Core shell nanostructures for drug delivery and theranostics challenges strategies and prospects for

Page 1

Core-Shell Nanostructures for Drug Delivery and Theranostics : Challenges, Strategies and Prospects for Novel Carrier Systems Focarete

Visit to download the full and correct content document: https://ebookmass.com/product/core-shell-nanostructures-for-drug-delivery-and-thera nostics-challenges-strategies-and-prospects-for-novel-carrier-systems-focarete/

Core-ShellNanostructuresforDrugDelivery andTheranostics

Thispageintentionallyleftblank

WoodheadPublishingSeriesinBiomaterials

Core-ShellNanostructures forDrugDelivery andTheranostics

Challenges,Strategies,andProspects forNovelCarrierSystems

AnnaTampieri

WoodheadPublishingisanimprintofElsevier

TheOfficers’MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright © 2018ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-08-102198-9(print)

ISBN:978-0-08-102199-6(online)

ForinformationonallWoodheadPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: LauraOverend

EditorialProjectManager: ThomasVanDerPloeg

ProductionProjectManager: MohanapriyanRajendran

Designer: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

ListofContributorsix

PartIFundamentalsonNanotechnologyforDrug Delivery1

1Introductionto“Core-shellnanostructuresfordrugdelivery andtheranostics:Challenges,strategies,andprospectsfornovel carriersystems”3

MariaLetiziaFocareteandAnnaTampieri

2Physicochemicalpropertiesofnanosizedpolymericdrugcarrier systems7

NicolettaRescignanoandJoseMariaKenny

2.1Introduction7

3Biomineralizationprocessgeneratinghybrid nano-andmicro-carriers19

ElisabettaCampodoni,TatianaPatricio,MonicaMontesi, AnnaTampieri,MonicaSandriandSimoneSprio

3.1Introduction19

3.2Biomineralization20

3.3Magneticmaterialsinmedicine25

3.4Intrinsicallymagneticandhybridnanobeadsascarriersin nanomedicine26

3.5Intrinsicallymagnetichybridmicrospheresassmart releasesystems28

3.6Interactionbetweencellsandbiomimeticmagneticcarriers31

3.7Conclusionandfuturetrends33

Acknowledgment34 References34

Contents
References14
2.2Polymericnanocarriersystems8 2.3Maintherapeuticagentsencapsulated10 2.4Physicalproperties11 2.5Chemicalproperties13 2.6Conclusion14

4Clinicalapplicationsofnanostructureddrugdeliverysystems: frombasicresearchtotranslationalmedicine43

MariaMendes,Joa˜oSousa,AlbertoPaisandCarlaVitorino 4.1Introduction43 4.2Organic vs.inorganicNDS46 4.3ApplicationofNDSindifferenttherapeuticareas90 4.4Problemsassociatedtotranslationalnanomedicine94 4.5Conclusions96 Acknowledgments97 References97 PartIICore-ShellNanoparticles117
References135
5Core-shellnanoparticlesandtheiruseforinvitroandinvivo diagnostics119 SofiaDembski,ChristineSchneider,BastianChristandMarionRetter 5.1Introduction119 5.2Synthesisofcore-shellNPs120 5.3Applications131 5.4Conclusionandfuturetrends135
References168
6Core-shellnanoparticlesforcancerimagingandtherapy143 XindongWang,HuiLiandGuanyingChen 6.1Introduction143 6.2Bioimaging144 6.3Therapy153 6.4Conclusion168
7.2LiposomalhybridNPs179 7.3MicellarhybridNPs182 7.4ViralhybridNPs185 7.5Silica-basedhybridNPs187
vi Contents
7Multifunctionalhybridnanoparticlesfortheranostics177 TimurSaliev,AlmaAkhmetovaandGulsimKulsharova 7.1Introduction177
7.6PolymerichybridNPs200 7.7Gold-basedhybridNPs203 7.8Carbonnanotube-basedhybridNPs206 7.9HybridNPsforPDTandmolecularimaging210 7.10RadioactivehybridNPs220 7.11Conclusionsandfutureperspectives223 References224
8Stimuli-responsivecore-shellnanoparticles245 NicolettaRescignanoandJoseMariaKenny 8.1Introduction245 8.2DifferentcompositionofNPs247 8.3Stimuli-responsivemetalcore248 8.4Synthesisandcharacterization250 8.5Mainbiomedicalapplication253 8.6Conclusionandfutureperspectives254 References255 9Magneticcore-shellnanoparticles:Remotedriving,hyperthermia, andcontrolleddrugrelease259 AlessioAdamiano,MicheleIafiscoandAnnaTampieri 9.1Introduction259 9.2MCNPscompositionanddesign261 9.3Hyperthermiaandcontrolleddrugrelease272 9.4Remotemagneticdriving283 9.5Futureperspective285 References286 Furtherreading296 10Smartnanoconstructsfortheranosticsincancer andcardiovasculardiseases297 AntonioCervadoro,AlessandroCoclite,DanieleDiMascolo, MiguelFerreira,AnnaLisaPalange,RobertoPalomba,RuiC.Pereira andPaoloDecuzzi 10.1Introduction297 10.2Smartpolymericnanoconstructs298 10.3Multimodalimagingwithpolymericnanoconstructs302 10.4Combinationtherapywithpolymericnanoconstructs305 10.5Organ-on-chipsforassessingtheefficacyofpolymeric nanoconstructs308 10.6Modelingthevasculardynamicsofpolymericnanoconstructs310 10.7Conclusionsandfutureperspectives313 Acknowledgments313 References313 Furtherreading321 PartIIICore-ShellNanofiber323 11Blendelectrospinning,coaxialelectrospinning,andemulsion electrospinningtechniques325 MatejBuzgo,AndreaMickova,MichalaRampichova andMiroslavDoupnik 11.1Advancedelectrospinningtechniques325 vii Contents
11.2Nanofibersasadrugdeliverysystem325 11.3Functionalizationofnanofibersbysurfaceadsorption326 11.4Blendelectrospinning(co-electrospinning)328 11.5Coaxialelectrospinning329 11.6High-throughputelectrospinningtechnologies335 Acknowledgment337 References337 12Drugreleasekineticsofelectrospunfibroussystems349 DarioPuppiandFedericaChiellini 12.1Introduction349 12.2Drug-loadedelectrospunfibersapplications350 12.3Methodsforthepreparationofdrug-loadedelectrospunfibers353 12.4Drugreleasekinetics358 12.5Conclusionandfutureperspectives366 References367 13Applicationsofcore-shellnanofibers:Drugandbiomolecules releaseandgenetherapy375 ZeynepAytacandTamerUyar 13.1Introduction375 13.2Deliveryofdrugsfromcore-shellnanofibers376 13.3Deliveryofproteinsfromcore-shellnanofibers385 13.4Deliveryofenzymesfromcore-shellnanofibers386 13.5Deliveryofgrowthfactorsfromcore-shellnanofibers388 13.6Core-shellnanofibersforgenetherapy389 13.7Stimuli-responsivecore-shellnanofibersfordelivery ofbiomolecules390 13.8Deliveryofmultipledrugandbiomoleculesfromcore-shell nanofibers396 13.9Conclusion398 References399 14Advancesinmultidrugdeliveryfromelectrospunnanomaterials405 RobertoDiGesu`,AndreaMerlettini,ChiaraGualandi andMariaLetiziaFocarete 14.1Electrospinningasasmarttoolformultidrugdeliverysystems405 14.2Monolithicnanofibersformultidrugdelivery407 14.3Core-sheathnanofibersformultidrugdelivery412 14.4Nanocarrier-in-fibersasmultidrugdeliverysystems418 14.5Conclusionsandfutureperspectives426 References427 Index431 viii Contents

ListofContributors

AlessioAdamiano InstituteofScienceandTechnologyforCeramics, ISTEC CNR,Faenza,Italy

AlmaAkhmetova CentreforLifeSciences,NationalLaboratoryAstana, NazarbayevUniversity,AstanaKazakhstan;UniversityofEssex,Colchester, Essex,UnitedKingdom

ZeynepAytac InstituteofMaterialsScience&Nanotechnology,UNAM-National NanotechnologyResearchCenter,BilkentUniversity,Ankara,Turkey

MatejBuzgo InoCures.r.o.,Klimentska ´ 1652/36,11000Prague,CzechRepublic

ElisabettaCampodoni InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

AntonioCervadoro NEST,ScuolaNormaleSuperiorediPisa,Pisa,Italy

GuanyingChen MIITKeyLaboratoryofCriticalMaterialsTechnologyforNew EnergyConversionandStorage,SchoolofChemistryandChemicalEngineering& KeyLaboratoryofMicro-systemsandMicro-structures,MinistryofEducation, HarbinInstituteofTechnology,Harbin,People’sRepublicofChina

FedericaChiellini BIOLabResearchGroup,DepartmentofChemistryand IndustrialChemistry,UniversityofPisa,Pisa,Italy

BastianChrist TranslationalCenterRegenerativeTherapies,BranchofFraunhofer InstituteforSilicateResearchISC,Wurzburg,Germany

AlessandroCoclite LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

PaoloDecuzzi LaboratoryofNanotechnologyforPrecisionMedicine,Fondazione IstitutoItalianodiTecnologia,Genoa,Italy

SofiaDembski TranslationalCenterRegenerativeTherapies,BranchofFraunhofer InstituteforSilicateResearchISC,Wurzburg,Germany;DepartmentofTissue EngineeringandRegenerativeMedicine,UniversityHospitalWu ¨ rzburg,Wu ¨ rzburg, Germany

RobertoDiGesu ` DepartmentofChemistry“G.Ciamician”,Universityof Bologna,Bologna,Italy

DanieleDiMascolo LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

MiroslavDoupnik InoCures.r.o.,Klimentska ´ 1652/36,11000Prague,Czech Republic

MiguelFerreira LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

MariaLetiziaFocarete DepartmentofChemistry“G.Ciamician”,Universityof Bologna,Bologna,Italy

ChiaraGualandi DepartmentofChemistry“G.Ciamician”,Universityof Bologna,Bologna,Italy

MicheleIafisco InstituteofScienceandTechnologyforCeramics,ISTEC CNR, Faenza,Italy

JoseMariaKenny UniversityofPerugia,CivilandEnvironmentalEngineering Department,StradadiPentima4,Terni,Italy

GulsimKulsharova UniversityCollegeLondon,London,UnitedKingdom

HuiLi MIITKeyLaboratoryofCriticalMaterialsTechnologyforNewEnergy ConversionandStorage,SchoolofChemistryandChemicalEngineering&Key LaboratoryofMicro-systemsandMicro-structures,MinistryofEducation,Harbin InstituteofTechnology,Harbin,People’sRepublicofChina

MariaMendes FacultyofPharmacy,UniversityofCoimbra,Coimbra, Portugal;CentreforNeurosciencesandCellBiology(CNC),Universityof Coimbra,Coimbra,Portugal

AndreaMerlettini DepartmentofChemistry“G.Ciamician”,Universityof Bologna,Bologna,Italy

AndreaMickova InoCures.r.o.,Klimentska ´ 1652/36,11000Prague,Czech Republic

MonicaMontesi InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

AlbertoPais CoimbraChemistryCenter,DepartmentofChemistry,Universityof Coimbra,Coimbra,Portugal

x ListofContributors

ListofContributors

AnnaLisaPalange LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

RobertoPalomba LaboratoryofNanotechnologyforPrecisionMedicine, FondazioneIstitutoItalianodiTecnologia,Genoa,Italy

TatianaPatricio InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

RuiC.Pereira LaboratoryofNanotechnologyforPrecisionMedicine,Fondazione IstitutoItalianodiTecnologia,Genoa,Italy

DarioPuppi BIOLabResearchGroup,DepartmentofChemistryandIndustrial Chemistry,UniversityofPisa,Pisa,Italy

MichalaRampichova LaboratoryofTissueEngineering,InstituteofExperimental Medicine,AcademyofSciencesoftheCzechRepublic,v.v.i,Vı´de ˇ nska ´ 1083,142 20,Prague4,CzechRepublic

NicolettaRescignano UniversityofPerugia,CivilandEnvironmentalEngineering Department,StradadiPentima4,Terni,Italy

MarionRetter TranslationalCenterRegenerativeTherapies,BranchofFraunhofer InstituteforSilicateResearchISC,Wurzburg,Germany

TimurSaliev CentreforLifeSciences,NationalLaboratoryAstana,Nazarbayev University,AstanaKazakhstan

MonicaSandri InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

ChristineSchneider DepartmentofTissueEngineeringandRegenerative Medicine,UniversityHospitalWurzburg,Wurzburg,Germany

Joa ˜ oSousa FacultyofPharmacy,UniversityofCoimbra,Coimbra, Portugal;LAQVREQUIMTE,GroupofPharmaceuticalTechnology,Porto, Portugal

SimoneSprio InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

AnnaTampieri InstituteofScienceandTechnologyforCeramics-National ResearchCouncil(ISTEC-CNR),Faenza,Italy

xi

TamerUyar InstituteofMaterialsScience&Nanotechnology,UNAM-National NanotechnologyResearchCenter,BilkentUniversity,Ankara,Turkey

CarlaVitorino FacultyofPharmacy,UniversityofCoimbra,Coimbra, Portugal;CentreforNeurosciencesandCellBiology(CNC),Universityof Coimbra,Coimbra,Portugal;LAQVREQUIMTE,GroupofPharmaceutical Technology,Porto,Portugal

XindongWang MIITKeyLaboratoryofCriticalMaterialsTechnologyforNew EnergyConversionandStorage,SchoolofChemistryandChemicalEngineering& KeyLaboratoryofMicro-systemsandMicro-structures,MinistryofEducation, HarbinInstituteofTechnology,Harbin,People’sRepublicofChina

xii ListofContributors

PartI Fundamentalson NanotechnologyforDrug Delivery

Thispageintentionallyleftblank

Introductionto“Core-shell nanostructuresfordrugdelivery andtheranostics:Challenges, strategies,andprospectsfor novelcarriersystems”

MariaLetiziaFocarete1 andAnnaTampieri2

1DepartmentofChemistry“G.Ciamician”,UniversityofBologna,Bologna,Italy,

2InstituteofScienceandTechnologyforCeramics,ISTEC CNR,Faenza,Italy

Researchonnanoscienceandnanotechnologyisexperiencingadramaticdevelopment.Advancesinthepreparationofnanosystemswithapplicationsinthefieldof medicinehavegivenrisetonewchallengesinthedesignofsmartmaterialscapable ofrespondingtonewclinicalrequirements,amongwhichvarioustypesofnanoparticlesplayanimportantrole.Amaingoalinthisfieldistodevelopnewsystems abletodelivertherapeuticagentstothepatientinamoreeffectiveandsaferfashion,incomparisonwithsystemicadministration.Infact,inmanycasesthislatter approachimpliestheadministrationofhighdosagestoreachtherapeuticallyrelevantamountsofthedruginthetargetsite,whichcanhoweverinducepotentially harmfulsideeffects.Thisproblemisparticularlycriticalinoncologytreatments, wheretherisk benefitratioassociatedwithchemotherapyoftenmakesitdifficult totakeawisedecision,asaconsequenceofthedrugscytotoxicity.Therefore,the establishmentofnewtherapeuticapproachesactinglocally,specifically,andalong definedspatial temporalpatternsisahighlydesiredconditionthatmaterialscientistsarepursuingbydevelopingsmart,multifunctionalnanocarriers.Relevantfunctionalitiesinthisrespectinclude(1)loadandsubsequentreleaseofdifferentdrugs, (2)anchoringofbiomoleculessuchasproteins,vectoringagents,ornucleicacidsto theexternalsurfaceoftheparticleandtowardstherapeutictargets,(3)anchoringof fluorescentmoleculesoractivecomplexesformagneticresonanceimaging(MRI) toperformopticalmonitoring,(4)inclusionoffunctionalnanoparticlestoenable remoteactivationondemand,suitableforpersonalizedapplications.

Besidesnanomedicine,alsoregenerativemedicineapproachescanreceivegreat benefitbytheuseofnanocarriersenablingco-deliveryorsequentialpresentationof biologicalcuestocells,tomostefficientlyguidecellsalongadifferentiationor dedifferentiationpathway. Core-ShellNanostructuresforDrugDeliveryandTheranostics.DOI:

1
https://doi.org/10.1016/B978-0-08-102198-9.00001-6 © 2018ElsevierLtd.Allrightsreserved.

Potentialbenefitsofnanotechnologyinmedicineareoutstanding,asitcanopen torefined,highlytargeted,blood brainbarrier-crossingdrugdeliveryandimaging platforms,uniquetransfection,labeling,bioseparation,aswellasanalyticalandtissueengineeringapproaches.

Amongnanostructuresthathaverecentlyraisedgreatinterest,engineeredmagneticnanoparticles(MNPs)representacutting-edgetoolinmedicinebecausethey canbesimultaneouslyfunctionalizedandguidedbyamagneticfield,thusenabling integrativetheranostic(i.e.,therapeuticanddiagnostic)applications.Theuseof MNPsiseffectiveinadvancedMRI,guideddrugandgenedelivery,hyperthermiabasedcancertherapy,tissueengineering,celltracking,andbioseparation.The developmentofdrugdeliverysystemswithselectivitytopathologicsitesisan ambitiousgoal.TheprinciplesofmagneticguidanceofMNP-conjugateddrugs havebeenappliedexperimentallyandhavereachedclinicaltrialsasacancertherapy.FollowingintravenousdeliveryofMNPs,anexternalmagneticfieldisusedto concentrateMNPsataspecifictargetsite,byaprocedurewelltoleratedincancer patients.Nanoparticle-baseddrugandgenedeliverysystemsmaysolvethe insurmountableobstacleoftreatingneurologicaldiseases:deliveryacrosstheblood brainbarrier.ButissuesofpotentialembolizationwithMNPaggregatesincapillaries andtheneedoflargedistancesbetweenthepathologicalsiteandexternalmagnetic fieldarestillachallenge.

Therecentadvancementsinmaterialsscienceapproacheshavepromptedarapid progressinthepreparationofcore-shellnanostructureswithtailoredsurfacecharacteristics,namelycore-shellnanoparticlesandcore-shellnanofibers,thusopening newperspectivesintheirusefordiversifiedapplications.Encapsulationoftherapeuticagentsorbiologicallyactivemoleculesinnanostructureswithacore-shell configurationrepresentsausefulstrategytoimprovebioavailabilityofdrugswith poorwatersolubility;preventburstreleasewhichmightcausetoxicologicaleffects; obtainasustainedandprolongedrelease;generatetemporalandspatialcontrolled release;encapsulateunstablebioactivemoleculesprotectingtheirbiologicalactivity;loaddifferentdrugsatthesametimeinthecoreandshellregionofthenanostructuretoachieveadistinctmultidrugrelease;andobtainnanostructureswith multifunctionalitythusdevelopingmaterialsfor“theranostics.”Thecoalescenceof bioengineering,biomedical,andtoxicologydisciplineswillcontinuefostering developmentofrelevantstrategiestoengineeradvancednanodeviceswithbiocompatibleinterfaces.

Thisbookpresentsthestate-of-the-artresearchonthedesignandfabricationofcoreshellnanostructuredsystemsforthesmartdeliveryoftherapeuticandimagingagents. Themostimportantphysicochemicalpropertiesofbiocompatiblepolymeric nanodevices(molecularweight,hydrophobicity,surfacechargeandsize,etc.), incorporatingactivepharmaceuticalingredientsortherapeuticagents,arepresented andtheirinfluenceonthereleasekineticsofthedeliverysystemsarediscussed. Moreover,anoverviewoftheclinicalapplicationsofnanosystems,rangingfrom basicresearchtotranslationintoclinicalpracticeispresented,takingintoaccount regulatoryissues,includingthoseaddressingsafetyconcerns,aswellasquestions relatedtotheup-scalingprocessesandreproducibility.

4Core-ShellNanostructuresforDrugDeliveryandTheranostics

Novelbiocompatibleandbioresorbablemagneticmaterials,promisingfornew therapeuticapproachesandtoovercometheuseofcytotoxicsuperparamagnetic carriers,arepresented.Suchinnovativematerialsareobtainedthroughabiomineralizationprocessabletogeneratehybridnano-andmicro-carrierswithsuperparamagneticpropertiesforapplicationinnanomedicineasnoveldiagnosticnano-tools orassmartdrugdeliverysystems.

Thedifferenttechniquesusedforthepreparationofnanoparticleswithacoreshellstructure,aswellasstimuliresponsivecore-shellnanoparticles,areillustrated andnanoparticlepropertiesarediscussed.Inaddition,theuseofcore-shellnanoparticlesinmanyadvancedmedicalapplications,suchastheranostics,cancerimaging andtherapy,andcardiovasculardiseases,isthoroughlydescribed.

Thelastpartofthebookisrelatedtocore-shellnanofibersfordrugdelivery applicationsintissueengineering,woundhealing,anticancertherapy,etc. Electrospunfiberscanbeloadedwithdifferentagents,rangingfromsmallmoleculestogrowthfactorsandproteins.Variousloadingmethods,suchasblendelectrospinning,coaxialelectrospinning,andemulsionelectrospinningtechniquesare described.Moreover,anextensiveoverviewofdrugreleasekineticsinrelevant invitro and invivo environmentsisreported.Severalapplicationsofcore-shell nanofibersfordrugandbiomoleculerelease,aswellasforgenetherapy,arepresented,includingcutting-edgeapplicationssuchascontrolledmultidrugdelivery anddrugreleaseondemandbyexternaltriggering.

5 Introduction

Thispageintentionallyleftblank

Physicochemicalpropertiesof nanosizedpolymericdrugcarrier systems

2.1Introduction

Theadventofnanomedicinemarksanunparalleledopportunitytoadvancethetreatmentofvariousdiseases,includingcancer.Theuniquepropertiesofnanoparticles (NPs),suchaslargesurface-to-volumeratio,smallsize,theabilitytoencapsulate variousdrugs,andtunablesurfacechemistry,givethemmanyadvantagesovertheir bulkcounterparts.Thisincludesmultivalentsurfacemodificationwithtargeting ligands,efficientnavigationofthecomplex invivo environment,increasedintracellulartrafficking,andsustainedreleaseofdrugpayload.TheseadvantagesmakeNPs amodeoftreatmentpotentiallysuperiortoconventionalcancertherapies [1]

NPs,suchasliposomesorpolymericNPs,haveprovenadvantageousatsolubilizingtherapeuticcargos,substantiallyprolongingthecirculationlifetimesofdrugs [2].Evenso,itwasMaedaandco-workers [3] who,withtheirdiscoveryofthe enhancedpermeabilityandretention(EPR)effect,demonstratedthepotentialfor heightenedaccumulationoflong-circulatingmacromoleculesbyextravasation throughfenestratedbloodvesselsintumorsandopenedseveralexcitingavenues forsite-specificlocalizationofchemotherapeutics.Consequently,overthepasttwo decades,thischaracteristicofsolidtumorshasbeenamajorimpetusforextensive researcheffortsaimedatapplyingNPstochemotherapy.Withgrowingevidenceof theEPRphenomenoninpathologies,rangingfrominfection [4] toheartfailure [5], NP-baseddrugdeliveryisemergingasapowerfulstrategyinseveraldistinctdiseaseconditions,asdemonstratedbyclinicalapprovalofNPformulationsforfungal infections,hepatitisA,multiplesclerosis,andend-stagerenaldisease [6].Their longcirculationlifetimesandabilitytoextravasatetodiseasesiteslargelyimproved thesafetyandtolerabilityofNP-formulateddrugs,bestshownbythereducedcardiotoxicityobservedinpatientsafteradministrationofliposomaldoxorubicin(DOX) comparedwiththatinthoseundergoingtreatmentwiththeconventionalformulation [7].TheseimprovementsinpatientmorbidityledtotheUSFoodandDrug Administration(FDA)approvalofliposomalDOX(Doxil)forthetreatmentof Kaposi’ssarcomain1995 [8],aswellasapprovalofNPalbumin-boundpaclitaxel (Abraxane)10yearslater,whichsimilarlyreduceddetrimentalsideeffects Core-ShellNanostructuresforDrugDeliveryandTheranostics.DOI: https://doi.org/10.1016/B978-0-08-102198-9.00002-8

2
© 2018ElsevierLtd.Allrightsreserved.

8Core-ShellNanostructuresforDrugDeliveryandTheranostics

associatedwiththeconventionalpaclitaxelformulationbyeliminatingtheexcipient CremophorEL [9].

Althoughimprovementsinpatientsafetyandmorbidityledtoclinicalapproval ofNPplatforms,suchasDOXandpaclitaxel,efficaciouspatientresponsesremain modest;currently,theseplatformsofferonlymarginalimprovementsoverconventionalformulations [10].Despitetheirpotentialforincreaseddrughalf-livesand improvingadrug’spropensitytoaccumulateatsitesofinjury,theplatformsfacea complexseriesofbiologicalbarriersthatseverelylimitsite-specificbioavailability, preventingachievementofpropertherapeuticoutcomes.Theseobstaclesinclude opsonizationandsubsequentsequestrationbythemononuclearphagocytesystem, nonspecificdistribution,hemorheological/bloodvesselflowlimitations,pressure gradients,cellularinternalization,escapefromendosomalandlysosomalcompartments,anddrugeffluxpump [11].Inadditiontothesubstantialchallengespresentedbyeachindividualbiologicalbarrier,itisimportanttonotethatthesevary incomplexitydependingonfactors,suchasadministrationroute(oralversusintravenous),diseasetype(cancerversusinfection),andstateofdiseaseprogression (early-versuslate-stagecancers).

TheminimaltherapeuticimpactobservedfollowingNPdeliveryisadirectconsequenceoftheNP’sinabilitytoovercomemanyofthesebarriers.Avastamount ofresearchandresourcesarecontinuallyinvestedintheincorporationofinnovative designfeatureswithintraditionalnanocarrierconstructsforpropernegotiationof biologicalbarriers,resultinginthecreationofmultifunctionalNPs.Oftentimes, thesefeaturesincludeincorporationofactivetargetingmoietiesforenhanced uptakeinspecificcells [12] orconstituentcomponentsforstimulus-responsive release(e.g.,pH-sensitive,thermosensitive,andultrasound) [13].Althoughthese modificationshighlighttheimpressiveversatilityandpreclinicalpotentialofnanomedicine,veryfewNPsthatsimplyaddressoneorafewbiologicalbarriersprogresstotheclinicalarena.Thisrealizationhasledmanyexpertstoprovocatively question,andchallenge,thefieldofNP-baseddrugdeliveryinhopesoftransitioningthedisciplinefromplatformswithmerepotentialtothosecapableofdelivering positiveclinicaloutcomes.

2.2Polymericnanocarriersystems

2.2.1PolymerNPs(nanospheres,nanocapsules,andmicelles)

NP-baseddrugdeliveryplatformshaveemergedassuitablevehiclesforovercomingpharmacokineticlimitationsassociat edwithconventionaldrugformulations. Translationalresearchinpolymertherapeuticshasalreadytransferredproducts intothemarket [14] .Theseincludepolymericdrugs(e.g.,Copaxonefor multiplesclerosisandtheorallyadminist eredsequestrantsRenagelandWelchol), polymer proteinconjugates(e.g.,PEGylated interferons(Pegasys;Peg-Intron)), andpolymer aptamerconjugates(Macugenformaculardegeneration)currently inroutineclinicaluse [15].ImprovementonPEGchemistryandconjugation

strategies,e.g.,enzyme-mediatedaswellasrecombinanttechniques,hasimportantlycontributedtothissuccess.Althoughpolymer-drugconjugatesarenowin advancedclinicaltrials,progresshasbeenslowduetoclinicalfailuresresulting frompoorrationaldesignorcommercialiss ues.Lackofsuitabilityofthespecific polymersfromaclinicalviewpoint(safety),poorreproducibilityofmanufacture, andlackofvalidatedcharacterizationmethodsforsuchcomplexconjugatesand architectureshavelimitedthisprogress [16].

Polymerspreparedfrompolyesters:poly(lactic-co-glycolicacid)(PLGA)andits homopolymerspoly(lactide)(PLA)andpoly(glycolide)havebeenselecteddueto theirbiocompatibility,biodegradability,andhighstabilityinbiologicalfluidsand duringstorage [17].ThesepolymershavebeenapprovedbytheFDAfordrug delivery;theycandegradebynonenzymatichydrolysisoftheesterbackbonein bodyfluid.Thedegradationproducts(i.e.,lacticandglycolicacids)aremetabolic compoundsandreadilyeliminatedfromthebodythroughKrebscycle [18]

Polymersomes:Polymermicellesandpolymervesicles,asknownaspolymersomes,arestableandrobustpolymer-basedNPsthatcanbedesignedtodegrade, thusallowingthesecarrierstobeclearedfromthehumanbodyandavoidlong-term toxicitysideeffects [19].Furthermore,theversatilityofpolymerchemistryallows topreciselytunethepropertiesofthesepolymersomes,suchasmembranethickness andstimulussensitivity,andenablestheintroductionoffunctionalgroupsthatcan beusedtoattachtargetingligands(eitherbeforeassemblyofthepolymersintothe NPoronthefinalpolymerNPs).Particularexpertisehasbeendevelopedinpolypeptidedesign,conjugationofpolypeptidesandpolysaccharides,ringopeningpolymerizationofpolyesters,polycarbonate,andpolypeptides,andrecombinant productionofelastin-likepolymers [20].Severalmethodshavebeendevelopedto preparedrug-loadedNPswithdesiredreleasecharacteristicsfrombiodegradable polymers.Theseincludeemulsificationsolventevaporation,nanoprecipitation, microfluidics,emulsificationsolventdiffusionmethod,phaseinversion,sonication, andsaltingout. Invitro and invivo responsesfromtheNPsareinfluencedbytheir variousproperties,suchastheparticlesizeandsizedistribution,surfacemorphology,porosity,surfacechemistry,surfaceadhesion,zeta-potential,drugstability, drugencapsulationefficiency,surface/bulkerosion/degradation,diffusionofthe drug,kineticsofdrugrelease,andthethermodynamicpropertiesoftheNPs.

2.2.2Liposomes

Despitethefactthatliposomesaredevelopedandproducedfordecades,thereare stillmanyunresolvedissuesincluding:

● therearenopredictivetoolsallowingfortherationaldesignoftheliposomeformulation [21];

● thereareonlybrief,imprecise,indicationsprovidedbyauthorities(FDI,EMA)howthe liposomeformulationshouldbecharacterized [8];

● thereareonlylimitednumberofvalidatedinvitrotestsfortheevaluationliposomeperformance [22];and

● theproductionprocessesareonlyqualitativelydescribed.

9 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

10Core-ShellNanostructuresforDrugDeliveryandTheranostics

Whereasliposomescanbeeffectivelyusedforamphiphilicmolecules,thereare currentlynoeffectiveproductionprocessesforencapsulationofhighlyhydrophilic compounds.Encapsulationofbiologicalmacromolecules(proteins,nucleicacids, andsugars)isstillveryinefficientornonexisting [23].

2.2.3Dendrimers

Dendrimersweresynthesizedforthefirsttimeduring1978

90.Theyareunique tree-likebranchedpolymersassociatedwithbiomolecules-likeproperties,lowpolydispersityandhighdegreeofversatilityintermsofstructure(easilyphysicochemicallycustomizable),administration(enteralparenteral,andtopicalroutes),and application(drugdeliveryagents,diagnosis,therapy,anddetection).Forallthese reasons,theyemergedasanewappealingclassofparticlesfornanomedicine [24].

Theabilityofdendrimerstoencapsulateandbindtheguestmoleculecanbeused forsolubilityenhancement,sustainedrelease,anddrugdeliverapplications [25].In the20thcentury,theadvancesinthedesign,aswellastheinnovationsindendrimerssynthesis,haveprovidedalargenumberofpublicationsaccordingtotheISI webofknowledge,WebofScience(18.459),contributingtothecreationofa strongproofofconceptforbiomedicalapplications(suchasdrugcarriersandgene deliverysystems).Nevertheless,theapplicationsofdendrimersinbiologicalsystemswereforlongtimelimitedbecauseoftheirintrinsictoxicity.Theadverse effectsweremainlyattributedtogenerationnumberandcationicsurface,andother minorparameterswerealsotakenintoconsideration [26].Theseaspectshave encouragedthesearchfornewbiocompatibledendrimerfamilies,andithasbeen demonstratedthatsurfacemodificationalmostcompletelyabolishedtheintrinsic toxicityofdendrimers [27].Inthisrespect,themoststudieddendrimershavebeen Polyamidoamine(PAMAM)dendrimers invitro and invivo, [28] (i.e.,2657publicationsonPAMAMdendrimersbetween2000and2015).Altogether,duetotheir outstandingphysicochemicalpropertiesandtheenhancedbiocompatibility,dendrimersguaranteeaninnovative,highlycustomizabledrugdeliverysystemableto improvethepharmacokinetics,andconsequentlytheefficacyofthedrug,compared totheunconjugatedone.Dendrimernanocarriersofferthepotentialtoenhancethe bioavailabilityofdrugsthatarepoorlysolubleand/orsubstratesforeffluxtransporters [29].Starpharmahasmadethemostsignificantcontributiontodendrimertherapeuticswiththevirucide(Vivagel) [30] andaparentalanticancerdendrimer (DEP) docetaxelconjugate.

2.3Maintherapeuticagentsencapsulated

NanospheresbasedonPLGAhavebeenextensivelyinvestigatedforsustainedand targetedreleaseofdrugssuchasanticancerdrugs [31],antibiotics [32],peptideand proteindrugsnamelyhumangrowthhormone [33],lysozyme [34],bovineserum albumin, [35] andinsulin [36]

2.3.1Anticancerdrugs

SmallanticancerdrugshavebeenencapsulatedinPLGA-basedNPsinthelast yearsandtheirefficacytotreatvariouscancershasbeenevaluated invitro and invivo.Differentexamplesarepresentinliterature.Long-termclinicaluseof DOX,ahighlypotentanthracyclineapprovedagainstawidespectrumoftumorsis compromisedbytoxicities,cardiomyopathies,andsubsequentcongestiveheartfailures [37].PEGylatedPLGANPsencapsulatingDOXenhanceantitumoralefficacy comparedwiththefreedrug [38].Moreover,theseNPswereshowntodecrease drasticallysideeffects,inparticularcardiomyopathiescomparedtoDoxil,aliposomalformulationofDOXcurrentlyavailableonthemarket [39].Chemotherapy ofglioblastomaislargelyineffectiveastheblood brainbarrierpreventsentryof mostanticanceragentsinthebrain.NontargetedDOX-loadedPLGANPscoated withpoloxamer188werefoundtocrosstheblood brainbarrierandtoeffectively decreasethetumorgrowthinratmodel [40].Paclitaxel(PTX),amitoticinhibitor usedinthetreatmentofvariouscancers,presentsalowtherapeuticindexandalow aqueoussolubility.TheencapsulationofPTXintoPLGANPsstronglyenhances thecytotoxiceffectofthedrugascomparedtoTaxol [41].9-nitrocamptothecin(9NC)isananticancerdrugwhichtargetsthetopoisomeraseInuclearenzyme. BecauseofinstabilityatbiologicalpHandlowwatersolubility,thedeliveryofthis drugisquitechallenging.9-NC-loadedPLGANPs,preparedbynanoprecipitation, haveshownasustainedreleaseupto160hoursindicatingthesuitabilityofPLGA NPsincontrolled9-NCrelease [42].PLGA-basedNPstargetingthetumorcellsor tumorendotheliumhavebeenshowntobeusuallymoreactiveinpreclinicalstudies thannontargetedNPs.Someexamplesarepresentinliterature.Acyclicpeptide, Cyclo-(1,12)-penITDGEATDSGC(cLABL),hasbeenshowntoinhibitLFA-1/ ICAM-1viathebindingtoICAM-1.Inaddition,cLABLhasbeenshowntobe internalizedafterbindingtoICAM-1 [43].Thiscyclicpeptidewasconjugatedto PLGANPscarryingDOX.ThesenanovectorswereshowntobemorerapidlyuptakenbyA549lungepithelialcellsthannontargetedNPs.Folate-decoratedDOXloadedPLGANPsinducedacellularuptake1.5timeshigherbyMCF-7cellsthan nontargetedNPs [44].Recently,otherfolate-decoratedPTX-loadedPLGA-PEG NPsshowedagreatercytotoxicityagainstHEC-1Acancercellsboth invitro and invivo

2.4Physicalproperties

2.4.1Dimensionandsurfacecharge

Inthecontextofbiomedicalapplicationsofengineerednanomaterials,theforemost distinctivefeatureistheirsize,whichfallin-betweenindividualatomsormolecules andcorrespondingbulkmaterial.Thereducedsizeofnanomaterialswillnotonly provideanopportunityforincreaseduptakebutalsowillbuildchancestointeract withbiologicaltissuestoagreatermagnitudetoachievedesiredtypeofselective

.
11 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

12Core-ShellNanostructuresforDrugDeliveryandTheranostics

biologicalactionfortherapeuticpurposes [45].Furthermore,intherecenttimes,it hasbeenestablishedthatparticlesizeisparticularlydomineeringwhileotherphysicochemicalparametersarecontrolled.Toconfirmthis,systematicassessmentof size-dependentbiologicalprofileandbiodistributionofthreemonodisperse drug silicananoconjugatesof20,50,and200nmhavebeenevaluated.Thisevaluationwasperformedthroughlaboratoryexperimentsinconjugationwithmathematicalmodelingtoestablishtheoptimalsizeforthemosteffectiveantitumordrug deliverysystem.Itwasrevealedthatthe50nmsizeddrugnanoconjugateparticles hadhighestcancertissueretentionovertimeleadingtodeepertissuepenetration andeffectiveinternalizationwithinthecancercellsalongwithslowerclearance [46].Additionally,nanomaterialsareanticipatedtocrossbiologicalobstacles,gainingentrancetothebody,andsubsequentlynanosizemaygoverntheirkinetics, absorption,distribution,metabolism,andexcretionthatwouldnotbepossibleotherwisewiththebulkmaterialofakincomposition [47]

Thesurfacechargeofapolymerisanimportantparameterwhichhelpstodeterminetheirefficiencyforsurfacemodification [48].Theeffectofsurfacechargecan beusedtoimprovethedrugabsorptionviatheoralrouteeitherbyincreasingthe proximityofformulationtotheepitheliumorhigherparticleuptakeviaPayer’s patchesorboth.

ComparedwithNPswithaneutralornegativecharge,positivelychargedNPs aretakenupatafasterrate.Ithasbeensuggestedthatthecellmembranepossesses aslightnegativechargeandcelluptakeisdrivenbyelectrostaticattractions.A recentstudydemonstratedthatthiselectrostaticattractionbetweenmembraneand positivelychargedNPsfavorsadhesionontothecell’ssurface,leadingtouptake. BindingofnegativelychargedNPstoalipidbilayercauseslocalgelation,whereas bindingofpositivelychargedNPsinducesfluidity.Severalstudieshaveconfirmed thepivotalrolesurfacechargeplaysindownstreambiologicalresponsestoNPs [49].

2.4.2Physicalstate

Thedegradationrateisoftenconsideredtobeanimportantselectioncriterionfor biomedicalapplications.Thedegradationratedependsalsoonthecrystallinityof polymermatrix.Thestereochemistryandthermalhistoryhavedirectinfluenceon PLAcrystallinity,andtherefore,onitspropertiesingeneral.Averyimportantpropertyofpolymersistherateofcrystallinitywherecrystallinityistheindicationof amountofcrystallineregioninthepolymerwithrespecttoamorphouscontent. Crystallinityinfluencesmanypolymerpropertiesincludinghardness,modulus,tensilestrength,stiffness,crease,andmeltingpoints.So,whileselectingapolymerfor arequiredapplication,itscrystallinityplaystheforemostrole.Physicalcharacteristicssuchasdensity,heatcapacity,andmechanicalandrheologicalpropertiesof polymeraredependentonitsTg.ForamorphousPLA,theTgisoneofthemost importantparametersbecausedramaticchangesinpolymerchainmobilitytake placeatandaboveTg.ForsemicrystallinePLA,bothTgandTmareimportant physicalparametersforpredictingPLAbehavior [50]

2.5Chemicalproperties

2.5.1Hydrophobicity/hydrophilicity

Thehydrophobicityofthepolymeristhesecondmostimportantpropertywhich affectsthe invitro and invivo fateofpolymericsystemandrepresentsitsaffinity towardstheorganicaswellastheaqueousphase.However,themolecularweight ofthepolymerisdependentuponthechainlengthoftheoligomer,anditpossesses directrelationwiththehydrophobicity [51].Hydrophobicityofpolymersgreatly determinestheabsorptionpatternanddegradationkineticsofadeliverysystem [52]

Thedegradationkineticsdictatestherateanddurationofdrugrelease,thatis,the slowerthedegradation,themoreprolongedwillbetherelease.OwingtothehydrophobicnatureofPLGA,orPLAforexample,nano/microparticleswithcore-shell structuresarepreparedthroughvariousemulsificationprocessesandhydrophilic drugscouldbeencapsulatedinthehydrophiliccoreoftheparticles,whereas hydrophobicdrugstendtodistributeinthehydrophobicshell.Thetypicalrelease profileforPLGAparticulatedeliverysystemsistheinitialburstphasefollowedby anear-zeroorderphase.Variousintramuscularorsubcutaneouscontrolleddelivery systemsintheformofimplantsormicroparticleshavebeendevelopedusingbiodegradablepolyesterssuchasPLAandPLGA [52].

2.5.2Molecularweight

Themolecularweightofthepolymerisoneofthemostimportantfactorsthat affectthepharmacokineticandpharmacologicalefficiencyofadeliverysystem.It significantlyaffectsreleasekineticsofdrugbyinfluencingpolymerdegradation behavior.Thehighermolecularweight(HMw)ofthepolymerisattributedtowards alongerchainlengthmonomers/oligomers,whichreducesitsinitialbursteffect anddegradationrate,andhence,thesustainedreleaseofthedrug [53].Theuseof HMwpolymersincreasesthebioavailability [54] anddrugloading [54],whereas theyexertanoppositeeffectontheencapsulationefficiency(EE)andparticlesize ofthedeliverysystem.TheeffectofmolecularweightofPLGA/PLANPsoftwo hydrophobicmodeldrugs(dexamethasoneandflutamide)suggestedthatthedrug loadingcapacityandparticlesizeofcarriersincreasewithHMwpolymeralong withreductioninpercentagecumulativerelease.ThePLGANPsofRivastigmine alsodemonstratedslowerreleasethanpoly-(butylcyanoacrylate)NPs.Thiseffect wasalsoattributedtoHMwofPLGA [55].Anenormousincreaseinbioavailability andEEofcurcuminisreportedwhenencapsulatedinHMwpolymers,thatis, PLGAandPCL-PEG-PCLco-polymers,respectively.Apartfromthese,sustained effect,higherEEanddrugloading,increasedbioavailability,bettertherapeutic response,lowinitialbursteffect,andbetterintestinalabsorptionwithincreasein themolecularweightofthepolymerisseenirrespectiveofthepolymerandthe drugused.TheseeffectslikeincreaseinEEareattributedtoanincreaseinviscosity oftheorganicphasewithincreasingmolecularweightoftheincorporatedpolymer whichreducesthediffusionofthedrugintheexternalaqueousphasebefore

13 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

14Core-ShellNanostructuresforDrugDeliveryandTheranostics

colloidalhardening [56].Inbrief,lowermolecularweightpolymeryieldssmaller sizeparticlesalongwithreductionintheirEE [54].Nevertheless,thisisnotalways true:fornorcantharidin,betterabsorptioncharacteristicswereseenwithlowmolecularweightchitosanascomparedtoveryHMwpolymerwhichmayyieldporous particlesduetotheformationoflargeparticlesthataggregatethemselvesandthus reduceabsorption [57].Thiscouldbeexplainedonthebasisofthethermoplastic natureandinherenttackinessoftheHMwpolymer.

2.6Conclusion

Thephysicochemicalpropertiesofapolymerhavevitaleffectsonefficiencyofa deliverysystem,whichhelpresearchersintheselectionofanoptimizedpolymer withrequiredpropertyforspecificpurpose.Likewise,hydrophilicpolymersorsurfactantscanbecoatedonthepolymericdrugparticletoimprovethecirculation half-lifeofthedrugbyavoidingreticulo-endothelialsystemuptake.Thedrug releasecanbemodified,thatisextendedandcontrolled,fromhourstomonthswith theselectionofpropermolecularweightandthenatureofthepolymer.Anamorphous,hydrophilicpolymerisrecommendedforrapidrelease,upto1month, whereasahighlycrystallinepolymerisconsideredbestforslowrelease,lasting morethan6months.Targetingcanalsobeachievedincancerouscells,macrophagesofliverandspleen(incaseoffatalinfections),byusingahydrophobicpolymer.Therefore,thephysiochemicalpropertiesofapolymerareessentialbecause theyplayaprominentpartinmatrixdegradation,drugreleasemechanism,drug loading,andmostimportantlyfordrugtargetingataspecificsite.

References

[1] XuX,HoW,etal.Cancernanomedicine:fromtargeteddeliverytocombinationtherapy.TrendsMolMed2015;21(4):223 32.

[2] MalamY,LoizidouM,etal.Liposomesandnanoparticles:nanosizedvehiclesfordrug deliveryincancer.TrendsPharmacolSci2009;30(11):592 9.

[3] MaedaH.Tumor-selectivedeliveryofmacromoleculardrugsviatheEPReffect:backgroundandfutureprospects.BioconjugateChem2010;21(5):797 802.

[4] AzzopardiEA,FergusonEL,etal.Theenhancedpermeabilityretentioneffect:anew paradigmfordrugtargetingininfection.JAntimicrobChemother2012;68(2):257 74.

[5] MartiCN,GheorghiadeM,etal.Endothelialdysfunction,arterialstiffness,andheart failure.JAmCollCardiol2012;60(16):1455 69.

[6] ZhangL,GuF,etal.Nanoparticlesinmedicine:therapeuticapplicationsanddevelopments.ClinPharmacolTher2008;83(5):761 9.

[7] SafraT,MuggiaF,etal.Pegylatedliposomaldoxorubicin(doxil):reducedclinicalcardiotoxicityinpatientsreachingorexceedingcumulativedosesof500mg/m2.AnnOncol 2000;11(8):1029 33.

[8] BarenholzYC.Doxils—thefirstFDA-approvednano-drug:lessonslearned.JControl Release2012;160(2):117 34.

[9] HawkinsMJ,Soon-ShiongP,etal.Proteinnanoparticlesasdrugcarriersinclinical medicine.AdvDrugDelivRev2008;60(8):876 85.

[10] GradisharWJ,TjulandinS,etal.PhaseIIItrialofnanoparticlealbumin-boundpaclitaxelcomparedwithpolyethylatedcastoroil basedpaclitaxelinwomenwithbreast cancer.JClinOncol2005;23(31):7794 803.

[11] FerrariM.Frontiersincancernanomedicine:directingmasstransportthroughbiologicalbarriers.TrendsBiotechnol2010;28(4):181 8.

[12] BertrandN,WuJ,etal.Cancernanotechnology:theimpactofpassiveandactivetargetingintheeraofmoderncancerbiology.AdvDrugDelivRev2014;66:2 25.

[13] MuraS,NicolasJ,etal.Stimuli-responsivenanocarriersfordrugdelivery.NatMater 2013;12(11):991.

[14] CanalF,SanchisJ,etal.Polymer drugconjugatesasnano-sizedmedicines.CurrOpin Biotechnol2011;22(6):894 900.

[15] DuncanR,VicentMJ.Polymertherapeutics-prospectsfor21stcentury:theendofthe beginning.AdvDrugDelivRev2013;65(1):60 70.

[16] EnglandRM,Masia ´ E,etal.Polyacetal-stilbeneconjugates—thefirstexamplesof polymertherapeuticsfortheinhibitionofHIF-1inthetreatmentofsolidtumours. JControlRelease2012;164(3):314 22.

[17] LiuY,GuoLK,etal.Preparationandpropertiesofabiodegradablepolymerasanovel drugdeliverysystem.JApplPolymSci2003;90(11):3150 6.

[18] ArmentanoI,BitinisN,etal.MultifunctionalnanostructuredPLAmaterialsforpackagingandtissueengineering.ProgPolymSci2013;38(10):1720 47.

[19] SansonC,DiouO,etal.Doxorubicinloadedmagneticpolymersomes:theranostic nanocarriersforMRimagingandmagneto-chemotherapy.ACSNano2011;5 (2):1122 40.

[20] QiY,ChilkotiA.Protein polymerconjugation—movingbeyondPEGylation.Curr OpinChemBiol2015;28:181 93.

[21] BigdeliA,PalchettiS,etal.Exploringcellularinteractionsofliposomesusingprotein coronafingerprintsandphysicochemicalproperties.ACSNano2016;10(3):3723 37.

[22] AmselemS,CohenR,etal.Invitroteststopredictinvivoperformanceofliposomal dosageforms.ChemPhysLipid1993;64(1 3):219 37.

[23] KamalyN,XiaoZ,etal.Targetedpolymerictherapeuticnanoparticles:design,developmentandclinicaltranslation.ChemSocRev2012;41(7):2971 3010.

[24] LeeCC,MacKayJA,etal.Designingdendrimersforbiologicalapplications.Nat Biotechnol2005;23(12):1517.

[25] PatriAK,MajorosIJ,etal.Dendriticpolymermacromolecularcarriersfordrugdelivery.CurrOpinChemBiol2002;6(4):466 71.

[26] BoasU,HeegaardPM.Dendrimersindrugresearch.ChemSocRev2004;33 (1):43 63.

[27] ChengY,ZhaoL,etal.Designofbiocompatibledendrimersforcancerdiagnosisand therapy:currentstatusandfutureperspectives.ChemSocRev2011;40(5):2673 703.

[28] Labieniec-WatalaM,WatalaC.PAMAMdendrimers:destinedforsuccessordoomed tofail?PlainandmodifiedPAMAMdendrimersinthecontextofbiomedicalapplications.JPharmSci2015;104(1):2 14.

[29] NajlahM,D’EmanueleA.Crossingcellularbarriersusingdendrimernanotechnologies. CurrOpinPharmacol2006;6(5):522 7.

15 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

16Core-ShellNanostructuresforDrugDeliveryandTheranostics

[30] RuppR,RosenthalSL,etal.VivaGel(t)(SPL7013Gel):acandidatedendrimer— microbicideforthepreventionofHIVandHSVinfection.IntJNanomed2007;2 (4):561 6.

[31] AcharyaS,SahooSK.PLGAnanoparticlescontainingvariousanticanceragentsand tumourdeliverybyEPReffect.AdvDrugDelivRev2011;63(3):170 83.

[32] UngaroF,d’AngeloI,etal.DrypowdersbasedonPLGAnanoparticlesforpulmonary deliveryofantibiotics:modulationofencapsulationefficiency,releaserateandlung depositionpatternbyhydrophilicpolymers.JControlRelease2012;157(1):149 59.

[33] Mohammadi-SamaniS,TaghipourB.PLGAmicroandnanoparticlesindeliveryof peptidesandproteins;problemsandapproaches.PharmDevTechnol2015;20 (4):385 93.

[34] CaiC,BakowskyU,etal.Chargednanoparticlesasproteindeliverysystems:afeasibilitystudyusinglysozymeasmodelprotein.EurJPharmBiopharm2008;69 (1):31 42.

[35] RescignanoN,TarpaniL,etal.In-vitrodegradationofPLGAnanoparticlesinaqueous mediumandinstemcellculturesbymonitoringthecargofluorescencespectrum. PolymDegradStabil2016;134:296 304.

[36] ZhangX,SunM,etal.Preparationandcharacterizationofinsulin-loadedbioadhesive PLGAnanoparticlesfororaladministration.EurJPharmSci2012;45(5):632 8.

[37] WohlfartS,KhalanskyAS,etal.Efficientchemotherapyofratglioblastomausing doxorubicin-loadedPLGAnanoparticleswithdifferentstabilizers.PLoSOne2011;6 (5):e19121.

[38] WangH,ZhaoY,etal.Enhancedanti-tumorefficacybyco-deliveryofdoxorubicin andpaclitaxelwithamphiphilicmethoxyPEG-PLGAcopolymernanoparticles. Biomaterials2011;32(32):8281 90.

[39] ChangH-I,YehM-K.Clinicaldevelopmentofliposome-baseddrugs:formulation, characterization,andtherapeuticefficacy.IntJNanomed2012;7:49.

[40] ZhaoY-Z,SunC-Z,etal.Characterizationandanti-tumoractivityofchemicalconjugationofdoxorubicininpolymericmicelles(DOX-P)invitro.CancerLett2011;311 (2):187 94.

[41] GuoJ,GaoX,etal.Aptamer-functionalizedPEG PLGAnanoparticlesforenhanced anti-gliomadrugdelivery.Biomaterials2011;32(31):8010 20.

[42] DerakhshandehK,ErfanM,etal.Encapsulationof9-nitrocamptothecin,anovelanticancerdrug,inbiodegradablenanoparticles:factorialdesign,characterizationand releasekinetics.EurJPharmBiopharm2007;66(1):34 41.

[43] ZhangN,ChittasuphoC,etal.PLGAnanoparticle peptideconjugateeffectivelytargetsintercellularcell-adhesionmolecule-1.BioconjugateChem2007;19(1):145 52.

[44] ZhangZ,LeeSH,etal.Folate-decoratedpoly(lactide-co-glycolide)-vitaminETPGS nanoparticlesfortargeteddrugdelivery.Biomaterials2007;28(10):1889 99.

[45] Fernandez-FernandezA,ManchandaR,etal.Theranosticapplicationsofnanomaterials incancer:drugdelivery,image-guidedtherapy,andmultifunctionalplatforms.Appl BiochemBiotechnol2011;165(7 8):1628 51.

[46] TangL,GabrielsonNP,etal.Size-dependenttumorpenetrationandinvivoefficacyof monodispersedrug silicananoconjugates.MolPharm2013;10(3):883 92.

[47] NavyaP,DaimaHK.Rationalengineeringofphysicochemicalpropertiesofnanomaterialsforbiomedicalapplicationswithnanotoxicologicalperspectives.Nano Convergence2016;3(1):1.

[48] HeC,HuY,etal.Effectsofparticlesizeandsurfacechargeoncellularuptakeand biodistributionofpolymericnanoparticles.Biomaterials2010;31(13):3657 66.

[49] AlbaneseA,TangP,ChanWC.Theeffectofnanoparticlesize,shape,andsurface chemistryonbiologicalsystems.RevAdv2012;14:1 16.

[50] FarahS,AndersonDG,LangerR.PhysicalandmechanicalpropertiesofPLA,and theirfunctionsinwidespreadapplications—acomprehensivereview.AdvDrugDeliv Rev2016;107:367 92.

[51] MoyanoDF,GoldsmithM,etal.Nanoparticlehydrophobicitydictatesimmune response.JAmChemSoc2012;134(9):3965 7.

[52] FuY,KaoWJ.Drugreleasekineticsandtransportmechanismsofnon-degradableand degradablepolymericdeliverysystems.ExpOpinDrugDeliv2010;7(4):429 44.

[53] SonamHChaudhary,etal.Effectofphysicochemicalpropertiesofbiodegradablepolymersonnanodrugdelivery.PolymRev2013;53(4):546 67.

[54] KumariA,YadavSK,etal.Biodegradablepolymericnanoparticlesbaseddrugdelivery systems.ColloidsSurfBBiointerfaces2010;75(1):1 18.

[55] JoshiSA,ChavhanSS,etal.Rivastigmine-loadedPLGAandPBCAnanoparticles: preparation,optimization,characterization,invitroandpharmacodynamicstudies.Eur JPharmBiopharm2010;76(2):189 99.

[56] VandeVenH,VermeerschM,etal.PLGAnanoparticlesloadedwiththeantileishmanialsaponin β-aescin:factorinfluencestudyandinvitroefficacyevaluation.IntJ Pharm2011;420(1):122 32.

[57] KumarMR,MuzzarelliRA,etal.Chitosanchemistryandpharmaceuticalperspectives. ChemRev2004;104(12):6017 84.

17 Physicochemicalpropertiesofnanosizedpolymericdrugcarriersystems

Thispageintentionallyleftblank

Biomineralizationprocess generatinghybridnano-and micro-carriers

ElisabettaCampodoni,TatianaPatricio,MonicaMontesi, AnnaTampieri,MonicaSandriandSimoneSprio

InstituteofScienceandTechnologyforCeramics-NationalResearchCouncil(ISTEC-CNR), Faenza,Italy

3.1Introduction

Biomaterialsplayanengagingroleinthefieldofregenerativemedicinewhere biomimicryhastodaybecomeadrivingconcept.Infact,theclosereproductionof thephysicochemical,morphological,andmechanicalfeaturesoftargetedtissues providebiomaterialswithabilitytoexchangeinformationwithcellsandtriggerthe boneregenerativecascade [1].Tothispurpose,nature-inspiredapproachesfor nanomaterialsdevelopmentarerapidlygaininggroundtoobtainmaterialswith unusualperformance.Infact,organicmacromoleculesatthebaseofbiologicstructuresstorecomplexinformationthatcanbeexploitedtogenerate3Dconstructs exhibitinghighmimicryoflivingtissues.Thisconceptisperfectlyrepresentedby biomineralization,anaturalassembling/mineralizationprocessthathasbeensuccessfullyreproducedinlaboratorytoinduceheterogeneousnucleationofinorganic nanophasesontotheorganicmatrix,drivenbycontrolmechanismsinherentinthe organicmatrixitself,andtoproducehybridscaffoldswithbone-mimickingcompositional,morphological,andstructuralfeatures [2 8].Thechemicalinteraction betweentheorganicandinorganiccomponentconfersuniquepropertiestosuch hybridmaterials.Biomineralizationprocessesarealsoeffectiveintheproductionof nano-sizedstructuresthatcanbeusedasnano-andmicro-carrierswithenhanced bioactivityandbiodegradability [9 11].Inthebroadfieldofnanomedicine,nanoparticles(NPs)arewidelystudiedbecausetheirapplicationisexpectedtochange thesceneryofpharmaceuticalandbiotechnologicalindustries [12].Infactthe clinicalapplicationofnewerandmoreeffectivedrugsisstillconstraineddueto thepresenceofseveralbarriersandblocksbetweenthesiteofintroductionandthe targetsitesuchasreticulo-endothelialsystem,membranebarriersandblood brain barrier,orthepossibilitytobeinactivatedordegraded [13].Besides,systemicdrug deliverylimitsthetherapeuticeffectivenessandmoreeasilyprovokeundesired secondaryeffects.Today,thedevelopmentofcarrierswithsmartmultifunctional propertiesandabilityofreleasealongdefinedspatial temporalprofilesisa particularlyhottopicinmaterialsresearch.Ontheonehand,chemicaldopingof Core-ShellNanostructuresforDrugDeliveryandTheranostics.DOI: https://doi.org/10.1016/B978-0-08-102198-9.00003-X

3
2018ElsevierLtd.Allrightsreserved.
©

20Core-ShellNanostructuresforDrugDeliveryandTheranostics

mineralphasesallowstotailorrelevantpropertiesofthefinalcompositematerials suchasspecificaffinitywithtargetedcells,antibacterial,andmagnetism [14 16].

Inparticular,thedopingwithironionsintroducedinacertainratiointhehydroxyapatitecrystalbestowsuperparamagneticpropertiesusefulforvariousfrontier applicationsinnanomedicinesuchason-demandactivationanddrugdelivery, imaging,cellstimulationbymeansofexternalmagneticfield [17].

Thischapterdescribesthebiomineralizationprocessandrelatedapplicationsto generatenovelbiocompatibleandbioresorbablemagneticmaterialspossiblyopening tonewtherapeuticapproachesandovercometheuseofcytotoxicsuperparamagnetic carriers.Particularly,thechapterwillillustratetworecentapproachesbywhich differentorganicmacromoleculeswereusedastemplateforbiomineralizationprocess thusgeneratinghybridnano-andmicro-carrierswithsuperparamagneticproperties, exhibitingsuitablepropertiesforapplicationinnanomedicineasnoveldiagnostic nano-toolsorsmartdrugdeliverysystems.

3.2Biomineralization

Recentresearchonmaterialscienceisincreasinglytakinginspirationfromnature withthepurposetoobtainnewmaterialswithabilityofsmartresponsivenessto environmentalstimuli.Inparticular,biomineralizationreferstoprocessesbywhich organismsformmineralsandconsistinacomplexcascadeofphenomenageneratinghybridnanostructuredmaterialshierarchicallyorganizedfromthenanoscaleto themacroscopicscale.Thisprocessisatthebasisofload-bearingstructuressuch

Figure3.1 Exampleswherethebiomineralizationprocesstakesplaceinnature:a)sea

sponge;b)bone;c)tooth;d)exoskeletonofcrayfish;e)diatom;f)shell.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Core shell nanostructures for drug delivery and theranostics challenges strategies and prospects for by mildred.porter336 - Issuu