LEAN SOONG EN Prepared by : FACULTY OF ENGINEERING, TECHNOLOGY & BUILT ENVIRONMENT SCHOOL OF ARCHITECTURE & BUILT ENVIRONMENT L O A D S , R E I N F O R C E D C O N C R E T E B E A M , F O U N D A T I O N




CONTENT GROUNDFLOORPLAN FIRSTFLOORPLAN FLOORPLANS LOADS,REINFORCEDCONCRETEBEAMANDFOUNDATION RIGHTELEVATION LEFTELEVATION FRONTELEVATION BACKELEVATION ELEVATIONS SECTIONA-A SECTIONB B SECTIONS SCHEMATICLAYOUTPLAN LOCATIONOFBEAMANDCOLUMN PART01:LOADS CONCLUSION PART02:REINFORCEDCONCRETEBEAMDESIGN PART03:FOUNDATIONDESIGN
BambooCraftcentreissituatedattheentranceintoBangKaChaowith800m2usablearea Themain purposesofthisbuildingare, INTRODUCTION area that includes harvesting tofinishingastheentranceto allow visitors to experience the first journey of a final product. Area to showcase the whole journeyofcraftweavingprocessto the final product with local craftsmen Besides, augmented reality interactive wall are placed to allow visitors to get as much information about the history of Thaicraft Thelocalcraftsmenandbody could have a platform to showcase their products at innovation and partnership gallerywithdifferenttypesof techniquesandmachines andtheprocessesincluded RAFTHOUSEPIER


TheINTRODUCTIONBriefoftheDesign Proposal
AR433STRUCTURE02 PROJECT04 1001746498 PART 1: LOADS (10%)
Figure above shows the programme diagram of the building
In Thailand, there are 28 bamboo species used in construction. Somehow, three of these bamboo species, which are Dendrocalamus asper, Dendrocalamus strictus and Thyrsostachys siamensis, were selected to use in this project according to availability in the markets and suggestion by craftsmen.
Frompasttopresent,thedemandforconstructionmaterialshasincreasedfarbeyond the available supplies, especially from natural resources, which has caused the problem of exploitation of resources. At present, people are more aware of deforestation which takes decades to revive. The strength and renewable prospects of bamboo make them preferably alternative materials to substitute other wood. Hence, bamboo is considered as the most perfect multipurpose plant species of the world. Apart from that, the main intention of designing this building is to experiment the natural potential of bamboo as well as to build people confidence of bamboo construction in contemporary context thus enhance the role of bamboo in Thailand society. Of course, to publicize local wisdoms of bamboo construction in Thailand and subsequently develop and apply the knowledge to contemporary uses as well.
The Material of Building Structure

2150 1850 2000 3000 5077 10000 9950 3850 8650 3850 JANITORROOM RESTROOM STOREROOM WORKSHOP LECTUREROOM FEMALEMALE 1 2 3 4 A C D E F G H I J LANDSCAPE LANDSCAPE GROUNDFLOORPLAN 1:150 PUMPROOM E SW N B 4075 1850 B B A A 130MMEXPOSEDDRAINAPRONANDPERIMETERBAMBOOSTRUCTUREWITHDIAMETER50MMATTACHEDTOROOFTHICKBRICKWALLWITH20MMTHKCEMENTPLASTERONBOTHSIDEWITHPAINTBAMBOOSTRUCTURESTAIRCASEWITH45X3600MMBAMBOOHANDRILLAT900MMHEIGHT. RISERTHREAD=240MM=160MM 100MMTHKOFPOLYCARBONATEPARTITIONBOARDRAMPOF3000MMLENGTHWITHSLOPEOF1/14200X200MMREINFORCEDCONCRETECOLUMNCRAFTPROCESSINGAREACRAFTMARKET S OFFICE VOID 3850 5850 1 2 B E FIRSTFLOORPLAN 1:150 E SW N 130MMTHICKBRICKWALLWITH20MMTHKCEMENTPLASTERONBOTHSIDEWITHPAINT POLYCARBONATEFIXED3900MMWIDEX950MMHEIGHTGLASSWINDOW900MMWIDEX2100MMHEIGHTDOOR
99501000050773000200018502150 JIHGFEDCA B 18504075 RIGHTELEVATION 1:150 FIRSTROOF+6.400+3.650FLOOR+0.600GROUNDFLOOR+0.000600 3050 3350 130MMTHICKBRICKWALLWITH20MMTHKCEMENTPLASTERONBOTHSIDEWITHPAINTBAMBOOSTRUCTURESTAIRCASEWITH45X3600MMBAMBOOHANDRILLAT900MMHEIGHT. RISERTHREAD=240MM=160MM 100MMTHKOFPOLYCARBONATEPARTITIONBOARD CONCRETEMEMBRANEPTFEWATERPROOFROOF200X200MMREINFORCEDCOLUMNPIPE CONCRETE200X200MMREINFORCEDCOLUMN 2150 1850 2000 3000 5077 10000 9950 A C D E F G H I BJ 4075 1850 LEFTELEVATION 1:150 FIRSTROOF+6.400+3.650FLOOR+0.600GROUNDFLOOR+0.000600 3050 3350 EXPOSEDMEMBRANEPTFEWATERPROOFROOFBAMBOOSTRUCTUREWITHDIAMETER50MMATTACHEDTOROOFPIPE FRONTELEVATION 1:150 4 3 2 1 FIRSTROOF+6.400+3.650FLOOR+0.600GROUNDFLOOR+0.000 RAMPPIPECONCRETEMEMBRANEPTFEWATERPROOFROOF200X200MMREINFORCEDCOLUMNOF3000MMLENGTHWITHSLOPEOF1/14 3850 8650 3853 600 3050 3350 BACKELEVATION 1:150 1234 FIRSTROOF+6.400+3.650FLOOR+0.600GROUNDFLOOR+0.000 130MMMEMBRANEPTFEWATERPROOFROOFTHICKBRICKWALLWITH20MMTHKCEMENTPLASTERONBOTHSIDEWITHPAINTTOROOFPIPERAMPOF3000MMLENGTHWITHSLOPEOF1/14POLYCARBONATE900MMWIDEX2100MMHEIGHTDOOR 3850 8650 3853 600 3050 3350
21501850200030005077100009950 ABCDEFGHJ I 40751850 SECTIONA-A 1:150 FIRSTROOF+6.400+3.650FLOOR+0.600GROUNDFLOOR+0.000 HEIGHT.BAMBOOBAMBOOSTRUCTURESTAIRCASEWITH45X3600MMHANDRILLAT900MM RISERTHREAD=240MM=160MM VOIDVOID600305029006550 39950 110MMROOFEXPOSEDMEMBRANEPTFEWATERPROOFROOFREINFORCEDCONCRETEBEAMTOENGR'SDETAILBAMBOOSTRUCTURETHICKBRICKWALLWITH20MMTHKCEMENTPLASTERONBOTHSIDEWITHPAINTCEILINGTODETAILDOORLINTELTOMANUF'SDETAILTIMBERSLABTOENGR'SDETAILR.CSLABTODETAIL50MMX200MMFLOORJOISTTIMBERFLOORBEAM20MMTHKPLYWOODFLOORPANELPTFEWATERPROOFROOFMEMBRANE 4321 FIRSTROOF+6.400+3.650FLOOR+0.600GROUNDFLOOR+0.000 PIPEMEMBRANEPTFEWATERPROOFROOF 3850 8650 3850 600 3050 3350 130MMTHICKBRICKWALLWITH20MMTHKCEMENTPLASTERONBOTHSIDEWITHPAINTTOROOF SECTIONB-B 1:150 4000 7500 4800 1 2 3 4 A C D E F G BH 1850 10000 3150 4850 10200 5000 SCHEMATICPLANLAYOUT 1:150 LEGEND SYMBOL DESCRIPTION COLUMN FOUNDATION BEAM 4850 E SW N
2150 1850 2000 3000 5077 10000 9950 3850 8650 3850 A C D E F G H I J GROUNDFLOORPLAN 1:150 E SW N B 4075 1850 LEGEND BEAM COLUMN FOUNDATION UP JANITORROOM RESTROOM STOREROOM WORKSHOP AUGMENTEDREALITYROOMLECTUREROOM 50dp 50dpFEMALEMALEOKU 1 2 3 4 LANDSCAPE LANDSCAPE LANDSCAPE LANDSCAPE PUMPROOM CRAFTPROCESSINGAREACRAFTMARKET
PART1 LOAD
2150 1850 2000 3000 5077 10000 9950 3850 8650 3850 A C D E F G H I BJ 4075 1850 LEGEND BEAM COLUMN FOUNDATION LOADDISTRIBUTION:PUMPROOM JANITORROOM RESTROOM STOREROOM WORKSHOP AUGMENTEDREALITYROOMLECTUREROOM FEMALEMALEOKU LANDSCAPE LANDSCAPE LANDSCAPE LANDSCAPE PUMPROOM CRAFTPROCESSINGAREACRAFTMARKET 1 2 3 4 PART1:LOADS(10%) L2/L1=4 1.8 Hence,=2.22theslabwillbehaveasONE-WAYSLABasshownasthediagramabove. 9000 4000 1800 1 2 A B C PB PB PB TB C1 F1 C2 F2 C4 F4 C3 F3
LOADACTINGONBEAMA1 PART1:LOADS(10%) TRIBUTARYAREAFORBEAMA1 A1=(0.9x4) DESIGNDEADLOAD SLABLOAD Reinforcedconcrete =24KN/m Slabdeadload(gk) ==selfweight=0.15x243.6kN/m Areaofslab =0.9x4 Reinforcedconcreteslabload =12.96kN SELFWEIGHTOFBEAM unitSteelbeam,assuming50kg/mrun.weightofbeam=50x9.81=490.5N/mrun=0.5kN/mrunSelfweightofbeam=0.5kN/mx4(span)=2kN FLOORFINISHES Floorfinishes ==bamboofloorboard0.12kN/m Finishesload =0.12kN/m =0.432kN PARTITIONWALL Polycarbonatepartitionwall=11kN/m Wallheight =3m Wallthickness =0.1m Walllength =4m Wallload ==11kN/m13.2kN 04030201 Designdeadload(gk)=1.4(12.96kN+0.432kN+2kN+13.2kN+10kN)=1.4(38.592)=54.03kN COLUMN Columnload =10kN 05 DESIGNLIVELOAD PUMPHOUSE Pumphouse =1.5kN/m ==1.5x3.65.4kN Designliveload(qk)=1.6(5.4)=8.64kN TOTALDESIGNLOAD Totaldesignload=54.03kN+8.64kN=62.67kN 9000 4000 1800 1 2 A B C PB PB PB TB C1 F1 C2 F2 C4 F4 C3 F3 A1A2
LOADACTINGONBEAMA2 PART1:LOADS(10%) TRIBUTARYAREAFORBEAMA2 A2=(9x4) DESIGNDEADLOAD SLABLOAD Reinforcedconcrete =24KN/m Slabdeadload(gk) ==selfweight=0.15x243.6kN/m Areaofslab =0.9x4 Reinforcedconcreteslabload =12.96kN SELFWEIGHTOFBEAM unitSteelbeam,assuming50kg/mrun.weightofbeam=50x9.81=490.5N/mrun=0.5kN/mrunSelfweightofbeam=0.5kN/mx4(span)=2kN FLOORFINISHES Floorfinishes ==bamboofloorboard0.12kN/m Finishesload =0.12kN/m =0.432kN PARTITIONWALL Polycarbonatepartitionwall=11kN/m Wallheight =3m Wallthickness =0.1m Walllength =4m Wallload ==11kN/m13.2kN 04030201 Designdeadload(gk)=1.4(12.96kN+0.432kN+2kN+13.2kN+10kN)=1.4(38.592)=54.03kN COLUMN Columnload =10kN 05 DESIGNLIVELOAD PUMPHOUSE Pumphouse =1.5kN/m ==1.5x3.65.4kN Designliveload(qk)=1.6(5.4)=8.64kN TOTALDESIGNLOAD Totaldesignload=54.03kN+8.64kN=62.67kN 9000 4000 1800 1 2 A B C PB PB PB TB C1 F1 C2 F2 C4 F4 C3 F3 A1A2
LOADACTINGONPUMPROOM PART1:LOADS(10%) 1.8TRIBUTARYAREAOFPUMPROOMX4=36m Designloadonbeam=slabload+floorfinishes+selfweightofbeam+minimumliveload TOTALDESIGNLOADA1 Designdeadload(gk) ===1.4(12.96kN+0.432kN+2kN+13.2kN+10kN)1.4(38.592)54.03kN Designliveload(qk) ==1.6(5.4)8.64kN Totaldesignload ==54.03+8.64 62.67kN TOTALDESIGNLOADA2 Designdeadload(gk) ===1.4(12.96kN+0.432kN+2kN+13.2kN+10kN)1.4(38.592)54.03kN Designliveload(qk) ==1.6(5.4)8.64kN Totaldesignload ==54.03+8.64 62.67kN TOTALDESIGNDEADLOADONPUMPROOM DeadloadonbeamA1+A2 ==54.03kN+54.03kN 108.06kN TOTALDESIGNLIVELOADONPUMPROOM LiveloadonbeamA1+A2 ==8.64kN+8.64kN 17.28kN ULTIMATELOADACTINGONPUMPROOM LoadsonbeamA1+A2 ==62.67kN+62.67kN 125.34kN 9000 4000 1800 1 2 A B C PB PB PB TB C1 F1 C2 F2 C4 F4 C3 F3 A1A2
2150 1850 2000 3000 5077 10000 9950 3850 8650 3850 A C D E F G H I BJ 4075 1850 LEGEND BEAM COLUMN FOUNDATION LOADDISTRIBUTION:WORKSHOPAREA JANITORROOM RESTROOM STOREROOM WORKSHOP AUGMENTEDREALITYROOMLECTUREROOM 50dpFEMALEMALEOKU LANDSCAPE LANDSCAPE LANDSCAPE LANDSCAPE PUMPROOM CRAFTPROCESSINGAREACRAFTMARKET 1 2 3 4 PART1:LOADS(10%) L2/L1=8 4 Hence,=2theslabwillbehaveasONE-WAYSLABasshownasthediagramabove. 4000 1 2 C D E 3150 4850 8000 TB C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 PB PB PB PB PB PB
LOADACTINGONBEAMA3 PART1:LOADS(10%) TRIBUTARYAREAFORBEAMA3 A3=(3.15/2)x4 DESIGNDEADLOAD SLABLOAD Reinforcedconcrete =24KN/m Slabdeadload(gk) ==selfweight=0.15x243.6kN/m Areaofslab =1.575x4 Reinforcedconcreteslabload =22.68kN SELFWEIGHTOFBEAM unitSteelbeam,assuming50kg/mrun.weightofbeam=50x9.81=490.5N/mrun=0.5kN/mrunSelfweightofbeam=0.5kN/mx4(span)=2kN FLOORFINISHES Floorfinishes ==bamboofloorboard0.12kN/m Finishesload =0.12kN/m =0.756kN PARTITIONWALL Polycarbonatepartitionwall=11kN/m Wallheight =3m Wallthickness =0.15m Walllength =4m Wallload ==11kN/m19.8kN 04030201 Designdeadload(gk)=1.4(22.68kN+0.756kN+2kN+19.8kN+10kN)=1.4(55.54)=77.34kN COLUMN Columnload =10kN 05 4000 1 2 C D E 3150 4850 8000 TB C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 PB PB PB PB PB PBA3 A4 A5 DESIGNLIVELOAD Workshoparea =1.92kN/m ==1.92x6.312.1kN Designliveload(qk)=1.6(12.1)=19.36kN TOTALDESIGNLOAD Totaldesignload=77.34kN+19.36kN=96.7kN
LOADACTINGONBEAMA4 PART1:LOADS(10%) TRIBUTARYAREAFORBEAMA4 A4==[(3.15/2)+(4.85/2)]x4(1.575+2.425)x4 DESIGNDEADLOAD SLABLOAD Reinforcedconcrete =24KN/m Slabdeadload(gk) ==selfweight=0.15x243.6kN/m Areaofslab =4x4 Reinforcedconcreteslabload =57.6kN SELFWEIGHTOFBEAM unitSteelbeam,assuming50kg/mrun.weightofbeam=50x9.81=490.5N/mrun=0.5kN/mrunSelfweightofbeam=0.5kN/mx4(span)=2kN FLOORFINISHES Floorfinishes ==bamboofloorboard0.12kN/m Finishesload =0.12kN/m =1.92kN PARTITIONWALL Polycarbonatepartitionwall=11kN/m Wallheight =3m Wallthickness =0.15m Walllength =4m Wallload ==11kN/m19.8kN 04030201 Designdeadload(gk)=1.4(57.6kN+1.92kN+2kN+19.8kN+10kN)=1.4(91.32)=127.85kN COLUMN Columnload =10kN 05 4000 1 2 C D E 3150 4850 8000 TB C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 PB PB PB PB PB PBA3 A4 A5 DESIGNLIVELOAD Workshoparea =1.92kN/m ==1.92x1630.72kN Designliveload(qk)=1.6(30.72)=49.15kN TOTALDESIGNLOAD Totaldesignload=127.85kN+49.15kN=177kN
LOADACTINGONBEAMA5 PART1:LOADS(10%) TRIBUTARYAREAFORBEAMA5 A5==(4.85/2)x42.425x4 DESIGNDEADLOAD SLABLOAD Reinforcedconcrete =24KN/m Slabdeadload(gk) ==selfweight=0.15x243.6kN/m Areaofslab =2.425x4 Reinforcedconcreteslabload =34.92kN SELFWEIGHTOFBEAM unitSteelbeam,assuming50kg/mrun.weightofbeam=50x9.81=490.5N/mrun=0.5kN/mrunSelfweightofbeam=0.5kN/mx4(span)=2kN FLOORFINISHES Floorfinishes ==bamboofloorboard0.12kN/m Finishesload =0.12kN/m =1.164kN PARTITIONWALL Polycarbonatepartitionwall=11kN/m Wallheight =3m Wallthickness =0.15m Walllength =4m Wallload ==11kN/m19.8kN 04030201 Designdeadload(gk)=1.4(34.92kN+1.164kN+2kN+19.8kN+10kN)=1.4(67.89)=95.04kN COLUMN Columnload =10kN 05 4000 1 2 C D E 3150 4850 8000 TB C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 PB PB PB PB PB PBA3 A4 A5 DESIGNLIVELOAD Workshoparea =1.92kN/m ==1.92x9.718.63kN Designliveload(qk)=1.6(18.63)=29.81kN TOTALDESIGNLOAD Totaldesignload=95.04kN+29.81kN=124.85kN
LOADACTINGONWORKSHOPAREA PART1:LOADS(10%) 8TRIBUTARYAREAOFPUMPROOMX4=32m Designloadonbeam=slabload+floorfinishes+selfweightofbeam+minimumliveload TOTALDESIGNLOADA3 Totaldesignload ==77.34+19.36 96.7kN TOTALDESIGNLOADA4 Totaldesignload ==127.85+49.15 177kN TOTALDESIGNDEADLOADONPUMPROOM DeadloadonbeamA3+A4+A5 ==77.34kN+127.85kN+95.04kN 300.23kN TOTALDESIGNLIVELOADONPUMPROOM LiveloadonbeamA3+A4+A5 ==19.36kN+49.15kN+29.81kN 98.32kN ULTIMATELOADACTINGONPUMPROOM LoadsonbeamA3+A4+A5 ==96.7kN+177kN+124.85kN 385.55kN 4000 1 2 C D E 3150 4850 8000 TB C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 PB PB PB PB PB PBA3 A4 A5 Designdeadload(gk) ===1.4(22.68kN+0.756kN+2kN+19.8kN+10kN)1.4(55.54)77.34kN Designdeadload(gk) ===1.4(57.6kN+1.92kN+2kN+19.8kN+10kN)1.4(91.32)127.85kN Designdeadload(gk)=1.4(34.92kN+1.164kN+2kN+19.8kN+10kN)=1.4(67.89)=95.04kN TOTALDESIGNLOADA5 ==Totaldesignload95.04+29.81 124.85kN Designliveload(qk) ==1.6(12.1)19.36kN Designliveload(qk) ==1.6(30.72)49.15kN Designliveload(qk)=1.6(18.63)=29.81kN
PART2 REINFORCEDCONCRETEBEAMDESIGN
LOADACTINGONBEAMA1 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) TRIBUTARYAREAFORBEAMA1 A1=(0.9x4) 9000 4000 1800 1 2 A B C PB PB PB TB C1 F1 C2 F2 C4 F4 C3 F3 A1A2 TOTALDESIGNLOADA1 Designdeadload(gk) ===1.4(12.96kN+0.432kN+2kN+13.2kN+10kN)1.4(38.592)54.03kN Designliveload(qk) ==1.6(5.4)8.64kN Totaldesignload ==54.03+8.64 62.67kN REACTIONATTHESUPPORTOFBEAMS Reactionateachendofthebeam ==62.67kN/231.335kN 62.67kN 31.34kN 31.34kN 4m
SUITABLESIZEOFBEAMA1 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) UsingtotaldesignloadfromPart1,youarerequiredtodesignthereinforcedconcretebeambasedonBS8110formula SIMPLYSUPPORTEDBEAM Spanofbeam =4m Ratio d==Span/Depth12= 400012 =333.33 Taked=333 BEAMA1 Totalultimatedesignload(1.4gk+1.6qk)==54.03kN+8.64kN62.67kN Designshearforce(V) ==62.67kN/231.34kN Designshearstress,v=V/bd v=31.34x10 giveswidthofbeam,b b=V/dv=31.34x10=78.43mm

NUMBEROFREINFORCEMENT PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) DESIGNMOMENT,M EffectiveSpanofbeam =4m UltimateDesignLoad(W) ==54.03kN+8.64kN62.67kN Loadperm ==62.67kN/431.335kN/m Designmoment(M) ==(31.335)(4)/8125.34kNm ULTIMATEMOMENTOFRESISTANCE,Mu Mu=41kNm SinceM>Mu,compressionreinforcementisrequired =16mm d' =40+16 2 =48mm As' ==M-Mu/0.95fy(d-d')(125.34-41)(10^6)/0.95(460)(333-48) ) z =192.03mm As' ===(Mu/0.95fyz)+As'[41x10^6/(0.95)(460)(192.03)]+677.19 48 3336T164T20
LOADACTINGONBEAMA2 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) TRIBUTARYAREAFORBEAMA2 A2=(0.9x4) 9000 4000 1800 1 2 A B C PB PB PB TB C1 F1 C2 F2 C4 F4 C3 F3 A1A2 TOTALDESIGNLOADA2 Designdeadload(gk) ===1.4(12.96kN+0.432kN+2kN+13.2kN+10kN)1.4(38.592)54.03kN Designliveload(qk) ==1.6(5.4)8.64kN Totaldesignload ==54.03+8.64 62.67kN REACTIONATTHESUPPORTOFBEAMS Reactionateachendofthebeam ==62.67kN/231.335kN 62.67kN 31.34kN 31.34kN 4m
SUITABLESIZEOFBEAMA2 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) UsingtotaldesignloadfromPart1,youarerequiredtodesignthereinforcedconcretebeambasedonBS8110formula SIMPLYSUPPORTEDBEAM Spanofbeam =4m Ratio d==Span/Depth12= 400012 =333.33 Taked=333 BEAMA2 Totalultimatedesignload(1.4gk+1.6qk)==54.03kN+8.64kN62.67kN Designshearforce(V) ==62.67kN/231.34kN Designshearstress,v=V/bd v=31.34x10 giveswidthofbeam,b b=V/dv=31.34x10=78.43mm

NUMBEROFREINFORCEMENT PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) DESIGNMOMENT,M EffectiveSpanofbeam =4m UltimateDesignLoad(W) ==54.03kN+8.64kN62.67kN Loadperm ==62.67kN/431.335kN/m Designmoment(M) ==(31.335)(4)/8125.34kNm ULTIMATEMOMENTOFRESISTANCE,Mu Mu=41kNm SinceM>Mu,compressionreinforcementisrequired =16mm d' =40+16 2 =48mm As' ==M-Mu/0.95fy(d-d')(125.34-41)(10^6)/0.95(460)(333-48) ) z =192.03mm As' ===(Mu/0.95fyz)+As'[41x10^6/(0.95)(460)(192.03)]+677.19 48 3336T164T20
LOADACTINGONBEAMA3 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) TOTALDESIGNLOADA3 Designdeadload(gk) ===1.4(22.68kN+0.756kN+2kN+19.8kN+10kN)1.4(55.54)77.34kN Designliveload(qk) ==1.6(12.1)19.36kN Totaldesignload ==77.34+19.36 96.7kN REACTIONATTHESUPPORTOFBEAMS Reactionateachendofthebeam ==96.7kN/248.35kN 96.7kN 48.35kN 48.35kN 4m TRIBUTARYAREAFORBEAMA3 A3=(3.15/2)x44000 1 2 C D E 3150 4850 8000 TB C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 PB PB PB PB PB PBA3 A4 A5
SUITABLESIZEOFBEAMA3 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) UsingtotaldesignloadfromPart1,youarerequiredtodesignthereinforcedconcretebeambasedonBS8110formula SIMPLYSUPPORTEDBEAM Spanofbeam =4m Ratio d==Span/Depth12= 400012 =333.33 Taked=333 BEAMA2 Totalultimatedesignload(1.4gk+1.6qk)==77.34kN+19.36kN96.7kN Designshearforce(V) ==96.7kN/248.35kN Designshearstress,v=V/bd v=48.35x10 giveswidthofbeam,b b=V/dv=48.35x10=120.99mm

NUMBEROFREINFORCEMENT PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) DESIGNMOMENT,M EffectiveSpanofbeam =4m UltimateDesignLoad(W) ==77.34kN+19.36kN96.7kN Loadperm ==96.7kN/424.175kN/m Designmoment(M) ==(24.175)(4)/896.7kNm ULTIMATEMOMENTOFRESISTANCE,Mu Mu=62.8kNm SinceM>Mu,compressionreinforcementisrequired =20mm d' =40+20 2 =50mm As' ==M-Mu/0.95fy(d-d')(96.7-62.8)(10^6)/0.95(460)(333-50) ) z =192.03mm As' ===(Mu/0.95fyz)+As'[62.8x10^6/(0.95)(460)(192.03)]+274.12 50 3336T164T20
LOADACTINGONBEAMA4 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) TOTALDESIGNLOADA4 Designdeadload(gk) ===1.4(57.6kN+1.92kN+2kN+19.8kN+10kN)1.4(91.32)127.85kN Designliveload(qk) ==1.6(30.72)49.15kN Totaldesignload ==127.85+49.15 177kN REACTIONATTHESUPPORTOFBEAMS Reactionateachendofthebeam ==177kN/288.5kN 177kN 88.5kN 88.5kN 4m 4000 1 2 C D E 3150 4850 8000 TB C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 PB PB PB PB PB PBA3 A4 A5 TRIBUTARYAREAFORBEAMA4 A4==[(3.15/2)+(4.85/2)]x4(1.575+2.425)x4
SUITABLESIZEOFBEAMA4 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) UsingtotaldesignloadfromPart1,youarerequiredtodesignthereinforcedconcretebeambasedonBS8110formula SIMPLYSUPPORTEDBEAM Spanofbeam =4m Ratio d==Span/Depth12= 400012 =333.33 Taked=333 BEAMA2 Totalultimatedesignload(1.4gk+1.6qk)==127.85kN+49.15kN177kN Designshearforce(V) ==177kN/288.5kN Designshearstress,v=V/bd v=88.5x10 giveswidthofbeam,b b=V/dv=88.5x10=221.5mm

NUMBEROFREINFORCEMENT PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) DESIGNMOMENT,M EffectiveSpanofbeam =4m UltimateDesignLoad(W) ==127.85kN+49.15kN177kN Loadperm ==177kN/444.25kN/m Designmoment(M) ==(44.25)(4)/8177kNm ULTIMATEMOMENTOFRESISTANCE,Mu Mu=115.2kNm SinceM>Mu,compressionreinforcementisrequired =16mm d' =40+16 2 =48mm As' ==M-Mu/0.95fy(d-d')(177-115.2)(10^6)/0.95(460)(333-48) ) z =192.03mm As' ===(Mu/0.95fyz)+As'[115.2x10^6/(0.95)(460)(192.03)]+14.45 48 3331T67T16
LOADACTINGONBEAMA5 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) TOTALDESIGNLOADA5 Designdeadload(gk) ===1.4(34.92kN+1.164kN+2kN+19.8kN+10kN)1.4(67.89)95.04kN Designliveload(qk) ==1.6(18.63)29.81kN Totaldesignload ==95.04+29.81124.85kN REACTIONATTHESUPPORTOFBEAMS Reactionateachendofthebeam ==124.85kN/262.43kN 124.85kN 62.43kN 62.43kN 4m 4000 1 2 C D E 3150 4850 8000 TB C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 PB PB PB PB PB PBA3 A4 A5 TRIBUTARYAREAFORBEAMA5 A5==(4.85/2)x42.425x4
SUITABLESIZEOFBEAMA5 PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) UsingtotaldesignloadfromPart1,youarerequiredtodesignthereinforcedconcretebeambasedonBS8110formula SIMPLYSUPPORTEDBEAM Spanofbeam =4m Ratio d==Span/Depth12= 400012 =333.33 Taked=333 BEAMA2 Totalultimatedesignload(1.4gk+1.6qk)==95.04kN+29.81kN124.85kN Designshearforce(V) ==124.85kN/262.43kN Designshearstress,v=V/bd v=62.43x10 giveswidthofbeam,b b=V/dv=62.43x10=156.23mm

NUMBEROFREINFORCEMENT PART2:REINFORCEDCONCRETEBEAMDESIGN(15%) DESIGNMOMENT,M EffectiveSpanofbeam =4m UltimateDesignLoad(W) ==95.04kN+29.81kN124.85kN Loadperm ==124.85kN/431.21kN/m Designmoment(M) ==(31.21)(4)/8124.84kNm ULTIMATEMOMENTOFRESISTANCE,Mu Mu=80.96kNm SinceM>Mu,compressionreinforcementisrequired =16mm d' =40+16 2 =48mm As' ==M-Mu/0.95fy(d-d')(128.84-80.96)(10^6)/0.95(460)(333-48) ) z =192.03mm As' ===(Mu/0.95fyz)+As'[80.96x10^6/(0.95)(460)(192.03)]+384.44 48 3337T165T10
PART3 FOUNDATIONDESIGN
PART3:FOUNDATIONDESIGN(15%) Usingreactionforcefrompart2,yourarerequiredtodesignareinforcedpadfooting 4000 1 2 C D E 3150 4850 8000 TB C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 C1 F1 PB PB PB PB PB PB SelectedperimetercolumnC1 SelectedcornercolumnC2 SIZEOFCORNERCOLUMNC2 300mmx300mmx3000mmsquarecolumn 300mm 300mm A5 SELFWEIGHTOFCOLUMNC2 ==self-weightofcolumnareaxhxdensityofconcrete=0.3x0.3x3x24kN/m6.48kN SIZEOFCORNERCOLUMNC1 300mmx300mmx3000mmsquarecolumn 300mm 300mm A5 SELFWEIGHTOFCOLUMNC1 ==self-weightofcolumnareaxhxdensityofconcrete=0.3x0.3x3x24kN/m6.48kN
PART3:FOUNDATIONDESIGN(15%) 4000 1 2 C D E 3150 4850 8000 DEADLOAD(A4) REACTIONATEACHENDOFBEAMS A4 A5 SLABLOAD Reinforcedconcrete =24KN/m Slabdeadload(gk) ==selfweight=0.15x243.6kN/m ReinforcedAreaofslabconcreteslabload =57.6kN SELFWEIGHTOFBEAM unitSteelbeam,assuming50kg/mrun.weightofbeam=50x9.81=490.5N/mrun=0.5kN/mrunSelfweightofbeam=0.5kN/mx4(span)=2kN FLOORFINISHES Floorfinishes ==bamboofloorboard0.12kN/m Finishesload =0.12kN/m =1.92kN PARTITIONWALL Polycarbonatepartitionwall=11kN/m Wallheight =3m Wallthickness =0.15m Walllength =4m Wallload ==11kN/m19.8kN 04030201 deadload(gk) ===1.4(57.6kN+1.92kN+2kN+19.8kN+10kN)1.4(91.32)127.85kN COLUMN Columnload =10kN 05 DEADLOAD(A5) SLABLOAD Reinforcedconcrete =24KN/m Slabdeadload(gk) ==selfweight=0.15x243.6kN/m ReinforcedAreaofslabconcreteslabload =34.92kN SELFWEIGHTOFBEAM unitSteelbeam,assuming50kg/mrun.weightofbeam=50x9.81=490.5N/mrun=0.5kN/mrunSelfweightofbeam=0.5kN/mx4(span)=2kN FLOORFINISHES Floorfinishes ==bamboofloorboard0.12kN/m Finishesload =0.12kN/m =1.164kN PARTITIONWALL Polycarbonatepartitionwall=11kN/m Wallheight =3m Wallthickness =0.15m Walllength =4m Wallload ==11kN/m19.8kN 04030201 deadload(gk) ===1.4(34.92kN+1.164kN+2kN+19.8kN+10kN)1.4(67.89)95.04kN COLUMN Columnload =10kN 05 LIVELOAD(A4) LIVELOAD(A5) Workshoparea =1.92kN/m ==1.92x1630.72kN liveload(qk) ==1.6(30.72)49.15kN Workshoparea =1.92kN/m ==1.92x1630.72kN liveload(qk) ==1.6(30.72)49.15kN TRIBUTARYAREAFORBEAMA4&A5 A4==[(3.15/2)+(4.85/2)]x4(1.575+2.425)x4 A5==(4.85/2)x42.425x4 A6
PART3:FOUNDATIONDESIGN(15%) 4000 1 2 C D E 3150 4850 8000 REACTIONATEACHENDOFBEAMS A4 A5 DEADLOAD(A6) LIVELOAD(A6) PointloadattheendofthebeamA6=127.85kN/2=63.93kN A6 PointloadattheendofthebeamA6=49.15kN/2=24.6kN REACTIONATEACHENDOFBEAMA6 63.93kN(Dead)4.85m24.6kN(Live) 31.97kN(Dead)12.3kN(Live) 31.97kN(Dead)12.3kN(Live) REACTIONATEACHENDOFBEAMA5 127.85kN(Dead)4m49.15kN(Live) 63.93kN(Dead)24.58kN(Live) 63.93kN(Dead)24.58kN(Live) C5 C5
PART3:FOUNDATIONDESIGN(15%) 4000 1 2 C D E 3150 4850 8000 DESIGNAXIALLOADSATCOLUMNC5 A4 A5 DEADLOAD SelfAssumeafootingweightof130kNweightofcolumn=10kNTotaldeadload(gk)=31.97+63.93+130+10=235.9kNA6 LIVELOAD Totaldeadload(qk) ==24.58+24.5849.16kN SERVICEABILITYLOAD Designaxialload(N) ===1.0gk+1.0qk(1.0x235.9)+(1.0x49.16)258.06kN C5 Axialloads==235.9kN(DeadLoad)49.16kN(ImposedLoad)
PART3:FOUNDATIONDESIGN(15%) PLANAREA soilThesubsoilconsistsofaloosesandandgravelmix.Forbearingcapacityrefertothepermissiblebearingpressures.(kN/mLooseandgravelmix=150kN/mPlanareaofbase=N/bearingcapacityofsoil= 258.06150 =1.72m Hence,providea1.4msquarebase(planarea=2m) SELFWEIGHTOFFOOTING Assumetheoveralldepthoffooting(h)=600mmSelfweightoffooting=areaxhxdensityofconcrete=2x0.6x24kN/m=28.8kN<assumed(130kN) BENDINGREINFORCEMENT Designmoment,MTotalultimateload(W)====1.4Gk+1.6Qk1.4(235.9)+1.6(49.16)330.26+50.76381.02kN Earthpressure(ps) = W Planareaofbase =381.022 =190.51kNm-2 MMaximumdesignmomentoccurringatfaceofcolumn(M)is= 2 = 2 =28.82kNmm-1widthofslab 1400 550300 550 ULTIMATEMOMENT Effectivedepth,d d Effective==600-40-20540mmdepthBasetobecastagainstbinding,hencecover(c)toreinforcement=40mm.Assume20mmdiameterbarswillbeneededasbendingreinforcementinbothdirections. Ultimatemoment Mu ===0.156x35x10x5401592x10^6Nmm1592kNm SinceMu>M,nocompressionreinforcementisrequired.
PART3:FOUNDATIONDESIGN(15%) MAINSTEEL k ==28.82x10^6/35x100.029 zAs==M/0.95fyz28.82x10^6/0.95x460x523.28 523.28mm>{0.95d=513}OK MINIMUMSTEELAREA