Asymmetryin k -CenterVariants
IngeLiGørtz1 andAnthonyWirth2
1 TheoryDepartment,TheITUniversityofCopenhagen,Denmark. inge@it-c.dk
2 DepartmentofComputerScience,PrincetonUniversity. awirth@cs.princeton.edu
Abstract. Thispaperexploresthreeconcepts:the k -centerproblem, someofitsvariants,andasymmetry.The k -centerproblemisafundamentalclusteringproblem,similartothe k -medianproblem.Variantsof k -centermaymoreaccuratelymodelreal-lifeproblemsthantheoriginal formulation.Asymmetryisasignificantimpedimenttoapproximationin manygraphproblems,suchas k -center,facilitylocation, k -medianand theTSP.
Wedemonstratean O (log ∗ n)-approximationalgorithmfortheasymmetric weighted k -centerproblem.Here,theverticeshaveweightsand wearegivenatotalbudgetforopeningcenters.Inthe p-neighbor varianteachvertexmusthave p (unweighted)centersnearby:wegivean O (log ∗ k )-bicriteriaalgorithmusing2k centers,forsmall p. Finally,thefollowingthreeversionsoftheasymmetric k -centerproblem weshowtobeinapproximable: priority k -center, k -supplier,and outliers withforbiddencenters
1Introduction
Imagineyouhaveadeliveryservice.Youwanttoplaceyourdeliveryhubsat locationsthatminimizethemaximumdistancebetweencustomersandtheir nearesthubs.Thisisthe k -centerproblem —atypeofclusteringproblemthatis similartothefacilitylocationand k -medianproblems.Themotivationforthe asymmetric k -centerproblem,inourexample,isthattrafficpatternsorone-way streetsmightcausethetraveltimefromonepointtoanothertodifferdepending onthedirectionoftravel.Traditionally,the k -centerproblemwassolvedinthe contextofametric;inthispaperweretainthetriangleinequality,butabandon thesymmetry.
Symmetryisavitalconceptingraphapproximationalgorithms.Veryrecently,the k -centerproblemwasshowntobe Ω (log ∗ n)hardtoapproximate[6, 7],eventhoughthesymmetricversionhasafactor2approximation.Moreover,facilitylocationand k -medianbothhaveconstantfactoralgorithmsinthe
PartofthisworkwasperformedwhilevisitingPrincetonUniversity. SupportedbyaGordonWuFellowship,aDIMACSSummerResearchFellowship, andNSFITRgrantCCR-0205594.
S.Aroraetal.(Eds.):APPROX2003+RANDOM2003,LNCS2764,pp.59–70,2003. c Springer-VerlagBerlinHeidelberg2003
60IngeLiGørtzandAnthonyWirth
symmetriccase,butareprovably Ω (log n)hardtoapproximatewithoutsymmetry[1].Thetravelingsalesmanproblemisalittlebetter,inthatno Ω (log n) hardnessisknown,butwithoutsymmetrynoalgorithmbetterthan O (log n) hasbeenfoundeither.
Definition1(k -Center). Given G =(V,E ),acompletegraphwithnonnegative(butpossiblyinfinite)edgecostsandapositiveinteger k ,findaset S of k vertices,called centers,withminimumcoveringradius.Thecoveringradiusofa set S istheminimumdistance R suchthateveryvertexin V iswithindistance R ofsomevertexin S
KarivandHakimi[11]showedthatthe k -centerproblemis NP -hard.Withoutthetriangleinequalitytheproblemis NP -hardtoapproximate;wehenceforthassumethattheedgecostssatisfythetriangleinequality.
Theasymmetric k -centerproblemhasproventobemuchmoredifficultto understandthanitssymmetriccounterpart.HsuandNemhauser[10]showed thatthe k -centerproblemcannotbeapproximatedwithinafactorof(2 ) unless P = NP .In1985HochbaumandShmoys[8]provideda(bestpossible) factor2algorithmforthesymmetric k -centerproblem.In1996Panigrahyand Vishwanathan[16,13]gavethefirstapproximationalgorithmfortheasymmetric problem,withfactor O (log ∗ n).Archer[2]proposedtwo O (log ∗ k )algorithms basedonmanyoftheideasin[13].Wenowknow[6,7]thatthesealgorithms areasympotitcallythebestpossible.
Variantsofthe k -CenterProblem Anumberofvariantsofthe k -center problemhavebeenexploredinthecontextofsymmetricgraphs.Perhapssome deliveryhubsaremoreexpensivetoestablishthanothers: insteadofarestriction onthenumberofcenterswecanuse,eachvertexhasaweightandwehavea budget W ,thatlimitsthetotalweightofcenters.HochbaumandShmoys[9]producedafactor3algorithmforthis weighted k -centerproblem.Thishasrecently beenshowntobetight[6].
HochbaumandShmoys[9]alsostudiedthe k -supplierproblem wherethe vertexsetissegregatedintosuppliers andcustomers.Onlysuppliervertices canbecentersandonlythecustomerverticesneedtobecovered.Hochbaum andShmoysgavea3-approximationalgorithmandshowedthatthisisthebest possible.
Khulleretal.[12]investigatedthe p-neighbor k -centerproblem whereeach vertexmusthave p centersnearby.Thisproblemis motivatedbyneedtoaccount forfacilityfailures:evenifupto p 1facilitiesfail,everydemandpointhasa functioningfacilitynearby.Theygavea3-approximationalgorithmforall p, andabestpossible2-approximationalgorithmwhen p< 4,notingthatthecase where p issmallis“perhapsthepracticallyinterestingcase”.
Perhapssomedemandpointsaremoreimportantthanothers.Plesnik[14] studiedthe priority k -centerproblem,inwhichtheeffectivedistancetoademand pointisincreasedinproportiontoitsspecifiedpriority.Plesnikapproximates thesymmetricversionwithinafactorof2.
Asymmetryin k -CenterVariants61
Charikaretal.[4]notethatadisadvantageofthestandard k -centerformulationisthatafewdistantclients, outliers,canforcecenterstobelocated inisolatedplaces.Theysuggestavariantoftheproblem,the k -centerproblem with outliersandforbiddencenters,whereasmallsubsetofclientscanbedenied service,andsomepointsareforbiddenfrombeingcenters.Charikaretal.gave a(bestpossible)3-approximationalgorithmforthesymmetricversionofthis problem.
Bhatiaetal.[3]consideredanetworkmodel,suchasacitystreetnetwork, inwhichthetraversaltimechangeasthedayprogresses.Thisisknownasthe k -centerproblemwithdynamicdistances :wewishtoassignthecenterssuchthat theobjectivecriteriaaremetatalltimes.
ResultsandOrganization
Table1givesanoverviewofthebestknownresultsforthevarious k -center problems.Inthispaperweexploreasymmetricvariantsthatarenotyetinthe literature.
Table1. Anoverviewoftheapproximationresultsfor k -centervariants. †β isthemaximumratioofanedge’sgreatestlengthtoitsshortestlength. ‡This isabicriteriaalgorithmusing k (1+3/(ν +1))centers. §For p< 4. ¶Thisisa bicriteriaalgorithmusing2k centers,for p ≤ n/k
Problem
Symmetric Asymmetric k -center 2[8] O (log ∗ k )[2] k -centerwithdynamicdistances 1+ β † [3] O (log ∗ n + ν ) ‡ [3] weighted k -center 3[9] O(log∗ n) Here p-neighbor k -center 3(2 §)[5] O(log∗ k) ¶ Here priority k -center 2[14] InapproximableHere
k -centerwithoutliersand 3[4] InapproximableHere forbiddencenters
k -suppliers 3[9] InapproximableHere
Section2containsthedefinitionsandnotationrequiredtodeveloptheresults.InSection3webrieflyreviewthealgorithmsofPanigrahyandVishwanathan[13],andArcher[2].Thetechniquesusedinthestandard k -center problemareoftenapplicabletothevariants.
Ourfirstresult,inSection4,isan O (log ∗ n)-approximationfortheasymmetricweighted k -centerproblem.InSection5wedevelopan O (log ∗ k )approximationfortheasymmetric p-neighbor k -centerproblem,for p ≤ n/k .Asnoted byKhulleretal.[12],thecasewhere p issmallisthemostinterestingcasein practice.Thisabicriteriaalgorithm,allowinganincreaseto2k centers,butit canbeturnedintoan O (log k )-approximationalgorithmusingonly k centers. Turningtohardness,weshowthattheasymmetricversionsofthe k -centerprob-
62IngeLiGørtzandAnthonyWirth
lemwithoutliers(andforbiddencenters),thepriority k -centerproblem,andthe k -supplierproblemare NP -hardtoapproximate(Section6).
2Definitions
Theinputtotheasymmetric k -centerproblemisadistancefunction d on ordered pairsofvertices—distancesareallowedtobeinfinite—andabound k onthe numberofcenters.
Definition2. Vertex c covers vertex v within r ,or cr -covers v ,if dcv ≤ r .We extendthisdefinitiontoaset C andaset A ifforevery a ∈ A thereisa c ∈ C suchthat c covers a within r .Oftenweabbreviate“1-covers”to“covers”.
Mostofthealgorithmsdonotinfactoperateongraphswithedgecosts.Rather, theyconsiderrestrictedgraphs,inwhichonlythoseedgeswithdistancelower thansomethresholdareincluded,andtheedgeshaveunitcost.Hochbaumand Shmoys[9]refertotheseasbottleneckgraphs.Sincetheoptimalvalueofthe coveringradiusmustbeoneofthe n2 distancevalues,manyalgorithmsessentiallyrunthroughasequenceofrestrictedgraphsofeverypossiblethreshold radiusinascendingorder.Thiscanbethoughtofas guessing theoptimalradius ROPT .Theapproachworksbecausethealgorithmeitherreturnsasolution, withinthespecifiedfactorofthecurrentthresholdradius,oritfails,inwhich case ROPT mustbegreaterthanthecurrentradius.
Definition3(RestrictedGraph Gr ). For r> 0,definetherestrictedgraph Gr ofthegraph G =(V,E ) tobethegraph Gr =(V,Er ),where Er = {(i,j ): dij ≤ r } andalledgeshaveunitcost.
Mostofthefollowingdefinitionsapplyto restricted graphs.
Definition4(PowerofGraphs). The tth powerofagraph G =(V,E ) isthe graph Gt =(V,E t ), t> 1,where E t isthesetofedgesbetweendistinctvertices thathaveapathofatmost t edgesbetweenthemin G.
Definition5. For i ∈ N define Γ + i (v )= {u ∈ G | (v,u) ∈ E i }∪{v },and Γi (v )= {u ∈ G | (u,v ) ∈ E i }∪{v } , i.e.intherestrictedgraphthereisapath oflengthatmost i from v to u,respectively u to v .
Noticethatinasymmetricgraph Γ + i (v )= Γi (v ).Weextendthisnotationto setssothat Γ + i (S )= {u ∈ G | u ∈ Γ + i (v )forsome v ∈ S } , with Γi (S )defined similarly.Weuse Γ + (v )and Γ (v )insteadof Γ + 1 (v )and Γ1 (v ).
Definition6. For i ∈ N define Υ + i (v )= Γ + i (v ) \ Γ + i 1 (v ),and Υi (v )= Γi (v ) \ Γi 1 (v ) , i.e.,thenodesforwhichthepathdistancefrom v isexactly i,andthe nodesforwhichthepathdistanceto v isexactly i,respectively.
Foraset S ,theextensionfollowsthepattern Υ + i (S )= Γ + i (S ) \ Γ + i 1 (S ).We use Υ + (v )and Υ (v )insteadof Υ + 1 (v )and Υ1 (v ).
Asymmetryin k -CenterVariants63
Definition7(CenterCapturingVertex(CCV)). Avertex v isa center capturingvertex (CCV)if Γ (v ) ⊆ Γ + (v ),i.e., v coverseveryvertexthatcovers v
Inthegraph GROPT theoptimumcenterthatcovers v mustliein Γ (v ).For aCCV v ,itliesin Γ + (v ),hencethename.Insymmetricgraphsallverticesare CCVsandthispropertyleadstothestandard2-approximation.
Definition8(DominatingSet). Givenagraph G =(V,E ),andaweight function w : V → Q+ onthevertices,findaminimumweightsubset D ⊆ V suchthateveryvertex v ∈ V iscoveredby D ,i.e., v ∈ Γ + (D ) forall v ∈ V
Definition9(SetCover). Givenauniverse U of n elements,acollection S = {S1 ,...,Sk } ofsubsetsof U ,andaweightfunction w : S→ Q+ ,finda minimumweightsub-collectionof S thatincludesallelementsof U .
The MaxCoverage problem,onaninstance U , S ,k ,issimilartotheSet Coverproblem:insteadoftryingto minimize thenumberofsetsusedwehavea bound onthenumberofsetswecanuse,andtheproblemisthentomaximizethe numberofelementscovered.TheDominatingSet,SetCover,andMaxCoverage problemsareall NP -complete.
3Asymmetric k -CenterReview
The O (log ∗ n)algorithmofPanigrahyandVishwanathan[13]hastwophases, the halve phase,sometimescalledthe reduce phase,andthe augment phase.As describedabove,thealgorithmguesses ROPT ,andworksintherestrictedgraph GROPT .InthehalvephasewefindaCCV v ,includeitinthesetofcenters,mark everyvertexin Γ + 2 (v )ascovered,andrepeatuntilnoCCVsremainunmarked. TheCCVpropertyensuresthat,aseachCCVisfound,therestofthegraphcan becoveredwithonefewercenter.Henceif k CCVsareobtained,theunmarked portionofthegraphcanbecoveredwith k = k k centers.Theauthors thenprovethatthisunmarkedportion,CCV-free,canbecoveredwithonly k /2 centersifweuseradius5insteadof1.Thatistosay, k /2centerssufficeinthe graph G5 ROPT
The k -centerproblemintherestrictedgraphisidenticaltothedominating setproblem.Thisisaspecialcaseofsetcoverinwhichthesetsarethe Γ + terms.Intheaugmentphase,thealgorithm recursivelyusesthegreedysetcover procedure.Sincetheoptimalcoverusesatmost k /2centers,thefirstcoverhas sizeatmost k 2 log 2n k
Thecentersinthisfirstcoverarethemselvescovered,usingthegreedy setcoverprocedure,thenthecentersinthesecondcover,andsoforth.After O (log ∗ n)iterationsthealgorithmfindsasetofatmost k verticesthat, togetherwiththeCCVs, O (log ∗ n)-coverstheunmarkedportion,sincetheoptimalsolutionhas k /2centers.Combiningthesewiththe k CCVs,wehave k centerscoveringthewholegraph.
64IngeLiGørtzandAnthonyWirth
Archer[2]presentstwo O (log ∗ k )algorithms,bothbuildingonthework in[13].Thealgorithmmoredirectlyconnectedwiththeearlierworkneverthelesshastwofundamentaldifferences.Firstly,inthereducephaseArchershows thattheCCV-freeportionofthegraphcanbecoveredwith2k /3centersand radius3.Secondly,heconstructsasetcover-likelinearprogramandsolvesthe relaxationtogetatotalof k fractional centersthatcovertheunmarkedvertices. Fromthesefractionalcenters,heobtainsa2-coveroftheunmarkedverticeswith k log k (integral)centers.Thesearetheseedfortheaugmentphase,whichthus producesasolutionwithan O (log ∗ k )approximationtotheoptimumradius.
Duringthepreparationofthefinalversionofthismanuscript,itwasannouncedthattheasymmetric k -centerproblemishardtoapproximatebetter than Ω (log ∗ n)[6,7],closingthegapwiththeupperbound.
4AsymmetricWeighted k -Center
Recalltheapplicationinwhichthecostsofdeliveryhubsvary.Inthissituation, ratherthanhavingarestrictiononthenumberofcentersused,eachvertexhas aweightandwehaveabudget W thatrestrictsthetotalweightofcentersused.
Definition10(Weighted k -Center). Givenaweightfunctiononthevertices, w : V → Q+ ,andabound W ∈ Q+ ,theproblemistofind S ⊆ V oftotalweight atmost W ,sothat S covers V withminimumradius.
HochbaumandShmoys[9]gavea3-approximationalgorithmforthesymmetricweightedversion,applyingtheirapproachforbottleneckproblems.We proposean O (log ∗ n)-approximationfortheasymmetricversion,basedonPanigrahyandVishwanathan’stechniquefortheunweightedproblem.Notethatin lightofthehardnessresultjustannounced[6,7],thisalgorithmisasymptoticallyoptimal.Anothervarianthasboththe k andthe W restrictions,butwe willnotexpandonthatproblemhere.
Firstabriefsketchofthealgorithm,whichworkswithrestrictedgraphs.In thereducephase,havingfoundaCCV, v ,wepickthelightestvertex u in Γ (v ) (whichmightbe v itself)asacenterinoursolution.Thenmarkeverythingin Γ + 3 (u)ascovered,andcontinuelookingforCCVs.Wecanshowthatthereexists a7-coveroftheunmarkedverticeswith totalweightlessthanhalfoptimum. Finallywerecursivelyapplyagreedyprocedureforweightedelements O (log ∗ n) times,similartotheoneusedforSetCover.Thetotalweightofcentersinour solutionsetisatmost W
Thefollowinglemmaaboutdigraphsisthekeytoourreducephaseandis analagoustoLemma4in[13]andLemma16in[2].
Lemma1(CoverofHalftheGraph’sWeight). Let G =(V,E ) beadigraphwithweightedvertices,butunitedgecosts.Thenthereisasubset S ⊆ V , w (S ) ≤ w (V )/2,suchthateveryvertexwithpositiveindegreeisreachableinat most3stepsfromsomevertexin S .
Asymmetryin k -CenterVariants65
Proof. Toconstructtheset S repeatthefollowing,totheextentpossible: Select avertexwithpositiveoutdegree,butifpossible select onewithindegreezero. Let v betheselectedvertexandcomparesets {v } and Γ + (v ) \{v }:addtheset ofsmallerweightto S andremove Γ + (v )from G.
Itisclearthattheweightof S isnomorethanhalftheweightof V .We mustnowshowthat S 3-coversallnon-orphanvertices—wecall x aparentof y if x ∈ Γ (y ).
Thechildrenof v areclearly1-covered.Assume v isnotin S (trivialotherwise):if v wasanorphaninitiallythenignoreit.If v isanorphanwhenselected, thensomeparentmusthavebeenremovedbytheselectionofagrandparent,so itis2-covered.
So v hasatleastoneparentwhenitisselected,implyingtherearenoorphan verticesatthattime.Thereforethesetsofparentsof v , S1 ,grandparentsof v , S2 ,andgreat-grandparentsof v , S3 ,arenotempty.Althoughthesesetsmight notbepairwisedisjoint,iftheycontainedanyof v ’schildren,then v wouldbe 3-covered.
After v isremoved,therearethreepossibilitiesfor S2 :(i)Somevertexin S3 is selected,removingpartof S2 ;(ii)Somevertexin S2 isselectedandremoved;(iii) Somevertexin S1 isselected,possiblymakingsome S2 verticeschildless.One oftheseevents must happen,since S1 and S2 arenon-empty.Asaconsequence, v is3-covered.
Henceforthcalltheverticesthat havenotyetbeencovered/marked active UsingLemma1wecanshowthatafterremovingtheCCVsfromthegraph, wecancovertheactivesetwithhalftheweightofanoptimumcoverifweare allowedtousedistance7insteadof1.
Lemma2(CoverofHalfOptimalWeight). Considerasubset A ⊆ V that hasacoverconsistingofverticesoftotalweight W ,butnoCCVs.Assumethere existsaset C1 that 3-coversexactly V \ A.Thenthereexistsasetofvertices S oftotalweight W/2 that,togetherwith C1 , 7-cover A.
Proof. Let U bethesubsetofoptimalcentersthatcover A.Wecall u ∈ U a near centerifitcanbereachedin4stepsfrom C1 ,anda far centerotherwise. Since C1 5-coversallofthenodescoveredbynearcenters,itsufficestochoose S to6-coverthefarcenters,sothat S will7-coverallthenodestheycover.
Defineanauxiliarygraph H onthe(optimal)centers U asfollows.Thereis anedgefrom x to y in H ifandonlyif x 2-covers y in G (and x = y ).Theidea istoshowthatanyfarcenterhaspositiveindegreein H .Asaresult,Lemma1 showsthereexistsaset S ∈ U with |S |≤ W/2suchthat S 3-coversthefar centersin H ,andthus6-coversthemin G
Let x beanyfarcenter.Since A containsnoCCVs,thereexists y suchthat y covers x,but x doesnotcover y .Since x ∈ Γ + 4 (C1 ), y ∈ Γ + 3 (C1 ),andthus y ∈ A (sinceeverythingnot3-coveredby C1 isin A).Thusthereexistsacenter z ∈ U ,whichisnot x,butmightbe y ,thatcovers y andtherefore2-covers x. Hence x haspositiveindegreeinthegraph H
Asweforeshadowed,wewillusethegreedyheuristictocompletethealgorithm.Wenowanalyzetheperformanceofthisheuristicinthecontextofthe dominatingsetprobleminnode-weightedgraphs.Allvertices V areavailableas potentialmembersofthedominatingset(i.e.centers),butweneedonlydominatetheactivevertices A.Theheuristicistoselectthemost efficient vertex: theonethatmaximizes w (A(v ))/w (v ),where A(v ) ≡ A ∩ Γ + (v ). Lemma3(GreedyAlgorithminWeightedDominatingSet). Let G = (V,E ), w : V → Q+ beaninstanceofthedominatingsetprobleminwhichaset A istobedominated.Also,let w ∗ betheweightofanoptimumsolutionforthis instance.Thegreedyalgorithmgivesanapproximationguaranteeof
Proof. Ineveryapplicationofthegreedyselectiontheremustbesomevertex v ∈ V forwhich
(A(v
otherwisenooptimumsolutionofweight w ∗ wouldexist.Thisiscertainlytrue ofthemostefficientvertex v ,somakeitacenterandmarkallthatitcovers, leaving A uncovered.Now, w (A )= w (A) w (A(v )) ≤ w (A) 1 w (v ) w ∗ ≤ w (A)exp w
After j steps,theremainingactivevertices, Aj ,satisfy
where vi isthe ithcenterpicked(greedily)and A0 istheoriginalactiveset.
Assumethataftersomenumberofsteps,say j ,therearestillsomeactive elements,buttheupperboundin(2)dropsbelow w ∗ .Thatistosay, j i=1 w (vi ) ≥ w ∗ ln(w (A0 )/w ∗ )
Beforewepickedthevertex vj wehad
j 1 i=1 w (vi ) ≤ w ∗ ln(w (A0 )/w ∗ ) , andso, j i=1 w (vi ) ≤ w ∗ + w ∗ ln(w (A0 )/w ∗ ) , because(1)tellsusthat w (vi )isnogreaterthan w ∗ .Tocovertheremainder, Aj ,wejustuse Aj itself,atacostofatmost w ∗ .Hencethetotalweightofthe solutionisatmost w ∗ (2+ln(w (A0 )/w ∗ )).
Ontheotherhand,iftheupperboundon w (Aj )neverdropsbelow w ∗ before Aj becomesempty,thenwehaveasolutionofweightatmost w ∗ ln(w (A0 )/w ∗ ).
Asymmetryin k -CenterVariants67
Wenowshowthatthistradeoffbetweencoveringradiusandoptimalcover sizeleadstoan O (log ∗ n)approximation.
Lemma4(RecursiveSetCover). Given A ⊆ V ,suchthat A hasacoverof weight W ,andaset C1 ∈ V thatcovers V \ A,wecanfindinpolynomialtimea setofverticesoftotalweightatmost 2W that,togetherwith C1 ,cover A (and hence V )withinaradiusof O (log ∗ n)
Proof. Ourfirstattemptatasolution, S0 ,isallverticesofweightnomorethan W :onlytheseverticescouldbeintheoptimumcenterset.Theirtotalweightis atmost nW .Since C1 covers S0 \ A,consider A0 = S0 ∩ A,whichhasacover ofsize W .Lemma3showsthatthegreedyalgorithmresultsinaset S1 that covers A0 ,andhasweight w (S1 ) ≤ O W log Wn W = O (W log n)
Set C1 covers S1 \ A,soweneedonlyconsider A1 = S1 ∩ A,andsoforth.Atthe ithiterationwehave: w (Si ) ≤ O (W log(w (Si 1 )/W ))andhencebyinduction atmost O (W log(i) n).Thusafterlog∗ n iterationstheweightofoursolutionset fallsto2W .
Allthealgorithmictoolscanbeassembledtoformanapproximationalgorithm. Theorem1(ApproximationofWeighted k -Center). Wecanapproximate theweighted k -centerproblemwithinfactor O (log ∗ n) inpolynomialtime.
Proof. Guesstheoptimumradius, ROPT ,andworkintherestrictedgraph GROPT Initially,theactiveset A is V .Repeatthefollowingasmanytimesaspossible: PickCCV v in A,addthelightestvertex u in Γ (v )tooursolutionsetofcenters and,removetheset Γ + 3 (u)from A.Since v iscoveredbyanoptimumcenterin Γ + (v ), u isnoheavierthanthisoptimumcenter,and Γ + 3 (u)includeseverything coveredbytheoptimumcenter.
Let C1 bethecenterschoseninthisfirstphase.Weknowtheremainderof thegraph, A,hasacoveroftotalweight W = W w (C1 ),becauseofourchoices basedonCCVandweight.
Lemma2showsthatwecancovertheremaininguncoveredverticeswith weightnomorethan W /2ifweusedistance7.Solettheactiveset A be V \ Γ + 7 (C1 ),andrecursivelyapplythegreedyalgorithmasdescribedinthe proofofLemma4onthegraph G7 ROPT .Asaresult,wehaveasetofsize W that covers A withinradius O (log ∗ n).
5Asymmetric p-Neighbor k -Center
Imaginethatwewishtolocate k facilitiesatsuchthatthemaximumdistance ofademandpointfromits pth -closestfacilityisminimized.Asaconsequence, failuresin p 1facilitiesdonotbringdownthenetwork.
68IngeLiGørtzandAnthonyWirth
Definition11(Asymmetric p-Neighbor k -CenterProblem). Let dp (S,v ) denotethedistancefromthe pth closestvertexin S to v .Theproblemistofind asubset S ofatmost k verticesthatminimizes
(S,v )
Weshowthatwecanapproximatetheasymmetric p-neighbor k -centerproblemwithinafactorof O (log ∗ k )ifweallowourselvestouse2k centers.Our algorithmisrestrictedtothecase p ≤ n/k ,butthisisreasonableas p should notbetoolarge[12].
Weusethesametechniquesasusual,includingrestrictedgraphs,butinthe augmentphaseweusethegreedyalgorithmforthe ConstrainedSetMulticover problem[15].Thatis,eachelement, e,needstobecovered re times,buteach setcanbepickedatmostonce.The p-neighbor k -centerproblemhas re = p forall e.Wesaythatanelement e is alive ifitoccursinfewerthan p sets chosensofar.Thegreedyheuristicisto pickthesetthatcoversthemostlive elements.Itcanbeshownthatthisalgorithmachievesanapproximationfactor of Hn = O (log n)[15].Howeverthefollowingresultismoreappropriatetoour application.
Lemma5(GreedyConstrainedSetMulticover). Let k betheoptimum solutiontotheConstrainedSetMulticoverproblem.Thegreedyalgorithmgives approximationguarantee O (log(np/k ))
Proof. ThesamekindofaveragingargumentusedforstandardSetCovershows thatthegreedychoiceofasetreducesthetotalnumberofunmarkedelement copiesbyafactor1 1/k .Soafter i stepsthenumberofcopiesofelements yettobecoveredis np(1 1/k )i ≤ np(e 1/k )i .Henceafter k ln(np/k )stepsthe numberofuncoveredcopiesofelementsisatmost k .Anaivecoveroftheselast k elementcopiesleadstothetotalnumberofsetsbeing k + k ln(np/k ).
If p ≤ n/k thisgreedyalgorithmgivesanapproximationfactorof O (log(n/k )). Applyingthestandardrecursiveapproachin[13],whichworksinthe p-neighbor case,wecanachievean O (log n)approximationwith k centers,or O (log ∗ n)with 2k centers.Wecanlowertheapproximationguaranteeto O (log ∗ k ),with2k centers,usingArcher’sLP-basedpriming.FirstsolvetheLPfortheconstrainedset multicoverproblem.Inthesolutioneachvertexiscoveredbyanamount p of fractionalcenters,outofatotalof k .Wecannowusethegreedysetcoveralgorithmtogetaninitialsetof k 2 ln k centersthat2-coverseveryvertexinthe activesetwithatleast p centers.Repeatedlyapplyingthegreedyprocedurefor constrainedsetmulticover,thistimefor(log∗ k +1)iterations,weget2k centers thatcoverallactiveverticeswithin O (log ∗ k ).Alternatively,wecouldcarryout O (log k )iterationsandsticktojust k centers.
6InapproximabilityResults
Inthissectionwegiveinapproximabilityresultsfortheasymmetricversions ofthe k -centerproblemwithoutliers,thepriority k -centerproblem,andthe
Asymmetryin k -CenterVariants69
k -supplierproblem.Theseproblemsalladmitconstantfactorapproximation algorithmsinthesymmetriccase.
Asymmetric k -CenterwithOutliers
Definition12(k -CenterwithOutliersandForbiddenCenters). Finda set S ⊆ C ,where C isthesetofverticesallowedtobecenters,suchthat |S |≤ k and S coversatleast p nodes,withminimumradius.
Theorem2. Foranypolynomialtimecomputablefunction α(n),theasymmetric k -centerproblemwithoutliers(andforbiddencenters)cannotbeapproximatedwithinafactorof α(n),unless P = NP
Proof. Wereduceinstance U, S ,k ofMaxCoveragetoourproblem.Construct vertexsets A and B sothatforeachset S ∈S thereis vS ∈ A,andforeach element e ∈ U thereis ve ∈ B .Fromeveryvertex vS ∈ A,createanedgeofunit lengthtovertex ve ∈ B if e ∈ S .
Let p = |B | + k ,sothatifwefind k centersthatcover p verticeswithinany finitedistance,we must havefound k verticesin A thatcoverall |B | vertices. HencewehavesolvedtheinstanceofMaxCoveragewhichisan NP -complete problem.
Notethattheproofneverreliedonthefactthatthe B verticeswereforbidden frombeingcenters(setting p to |B | + k ensuredthis).
AsymmetricPriority k -Center
Definition13(Priority k -Center). Givenapriorityfunction p : V → Q+ onthevertices,find S ⊆ V , |S |≤ k ,thatminimizesRsothatforevery v ∈ V thereexistsacenter c ∈ S forwhich pv dcv ≤ R
Theorem3. Foranypolynomialtimecomputablefunction α(n),theasymmetric k -centerproblemwithprioritiescannotbeapproximatedwithinafactorof α(n),unless P = NP .
Proof. Theconstructionofthesets A and B isthesimilartotheproofofTheorem2,exceptthatwereducefromSetCover.Thistimemaketheset A a completedigraph,withedgesoflength ,aswellastheunitlengthset-element edgesfrom A to B .Givethenodesinset A priority1andthenodesinset B priority .Anoptimalsolutiontothepriority k -centerproblemis k centersin A andaradiusof ,whichcoverseveryvertex.Thisimpliesthatthe k centers cover(intheSetCoversense)alltheelementsin B .If k <k centerswerechosen from A and k k centerswerechosenfrom B instead,wecouldtriviallyconvert thistoasolutionchoosing k centersfrom A
Anynon-optimalsolutionrequiresaradiusofatleast 2 + ,asthiswould involvecoveringsome B vertexbysteppingfroman A centerthroughanother A vertex.Thereforeanyalgorithmwithapproximationguarantee +1 ε or betterwouldsolveSetCover.Wecanmake anyfunctionwelikeandtheresult follows.
70IngeLiGørtzandAnthonyWirth
Asymmetric k -Supplier
Definition14(k -Supplier). Givenasetofsuppliers Σ andasetofcustomers C ,findasubset S ⊆ Σ thatminimizes R suchthat S covers C within R
Theorem4. Foranypolynomialtimecomputablefunction α(n),theasymmetric k -supplierproblemcannotbeapproximatedwithinafactorof α(n),unless P = NP
Proof. ByareductionfromtheMaxCoverageproblemsimilartotheproofof Theorem2.
Acknowledgements
TheauthorswouldliketothankMosesCharikarandthereviewers.
References
[1]A.Archer.Inapproximabilityoftheasymmetricfacilitylocationand k -median problems.Unpublishedmanuscriptavailableat www.orie.cornell.edu/~aarcher/Research ,2000.
[2]A.Archer.Two O (log ∗ k )-approximationalgorithmsfortheasymmetric k -center problem.InK.AardalandB.Gerads,editors, IPCO,volume2081of Lecture NotesinComputerScience,pages1–14.Springer-Verlag,2001.
[3]R.Bhatia,S.Guha,S.Khuller,andY.Sussmann.Facilitylocationwithdynamic distancefunction.In Scand.WorkshoponAlg.Th.(SWAT),pages23–34,1998.
[4]M.Charikar,S.Khuller,D.Mount,andG.Narasimhan.Algorithmsforfacility locationproblemswithoutliers.In Proc.12thSODA,pages642–51,2001.
[5]S.Chaudhuri,N.Garg,andR.Ravi.The p-neighbor k -centerproblem. Info. Proc.Lett.,65:131–4,1998.
[6]J.Chuzhoy,S.Guha,S.Khanna,andS.Naor.Asymmetric k -centerislog ∗ n-hard toapproximate.TechnicalReport03-038,Elec.Coll.Comp.Complexity,2003.
[7]E.Halperin,G.Kortsarz,andR.Krauthgamer.Tightlowerboundsfortheasymmetric k -centerproblem.TechnicalReport03-035,Elec.Coll.Comp.Complexity, 2003.
[8]D.HochbaumandD.Shmoys.Abestpossibleapproximationalgorithmforthe k -centerproblem. Math.Oper.Res.,10:180–4,1985.
[9]D.HochbaumandD.Shmoys.Aunifiedapproachtoapproximationalgorithms forbottleneckproblems. JACM,33:533–50,1986.
[10]W.HsuandG.Nemhauser.Easyandhardbottelnecklocationproblems. Disc. Appl.Math.,1:209–16,1979.
[11]O.KarivandS.Hakimi.Analgorithmicapproachtonetworklocationproblems. I.The p-centers. SIAMJ.Appl.Math.,37:513–38,1979.
[12]S.Khuller,R.Pless,andY.Sussmann.Faulttolerant k -centerproblems. Theor. Comp.Sci.(TCS),242:237–45,2000.
[13]R.PanigrahyandS.Vishwanathan.An O (log ∗ n)approximationalgorithmfor theasymmetric p-centerproblem. J.Algorithms,27:259–68,1998.
[14]J.Plesnik.Aheuristicforthe p-centerproblemingraphs. Disc.Appl.Math., 17:263–268,1987.
[15]V.Vazirani. ApproximationAlgorithms.Springer-Verlag,2001.
[16]S.Vishwanathan.An O (log ∗ n)approximationalgorithmfortheasymmetric pcenterproblem.In Proc.7thSODA,pages1–5,1996.
Another Random Scribd Document with Unrelated Content
payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information about donations to the Project Gutenberg Literary Archive Foundation.”
• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.
• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.
• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.
1.F.
1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright
law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund.
If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.
Section 2. Information about the Mission of
Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.
Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.
Section 3. Information about the Project