-loadedNPswithdesiredreleasecharacteristicsfrombiodegradable polymers.Theseincludeemulsificationsolventevaporation,nanoprecipitation, microfluidics,emulsificationsolventdiffusionmethod,phaseinversion,sonication, andsaltingout. Invitro and invivo responsesfromtheNPsareinfluencedbytheir variousproperties,suchastheparticlesizeandsizedistribution,surfacemorphology,porosity,surfacechemistry,surfaceadhesion,zeta-potential,drugstability, drugencapsulationefficiency,surface/bulkerosion/degradation,diffusionofthe drug,kineticsofdrugrelease,andthethermodynamicpropertiesoftheNPs.

2.2.2Liposomes

Despitethefactthatliposomesaredevelopedandproducedfordecades,thereare stillmanyunresolvedissuesincluding:

● therearenopredictivetoolsallowingfortherationaldesignoftheliposomeformulation [21];

● thereareonlybrief,imprecise,indicationsprovidedbyauthorities(FDI,EMA)howthe liposomeformulationshouldbecharacterized [8];

● thereareonlylimitednumberofvalidatedinvitrotestsfortheevaluationliposomeperformance [22];and

● theproductionprocessesareonlyqualitativelydescribed.

9 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

10Core-ShellNanostructuresforDrugDeliveryandTheranostics

Whereasliposomescanbeeffectivelyusedforamphiphilicmolecules,thereare currentlynoeffectiveproductionprocessesforencapsulationofhighlyhydrophilic compounds.Encapsulationofbiologicalmacromolecules(proteins,nucleicacids, andsugars)isstillveryinefficientornonexisting [23].

2.2.3Dendrimers

Dendrimersweresynthesizedforthefirsttimeduring1978

90.Theyareunique tree-likebranchedpolymersassociatedwithbiomolecules-likeproperties,lowpolydispersityandhighdegreeofversatilityintermsofstructure(easilyphysicochemicallycustomizable),administration(enteralparenteral,andtopicalroutes),and application(drugdeliveryagents,diagnosis,therapy,anddetection).Forallthese reasons,theyemergedasanewappealingclassofparticlesfornanomedicine [24].

Theabilityofdendrimerstoencapsulateandbindtheguestmoleculecanbeused forsolubilityenhancement,sustainedrelease,anddrugdeliverapplications [25].In the20thcentury,theadvancesinthedesign,aswellastheinnovationsindendrimerssynthesis,haveprovidedalargenumberofpublicationsaccordingtotheISI webofknowledge,WebofScience(18.459),contributingtothecreationofa strongproofofconceptforbiomedicalapplications(suchasdrugcarriersandgene deliverysystems).Nevertheless,theapplicationsofdendrimersinbiologicalsystemswereforlongtimelimitedbecauseoftheirintrinsictoxicity.Theadverse effectsweremainlyattributedtogenerationnumberandcationicsurface,andother minorparameterswerealsotakenintoconsideration [26].Theseaspectshave encouragedthesearchfornewbiocompatibledendrimerfamilies,andithasbeen demonstratedthatsurfacemodificationalmostcompletelyabolishedtheintrinsic toxicityofdendrimers [27].Inthisrespect,themoststudieddendrimershavebeen Polyamidoamine(PAMAM)dendrimers invitro and invivo, [28] (i.e.,2657publicationsonPAMAMdendrimersbetween2000and2015).Altogether,duetotheir outstandingphysicochemicalpropertiesandtheenhancedbiocompatibility,dendrimersguaranteeaninnovative,highlycustomizabledrugdeliverysystemableto improvethepharmacokinetics,andconsequentlytheefficacyofthedrug,compared totheunconjugatedone.Dendrimernanocarriersofferthepotentialtoenhancethe bioavailabilityofdrugsthatarepoorlysolubleand/orsubstratesforeffluxtransporters [29].Starpharmahasmadethemostsignificantcontributiontodendrimertherapeuticswiththevirucide(Vivagel) [30] andaparentalanticancerdendrimer (DEP) docetaxelconjugate.

2.3Maintherapeuticagentsencapsulated

NanospheresbasedonPLGAhavebeenextensivelyinvestigatedforsustainedand targetedreleaseofdrugssuchasanticancerdrugs [31],antibiotics [32],peptideand proteindrugsnamelyhumangrowthhormone [33],lysozyme [34],bovineserum albumin, [35] andinsulin [36]

2.3.1Anticancerdrugs

SmallanticancerdrugshavebeenencapsulatedinPLGA-basedNPsinthelast yearsandtheirefficacytotreatvariouscancershasbeenevaluated invitro and invivo.Differentexamplesarepresentinliterature.Long-termclinicaluseof DOX,ahighlypotentanthracyclineapprovedagainstawidespectrumoftumorsis compromisedbytoxicities,cardiomyopathies,andsubsequentcongestiveheartfailures [37].PEGylatedPLGANPsencapsulatingDOXenhanceantitumoralefficacy comparedwiththefreedrug [38].Moreover,theseNPswereshowntodecrease drasticallysideeffects,inparticularcardiomyopathiescomparedtoDoxil,aliposomalformulationofDOXcurrentlyavailableonthemarket [39].Chemotherapy ofglioblastomaislargelyineffectiveastheblood brainbarrierpreventsentryof mostanticanceragentsinthebrain.NontargetedDOX-loadedPLGANPscoated withpoloxamer188werefoundtocrosstheblood brainbarrierandtoeffectively decreasethetumorgrowthinratmodel [40].Paclitaxel(PTX),amitoticinhibitor usedinthetreatmentofvariouscancers,presentsalowtherapeuticindexandalow aqueoussolubility.TheencapsulationofPTXintoPLGANPsstronglyenhances thecytotoxiceffectofthedrugascomparedtoTaxol [41].9-nitrocamptothecin(9NC)isananticancerdrugwhichtargetsthetopoisomeraseInuclearenzyme. BecauseofinstabilityatbiologicalpHandlowwatersolubility,thedeliveryofthis drugisquitechallenging.9-NC-loadedPLGANPs,preparedbynanoprecipitation, haveshownasustainedreleaseupto160hoursindicatingthesuitabilityofPLGA NPsincontrolled9-NCrelease [42].PLGA-basedNPstargetingthetumorcellsor tumorendotheliumhavebeenshowntobeusuallymoreactiveinpreclinicalstudies thannontargetedNPs.Someexamplesarepresentinliterature.Acyclicpeptide, Cyclo-(1,12)-penITDGEATDSGC(cLABL),hasbeenshowntoinhibitLFA-1/ ICAM-1viathebindingtoICAM-1.Inaddition,cLABLhasbeenshowntobe internalizedafterbindingtoICAM-1 [43].Thiscyclicpeptidewasconjugatedto PLGANPscarryingDOX.ThesenanovectorswereshowntobemorerapidlyuptakenbyA549lungepithelialcellsthannontargetedNPs.Folate-decoratedDOXloadedPLGANPsinducedacellularuptake1.5timeshigherbyMCF-7cellsthan nontargetedNPs [44].Recently,otherfolate-decoratedPTX-loadedPLGA-PEG NPsshowedagreatercytotoxicityagainstHEC-1Acancercellsboth invitro and invivo

2.4Physicalproperties

2.4.1Dimensionandsurfacecharge

Inthecontextofbiomedicalapplicationsofengineerednanomaterials,theforemost distinctivefeatureistheirsize,whichfallin-betweenindividualatomsormolecules andcorrespondingbulkmaterial.Thereducedsizeofnanomaterialswillnotonly provideanopportunityforincreaseduptakebutalsowillbuildchancestointeract withbiologicaltissuestoagreatermagnitudetoachievedesiredtypeofselective

.
11 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

12Core-ShellNanostructuresforDrugDeliveryandTheranostics

biologicalactionfortherapeuticpurposes [45].Furthermore,intherecenttimes,it hasbeenestablishedthatparticlesizeisparticularlydomineeringwhileotherphysicochemicalparametersarecontrolled.Toconfirmthis,systematicassessmentof size-dependentbiologicalprofileandbiodistributionofthreemonodisperse drug silicananoconjugatesof20,50,and200nmhavebeenevaluated.Thisevaluationwasperformedthroughlaboratoryexperimentsinconjugationwithmathematicalmodelingtoestablishtheoptimalsizeforthemosteffectiveantitumordrug deliverysystem.Itwasrevealedthatthe50nmsizeddrugnanoconjugateparticles hadhighestcancertissueretentionovertimeleadingtodeepertissuepenetration andeffectiveinternalizationwithinthecancercellsalongwithslowerclearance [46].Additionally,nanomaterialsareanticipatedtocrossbiologicalobstacles,gainingentrancetothebody,andsubsequentlynanosizemaygoverntheirkinetics, absorption,distribution,metabolism,andexcretionthatwouldnotbepossibleotherwisewiththebulkmaterialofakincomposition [47]

Thesurfacechargeofapolymerisanimportantparameterwhichhelpstodeterminetheirefficiencyforsurfacemodification [48].Theeffectofsurfacechargecan beusedtoimprovethedrugabsorptionviatheoralrouteeitherbyincreasingthe proximityofformulationtotheepitheliumorhigherparticleuptakeviaPayer’s patchesorboth.

ComparedwithNPswithaneutralornegativecharge,positivelychargedNPs aretakenupatafasterrate.Ithasbeensuggestedthatthecellmembranepossesses aslightnegativechargeandcelluptakeisdrivenbyelectrostaticattractions.A recentstudydemonstratedthatthiselectrostaticattractionbetweenmembraneand positivelychargedNPsfavorsadhesionontothecell’ssurface,leadingtouptake. BindingofnegativelychargedNPstoalipidbilayercauseslocalgelation,whereas bindingofpositivelychargedNPsinducesfluidity.Severalstudieshaveconfirmed thepivotalrolesurfacechargeplaysindownstreambiologicalresponsestoNPs [49].

2.4.2Physicalstate

Thedegradationrateisoftenconsideredtobeanimportantselectioncriterionfor biomedicalapplications.Thedegradationratedependsalsoonthecrystallinityof polymermatrix.Thestereochemistryandthermalhistoryhavedirectinfluenceon PLAcrystallinity,andtherefore,onitspropertiesingeneral.Averyimportantpropertyofpolymersistherateofcrystallinitywherecrystallinityistheindicationof amountofcrystallineregioninthepolymerwithrespecttoamorphouscontent. Crystallinityinfluencesmanypolymerpropertiesincludinghardness,modulus,tensilestrength,stiffness,crease,andmeltingpoints.So,whileselectingapolymerfor arequiredapplication,itscrystallinityplaystheforemostrole.Physicalcharacteristicssuchasdensity,heatcapacity,andmechanicalandrheologicalpropertiesof polymeraredependentonitsTg.ForamorphousPLA,theTgisoneofthemost importantparametersbecausedramaticchangesinpolymerchainmobilitytake placeatandaboveTg.ForsemicrystallinePLA,bothTgandTmareimportant physicalparametersforpredictingPLAbehavior [50]

2.5Chemicalproperties

2.5.1Hydrophobicity/hydrophilicity

Thehydrophobicityofthepolymeristhesecondmostimportantpropertywhich affectsthe invitro and invivo fateofpolymericsystemandrepresentsitsaffinity towardstheorganicaswellastheaqueousphase.However,themolecularweight ofthepolymerisdependentuponthechainlengthoftheoligomer,anditpossesses directrelationwiththehydrophobicity [51].Hydrophobicityofpolymersgreatly determinestheabsorptionpatternanddegradationkineticsofadeliverysystem [52]

Thedegradationkineticsdictatestherateanddurationofdrugrelease,thatis,the slowerthedegradation,themoreprolongedwillbetherelease.OwingtothehydrophobicnatureofPLGA,orPLAforexample,nano/microparticleswithcore-shell structuresarepreparedthroughvariousemulsificationprocessesandhydrophilic drugscouldbeencapsulatedinthehydrophiliccoreoftheparticles,whereas hydrophobicdrugstendtodistributeinthehydrophobicshell.Thetypicalrelease profileforPLGAparticulatedeliverysystemsistheinitialburstphasefollowedby anear-zeroorderphase.Variousintramuscularorsubcutaneouscontrolleddelivery systemsintheformofimplantsormicroparticleshavebeendevelopedusingbiodegradablepolyesterssuchasPLAandPLGA [52].

2.5.2Molecularweight

Themolecularweightofthepolymerisoneofthemostimportantfactorsthat affectthepharmacokineticandpharmacologicalefficiencyofadeliverysystem.It significantlyaffectsreleasekineticsofdrugbyinfluencingpolymerdegradation behavior.Thehighermolecularweight(HMw)ofthepolymerisattributedtowards alongerchainlengthmonomers/oligomers,whichreducesitsinitialbursteffect anddegradationrate,andhence,thesustainedreleaseofthedrug [53].Theuseof HMwpolymersincreasesthebioavailability [54] anddrugloading [54],whereas theyexertanoppositeeffectontheencapsulationefficiency(EE)andparticlesize ofthedeliverysystem.TheeffectofmolecularweightofPLGA/PLANPsoftwo hydrophobicmodeldrugs(dexamethasoneandflutamide)suggestedthatthedrug loadingcapacityandparticlesizeofcarriersincreasewithHMwpolymeralong withreductioninpercentagecumulativerelease.ThePLGANPsofRivastigmine alsodemonstratedslowerreleasethanpoly-(butylcyanoacrylate)NPs.Thiseffect wasalsoattributedtoHMwofPLGA [55].Anenormousincreaseinbioavailability andEEofcurcuminisreportedwhenencapsulatedinHMwpolymers,thatis, PLGAandPCL-PEG-PCLco-polymers,respectively.Apartfromthese,sustained effect,higherEEanddrugloading,increasedbioavailability,bettertherapeutic response,lowinitialbursteffect,andbetterintestinalabsorptionwithincreasein themolecularweightofthepolymerisseenirrespectiveofthepolymerandthe drugused.TheseeffectslikeincreaseinEEareattributedtoanincreaseinviscosity oftheorganicphasewithincreasingmolecularweightoftheincorporatedpolymer whichreducesthediffusionofthedrugintheexternalaqueousphasebefore

13 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

14Core-ShellNanostructuresforDrugDeliveryandTheranostics

colloidalhardening [56].Inbrief,lowermolecularweightpolymeryieldssmaller sizeparticlesalongwithreductionintheirEE [54].Nevertheless,thisisnotalways true:fornorcantharidin,betterabsorptioncharacteristicswereseenwithlowmolecularweightchitosanascomparedtoveryHMwpolymerwhichmayyieldporous particlesduetotheformationoflargeparticlesthataggregatethemselvesandthus reduceabsorption [57].Thiscouldbeexplainedonthebasisofthethermoplastic natureandinherenttackinessoftheHMwpolymer.

2.6Conclusion

Thephysicochemicalpropertiesofapolymerhavevitaleffectsonefficiencyofa deliverysystem,whichhelpresearchersintheselectionofanoptimizedpolymer withrequiredpropertyforspecificpurpose.Likewise,hydrophilicpolymersorsurfactantscanbecoatedonthepolymericdrugparticletoimprovethecirculation half-lifeofthedrugbyavoidingreticulo-endothelialsystemuptake.Thedrug releasecanbemodified,thatisextendedandcontrolled,fromhourstomonthswith theselectionofpropermolecularweightandthenatureofthepolymer.Anamorphous,hydrophilicpolymerisrecommendedforrapidrelease,upto1month, whereasahighlycrystallinepolymerisconsideredbestforslowrelease,lasting morethan6months.Targetingcanalsobeachievedincancerouscells,macrophagesofliverandspleen(incaseoffatalinfections),byusingahydrophobicpolymer.Therefore,thephysiochemicalpropertiesofapolymerareessentialbecause theyplayaprominentpartinmatrixdegradation,drugreleasemechanism,drug loading,andmostimportantlyfordrugtargetingataspecificsite.

References

[1] XuX,HoW,etal.Cancernanomedicine:fromtargeteddeliverytocombinationtherapy.TrendsMolMed2015;21(4):223 32.

[2] MalamY,LoizidouM,etal.Liposomesandnanoparticles:nanosizedvehiclesfordrug deliveryincancer.TrendsPharmacolSci2009;30(11):592 9.

[3] MaedaH.Tumor-selectivedeliveryofmacromoleculardrugsviatheEPReffect:backgroundandfutureprospects.BioconjugateChem2010;21(5):797 802.

[4] AzzopardiEA,FergusonEL,etal.Theenhancedpermeabilityretentioneffect:anew paradigmfordrugtargetingininfection.JAntimicrobChemother2012;68(2):257 74.

[5] MartiCN,GheorghiadeM,etal.Endothelialdysfunction,arterialstiffness,andheart failure.JAmCollCardiol2012;60(16):1455 69.

[6] ZhangL,GuF,etal.Nanoparticlesinmedicine:therapeuticapplicationsanddevelopments.ClinPharmacolTher2008;83(5):761 9.

[7] SafraT,MuggiaF,etal.Pegylatedliposomaldoxorubicin(doxil):reducedclinicalcardiotoxicityinpatientsreachingorexceedingcumulativedosesof500mg/m2.AnnOncol 2000;11(8):1029 33.

[8] BarenholzYC.Doxils—thefirstFDA-approvednano-drug:lessonslearned.JControl Release2012;160(2):117 34.

[9] HawkinsMJ,Soon-ShiongP,etal.Proteinnanoparticlesasdrugcarriersinclinical medicine.AdvDrugDelivRev2008;60(8):876 85.

[10] GradisharWJ,TjulandinS,etal.PhaseIIItrialofnanoparticlealbumin-boundpaclitaxelcomparedwithpolyethylatedcastoroil basedpaclitaxelinwomenwithbreast cancer.JClinOncol2005;23(31):7794 803.

[11] FerrariM.Frontiersincancernanomedicine:directingmasstransportthroughbiologicalbarriers.TrendsBiotechnol2010;28(4):181 8.

[12] BertrandN,WuJ,etal.Cancernanotechnology:theimpactofpassiveandactivetargetingintheeraofmoderncancerbiology.AdvDrugDelivRev2014;66:2 25.

[13] MuraS,NicolasJ,etal.Stimuli-responsivenanocarriersfordrugdelivery.NatMater 2013;12(11):991.

[14] CanalF,SanchisJ,etal.Polymer drugconjugatesasnano-sizedmedicines.CurrOpin Biotechnol2011;22(6):894 900.

[15] DuncanR,VicentMJ.Polymertherapeutics-prospectsfor21stcentury:theendofthe beginning.AdvDrugDelivRev2013;65(1):60 70.

[16] EnglandRM,Masia ´ E,etal.Polyacetal-stilbeneconjugates—thefirstexamplesof polymertherapeuticsfortheinhibitionofHIF-1inthetreatmentofsolidtumours. JControlRelease2012;164(3):314 22.

[17] LiuY,GuoLK,etal.Preparationandpropertiesofabiodegradablepolymerasanovel drugdeliverysystem.JApplPolymSci2003;90(11):3150 6.

[18] ArmentanoI,BitinisN,etal.MultifunctionalnanostructuredPLAmaterialsforpackagingandtissueengineering.ProgPolymSci2013;38(10):1720 47.

[19] SansonC,DiouO,etal.Doxorubicinloadedmagneticpolymersomes:theranostic nanocarriersforMRimagingandmagneto-chemotherapy.ACSNano2011;5 (2):1122 40.

[20] QiY,ChilkotiA.Protein polymerconjugation—movingbeyondPEGylation.Curr OpinChemBiol2015;28:181 93.

[21] BigdeliA,PalchettiS,etal.Exploringcellularinteractionsofliposomesusingprotein coronafingerprintsandphysicochemicalproperties.ACSNano2016;10(3):3723 37.

[22] AmselemS,CohenR,etal.Invitroteststopredictinvivoperformanceofliposomal dosageforms.ChemPhysLipid1993;64(1 3):219 37.

[23] KamalyN,XiaoZ,etal.Targetedpolymerictherapeuticnanoparticles:design,developmentandclinicaltranslation.ChemSocRev2012;41(7):2971 3010.

[24] LeeCC,MacKayJA,etal.Designingdendrimersforbiologicalapplications.Nat Biotechnol2005;23(12):1517.

[25] PatriAK,MajorosIJ,etal.Dendriticpolymermacromolecularcarriersfordrugdelivery.CurrOpinChemBiol2002;6(4):466 71.

[26] BoasU,HeegaardPM.Dendrimersindrugresearch.ChemSocRev2004;33 (1):43 63.

[27] ChengY,ZhaoL,etal.Designofbiocompatibledendrimersforcancerdiagnosisand therapy:currentstatusandfutureperspectives.ChemSocRev2011;40(5):2673 703.

[28] Labieniec-WatalaM,WatalaC.PAMAMdendrimers:destinedforsuccessordoomed tofail?PlainandmodifiedPAMAMdendrimersinthecontextofbiomedicalapplications.JPharmSci2015;104(1):2 14.

[29] NajlahM,D’EmanueleA.Crossingcellularbarriersusingdendrimernanotechnologies. CurrOpinPharmacol2006;6(5):522 7.

15 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

16Core-ShellNanostructuresforDrugDeliveryandTheranostics

[30] RuppR,RosenthalSL,etal.VivaGel(t)(SPL7013Gel):acandidatedendrimer— microbicideforthepreventionofHIVandHSVinfection.IntJNanomed2007;2 (4):561 6.

[31] AcharyaS,SahooSK.PLGAnanoparticlescontainingvariousanticanceragentsand tumourdeliverybyEPReffect.AdvDrugDelivRev2011;63(3):170 83.

[32] UngaroF,d’AngeloI,etal.DrypowdersbasedonPLGAnanoparticlesforpulmonary deliveryofantibiotics:modulationofencapsulationefficiency,releaserateandlung depositionpatternbyhydrophilicpolymers.JControlRelease2012;157(1):149 59.

[33] Mohammadi-SamaniS,TaghipourB.PLGAmicroandnanoparticlesindeliveryof peptidesandproteins;problemsandapproaches.PharmDevTechnol2015;20 (4):385 93.

[34] CaiC,BakowskyU,etal.Chargednanoparticlesasproteindeliverysystems:afeasibilitystudyusinglysozymeasmodelprotein.EurJPharmBiopharm2008;69 (1):31 42.

[35] RescignanoN,TarpaniL,etal.In-vitrodegradationofPLGAnanoparticlesinaqueous mediumandinstemcellculturesbymonitoringthecargofluorescencespectrum. PolymDegradStabil2016;134:296 304.

[36] ZhangX,SunM,etal.Preparationandcharacterizationofinsulin-loadedbioadhesive PLGAnanoparticlesfororaladministration.EurJPharmSci2012;45(5):632 8.

[37] WohlfartS,KhalanskyAS,etal.Efficientchemotherapyofratglioblastomausing doxorubicin-loadedPLGAnanoparticleswithdifferentstabilizers.PLoSOne2011;6 (5):e19121.

[38] WangH,ZhaoY,etal.Enhancedanti-tumorefficacybyco-deliveryofdoxorubicin andpaclitaxelwithamphiphilicmethoxyPEG-PLGAcopolymernanoparticles. Biomaterials2011;32(32):8281 90.

[39] ChangH-I,YehM-K.Clinicaldevelopmentofliposome-baseddrugs:formulation, characterization,andtherapeuticefficacy.IntJNanomed2012;7:49.

[40] ZhaoY-Z,SunC-Z,etal.Characterizationandanti-tumoractivityofchemicalconjugationofdoxorubicininpolymericmicelles(DOX-P)invitro.CancerLett2011;311 (2):187 94.

[41] GuoJ,GaoX,etal.Aptamer-functionalizedPEG PLGAnanoparticlesforenhanced anti-gliomadrugdelivery.Biomaterials2011;32(31):8010 20.

[42] DerakhshandehK,ErfanM,etal.Encapsulationof9-nitrocamptothecin,anovelanticancerdrug,inbiodegradablenanoparticles:factorialdesign,characterizationand releasekinetics.EurJPharmBiopharm2007;66(1):34 41.

[43] ZhangN,ChittasuphoC,etal.PLGAnanoparticle peptideconjugateeffectivelytargetsintercellularcell-adhesionmolecule-1.BioconjugateChem2007;19(1):145 52.

[44] ZhangZ,LeeSH,etal.Folate-decoratedpoly(lactide-co-glycolide)-vitaminETPGS nanoparticlesfortargeteddrugdelivery.Biomaterials2007;28(10):1889 99.

[45] Fernandez-FernandezA,ManchandaR,etal.Theranosticapplicationsofnanomaterials incancer:drugdelivery,image-guidedtherapy,andmultifunctionalplatforms.Appl BiochemBiotechnol2011;165(7 8):1628 51.

[46] TangL,GabrielsonNP,etal.Size-dependenttumorpenetrationandinvivoefficacyof monodispersedrug silicananoconjugates.MolPharm2013;10(3):883 92.

[47] NavyaP,DaimaHK.Rationalengineeringofphysicochemicalpropertiesofnanomaterialsforbiomedicalapplicationswithnanotoxicologicalperspectives.Nano Convergence2016;3(1):1.

[48] HeC,HuY,etal.Effectsofparticlesizeandsurfacechargeoncellularuptakeand biodistributionofpolymericnanoparticles.Biomaterials2010;31(13):3657 66.

[49] AlbaneseA,TangP,ChanWC.Theeffectofnanoparticlesize,shape,andsurface chemistryonbiologicalsystems.RevAdv2012;14:1 16.

[50] FarahS,AndersonDG,LangerR.PhysicalandmechanicalpropertiesofPLA,and theirfunctionsinwidespreadapplications—acomprehensivereview.AdvDrugDeliv Rev2016;107:367 92.

[51] MoyanoDF,GoldsmithM,etal.Nanoparticlehydrophobicitydictatesimmune response.JAmChemSoc2012;134(9):3965 7.

[52] FuY,KaoWJ.Drugreleasekineticsandtransportmechanismsofnon-degradableand degradablepolymericdeliverysystems.ExpOpinDrugDeliv2010;7(4):429 44.

[53] SonamHChaudhary,etal.Effectofphysicochemicalpropertiesofbiodegradablepolymersonnanodrugdelivery.PolymRev2013;53(4):546 67.

[54] KumariA,YadavSK,etal.Biodegradablepolymericnanoparticlesbaseddrugdelivery systems.ColloidsSurfBBiointerfaces2010;75(1):1 18.

[55] JoshiSA,ChavhanSS,etal.Rivastigmine-loadedPLGAandPBCAnanoparticles: preparation,optimization,characterization,invitroandpharmacodynamicstudies.Eur JPharmBiopharm2010;76(2):189 99.

[56] VandeVenH,VermeerschM,etal.PLGAnanoparticlesloadedwiththeantileishmanialsaponin β-aescin:factorinfluencestudyandinvitroefficacyevaluation.IntJ Pharm2011;420(1):122 32.

[57] KumarMR,MuzzarelliRA,etal.Chitosanchemistryandpharmaceuticalperspectives. ChemRev2004;104(12):6017 84.

17 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

Thispageintentionallyleftblank

Biomineralizationprocess generatinghybridnano-and micro-carriers

ElisabettaCampodoni,TatianaPatricio,MonicaMontesi, AnnaTampieri,MonicaSandriandSimoneSprio

InstituteofScienceandTechnologyforCeramics-NationalResearchCouncil(ISTEC-CNR), Faenza,Italy

3.1Introduction

Biomaterialsplayanengagingroleinthefieldofregenerativemedicinewhere biomimicryhastodaybecomeadrivingconcept.Infact,theclosereproductionof thephysicochemical,morphological,andmechanicalfeaturesoftargetedtissues providebiomaterialswithabilitytoexchangeinformationwithcellsandtriggerthe boneregenerativecascade [1].Tothispurpose,nature-inspiredapproachesfor nanomaterialsdevelopmentarerapidlygaininggroundtoobtainmaterialswith unusualperformance.Infact,organicmacromoleculesatthebaseofbiologicstructuresstorecomplexinformationthatcanbeexploitedtogenerate3Dconstructs exhibitinghighmimicryoflivingtissues.Thisconceptisperfectlyrepresentedby biomineralization,anaturalassembling/mineralizationprocessthathasbeensuccessfullyreproducedinlaboratorytoinduceheterogeneousnucleationofinorganic nanophasesontotheorganicmatrix,drivenbycontrolmechanismsinherentinthe organicmatrixitself,andtoproducehybridscaffoldswithbone-mimickingcompositional,morphological,andstructuralfeatures [2 8].Thechemicalinteraction betweentheorganicandinorganiccomponentconfersuniquepropertiestosuch hybridmaterials.Biomineralizationprocessesarealsoeffectiveintheproductionof nano-sizedstructuresthatcanbeusedasnano-andmicro-carrierswithenhanced bioactivityandbiodegradability [9 11].Inthebroadfieldofnanomedicine,nanoparticles(NPs)arewidelystudiedbecausetheirapplicationisexpectedtochange thesceneryofpharmaceuticalandbiotechnologicalindustries [12].Infactthe clinicalapplicationofnewerandmoreeffectivedrugsisstillconstraineddueto thepresenceofseveralbarriersandblocksbetweenthesiteofintroductionandthe targetsitesuchasreticulo-endothelialsystem,membranebarriersandblood brain barrier,orthepossibilitytobeinactivatedordegraded [13].Besides,systemicdrug deliverylimitsthetherapeuticeffectivenessandmoreeasilyprovokeundesired secondaryeffects.Today,thedevelopmentofcarrierswithsmartmultifunctional propertiesandabilityofreleasealongdefinedspatial temporalprofilesisa particularlyhottopicinmaterialsresearch.Ontheonehand,chemicaldopingof Core-ShellNanostructuresforDrugDeliveryandTheranostics.DOI: https://doi.org/10.1016/B978-0-08-102198-9.00003-X

3
2018ElsevierLtd.Allrightsreserved.
©

20Core-ShellNanostructuresforDrugDeliveryandTheranostics

mineralphasesallowstotailorrelevantpropertiesofthefinalcompositematerials suchasspecificaffinitywithtargetedcells,antibacterial,andmagnetism [14 16].

Inparticular,thedopingwithironionsintroducedinacertainratiointhehydroxyapatitecrystalbestowsuperparamagneticpropertiesusefulforvariousfrontier applicationsinnanomedicinesuchason-demandactivationanddrugdelivery, imaging,cellstimulationbymeansofexternalmagneticfield [17].

Thischapterdescribesthebiomineralizationprocessandrelatedapplicationsto generatenovelbiocompatibleandbioresorbablemagneticmaterialspossiblyopening tonewtherapeuticapproachesandovercometheuseofcytotoxicsuperparamagnetic carriers.Particularly,thechapterwillillustratetworecentapproachesbywhich differentorganicmacromoleculeswereusedastemplateforbiomineralizationprocess thusgeneratinghybridnano-andmicro-carrierswithsuperparamagneticproperties, exhibitingsuitablepropertiesforapplicationinnanomedicineasnoveldiagnostic nano-toolsorsmartdrugdeliverysystems.

3.2Biomineralization

Recentresearchonmaterialscienceisincreasinglytakinginspirationfromnature withthepurposetoobtainnewmaterialswithabilityofsmartresponsivenessto environmentalstimuli.Inparticular,biomineralizationreferstoprocessesbywhich organismsformmineralsandconsistinacomplexcascadeofphenomenageneratinghybridnanostructuredmaterialshierarchicallyorganizedfromthenanoscaleto themacroscopicscale.Thisprocessisatthebasisofload-bearingstructuressuch

Figure3.1 Exampleswherethebiomineralizationprocesstakesplaceinnature:a)sea

sponge;b)bone;c)tooth;d)exoskeletonofcrayfish;e)diatom;f)shell.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.