Download pdf Parametric geometry of curves and surfaces architectural form finding 1st edition alber

Page 1


Parametric Geometry of Curves and Surfaces Architectural Form Finding 1st Edition Alberto Lastra

Visit to download the full and correct content document: https://ebookmeta.com/product/parametric-geometry-of-curves-and-surfaces-architect ural-form-finding-1st-edition-alberto-lastra/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Differential Geometry of Curves and Surfaces: Third Edition Thomas F. Banchoff

https://ebookmeta.com/product/differential-geometry-of-curvesand-surfaces-third-edition-thomas-f-banchoff/

Tensor Algebra and Analysis for Engineers: With Applications to Differential Geometry of Curves and Surfaces 1st Edition Paolo Vannucci

https://ebookmeta.com/product/tensor-algebra-and-analysis-forengineers-with-applications-to-differential-geometry-of-curvesand-surfaces-1st-edition-paolo-vannucci/

Topological, Differential and Conformal Geometry of Surfaces (Universitext) Norbert A'Campo

https://ebookmeta.com/product/topological-differential-andconformal-geometry-of-surfaces-universitext-norbert-acampo/

Differential Geometry of Plane Curves 96th Edition Hilário Alencar

https://ebookmeta.com/product/differential-geometry-of-planecurves-96th-edition-hilario-alencar/

CRC Standard Curves and Surfaces with Mathematica 3rd Edition Von Seggern David H

https://ebookmeta.com/product/crc-standard-curves-and-surfaceswith-mathematica-3rd-edition-von-seggern-david-h/

Algebraic Curves and Riemann Surfaces for Undergraduates The Theory of the Donut 1st Edition Anil Nerode Noam Greenberg

https://ebookmeta.com/product/algebraic-curves-and-riemannsurfaces-for-undergraduates-the-theory-of-the-donut-1st-editionanil-nerode-noam-greenberg/

Finding Her Curves A BBW Romance Search and Rescue Book 2 1st Edition Joann Baker Patricia Mason

https://ebookmeta.com/product/finding-her-curves-a-bbw-romancesearch-and-rescue-book-2-1st-edition-joann-baker-patricia-mason/

A First Course in Differential Geometry Surfaces in Euclidean Space Instructor Solution Manual Solutions 1st Edition Lyndon Woodward

https://ebookmeta.com/product/a-first-course-in-differentialgeometry-surfaces-in-euclidean-space-instructor-solution-manualsolutions-1st-edition-lyndon-woodward/

Parametric Experiments in Architecture Francesco Di Paola

https://ebookmeta.com/product/parametric-experiments-inarchitecture-francesco-di-paola/

Parametric Geometry of Curves and Surfaces

Architectural Form-Finding

MathematicsandtheBuiltEnvironment

Volume5

SeriesEditors

MichaelOstwald ,BuiltEnvironment,UniversityofNewSouthWales,Sydney, NSW,Australia

KimWilliams,KimWilliamsBooks,Torino,Italy

Throughouthistoryarichandcomplexrelationshiphasdevelopedbetween mathematicsandthevariousdisciplinesthatdesign,analyse,constructandmaintain thebuiltenvironment.

Thisbookseriesseekstohighlightthemultifacetedconnectionsbetweenthe disciplinesofmathematicsandarchitecture,throughthepublicationofmonographs thatdevelopclassicalandcontemporarymathematicalthemes–geometry,algebra, calculation,modelling.Thesethemesmaybeexpandedinarchitectureofanyera, cultureorstyle,fromAncientGreekandRome,throughtheRenaissanceand Baroque,toModernismandcomputationalandparametricdesign.Selectedaspects ofurbandesign,architecturalconservationandengineeringdesignthatarerelevant forarchitecturemayalso beincludedintheseries.

Regardlessofwhetherbooksinthisseriesarefocusedonspecificarchitecturalor mathematicalthemes,theintentionistosupportdetailedandrigorousexplorations ofthehistory,theoryanddesignofthemathematicalaspectsofbuiltenvironment.

Moreinformationaboutthisseriesat http://www.springer.com/series/15181

AlbertoLastra

ParametricGeometry ofCurvesandSurfaces

ArchitecturalForm-Finding

ISSN2512-157XISSN2512-1561(electronic) MathematicsandtheBuiltEnvironment

ISBN978-3-030-81316-1ISBN978-3-030-81317-8(eBook) https://doi.org/10.1007/978-3-030-81317-8

MathematicsSubjectClassification:53A04,53A05,00A67

©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021

Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

ThisbookispublishedundertheimprintBirkhäuser, www.birkhauser-science.com,bytheregistered companySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Amisabuelos

Preface

Theparametricaspectsofcurvesand surfaceshavebeenstudiedfromthepoint ofviewofdifferentialgeometrythroughhistory.Indeed,manydifferentstudies havebeendevelopedsincethenineteenthcenturyonthisdiscipline,whichcanbe foundindetailintextssuchasdoCarmo(1976),Tapp(2016),Umeharaetal. (2017).Apartfromthetheoreticalrelationofacurve(orsurface)toanyofits parametrizations,onecangoastepfurtheranddescribeitfromapracticalpoint ofview.Thegeometricschemeofacurveorasurfacehasprovidedinspiration fornumerousworksofartandarchitecture.Thesecreationsnotonlyrespondto physicalneedssuchascertainacousticproperties,lighting,etc.,butalsotoahuman desiretocreatestructureswithsimplegeometricshapes.Thisbooksdescribesthe classicaltheoryofparametrictoolsinthegeometryofcurvesandsurfaceswithan emphasisonapplicationstoarchitecture.

Thisbookisbasedonadecadeofteachinga classongeometryinarchitectural studiesatUniversidaddeAlcalá(Spain).Thisclass,“DrawingWorkshopII”, combinedarchitecturaldesignandmathematics.Nevertheless,itcanalsobeused asatextondifferentialgeometryformathematicsstudents,orabasicreference onmathematicsforarchitectsanddesigners(especiallythoseworkingwithCAD). Ihopethatthelatterwillfindthistextusefulandinteresting,sheddinglighton thetheoreticalaspectsoftheirwork,aswellasontheapplicabilitytoarchitecture. Thetechniquesusedintheexamplesprovidedinthetextserveasthemathematical realizationofmanygeometrictoolsusedinCADprogramssuchastheconstruction ofanhelix,extrusions,revolutionorruled surfaces,projections,andmanyothers. Ialsoprovidealgorithmsrelatedtosomeofthegeometricobjectsandshowhow differentactionsontheparametrizationschangethenatureofthegeometricobject itself.Thesemathematicaltoolsareimportanttounderstandthestructureofa geometricobjectandtoknowhowtomodifyitconsciously.

Thestructureofthebookisasfollows.

Thefirstchapterisdevotedtothestudyofparametrizationofplanecurves, withspecialfocusonconics.Inthischapter,theimplicitationandapproximation ofcurvesisalsoillustratedwithgeometricexamples.

Fig.1 Structureofthebook

Thesecondchapterdescribesaparalleltheoryonspacecurves,andtheappearanceofsuchcurvesinarchitecture.Geometrictransformationsareperformedona spacecurve,makingexplicitthemathematicsbehindusualactionsincurvedesign.

Thethirdandfourthchaptersconsider,respectively,generalsurfacesandother particularclassesofsurfaceswhichare ofwidespreaduse.Theexamplesrange fromclassicsurfacesinarchitecturetotheparametrizationofsuchfamiliesorthe constructionofotherwhichremainofparticularinterestregardingtheirproperties. Moreprecisely,wefocusonsomecurveslyingonsurfacesandontheintersection ofcurves.Surfacessuchasquadrics,ruledsurfaces,surfacesofrevolution,minimal anddevelopablesurfacesarealsostudied andappliedtoarchitecturalelements.

ThestructureofthebookisillustratedinFig. 1

Themathematicalprerequisitesforthisbookarefirstcoursesintopology,linear algebraandcalculus(bothsingleandmulti-variable),asamplycoveredinthe booksSalasetal.(2003),MarsdenandTromba(2012),andLang(1986);Strang (1993).Forcompleteness,wehaveincludedtwoappendicescoveringknowledge thatwillbeusefulforunderstandingthematerial.

ThefiguresofgeometricobjectshavebeencreatedwithGeogebrasoftware. Iwanttoexpressmygratitudetoeveryonewhowasinvolvedinthisclass, speciallytoProf.ManueldeMiguel,whointroducedmetotheworldofarchitecture. IalsowanttoexpressmygratitudetoRemiLodh,whohasguidedmeonits publicationwithhighprofessionalismandalsotoKimWilliamsforherenthusiasm, professionalismandeffortintherevisionofthemanuscript,andalsogivingrelevant andinterestingdetails.

SuggestedFurtherReading

Thefollowingsourcesaresuggestedtoin terestedreadersseekingadditional material(AAG 2008, 2010, 2013, 2014, 2016, 2018;Bridges 2003, 2004, 2008, 2011, 2012, 2014, 2016, 2018).

AlcaládeHenares,SpainAlbertoLastra 2021

1ParametrizationsandPlaneCurves

1.1PlaneCurvesandParametrizations

1.2SomeClassicCurvesinArchitecture

1.3SomeElementsofRegularPlaneCurves

1.5SomeConicsinArchitecture

1.6OntheImplicitationandParametrizationofCurves

1.7ApproximationandInterpolationofCurves

1.8SuggestedExercises

2ParametrizationsandSpaceCurves

2.2SomeElementsofRegularSpaceCurves

2.3SomeClassicSpaceCurvesinArchitecture

2.4RigidTransformationsin

2.5SomeTransformationsonaHelix

2.6SuggestedExercises

3ParametrizationsandRegularSurfaces

3.2SomeClassicSurfacesinArchitecture

3.3ProjectionsofSurfacesontoPlanes

3.4CurvesinSurfacesandIntersectionofSurfaces

3.5SuggestedExercises ....................................................136

4SpecialFamiliesofSurfaces

4.1RuledSurfaces

4.2SomeSubfamiliesofRuledSurfaces

4.3ParametrizationofSomeRuledSurfaces

4.4SurfacesofRevolution

4.6QuadricsRevisited:SomeExamplesinArchitecture

4.7Curvature:MinimalandDevelopableSurfaces .......................190

4.7.1FinalComments ...............................................200

4.8SuggestedExercises ....................................................201

ACoordinateSystems ..........................................................205

BMathematicalToolKit .......................................................213

B.1IntroductiontoLinearAlgebra .........................................213

B.1.1SystemsofLinearEquations ..................................213

B.1.2VectorSpaces ..................................................214

B.1.3EuclideanVectorSpaces .......................................215

B.1.4Diagonalization:EigenvaluesandEigenvectors ..............215

B.2RealFunctionsofOneVariable ........................................216

B.3FunctionsofSeveralRealVariables ...................................219

B.4DifferentialEquationsandSystemsofDifferentialEquations .......221

CSolutiontotheSuggestedExercises ........................................223

C.1Chapter1 ................................................................223

C.2Chapter2 ................................................................235

C.3Chapter3 ................................................................245

C.4Chapter4 ................................................................249

AbouttheAuthor

AlbertoLastra hasaPh.D.inMathematicsbytheUniversityofValladolid.He isassociateprofessorattheUniversity ofAlcalá(Spain).Hehasbeenteaching mathematicsinthedegreeofArchitectureandFundamentalsinArchitectureand UrbanismattheUniversityofAlcalásince2011,insubjectsunderthepointof viewofinnovationandinterdisciplinarythinkinginArchitecture.Hisresearch interestsdonotonlygointhepreviousdirection,butalsointhestudyofasymptotic analysisoffunctionalequationsinthecomplexdomainandrelatedtopics,symbolic computation,ororthogonalpolynomials.Heisamemberoftheresearchgroups ECSING-AFAoftheUniversityofValladolidandASYNACS(CT-CE2019/683) oftheUniversityofAlcalá.Hehasalsobeenavisitoratforeignresearchcenters duringthelastdecade,suchastheUniversityofLille(France),theUniversityof Warsaw(Poland),theUniversityofLaRochelle(France),UniversidadeFederalde MinasGerais(Brazil),amongothers.

ListofSymbols

AT Transposematrixofthematrix A

C ∞ (U) Setofscalarorvectorfunctionswhicharedifferentiableforevery degreeofdifferentiationintheopenset U

d(P,Q) Euclideandistancefromapoint P ∈ Rn to Q ∈ Rn

dX(u0 ,v0 ) (v) differentialof X : U ⊆ R2 → R3 at (u0 ,v0 ) ∈ U ,evaluatedat v ∈ R2

D(P,r) Disccenteredatthepoint P andradius r> 0

d dx derivativewithrespecttothevariable

∂x , ∂ ∂y , ∂ ∂z ,...Partialderivativewithrespectto x , y , z ,...

Mm×n (K) Setof m × n matriceswithcoefficientsinafield K

I(ω1 ,ω2 ) Firstfundamentalform

II(ω) Secondfundamentalform

∇ f(P) Gradientofthefunction f ,evaluatedatthepoint P

⊥ Orthogonal

rank(A) Rankofamatrix A

∼ Asymptoticequivalence

· , · or · Innerproductin Rn

× Crossproductin R3

[·, · , ·]

Scalartripleproduct

· Euclideannormin Rn

C Setofcomplexnumbers

Q Setofrationalnumbers

R Setofrealnumbers

R Setofrealnumbers,exceptfromtheorigin. R \{0}

Z Setofintegernumbers

NZ \{0, 1, 2,...}

PQ vectorfromthepoint P tothepoint Q ofaEuclideanspace

v vectorofanEuclideanspace

Im(f) Rangeofafunction,i.e. {f(x) : x ∈ X },whenever f : X → Y

Ker(f) Kernelofafunction f : X → Rn ,i.e. {x ∈ X : f(x) = 0}

v ||w Thevectors v and w areparallel

xiii

ListofFigures

Fig.1Structureofthebook .................................................viii

Fig.1.1Circlecenteredat (0, 0) andradius R = 3(left), lemniscateofBernoulli(right) ......................................2

Fig.1.2Cardioid(left)andepicycloid(right) ...............................3

Fig.1.3Regularcurve .........................................................5

Fig.1.4CounterexampleofregularcurveinExample1.1.10 ..............8

Fig.1.5KimbellArtMuseum ................................................9

Fig.1.6Rollingcircleproducingacycloid.QRCode1 ....................10

Fig.1.7Catenary, a = 1.QRCode2 ........................................11

Fig.1.8Catenaryarchs .......................................................12

Fig.1.9Lemniscate ...........................................................13

Fig.1.10Thehigh-speedtrainstationReggioEmiliaAV Mediopadana,Italy ..................................................14

Fig.1.11Spirals:CasaBatló,byAntoniGaudí(left)andStaircase (right) .................................................................14

Fig.1.12Logarithmicspiral. a = 1,b = 0.3 .................................15

Fig.1.13Secant ................................................................18

Fig.1.14Normalline ..........................................................19

Fig.1.15Successiveapproximationsofthelengthofacurveby segments .............................................................22

Fig.1.16Curvatureatapoint,I ...............................................24

Fig.1.17Curvatureatapoint,II.QRCode3 .................................25

Fig.1.18Conicsassectionsofaconebyaplane,I ..........................27

Fig.1.19Conicsassectionsofaconebyaplane,II .........................28

Fig.1.20Orthogonaltransformationofacoordinatesystem ................29

Fig.1.21Campidogliosquare,Rome.Engraving:ÉtienneDupérac, 1568 ..................................................................39

Fig.1.22AerialviewofSt.Peter’ssquare,inRome .........................39

Fig.1.23CathedralofBrasilia,byOscarNiemeyer ..........................40

Fig.1.24OceanogràficbyFélixCandela .....................................41

Fig.1.25QRCode4 ...........................................................44

Fig.1.26Graphof y = x 2 rollingaround y =−x 2 (symmetric parabolaof y =−x 2 withrespecttothetangentlines) ............44

Fig.1.27Rouletteofapointdrawingacissoid ...............................44

Fig.1.28Constructionofthecissoid ..........................................45

Fig.1.29ConchoidofNicomedes .............................................47

Fig.1.30QRCode5(left)Deltoidwith R/r = 3;QRCode6 (right)Astroidwith R/r = 4 .......................................48

Fig.1.31QRCode7(left)Cardioidwith R/r = 1;QRCode8 (center)Nephroidwith R/r = 2;QRCode9(right) Epicycloidwith R/r = 3 ...........................................48

Fig.1.32Anephroidasanepicycloid .........................................49

Fig.1.33Deltoid(left)andastroid(right)ashypocycloids ..................49

Fig.1.34StainedglasswindowfromSaint-ChapelleinParis

Fig.1.35Boor–deCasteljaualgorithm ........................................52

Fig.1.36QRCode10 ..........................................................52

Fig.1.37TeatropopularinNiterói,Brazil,byOscarNiemeyer .............54

Fig.1.38TheTeatropopularwithauthor’soverlay ..........................55

Fig.2.1Circlecenteredat P = (0, 0, 1) andradius R = 3,at height z = 1(left);Helix(right) ....................................60

Fig.2.2CurvesinFig.2.1determinedbytheintersectionof surfaces ...............................................................60

Fig.2.3Viviani’scurve(left),andsolenoidtoric(right) ....................61

Fig.2.4 α(t) = (t 2 ,t 3 ,t 4 ), t ∈ ( 2, 2) ......................................62

Fig.2.5CurveinExample2.1.5 .............................................63

Fig.2.6Parametrizations (I1 ,α1 ) and (I2 ,α2 ) associatedto Viviani’scurve .......................................................63

Fig.2.7Regularcurve ........................................................64

Fig.2.8Secantlines ..........................................................68

Fig.2.9Approximationofacurvewithpolygonalchains ..................71

Fig.2.10Frenettrihedroninaspacecurve ...................................75

Fig.2.11LinesandplanesassociatedtotheFrenettrihedron ...............76

Fig.2.12Positivetorsion(left)andnegativetorsion(right)in Example2.2.27 ......................................................78

Fig.2.13Localshapeofacurveatapoint ....................................82

Fig.2.14Exampleoflocalshapeofacurveatapoint .......................83

Fig.2.15Someosculatingcirclesassociatedtoacurve ......................84

Fig.2.16QRCode11 ..........................................................84

Fig.2.17Circularhelix ........................................................87

Fig.2.18Projectionsofthecircularhelix .....................................88

Fig.2.19QRCode12 ..........................................................88

Fig.2.20Examplesofhelicesinarchitecture .................................89

Fig.2.21Twistedcubic(2.26),for a = b = c = 1 ...........................90

Fig.2.22Differentprojectionsofthetwistedcubic ..........................90

Fig.2.23CapitalGateTowerinAbuDhabi ...................................91

Fig.2.24Translationofvector v = (1, 2, 3) ofthecurvein Example2.4.3.QRCode13 ........................................93

Fig.2.25Rotationofangle β = π/4around {y = z = 0} ofthe curve (I, α) inExample2.4.3.QRCode14 ........................94

Fig.2.26Reflectionwithrespecttotheplane x = 0ofthecurve α inExample2.4.3.QRCode15 .....................................95

Fig.2.27Circularhelix(black)vs. (R,α0 ) (green) ..........................97

Fig.2.28Helix (R,α1 ) for ρ = 1(black)vs. ρ = 3(green) .................97

Fig.2.29Helix (R,α2 ) for ρ = 1, h = 1(black)vs. h = 1/2 (green) ................................................................98

Fig.2.30Helix (R,α3 ) for ρ = 1, h(t) = t (black)vs. h(t) = t + π 2 (green) ................................................................99

Fig.2.31Helix (R,α3 ) for ρ = 1, h(t) = t (black)vs. h(t) = t 3 (green) ................................................................100

Fig.2.32Helix (R,α3 ) for ρ = 1, h(t) = t (black)vs. h(t) = exp(t) (green) ................................................100

Fig.2.33Helix (R,α3 ) for ρ = 1, h(t) = t (black)vs. h(t) = sin(t/3) (green) ..............................................101

Fig.3.1Spherecenteredat (1, 0, 0) andradius R = 2(left); hyperbolicparaboloid(right) ........................................104

Fig.3.2 { ∂x ∂u (u0 ,v0 ), ∂y ∂u (u0 ,v0 ), ∂z ∂u (u0 ,v0 ) , ∂x ∂v (u0 ,v0 ), ∂y ∂v (u0 ,v0 ), ∂z ∂v (u0 ,v0 ) } ...............................105

Fig.3.3Autointersection .....................................................106

Fig.3.4Regularsurface ......................................................106

Fig.3.5Localcoveringsoftheunitsphere ..................................107

Fig.3.6Localcoveringsoftheconeminusthevertex ......................108

Fig.3.7HelixcontainedinacylinderinExample3.1.13 ...................112

Fig.3.8Schemeoftheconstructionoftheregularcurvecontained inaregularsurface ..................................................113

Fig.3.9Schemeoftheconstructionofaregularplanecurvefrom aregularcurvecontainedinasurface ..............................113

Fig.3.10Tangentplaneto z exp((x 1)2 + y) = 0at P = (1, 0, 1) ....114

Fig.3.11Normalvectorto X(u,v) = (u,v,e (u 1)2 +v ) at P = (1, 0, 1) .........................................................116

Fig.3.12Torus .................................................................117

Fig.3.13Geometricconstructionofthetorus ................................118

Fig.3.14Dubai’sMuseumoftheFuturebyKillaDesign ...................119

Fig.3.15QRCode16 ..........................................................120

Fig.3.16DetailoftheconstructionofaMöbiusband .......................121

Fig.3.17Möbiusband .........................................................121

Fig.3.18PhoenixInternationalMediabyShauWeipingofBIAD ..........122

Fig.3.19Kleinbottle. r = 3 ...................................................123

Fig.3.20Orthogonalprojection π onaplane ................................124

Fig.4.23Surfaceofrevolution ................................................167

Fig.4.24Torus; r = 1, R = 3 .................................................168

Fig.4.25ApproximationoftheWatertowerinFedalaasasurface ofrevolution .........................................................169

Fig.4.26Orthogonaltransformationofacoordinatesystem ................170

Fig.4.27Ellipsoid ..............................................................172

Fig.4.28Sectionsofanellipsoidincanonicalformbythe coordinateplanes ....................................................173

Fig.4.29Hyperboloidofonesheet ............................................173

Fig.4.30Sectionsofahyperboloidofonesheetincanonicalform bythecoordinateplanes .............................................174

Fig.4.31Hyperboloidoftwosheets ..........................................175

Fig.4.32Sectionsofahyperboloidoftwosheetsincanonicalform bythecoordinateplanes .............................................175

Fig.4.33Cone ..................................................................176

Fig.4.34Ellipticparaboloid ...................................................177

Fig.4.35Sectionsofanelliptic paraboloidincanonicalformat positiveheight(left)andwith y = 0(right) ........................178

Fig.4.36Hyperbolicparaboloid ...............................................178

Fig.4.37Sectionsofahyperbolicparaboloidincanonicalformat positive(left),negative(center)andnull(right)height ............178

Fig.4.38Sectionsofahyperbolicparaboloidincanonicalform withtheplanes x = 0and y = 0 ....................................179

Fig.4.39QuadricdefinedinEq.(4.12)andparametrizedby Eq.(4.13) ............................................................185

Fig.4.40Sheratonhotel ........................................................188

Fig.4.41Apple ..................................................................188

Fig.4.42JamesS.McDonnellPlanetariumbyGyoObata ..................189

Fig.4.43ScotiabankSaddledomebyGECArchitecture .....................190

Fig.4.44CatenoidofExample4.7.5,with a = 1 ............................195

Fig.4.45OlympiastadioninMunichbyFreiOtto ............................198

Fig.4.46AnEnnepersurface ..................................................199

Fig.4.47QRCode20 ..........................................................202

Fig.4.48Exampleofcurveshifting.QRCode21 ............................203

Fig.A.1ACartesiancoordinatesystem ......................................206

Fig.A.2Polarcoordinatesystem .............................................207

Fig.A.3Cartesiancoordinatesofthepoint (1, 2, 3) .........................208

Fig.A.4LinesintheGranViaCapitalHotel,SpainbyLaHoz Arquitectura ..........................................................209

Fig.A.5Cylindricalcoordinatesofthepoint (1, 2, 3) .......................210

Fig.A.6Sphericalcoordinatesofthepoint (1, 2, 3) .........................210

Fig.A.7CloudGateinChicagobyAnishKapoor ..........................211

Fig.B.1 f(x) = sin(x) andsomeTaylorpolynomialsat x = 0 ............217

Fig.B.2Areabetween f(x) = 2xe x 2 4x and OX from x = 0 and x = 1 ............................................................219

Fig.C.1Cusp.Exercise1.5 ...................................................224

Fig.C.2Tangentlineinapointofalemniscate.QRCode22. Exercise1.6 ..........................................................225

Fig.C.3Orthogonallinestothesymmetryaxisoftheparabola. Exercise1.14 .........................................................228

Fig.C.4Twosecantlines.Exercise1.16 .....................................229

Fig.C.5Hyperbola.Exercise1.17 ............................................231

Fig.C.6Ellipse.Exercise1.18 ................................................232

Fig.C.7CatenaryarcandthreeLagrangeapproximationsin [0, 1], a = 1.Exercise1.24 ..........................................235

Fig.C.8Spacecurve.Exercise2.1 ...........................................236

Fig.C.9TheconicalspiralofPappus.Exercise2.1 .........................237

Fig.C.10Exampleofspacecurve.Exercise2.2 ..............................237

Fig.C.11Exampleofaloxodromecontainedinatorus.Exercise2.3 .......239

Fig.C.12Constructionofacurveofconstantcurvatureandtorsion.

Exercise2.7 ..........................................................241

Fig.C.13Lamésurfacefor p = 1/2.Exercise3.7

Fig.C.14Intersectionofsurfaces.Exercise3.8

Fig.C.15Intersectionoftwoparabolas.Exercise3.9

Fig.C.16Cylindricalsurface.Exercise4.1

Fig.C.17Conicalsurface.Exercise4.2

Fig.C.18Tangentdevelopablesurface.Exercise4.3

Fig.C.19Quadric.Exercise4.4

Fig.C.20Geometricscheme.Exercise4.5

Fig.C.21Geometricscheme.Exercise4.6

Fig.C.22Geometricscheme.Exercise4.7

Fig.C.23Elliptictorus.Exercise4.11

Fig.C.24Generalizedelliptictorus.Exercise4.12

Fig.C.25Conoidstructure.Exercise4.13

Fig.C.26Secondconoidstructure.Exercise4.13

Fig.C.27Pseudosphere.Exercise4.14

Fig.C.28QRCode23.Exercise4.15

Fig.C.29Sweepingcurve.Exercise4.15

PhotographCredits

Figure 1.5 Source:ByPhoto:AndreasPraefcke—Self-photographed,Public Domain,

Link: https://commons.wikimedia.org/w/index.php?curid=8382419

Figure 1.8 (left)Source:Mattancherrykoonankurish,Kochi,Kerala,India. KoonanKurishPalli,Flickr.com.

Link: https://flic.kr/p/V4vMDm

Figure 1.8 (right)Source:PhotobyJohnsonLiuonUnsplash. Link: https://unsplash.com/photos/C3SEO9ORkMg

Figure 1.10 Source:PhotobyLucaBravoonUnsplash

Link: https://unsplash.com/photos/alS7ewQ41M8

Figure 1.11 (left)Source:PhotobyAndreaJunqueiraonUnsplash Link: https://unsplash.com/photos/mNoMLlDDJbg

Figure 1.11 (right)Source:PhotobyPavelNekoraneconUnsplash Link: https://unsplash.com/photos/-qJlgvKXE1M

Figure 1.21 Source:Publicdomain, Link: https://commons.wikimedia.org/w/index.php?curid=37361

Figure 1.22 Source:PhotobyMichaelMartinellionUnsplash. Link: https://unsplash.com/photos/jgESEijOorE

Figure 1.23 Source:PhotobyckturistandoonUnsplash. Link: https://unsplash.com/photos/RWWHa5TUF8w

Figure 1.24 Source:Oceanogràfic,Wikipedia.com.DeFelipeGabaldón,CCBY 2.0,

Link: https://commons.wikimedia.org/w/index.php?curid=12532971

Figure 1.34 Source:PhotobyStephanieLeBlanconUnsplash

Link: https://unsplash.com/photos/FiknH_A0SLE

Figue 1.37 Source:Photostoredinpxhere.com

Link: https://pxhere.com/es/photo/556035

Figure 1.38 Source:Photostoredinsphere.com

Link: https://pxhere.com/es/photo/556036

Figure 2.20 (left)Source:PhotobyYusufDündaronUnsplash

Link: https://unsplash.com/photos/Sm2IjyvrzDk

Figure 2.20 (right)Source:PhotobyStevenJackson,Gaudi’scolumnsatPark Guell.Attribution2.0Generic(CCBY2.0) Onflic.kr

Link: https://flic.kr/p/9zsUoE

Figure 2.23 Source:Photostoredinpxhere.com

Link: https://pxhere.com/es/photo/555498

Figure 3.14 Source:PhotobyDarceyBeauonUnsplash

Link: https://unsplash.com/photos/q8D7WZc40eA

Figure 3.18 Source:PhotobyNicoVillanuevaonUnsplash Link: https://unsplash.com/photos/V89ZSyrExxs

Figures 3.21 and 3.22 Source:ByFlickruserHuiLanfromBeijing,China— nationaltheatreatFlickr, CCBY2.0

Link: https://commons.wikimedia.org/w/index.php?curid=3334661

Figure 3.25 Source:Photostoredinpxhere.com

Link: https://pxhere.com/es/photo/1355308

Figure 3.27 (left)Source:PhotobyRobbyMcCulloughonUnsplash

Link: https://unsplash.com/photos/i7UsLKFX-Ms

Figure 3.27 (right)Source:PhotobyRobbyMcCulloughonUnsplash

Link: https://unsplash.com/photos/DtzJFYnFPJ8

Figure 4.11 (right)Source:PhotobyJonathanSingeronUnsplash

Link: https://unsplash.com/photos/Jda9U-CMc8c Source:Photostoredin pxhere.com

Figure 4.13 Source:ByUnknownauthor—MariaAntoniettaCrippa:Gaudí, Taschen,Köln,2007,ISBN978-3-8228-2519-8,PublicDomain, Link: https://commons.wikimedia.org/w/index.php?curid=3560968

Figure 4.14 Source:PhotographofthechurchofSanJuandeÁvila,inAlcaláde Henares,takenonthe13thofFebruary,2021,bytheauthor.

Figure 4.16 Source:DeAndrésFranchiUgart..., CCBY-SA3.0

Link: https://commons.wikimedia.org/w/index.php?curid=54386268

Figure 4.40 Source:Photostoredinpxhere.com

Link: https://pxhere.com/es/photo/1042708

Figure 4.41 Source:PhotobyJulianaLeeonUnsplash

Link: https://unsplash.com/photos/xibAcLZDUTY

Figure 4.42 Source:ByOriginaluploaderwasColin.faulkinghamat en.wikipedia—Transferedfromen.wikipediaTransferwasstatedtobemade byUser:jcarkeys.,PublicDomain, Link: https://commons.wikimedia.org/w/index.php?curid=3338724

Figure 4.43 Source:Photostoredinpxhere.com

Link: https://pxhere.com/es/photo/707570

Figure 4.45 Source:Photostoredinpxhere.com

Link: https://pxhere.com/es/photo/916411

Figure A.4 Source:PhotobyJoelFilipeonUnsplash

Link: https://unsplash.com/photos/RFDP7_80v5A

Figure A.7 Source:PhotobyMevlüt?ahinonUnsplash

Link: https://unsplash.com/photos/FevvUdyk-oE

Figure 3.30 Source:Wikipedia.ChurchofKópavogur(icelandic:Kópavogskirk ja)beingbuiltca.1960

Link: https://is.m.wikipedia.org/wiki/Mynd:Kopavogur_church_ca1960.jpg

Figure C.25 Source:ByM.Kocandrlova—PublicDomain

Link: https://commons.wikimedia.org/w/index.php?curid=4327175

Chapter1 ParametrizationsandPlaneCurves

Thisfirstchapterisdevotedtothestudyofplanecurvesfromthepointof viewofdifferentialgeometry.Asmentionedinthepreface,thistheoryisquite classicalandcanbefoundindifferentundergraduateandgraduatetextbookssuch asdoCarmo(1976),andmorerecentbooks(Tapp 2016;Umeharaetal. 2017). Thetheoryisillustratedwithexamplesinspecificarchitecturalelements,together withmathematicaltechniquesappliedonplanecurves.Amongthem,wefocuson implicitation,approximationandinterpolationtechniques.

Differentapproachesmightbefollowedinordertoreachanadequateand consistentdefinitionofcurve:ontheonehand,thepointofdeparturecanbelocated atthedefinitionofaparametrizedcurve,arrivingattheconceptofthearcofacurve inimplicitform,whilstotherauthorsprefertoapproachtheconceptofcurveviathe levelcurvesofcertainsurfacesandconcludewithlocalparametrizations.Wewill followthissecondroute,relatingbothapproachesbymeansoftheimplicitfunction theorem.Certaintopologicaldiscussionsareimportantwhengoingfromonetothe otherpointofview.Forourpurpose,wewillonlydealwithcurveswhicharelocally homeomorphictoanopensegment,i.e., suchthatateachofitspointsthecurveis “essentially”abentopenintervalnearthatpoint.

Boththeimplicitandparametricformsturnouttobeimportantwhenhandling acurve.Theuseofaparametrizationofacurveismoremanageablewhentrying toconstructacurvebygivingdifferentvaluestotheparameter,andtheimplicit formallowsustodetectdirectlywhetherapointbelongstoagivencurveornot. Anotheradvantageofhavingtheimplicitrepresentationofacurveisthenumerical applicationofthefalsepositionmethod(seeBurdenandFaires 2000,p.72).Also, continuityofthefunctiondeterminingthecurveinimplicitformmakesitpossible toobtainslightlyperturbedcurveswhichassembleaplanecurvedeterminedby f(x,y) = 0andthecurveassociatedtothefunction f(x,y) + c ,byconsidering smallenough c ∈ R.

Moreover,someelementsrelatedtoacurvesuchasthecurvature,tangentand normalvectors,etc.provideawiderknowledgeofthecurve.Inadditiontothis,

©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 A.Lastra, ParametricGeometryofCurvesandSurfaces,MathematicsandtheBuilt Environment5, https://doi.org/10.1007/978-3-030-81317-8_1

thedefinitionofacurveitselfmayincorporatedifferentphysicalor/andaesthetic propertiessuchasbuildingacoustics,theconfigurationofloads,architectural lighting,etc.

Wehavedecidedtoconsiderthestudyofspacecurvesseparatelytoemphasize theimportanceofsuchcurves,inparticularhelices,inarchitecture.Asamatterof fact,thetwopreviousapproachescanbe rephrasedafternaturaladjustments.

1.1PlaneCurvesandParametrizations

Wefirststatetheconceptofaplanecurve,mainlyconsistingintheso-calledlevel curveofaregularsurface.Intuitively,aplanecurverepresentsthepathfollowedby amovingpointinsideaplane.

Acircleandalemniscate(seeFig. 1.1)areexamplesoftheintuitiveconceptofa planecurve.

Thecircleconsistsofallpointsintheaffineplane, (x,y) ∈ R2 ,whose componentssatisfytheequation x 2 + y 2 = 9:

Thelemniscatecorrespondstotheset

Wedefineaplanecurvefollowingthisapproach,bymeansofalevelcurveofa scalarfunction f intworealvariables.

Definition1.1.1 Let ∅ = U ⊆ R2 beanopensetandlet f : U → R bea C ∞ functionin U ,i.e.,afunctionthatisdifferentiableforeverydegreeofdifferentiation in U .Wewrite f ∈ C ∞ (U)

Fig.1.1 Circlecenteredat (0, 0) andradius R = 3(left),lemniscateofBernoulli(right)

Incasetheset C ={(x,y) ∈ U : f(x,y) = 0}

isnonempty,wesaythat C isa planecurve

Acardioidconsistsofthepoints (x,y) ∈ R2 suchthat (x,y) = (2cos(t) cos(2t), 2sin(t) sin(2t)), (1.2)

forsome t ∈ R.Anepicycloidisaplanecurvedeterminedbythepoints (x,y) ∈ R2 satisfying (x,y) = (r1 + r2 ) cos(t) r2 cos r1 + r2 r2 t ,(r1 + r2 ) sin(t) r2 sin r1 + r2 r2 t ,

forsome t ∈ R,andwhere r1 ≥ r2 arefixedpositiverealnumbers.

Anotherapproachtodefineaplanecurve(orpartofaplanecurve)isbymeans ofaparametrizationofsuchcurve,aswehavealreadyobserved(seeFig. 1.2).

Definition1.1.2 A parametrization isapair (I,α),where I ⊆ R isanopen intervaland α : I → R2 isa C ∞ functionon I ,i.e. α ∈ C ∞ (I).

Itisworthpointingoutthatthehypothesisof f belongingtotheset C ∞ (I) istoo restrictivefortheunderlyingtheory.Asamatteroffact,thepreviousdefinitioncan bestatedonothermoregeneralsubsets I ⊂ R.Wehavedecidedtomaintainsuch restrictionsforthesakeofsimplicityinourreasoning,andplaceanemphasisonthe applicationsinarchitectureratherthantheaccuracyonthehypothesesmadeonthe results.

Wewillmainlyworkwithregularparametrizations.

Cardioid(left)andepicycloid(right)

Fig.1.2

Definition1.1.3 Aparametrization (I,α) isa regularparametrization ifit satisfiesthefollowingconditions:

• α (t) = (0, 0) forall t ∈ I ;

• α : I → R2 isaone-to-onefunction.

ThefirststatementinDefinition 1.1.3 allowsustodefinethetangentlineateach pointofthecurveassociatedtotheregularparametrization.

Intheexampleofthecardioid,wehavethat

α(t) = (2cos(t) cos(2t), 2sin(t) sin(2t)),

t ∈ ( π,π) coversthewholecurveexceptfromthepoint P1 = ( 3, 0).Observe that

α (t) = ( 2sin(t) + 2sin(2t), 2cos(t) 2cos(2t)),

therefore α (0) = (0, 0)

Thepropertyofinjectivityassociatedto aregularparametrizationisneededin ordernottoobserveself-intersectionpointsinthecurve,ashappenedintheexample ofthelemniscate.

InordertofulfillthetwoconditionsinDefinition 1.1.3,theuseof local parametrizations ofcurvesisuseful.Sofar,wehavedefinedplanecurvesbymeans ofthelevelcurvesofsomefunctionintwovariables.Givenaparametrization,itis naturaltothinkthattheimageofaparametrizationdeterminesacurve(orpartof it).

Definition1.1.4 Givenaplanecurve C ,wesaythattheparametrization (I,α) isa parametrizationofthecurve C if C = α(I)

Theimagesetofaparametrization (I,α), α(I),isknownasan arc.Anarcis saidtobe regular ifitisdescribedbyaregularparametrization.

Thepreviousdefinitionstatesthatgivenacurve C parametrizedby (I,α),its associatedarcis C (Fig. 1.3).

Regardingthecardioid,thearcdeterminedbytheparametrization

α(t) = (2cos(t) cos(2t), 2sin(t) sin(2t)), for t ∈ (0, 2π),coversthewholecurve,exceptforthepoint P2 = (1, 0).With respecttothelemniscate,onecanconsidertheparametrizations

whichtogetherdrawthewholecurve,exceptfortheorigin.

Fig.1.3 Regularcurve

Thepreviousexamplesmotivatethefollowingdefinitionofaregularcurve.

Definition1.1.5 Aset ∅ = C ⊆ R2 isa regular(plane)curve ifforevery (x0 ,y0 ) ∈ C thereexistsadisc D((x0 ,y0 ),r) ⊆ R2 ,suchthat D((x0 ,y0 ),r) ∩ C is aregulararc.

Thefollowingresultisadirectapplicationoftheimplicitfunctiontheorem.

Theorem1.1.6 Let U ⊆ R2 beanonemptyopensetof R2 .Let f : U → R with f ∈ C ∞ (U) and (x0 ,y0 ) ∈ U suchthat ∇ f(x0 ,y0 ) = ∂f ∂x (x0 ,y0 ), ∂f ∂y (x0 ,y0 ) = (0, 0).

Weconsidertheset

C ={(x,y) ∈ U : f(x,y) f(x0 ,y0 ) = 0} =∅

Then,thereexist r> 0,anopeninterval I ⊆ R andafunction α : I → R2 , α ∈ C ∞ (I) suchthat

• α (t) = (0, 0) forall t ∈ I ,

• α : I → R2 isaone-to-onefunction,and α(I) = D((x0 ,y0 ),r) ∩ C

Intermsoftheconceptsintroducedabove,Theorem 1.1.6 canbestatedas follows:

Theorem1.1.7 Let U ⊆ R2 beanonemptyopensetof R2 .Let f : U → R with f ∈ C ∞ (U).Considertheset

C ={(x,y) ∈ U : f(x,y) = 0}

If C =∅ andforevery P ∈ C itholdsthat

∇ f(P) = ∂f ∂x (P), ∂f ∂y (P) = (0, 0), then C isaregularcurve.

Proof Let P = (x0 ,y0 ) ∈ C .Weassumethat ∂f ∂x (P) = 0,withoutlossof generality.Theimplicitfunctiontheoremguaranteestheexistenceofanopen interval x0 ∈ I ⊆ R and α : I → R2 suchthat α(x0 ) = y0 and f(t,α(t)) = 0for every t ∈ I

Fromthecontinuityofthefunction t ∈ I → ∂f ∂x (t,α(t)) andthefactthat ∂f ∂x (x0 ,y0 ) = ∂f ∂x (x0 ,α(x0 )) = 0,

thereexists x0 ∈ I1 ⊆ I suchthat ∂f ∂x (t,α(t)) = 0forall t ∈ I1 .

•Fromtheconstructionof α weobtainthat (t,α(t)) ∈ C forall t ∈ I1 .

• α (t) = 0forall t ∈ I1 .Otherwise,assumetheexistenceofsome t0 ∈ I1 with α (t0 ) = 0.Takingderivativesin f(t,α(t)) = 0weobtainthat

∂x (t,α(t)) + ∂f ∂y (t,α(t))α (t) ≡ 0,t ∈ I1 .

Thisyieldsthat ∂f ∂x (t0 ,α(t0 )) = 0,whichcontradictsthechoiceof I1 .Therefore, α (t) = 0forall t ∈ I1 .

• α : I1 → R2 isaone-to-onefunction.Ifthereexist t1 ,t2 ∈ I1 suchthat α(t1 ) = α(t2 ),then,Rolletheoremguaranteestheexistenceof t3 ∈ I1 with α (t3 ) = 0 whichcontradictsthepreviousstatement.

Weobservefromtheproofthatanadequateparametrizationcanbeconsidered foreachpointinthecurve,theresultbeingofalocalnature.Moreover,theexistence ofalocalparametrizationisguaranteedby theimplicitfunctiontheorem,depending onthecomponentofthegradientwhichdoesnotvanish.

Areciprocallocalresultisalsovalid,describingthereciprocalrelationship betweenlocalregularparametrizationsandlevelcurvesofscalarfunctionsintwo variables.

Theorem1.1.8 Let C bearegularcurve.Forevery (x0 ,y0 ) ∈ C thereexist r> 0 andascalarfunction f : D((x0 ,y0 ),r) → R, f ∈ C ∞ (D((x0 ,y0 ),r)),suchthat

C ∩ D((x0 ,y0 ),r) ={(x,y) ∈ D((x0 ,y0 ),r) : f(x,y) = 0},

and ∇ f(Q) = ∂f ∂x (Q), ∂f ∂y (Q) = (0, 0),

forall Q ∈ D((x0 ,y0 ),r).

Proof Let (x0 ,y0 ) ∈ C .Weconsiderthedisc D((x0 ,y0 ),r1 ) ⊆ R2 suchthat D((x0 ,y0 ),r1 ) ∩ C isanarcofregularcurve.Thisentailstheexistenceofa regularparametrization (I,α) with α(I) = D((x0 ,y0 ),r1 ) ∩ C .Letuswrite α(t) = (α1 (t),α2 (t)).Let t0 ∈ I with α(t0 ) = (x0 ,y0 ) andassume,withoutlossof generality,that α1 (t0 ) = 0.

Fromthecontinuityof α1 in I ,wecanguaranteetheexistenceofanopeninterval ∅ = I1 ⊆ I inwhich α1 (t) = 0forall t ∈ I1 .Thisentailsthatthefunction α1 is invertiblein I1 ,with α1 (I1 ) = I2 forsomeopeninterval I2 .Itisnotdifficultto verify,reducing I1 ifnecessary,theexistenceof0 <r ≤ r1 suchthat (x0 ,y0 ) ∈ α(I1 ) = D((x0 ,y0 ),r) ∩ C .Thepair (I1 ,α) isaregularparametrizationwhich parametrizesanarccontainedin C .

Let f : D((x0 ,y0 ),r) → R bedefinedby

f(x,y) = y α2 (α 1 1 (x)).

Observethat f iswelldefinedforall (x,y) ∈ D((x0 ,y0 ),r1 ) duetoinjectivity of α1 .Given (x,y) ∈ D((x0 ,y0 ),r) ∩ C, wehave x = α1 (t) and y = α2 (t),for some t ∈ I1 .Then, t = α 1 1 (x) and y = α2 (α 1 1 (x)).Thefunction f isinfinitely differentiablein D((x0 ,y0 ),r).Inadditiontothis, ∂ ∂y f(x,y) = 1 = 0.

Thepreviousresultsgiverisetotheconceptofregularcurve,whenthepointof departureisanimplicitexpression.

Definition1.1.9 Let U ⊆ R2 beanonemptyopensetof R2 .Let f : U → R with f ∈ C ∞ (U).Wesaythattheset

C ={(x,y) ∈ U : f(x,y) = 0}

isa regularcurve if C =∅ andforall P ∈ C

∇ f(P) = ∂f ∂x (P), ∂f ∂y (P) = (0, 0).

Theexistenceofadiscforeachpoint (x0 ,y0 ) ∈ C suchthattheintersection ofthatdiscandthecurvecoincideswiththeimageofaregularparametrization isessentialinthehypothesesofthedefinitionofaregularcurvegiveninterms ofregularparametrizations(seeDefinition 1.1.5).Theusualtopologyon R2 determinescounterexamplesinthisdirection.

Example1.1.10 Letusconsiderthearcdeterminedbythefollowingparametrization.Thatarciscontainedinthelemniscatedescribedabove inthischapter:

α turnsouttobea C ∞ ( 1, ∞) function.Thepair (( 1, ∞),α) isaregular parametrization:

•Itisdirecttoverifythat α (t) = (0, 0) for t ∈ ( 1, ∞) • α isaone-to-onefunction.

However,foreverydisccenteredat α(0) = (0, 0),thesetobtainedbyintersection ofthecurveandthedisccannotbeparametrizedbyanyregularparametrization. Thatsubsetisnothomeomorphictoasegment,i.e.,itcannotbetransformedby continuoustransformationsintoasegment(thissethastwoconnectedcomponents whereasasegmenthasonlyone(Fig. 1.4)).

Fig.1.4 CounterexampleofregularcurveinExample 1.1.10

1.2SomeClassicCurvesinArchitecture

Inthissection,weshowhowclassicplanecurvesareusedtodescribeandinspire architecturalelements.Thisisnotaccidental,andismorelikelyduetosome necessityinthestructure,foraestheticreasons,etc.InthebookHanh(2012),several particularstudiesaremadeonplanecurvesappliedinarchitecturaldesign.

Cycloid,andtheKimbellArtMuseum

TheKimbellArtMuseum(ForthWorth,Texas,1972)byLouisKhanisabuilding ofknowngeometriccomplexity.Itsroofconsistsintheconcatenationofseveral vaultsbuiltupfromaplanecurveandparallellinespassingthroughthatcurve(see Fig. 1.5).

Eachofthevaultsisbasedontheplanecurveknownasthe cycloid.Thecycloid isaplanecurvedefinedbyaphysicalphenomena.Letacirclerollonaline.The trailleftbyanyfixedpointinthecircleafterthismovementdrawsacycloid(see Fig. 1.5).

Theequationsdefiningaparametrizationofthecycloidcanbederivedfromthe physicaldefinition,makinguseofelementarytrigonometryandfundamentalsof physics(Fig. 1.6).

Wewrite r> 0fortheradiusoftherollingcircle.Assumetheinitialpositionof therollingcircleisgivenbytheequation x 2 + (y r)2 = r 2 ,andthedistinguished

Fig.1.5 KimbellArtMuseum

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.