Wind turbine aerodynamics and vorticity based methods fundamentals and recent applications 1st editi

Page 1

Wind

Turbine Aerodynamics and Vorticity Based Methods Fundamentals and Recent Applications 1st Edition Emmanuel Branlard (Auth.)

Visit to download the full and correct content document: https://textbookfull.com/product/wind-turbine-aerodynamics-and-vorticity-based-meth ods-fundamentals-and-recent-applications-1st-edition-emmanuel-branlard-auth/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Train Aerodynamics Fundamentals and Applications 1st Edition Chris Baker

https://textbookfull.com/product/train-aerodynamics-fundamentalsand-applications-1st-edition-chris-baker/

Advanced Wind Turbine Technology Weifei Hu

https://textbookfull.com/product/advanced-wind-turbinetechnology-weifei-hu/

MARE WINT New Materials and Reliability in Offshore Wind Turbine Technology 1st Edition Wies■aw Ostachowicz

https://textbookfull.com/product/mare-wint-new-materials-andreliability-in-offshore-wind-turbine-technology-1st-editionwieslaw-ostachowicz/

EASA Module 11A B1 Turbine Aeroplane Aerodynamics

Structures and Systems 4th Edition Aircraft Technical Book Company Llc

https://textbookfull.com/product/easa-module-11a-b1-turbineaeroplane-aerodynamics-structures-and-systems-4th-editionaircraft-technical-book-company-llc/

Multilevel Network Analysis for the Social Sciences Theory Methods and Applications 1st Edition Emmanuel Lazega

https://textbookfull.com/product/multilevel-network-analysis-forthe-social-sciences-theory-methods-and-applications-1st-editionemmanuel-lazega/

Oxide Based Materials and Structures Fundamentals and Applications 1st Edition Rada Savkina (Editor)

https://textbookfull.com/product/oxide-based-materials-andstructures-fundamentals-and-applications-1st-edition-radasavkina-editor/

Molecular Diagnostics Fundamentals Methods and Clinical Applications

Lela Buckingham

https://textbookfull.com/product/molecular-diagnosticsfundamentals-methods-and-clinical-applications-lela-buckingham/

Fundamentals of Modern Unsteady Aerodynamics 3rd Edition Ülgen Gülçat

https://textbookfull.com/product/fundamentals-of-modern-unsteadyaerodynamics-3rd-edition-ulgen-gulcat/

Wind Science and Engineering Origins Developments

Fundamentals and Advancements Giovanni Solari

https://textbookfull.com/product/wind-science-and-engineeringorigins-developments-fundamentals-and-advancements-giovannisolari/

Wind Turbine Aerodynamics and Vorticity-Based Methods

Fundamentals and Recent Applications

Research Topics in Wind Energy 7

ResearchTopicsinWindEnergy

Volume7

Serieseditors

JoachimPeinke,UniversityofOldenburg,Oldenburg,Germany

e-mail:peinke@uni-oldenburg.de

GerardvanBussel,DelftUniversityofTechnology,Delft,TheNetherlands

e-mail:g.j.w.vanbussel@tudelft.nl

AboutthisSeries

TheseriesResearchTopicsinWindEnergypublishesnewdevelopmentsand advancesinthe fi eldsofWindEnergyResearchandTechnology,rapidlyand informallybutwithahighquality.WindEnergyisanewemergingresearch field characterizedbyahighdegreeofinterdisciplinarity.Theintentistocoverallthe technicalcontents,applications,andmultidisciplinaryaspectsofWindEnergy, embeddedinthe fieldsofMechanicalandElectricalEngineering,Physics, Turbulence,EnergyTechnology,Control,MeteorologyandLong-TermWind Forecasts,WindTurbineTechnology,SystemIntegrationandEnergyEconomics, aswellasthemethodologiesbehindthem.Withinthescopeoftheseriesare monographs,lecturenotes,selectedcontributionsfromspecializedconferencesand workshops,aswellasselectedPhDtheses.Ofparticularvaluetoboththe contributorsandthereadershiparetheshortpublicationtimeframeandthe worldwidedistribution,whichenablebothwideandrapiddisseminationofresearch output.TheseriesispromotedundertheauspicesoftheEuropeanAcademyof WindEnergy.

Moreinformationaboutthisseriesathttp://www.springer.com/series/11859

EmmanuelBranlard

WindTurbineAerodynamics andVorticity-BasedMethods

FundamentalsandRecentApplications

123

TechnicalUniversityofDenmark Roskilde

Denmark

ISSN2196-7806ISSN2196-7814(electronic) ResearchTopicsinWindEnergy

ISBN978-3-319-55163-0ISBN978-3-319-55164-7(eBook) DOI10.1007/978-3-319-55164-7

LibraryofCongressControlNumber:2017933865

© SpringerInternationalPublishingAG2017

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardto jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Tolove, 2K 2K

Preface

Thestandardapproachinthestudyofwindturbineaerodynamicsconsistsinusing momentumanalyses.Themomentumtheoryofanactuatordiskisanexampleof momentumanalysis.Bladeelementmomentum(BEM)andtheconventional computation fluiddynamics(CFD)aretwonumericalmethodsalsobasedon momentumanalyses.Velocityandpressurearethemainvariablesusedin momentumanalysis.Theequationscanalsobeformulatedusingvorticityasmain variable.Thisleadstoanalternativeapproachreferredtoasvorticity-based methods.Thegreatpotentialofvorticity-basedmethodscomesfromthemultitude offormulationstheyoffer,rangingfromsimpleanalyticalmodelstoadvanced numericalmethods.Theanalyticalmodelwillbereferredtoasvortextheoriesand thenumericalmethodsasvortexmethods.

Thetermvorticityoftenintimidatesthenewcomer,butthisfearvanisheswhen onerealizesthatvelocityandvorticityoffertwodifferent,butoftenequivalent, pointsofview.Forinstance,themomentumtheoryofanactuatordiskwithconstantloadingcanbeequivalentlystudiedbyconsideringthetubularvorticitysheet thatispresentatthesurfaceofthestreamtube.Vorticityplaysanimportantrolein windturbineaerodynamicssincestrongvorticesarepresentinthewakesin particular.Vorticityandvorticity-basedmethodscannotbeomittedinabookonthe topic.MostoftheanalyticalmodelsusedinBEMmethodsarederivedfromanalyticalvortexmodels.Further,numericalvortexmethodsarenowcompetingwith conventionalCFDmethodsintermsofaccuracyandcomputationaltime,andthey arebecomingacommontoolforthestudyofwindturbineaerodynamics.

Theaimofthisbookistoshowtherelevanceofvorticity-basedmethodsforthe studyofwindturbineaerodynamicsandtopresenthistoricalandrecentdevelopmentsinthe fieldwithasufficientlevelofdetailsforthebooktobeself-contained. Thisbookisintendedforstudentsandresearcherscuriousaboutrotoraerodynamicsand/oraboutvorticity-basedmethods.Thebookintroducesthefundamentalsof fluidmechanics,momentumtheories,vortextheories,andvortex methodsnecessaryforthestudyofrotorsandwindturbinesinparticular.Rotor theoriesarepresentedinagreatlevelofdetailsatthebeginningofthebook.These theoriesincludethebladeelementtheory,theKutta–Joukowskitheory,the

vii

momentumtheory,andtheBEMmethod.Differentmomentumtheoriesarederived from firstprinciplesusingacriticalapproach.Theremainingofthebookfocuseson vortextheoryandvortexmethodswithapplicationtowindturbineaerodynamics. Examplesofvortextheoryapplicationsthatarediscussedinthisbookareoptimal rotordesign,tip-losscorrections,yawmodels,anddynamicinflowmodels. Historicalderivationsandrecentextensionsofthemodelsarepresented.The cylindricalvortexmodelisanotherexampleofasimpleanalyticalvortexmodel usedinthisbook.Inthismodel,awindturbineanditswakearesimplifiedusinga vortexsystemofcylindricalshape.Formulationsequivalenttotheonesusedina BEMalgorithmareobtained.Themodelprovidesawake-rotationcorrectionwhich greatlyimprovestheaccuracyofBEMalgorithms.Thecylindricalmodelisalso usedtoprovidetheanalyticalvelocity fieldupstreamofaturbineorawindfarm (i.e.,theinductionzone)underalignedoryawedconditions.Suchresultsare obtainedinacoupleofsecondswithanimpressiveaccuracycomparedtonumerical resultsfromCFDmethodswhichwouldrequiredaysofcomputation.Different applicationsofnumericalvortexmethodsarepresentedinthisbook.Numerical methodsareusedforinstancetoinvestigatetheinfluenceofawindturbineonthe incomingturbulence.Shearedinflowsarealsoinvestigated.Itisshowninparticular thatmostvortexmethodsomitatermresultinginexcessiveupwarddisplacement ofthewindturbinewake.Manyanalytical flowsarederivedindetailinthisbook: vortexrings,Hill’svortex,vortexblobs,etc.Theyareusedthroughoutthebookto devisesimplerotormodelsortovalidatetheimplementationofnumericalmethods. SeveralMATLABprogramsareprovidedtoeasesomeofthemostcomplex implementations:BEMcodes,vortexcylindervelocityfunctions,Goldstein’scirculation,lifting-linecodes,Karman–Trefftzconformalmap,projectionfunctions forvortexparticlemethods,etc.

PartIintroducesthe fluidmechanicsfoundationsrelevanttothisbook.PartII introducesrotoraerodynamics,includingmomentumanalyses,vortexmodels,and theBEMmethod.PartIIIfocusesonclassicalvortextheoryresultswhichoriginatedfromthestudyofrotorswithoptimalcirculation.PartIVpresentstherecent developmentsinrotoraerodynamicsbasedonanalyticalvortex flows.PartV presentsrecentapplicationsofvortexmethods.PartVIprovidesdetailedanalytical solutionsthatarerelevantforrotoraerodynamics,eitherforthederivationofvortex modelsorfortheimplementationandvalidationofvortexmethods.PartVIIis dedicatedtovortexmethods.PartVIIIprovidesmathematicalcomplementstosome chaptersofthebook.

Roskilde,DenmarkEmmanuelBranlard January2017

viii Preface

Acknowledgements

Thecurrentworkwouldnothavebeenpossiblewithoutthesupportandhelpofmy PhDsupervisorMacGaunaaandthecontributionsfromSpyrosVoutsinas,Ewan Machefaux,PhilippeMercier,GregoireWinckelmans,NielsTroldborg,Giorgios Papadakis,andHenrikBrandenborgSørensen.Iwouldliketothankmycolleagues fortheirinspirationandfruitfuldiscussions:JakobMann,NielsSørensen,Curran Crawford,PhilippeChatelain,TorbenLarsen,AndersHansen,GeorgPirrung, FrederikZahle,MadsHejlesen,JuanPabloMurcia,AlexanderForsting,Christian Pavese,MichaelMcWilliams,LucasPascal,andJacobusDeVaal.

Iamgratefultothepersonswhoacceptedtoreviewsomechaptersofthisbook despitealimitedtime:DamienCastaignet,MichaelMcWilliams,MacGaunaa,Jens Gengenbach,Gil-ArnaudCoche,JulienB.,andBjörnSchmidt.

Aboveall,IamgladforthemomentsoflifeandloveIexperiencedthankstomy familyandfriends.Iwishtosharemoreofthosewithallofyou:Ewan,François, Aghiad,Mika,Dim,Heidi,Mike,K,Ozi,Bertille,Julie,Kiki,Loïc,Milou,Romain, Sofie,LucasP.,LucasM.,Philipp,Jeanne,Alessandro,Julien,Sophie,Dad,and Mom.

ix

2.3.5VorticityEquationinParticularCases

2.3.6Pressure

2.3.7VortexForce,Image/Generalized/BoundVorticity,

Contents 1Introduction 1 References 6 PartIFluidMechanicsFoundations 2TheoreticalFoundationsforFlowsInvolvingVorticity .......... 11 2.1FluidMechanicsEquationsinInertialandNon-inertial Frames ........................................... 11 2.1.1PhysicalQuantities .......................... 11 2.1.2ConservationLaws .......................... 12
inaNon-inertialFrame ....................... 17 2.1.4FluidMechanicsAssumptions .................. 26 2.1.5UsualCases-EquationsofEulerandBernoulli 29 2.2FlowKinematicsandVorticity 32 2.2.1FlowKinematics 32 2.2.2VorticityandRelatedDe finitions 33 2.2.3Helmholtz(First)Law 36
36
Map-GeneralizedHelmholtzDecomposition 37 2.3MainDynamicsEquationsInvolvingVorticity 38 2.3.1CirculationEquation 38 2.3.2VorticityEquation ........................... 40 2.3.3StretchingandDilatationofVorticity ............ 40 2.3.4AlternativeFormsoftheVorticityEquation ....... 42
2.1.3Fluid-MechanicEquations
2.2.4Helmholtz-(Hodge)Decomposition
2.2.5BoundedandUnboundedDomain-Surface
............ 43
................................... 44
Kutta–JoukowskiRelation ..................... 45 xi

2.4DifferentDimensionsofVorticity:Surface, LineandPoints

2.7VorticesinViscousandInviscidFluid-Results

2.8SurfaceRepresentations-VortexSheets

2.9IncompressibleFlowEquationsinPolarCoordinates-2D and3DFlows-AxisymmetricFlows

2.9.12DArbitraryFlow(CylindricalCoordinates)

2.9.23DArbitraryFlow(CylindricalCoordinates)

2.9.33DAxisymmetricFlowswithSwirl(Cylindrical

2.9.43DAxisymmetricFlowsWithoutSwirl (CylindricalCoordinates)

2.9.53DArbitraryFlow(SphericalCoordinates)

2.9.63DAxisymmetricFlowswithSwirl (SphericalCoordinates)

2.9.73DAxisymmetricFlowsWithoutSwirl (SphericalCoordinates)

2.11.3Joukowski’sConformalMap

2.11.4Karman-TrefftzConformalMap

.................................... 47
............................................ 49
..................... 52
’sTheorem 52
’sTheorem 52
53
–SavartLaw 54
2.5VorticityMoments,VariablesandInvariants-Incompressible Flows
2.6MainTheoremsInvolvingVorticity
2.6.1Kelvin
2.6.2Lagrange
2.6.3HelmholtzTheorem
2.6.4Biot
57
57 2.7.2VortexinViscousFluid-StandardSolutions 57
andStability 59
andClassicalFlows
2.7.1VortexinInviscidFluid
2.7.3LifeofaVortex-VortexDecay,Collapse
................. 60
................................ 60 2.8.2VortexSheetsKinematics ..................... 60 2.8.3VortexSheetsDynamics ...................... 61 2.8.4VortexSheetConvectionandStability ........... 62 2.8.5VortexSurfacesin2D ........................ 62
2.8.1Introduction
.................... 63
...... 64
64
Coordinates) 65
67
68
69
....................... 69 2.102DPotentialFlows .................................. 71 2.11ConformalMapSolutions ............................ 73 2.11.1ConformalMapping-De finitionsandProperties ... 73 2.11.2ReferenceAirfoilFlow:FlowAroundaCylinder
......................... 74
andKuttaCondition
................... 74
................ 76 xii Contents

2.11.5VandeVoorenConformalMap

3.1CharacteristicsofLiftingBodies

3.1.1FluidForceonaBody:Lift,Drag,Moment andCenterofPressure

3.1.2CenterofPressure,AerodynamicCenter andQuarterChordPointofanAirfoil

3.1.3VorticityAssociatedwithLiftingBodies

3.1.4KuttaCondition

3.2PolarDataofanAirfoilandRelatedEngineeringModels

3.2.1Introduction

3.2.2ModelsforLargeAngleofAttacks

3.2.3DynamicStallModels

3.2.4InviscidPerformances

3.2.5ModelofFully-SeparatedPolar fromKnownPolar

3.3VorticityBasedTheoriesofTwo-Dimensional

3.5InviscidLifting-SurfaceTheoryofaWing

3.6InviscidLifting-LineTheoryofaWing

3.6.2LiftingLineTheory-FromCirculationDistribution toLoads

3.6.3Prandtl’sLiftingLine Equation-Integro-DifferentialForm

3.6.4EllipticalLoadingandEllipticalWing UnderLiftingLineAssumptions andLinearTheory

................ 77 2.11.6MatlabSourceCode ......................... 78 References .............................................. 80 3LiftingBodiesandCirculation 83
83
83
86
89
90
91
3.1.5Kutta–JoukowskiRelation
93
93
.............. 94
........................ 95
96
........................
97
..........................
LiftingBodies ..................................... 99
..................................... 99
3.4VorticityBasedTheoriesofThickThree-Dimensional LiftingBodies
99
100
100
3.6.1Introduction
101
102
103
Code ..................................... 105 References .............................................. 109 PartIIIntroductiontoRotorsAerodynamics 4RotorandWindTurbineFormalism ........................ 113 4.1MainAssumptionsandConventions 113 4.2WindTurbineFormalism 115 4.3LoadsandDimensionlessCoefficients 116 Contents xiii
3.6.5NumericalImplementationoftheMethod-Sample

4.4VelocityInductionFactorsUndertheLiftingLine

5VortexSystemsandModelsofaRotor-Bound, RootandWakeVorticity

5.1MainComponentsofVorticityInvolvedAboutaRotor

5.2SimplifiedVorticityModelsofRotors

5.2.1MainSimplificationsUsedbytheModels

5.2.2HelicalVortexModelsofaRotor

5.2.3CylindricalandTubularVortexModel ofaRotor

5.2.4VortexRingModelofaRotor

6ConsiderationsandChallengesSpeci

6.1YawandTilt

7.3.2ParticularCasesofFlowswithRotational

Approximation ..................................... 118 4.5Solidity ........................................... 119 References .............................................. 119
121
121
123
123
125
127
130
131 References .............................................. 133
5.3AnalyticalResultsfortheVortexWakeModels
fic toRotorAerodynamics ................................... 135
...................................... 135
................................... 137
.................. 138 References .............................................. 140 7BladeElementTheory(BET) 143 7.1Introduction 143 7.2AnalysisofaBladeElement 144 7.3Applications 145
145
6.2RotationalEffects
6.3AirfoilCorrectionsforRotatingBlades
7.3.1FlowwithRotationalSymmetry
Symmetry 147
148 References 149
–Joukowski(KJ)TheoremAppliedtoaRotor ............ 151 8.1AssumptionsandMainResult ......................... 151 8.2RotorPerformanceCoefficientsfromtheKJAnalyses ....... 152 8.2.1LocalCoefficients ........................... 152 8.2.2GlobalCoefficients .......................... 153
154
................. 155
157 9.1Introduction 157 9.2SimplifiedAxialMomentumTheory(NoWakeRotation) 159 xiv Contents
7.3.3IntroducingtheInductionFactorsontheBlade
8Kutta
8.3VortexActuatorDisk-KJAnalysisforanIn
niteNumber ofBlades .........................................
8.4ApplicationsforLargeTip-SpeedRatios
9MomentumTheory

9.2.1NotationsandAssumptions ....................

9.2.2DeterminationofPower,Thrust andRotorVelocity ..........................

9.2.3InductionFactorsandRotorPerformance .........

9.2.4DiscussionontheAssumptions .................

9.3GeneralMomentumTheory

9.3.1Introduction

9.3.2Derivation

9.4GeneralAxialMomentumTheory(NoWakeRotation)

9.4.1Assumptions

9.4.2ResultsoftheGeneralAxialMomentumTheory

9.5StreamtubeTheory(Simpli fiedMomentumTheory)

9.5.1Assumptions

9.5.2DerivationoftheMainStreamtube TheoryResults

9.5.3LoadsfromStreamtubeTheory .................

9.5.4MaximumPowerExtraction fromSTT- “OptimalRotor

10.1TheBEMMethodforaSteadyUniformIn

10.1.1Introduction ................................

10.1.2FirstLinkage:VelocityTriangleandInduction Factors

10.1.3SecondLinkage:ThrustandTorquefromMT andBET

10.1.4BEMEquations

10.1.5SummaryoftheBEMAlgorithm

10.2CommonCorrectionstotheSteadyBEMMethod

10.2.1DiscreteNumberofBlades,Tip-Losses andHub-Losses

10.2.2CorrectionDuetoMomentum TheoryBreakdown- a Ct Relations

10.3UnsteadyBEMMethod ..............................

10.3.1Introduction ................................

10.3.2DynamicWake/Infl ow........................

10.3.3YawandTiltModel .........................

10.3.4DynamicStall ..............................

10.3.5TowerandNacelleInterference

10.3.6SummaryoftheUnsteadyBEMAlgorithm

159
161
163
165
168
168
169
174
174
175
175
175
176
177
” ................... 178 References .............................................. 180 10TheBladeElementMomentum(BEM)Method ................ 181
flow ............ 182
182
183
185
186
188
190
190
193
195
10.2.3WakeRotation .............................
197
197
197
199
200
201
.................
....... 202 Contents xv

13.4DifferentExpressionsofPrandtl’sTip-LossFactor

13.5.1TheoreticalTip-LossCorrections................

14.3ComputationofGoldstein’sFactor

................... 203 10.4.1ExamplesofApplications ..................... 203 10.4.2SourceCodeforSteadyandUnsteadyBEM Methods .................................. 206 References .............................................. 210 PartIIIClassicalVortexTheoryResults:OptimalCirculation
215 11.1Introduction 215
216
219 11.4DimensionlessCirculationinTermsofWakeParameters ..... 221 References .............................................. 222 12BetzTheoryofOptimalCirculation ......................... 223 12.1Introduction ....................................... 223 12.2BetzOptimalCirculation ............................. 223 12.3InclusionofDrag ................................... 224 References .............................................. 225
sTipLossFactor 227
227
229
229 13.2.2ModernDe
230 13.3Prandlt
232
232
233
239
10.4TypicalApplicationsandSourceCode
andTip-Losses 11Far-WakeAnalysesandtheRigidHelicalWake
11.2TheWakeScrewModel
11.3RelationwithRotorParameters
13Tip-LosseswithFocusonPrandlt’
13.1IntroductiontoTip-Losses
13.2HistoricalandModernTip-LossFactors
13.2.1HistoricalTip-LossFactor
finitionsoftheTip-LossFactors
’sTip-LossFactor
13.3.1Notations
13.3.2DerivationofPrandtl’sTip-LossFactor
13.3.3GeneralExpression
......... 240
........................ 241
13.5ReviewofTip-LossCorrections
242
............ 242
................................ 242
..... 243 References .............................................. 244 14Goldstein’sOptimalCirculation 247 14.1Introduction 247
248
249
249 xvi Contents
13.5.2Semi-empiricalTip-LossCorrections
13.5.3Semi-empiricalPerformanceTip-Loss Corrections
13.5.4TheHistoricalApproachofRadiusReduction
14.2Goldstein’sCirculation,FactorandTip-LossFactor
14.3.1MainMethodsofEvaluation

15.1Simple1DMomentumTheory/VortexCylinderModel

15.2CylinderAnalogExpansion

15.3Theodorsen’sWakeExpansion

15.4Far-WakeExpansionModels

15.5ComparisonofWakeExpansions

andVortexCylinderResults

14.3.2ComputationUsingHelicalVortexSolution:
................... 250 References .............................................. 253
255
AlgorithmandSourceCode
15WakeExpansionModels
255
255
256
257
258 References 258 16RelationBetweenFar-WakeandNear-WakeParameters 259 16.1Introduction 259 16.2ExtensionoftheWorkofOkulovandSørensen forNon-optimalCondition ............................ 260 16.3ExtensionofTheodorsen’sTheory ...................... 261 References .............................................. 262 PartIVLatestDevelopmentsinVorticity-BasedRotor Aerodynamics
finite Tip-SpeedRatios 265 17.1IntroductionandContext 265 17.2ModelandKeyResults 267 17.3Conclusions 271 References 271 18CylindricalModelofaRotorwithVarying Circulation-EffectofWakeRotation 273 18.1Context ........................................... 274 18.2ModelandKeyResults .............................. 274 18.3Conclusions ....................................... 281 References .............................................. 282 19AnImprovedBEMAlgorithmAccountingforWakeRotation Effects ................................................. 283 19.1Context ........................................... 283 19.2ActuatorDiskModelsfortheBEM-LikeMethod 284 19.2.1ComparisonsofStream-TubeTheory
285 19.3BEMAlgorithmIncludingWakeRotation 286 19.3.1GeneralStructureofaLifting-Line-Based Algorithm 286 19.3.2Step6:InductionsfortheStandardBEM
287 Contents xvii
17CylindricalVortexModelofaRotorofFiniteorIn
(STT-KJ)

19.3.3Step6:InductionsfortheImprovedBEM ofMadsenetal. ............................

19.3.4Step6:InductionsfortheActuatorDiskModel (AD) .....................................

20HelicalModelforTip-Losses:DevelopmentofaNovelTip-Loss FactorandAnalysisoftheEffectofWakeExpansion

21Yaw-ModellingUsingaSkewedVortexCylinder

22SimpleImplementationofaNewYaw-Model

23.3HelicalPitchfortheSuperpositionofSkewedCylinders

23.4Yaw-ModelImplementationUsingaSuperposition ofSkewedCylinders

23.5PartialApproach-FocusontheInboardPartoftheBlade

287
288
288 19.4Results 289 19.5Conclusions 291 References 291
19.3.5Step6:InductionsfortheVortexCylinderModel (VCT)
293
293 20.2ANovelTip-LossFactor 294 20.3KeyResults 295 20.4Conclusions ....................................... 296 References .............................................. 297
20.1DescriptionoftheHelicalWakeModels
............... 299 21.1IntroductionandContext ............................. 299 21.2ModelandKeyResults .............................. 301 21.3Conclusions ....................................... 305 References .............................................. 305
307 22.1Context 307 22.2ModelandKeyResults 308 22.3Conclusions 312 References 312 23AdvancedImplementationoftheNewYaw-Model 315 23.1Introduction 315
Cylinder .......................................... 316
23.2ModelsfortheVelocityFieldOutsideoftheSkewed
..... 317
................................ 318
... 319 23.6Conclusions ....................................... 320 References .............................................. 320
321 24.1Context 321 24.2ModelfortheVelocityFieldintheInductionZone 322 24.3ResultsforaSingleWindTurbine 323 xviii Contents
24VelocityFieldUpstreamofAlignedandYawedRotors: WindTurbineandWindFarmInductionZone

25AnalyticalModelofaWindTurbineinShearedIn

26ModelofaWindTurbinewithUnsteadyCirculation orUnsteadyIn

PartVLatestApplicationsofVortexMethodstoRotor AerodynamicsandAeroelasticity 27ExamplesofApplicationsofVortexMethods

28Representationofa(Turbulent)VelocityFieldUsingVortex Particles

29EffectofaWindTurbineontheTurbulentIn

24.3.1AlignedCaseWithoutSwirl ................... 324 24.3.2AlignedCasewithSwirl ...................... 325 24.3.3YawedCase ............................... 326 24.3.4ComputationalTime ......................... 328 24.4ResultsforaWindFarm ............................. 328 24.4.1Introduction 328 24.4.2VelocityDe ficitUpstreamofaWindFarm 329 24.5Conclusions 331 References 332
flow 333 25.1Context 333 25.2ModelandKey-Results 334 25.3Conclusions 337 References 337
flow ....................................... 339 26.1Context ........................................... 339 26.2ModelandKeyResults .............................. 340 26.3Conclusions ....................................... 343 References .............................................. 343
toWindEnergy 347 27.1ComparisonwithBEMandActuator-LineSimulations 347 27.2WakesandFlowFieldforUniformInflows 349 27.3EffectofViscosity-ComparisonwithAD 349 27.4EffectofTurbulence-ComparisonwithLidarandAD ...... 350 27.5Conclusions ....................................... 352 References .............................................. 352
................................................ 355 28.1SimpleVelocityReconstructionUsingVortexParticles ...... 355 28.2AssociatedErrorsandDiscussions ...................... 356 28.3ExampleofVelocityReconstructionforaTurbulentField .... 358 28.4Conclusions 360 References 360
flow 361 29.1Introduction 361 29.2Terminology 362 Contents xix

30AeroelasticSimulationofaWindTurbineUnderTurbulent andShearedConditions

30.1Introduction

30.2RepresentationofShearinVortexMethods

30.3FullAeroelasticSimulationIncludingShear andTurbulence

30.4Conclusions

PartVIAnalyticalSolutionsforVortexMethodsandRotor Aerodynamics

31ElementaryThree-DimensionalFlows ........................

31.2.2VortexPoint(VortexParticle/Blobs)

31.3VortexFilaments

31.3.1VortexSegmentandLineofConstantStrength

31.3.2VortexSegmentofLinearlyVaryingStrength

31.4Multipoles

31.4.1Dipole-Doublet

31.4.2Multipoles

31.4.3ConstantPanels

31.4.4EquivalencesBetweenElements

32ElementaryTwo-DimensionalPotentialFlows

32.1UniformFlow

32.2PointSource,PointVortexandDistributionsofPoints

32.2.1PointSource/Sink ...........................

32.2.2PointVortex

32.2.3PeriodicPointVortices

32.2.4ContinuousDistributionof2DPoints

32.3DoubletandMultipoles

32.3.1Doublet ...................................

32.3.2Multi-poles

32.4Cylinder/EllipseFlows

32.4.1CylinderFlow-Acyclic-NoLift

32.4.2FlowArounda2DEllipse-NoLift

32.4.3CylinderFlow-Cyclic-withLift

.............................. 364 29.4Conclusions ....................................... 368 References .............................................. 368
29.3ModelandKeyResults
371
371
372
373
377 References 377
381
381
............... 382
31.1Introduction .......................................
31.2FlowInducedbyaPoint-WiseDistribution
382
31.2.1PointSource ...............................
384
.............
387
387
390
391
391
392
392
392 References 392
393
.................
393
......................................
...... 393
393
............................... 394
395
.......................
............ 395
396
..............................
396
397
397
397
398
398 xx Contents

32.4.4FlowAboutQuadrics ........................

32.5.1RigidRotation ..............................

32.5.2CornerFlow,FlatPlateandStagnationPoint

33FlowswithaSpreadDistributionofVorticity

33.1AxisymmetricVorticityPatches

33.1.1ExamplesofVorticityPatches

33.1.2CanonicalExample:TheInviscidVorticityPatch

34SphericalGeometryModels:FlowAboutaSphere

35VortexandSourceRings ..................................

35.1VortexRings-GeneralConsiderations

35.2FormulaeforthePotential,VelocityandGradient

36FlowInducedbyaRightVortexCylinder

36.1RightCylinderofTangentialVorticitywithArbitraryCross Section

36.1.1FiniteCylinder-GeneralVelocityField ..........

36.1.2FiniteCylinder-VelocityinTerms ofSolidAngle..............................

36.1.3InfiniteandSemi-in finiteCylindersofArbitrary CrossSections ..............................

36.1.4FiniteCylinderofTangentialVorticity andLinktoSourceSurfaces ...................

36.2RightVortexCylinderofTangentialVorticity-Circular CrossSection ......................................

36.2.1FiniteVortexCylinderofTangentialVorticity

36.2.2Semi-infiniteVortexCylinderofTangential Vorticity

399 32.5MiscellaneousFlows
399
399
................................
...... 400
.................... 400 References 400
32.5.3CylinderandVortexPoint
401
401
401
402
405 References 406
33.2RectangularVorticityPatch(2DBrick)
sVortex ........................................ 407
............................. 407 34.2Hill
sVortex ...................................... 411
............................... 417 References .............................................. 417
andHill’
34.1SpherewithFreeStream
34.3EllipsoidandSpheroid
419
.................. 419
420
421
424
428 35.6SourceRings 428 References 428
35.3FlowatParticularLocations
35.4DerivationoftheVelocityandVectorPotential
35.5FurtherConsiderations
429
430
430
430
432
433
435
436
444 Contents xxi

36.3VortexCylinderofLongitudinalVorticity

36.3.1InfiniteCylinderofLongitudinalVorticity

36.3.2FiniteCylinderofLongitudinalVorticity

36.3.3Semi-infiniteCylinderofLongitudinalVorticity

37FlowInducedbyaVortexDisk

37.1Introduction

37.2IndefiniteFormoftheBiot–SavartLaw

37.3De finiteFormoftheBiot–SavartLaw

38FlowInducedbyaSkewedVortexCylinder

38.1Semi-infiniteSkewedCylinderofTangentialVorticity

38.1.1PreliminaryNoteontheIntegralsInvolved

38.1.2ExtensionoftheWorkofCastlesandDurham

38.1.3LongitudinalAxis-WorkofColemanetal.

38.2Semi-infiniteSkewedCylinderwithLongitudinalVorticity

38.3InfiniteSkewedCylinderwithLongitudinalVorticity (EllipticCylinder)

39FlowInducedbyHelicalVortexFilaments

39.1PreliminaryConsiderations

39.1.1Introduction

39.1.2Semi-infiniteHelixandRotorTerminology

39.2ExactExpressionsforInfiniteHelicalVortexFilaments

39.3ApproximateExpressionsforInfiniteHelicalFilaments

39.4ExpressionsforSemi-in finiteHelicesEvaluated ontheLiftingLine

39.5NotationsIntroducedforApproximateFormulae

39.6SummationofSeveralHelices-LinkBetweenOkulov’s RelationandWrench’sRelation

40ABriefIntroductiontoVortexMethods

................ 450
........ 450
451
.........
.... 451 References .............................................. 453
455
455
456
458 37.4Properties 459 Reference 460
461
...... 461
........ 462
..... 463
....... 464
......................... 466
38.1.4MatlabSourceCode
... 467
................................... 468 References .............................................. 471
473
473
473
474
475
475
476
476
478 References .............................................. 479 PartVIIVortexMethods
........................
...................... 483
483 40.2ProsandCons 484 40.3AnExampleofVortexMethodHistory 486 xxii Contents
40.1Introduction

40.4Classi ficationofVortexMethods

41TheDifferentAspectsofVortexMethods

41.1FundamentalEquationsandConcepts

41.2DiscretizationandInitialization

41.2.1InformationCarriedbytheVortexElements

41.2.2InitializationandReinitialization

41.2.3Initialization-InviscidVortexPatchExample

41.3Viscous-Splitting

41.3.1Viscous-SplittingAlgorithm

41.3.2RateofConvergenceoftheViscous-Splitting Algorithm

41.3.3ApplicationtotheVorticityTransportEquation

41.4ConvectionandStretchingofVortexElements ............

41.4.1Introduction ................................

41.4.2ConvectionofVortexElements

41.4.3Stretching .................................

41.4.4Applications ...............................

41.5Grid-FreeandGrid-BasedMethods

41.5.1Grid-FreeVortexMethods

41.5.2Grid-BasedVortexMethods (MixedEulerian–LagrangianFormulation) ........ 505

41.5.3CoupledLagrangianandEulerianSolvers

41.6ViscousDiffusion-SolutionoftheDiffusionEquation 506

41.6.1DiffusionEquationandVorticityTransport Equation 506

41.6.2FundamentalSolutionandLamb–OseenVortex 507

41.6.3Core-SpreadingMethod 509

41.6.4Random-WalkMethod 510

41.6.5Grid-BasedFinite-DifferencesMethod 511

41.6.6Particle-Strength-Exchange(PSE) 511

41.6.7NumericalApplication:Lamb–OseenVortex 513

41.6.8VorticityRedistributionMethod ................ 514

41.7Boundaries,BoundaryConditionsandLifting-Bodies ....... 514

41.7.1Introduction ................................ 514

41.7.2FluidBoundaryConditions:Free-Flow andPeriodicBoundaries ...................... 515

41.7.3SolidBoundariesinInviscidFlows .............. 515

41.7.4SolidBoundariesinViscousFlows-Vorticity Generation

....................... 487
..... 489 References .............................................. 490
40.5ExistingVortexCodesandApplicationtoWindEnergy
493
493
495
495
497
498
499
499
500
501
501
501
................ 502
503
503
..................... 504
504
....................
506
Contents xxiii
................................. 516

41.7.5ViscousBoundariesUsingCoupling (Viscous-InviscidorLagrangian–Eulerian) ........

41.7.6Lifting-Bodies ..............................

41.8Regularization-KernelSmoothing-Mollifi cation .......... 517

41.8.1KernelSmoothingviaConvolution withaCut-OffFunction

41.8.2RequirementsontheCut-OffFunction

41.8.3SpecialCaseofSphericalSymmetry

41.8.4ExamplesUsedinParticleMethods

41.8.5RegularizationModelsforVortexFilaments

41.8.6ChoiceofCut-Off/SmoothParameter

41.8.7ApplicationtotheInviscidVortexPatch

41.9SpatialAdaptation-Redistribution-RezoningReinitialization

41.9.1Introduction

41.9.2Remeshing-Rezoning-RedistributionReinitialization .............................

41.9.3GainfromRemeshing-Application toInviscid-VortexPatch

41.9.4ProblemsIntroducedbyRemeshing .............

41.10Subgrid-ScaleModels-LES-Turbulence

41.11AccuracyofVortexMethods,Guidelines,Diagnostics andPossibleImprovements ...........................

41.11.1GuidelinesandDiagnosticsforGeneralVortex Methods

41.11.2BoundaryElements-GuidelinesandDiagnostics 535

41.11.3ParticleMethods-Convergence

41.11.4ApplicationtotheInviscidVortexPatch

42ParticularitiesofVortexParticleMethods

42.1ParticleApproximationandLagrangianMethods

42.1.1NotionofVortexBlob

42.1.2ParticleApproximation

42.1.3DynamicsofLagrangianMethods ...............

42.1.4IncompressibleVortexParticleMethods ..........

42.2StretchingTerm-DifferentSchemes ....................

42.3DivergenceoftheVorticityField .......................

42.3.1MinimizingtheErrorGrowth

42.3.2Corrections

42.3.3CriteriaforCorrection

517
517
519
519
521
524
526
527
529
530
530
530
531
......................
531
................ 532
533
533
536
537 References 539
545
545
545
545
546
547
548
549
549
..................
550
................................
........................ 550 References .............................................. 551 xxiv Contents

43NumericalImplementationofVortexMethods .................

43.1InterpolationMethodRequiredforGrid-BasedMethods .....

43.1.1InterpolationinVortexMethods

43.1.2ConceptofInterpolation ......................

43.1.3InterpolationtoGrid(Projection,Griding, Assignment,Particle-to-Mesh) 556

43.1.4InterpolationfromGrid(Mesh-to-Particle) 557

43.2Tree-CodesandFastMultipoleMethod

43.2.1Tree-BasedMethod

43.2.2Tree-BasedMethod-CoefficientsuptoOrder2

43.3PoissonSolvers

43.4NumericalIntegrationSchemes

43.4.1ExpressionoftheDifferentSchemes

43.4.2ExampleofApplicationtotheInviscidPatch 563

43.4.3WorkPresentedbyLeishman 564

43.5VorticitySplittingandMergingSchemes .................

43.6ConversionfromSegmentstoParticles ..................

43.6.1CanonicalExamplesforValidation .............. 566

43.6.2RepresentationofOneSegmentbyOneParticle .... 567

43.6.3RepresentationUsingSeveralParticles

43.6.4TrailedandShedVorticityBehindaWing

43.7DistributionofControlPoints .........................

43.7.1TheWorkofJames-ChordwiseDistribution

43.7.2CosineSpacingandOtherReferences intheTopic

43.8The3/4ChordCollocationPoint

44OmniVor:AnExampleofVortexCodeImplementation

44.3Speci ficConfigurationsUsedinPublications

45.3LiftingSurface .....................................

45.4ThickBodies ......................................

45.5Unit-Tests .........................................

45.6FurtherValidation ..................................

553
553
553
................
554
558
558
560
561
562
562
564
566
........... 567
........ 568
568
...... 568
569
570
571
References
575
575
576
584 References 585
44.1Introduction
44.2ImplementationandFeatures
587
587
588
589
45VortexCodeValidationandIllustration ......................
45.1SimpleValidationoftheVortexParticleMethod ...........
45.2LiftingLine .......................................
590
591
592 References .............................................. 592 Contents xxv
AppendixA:ComplementsontheRightCylindricalModel andtheEffectofWakeRotation ..................... 595 AppendixB:FromPoisson’sEquationtotheBiot–SavartLaw inanUnboundedDomain .......................... 607 AppendixC:UsefulMathematicalRelations 617 Index 629 xxvi Contents

Acronyms

a Axialinductionfactor

aB Axialinductionfactorlocaltotheblade

^ a Axialinductionfactorfrom2DMT

a0 Tangentialinductionfactor

c Chord

cn Normalaerodynamiccoeffi cient

ct Tangentialaerodynamiccoefficient

e Internalenergy et Totalenergy

h Enthalpy

ht Totalenthalpy

h Typicalgridspacinginvortexmethods

h Helixpitch

hB Apparentpitch h=B

h Normalizedpitch h=R

k Dimensionlesscirculation

k2 Ellipticalparameterforellipticintegrals

kt Turbulentkineticenergy

l Helixtorsionalparameter

l Normalizedtorsionalparameter l=R

m Ellipticalparameterforellipticintegrals

nrot RotationalspeedinRPM: X=ð2pÞ

p Staticpressure

pt Totalpressure p þ 1 2 qu2

p Frequencyassociatedwith X, p ¼ X=2p

q Heat flux

r Radialposition

rc Viscouscoreradius

t Time

t0 Parameterinthecore-spreadingmodel

xxvii

r Dimensionlessradialposition r =R

r Dimensionlessradialposition r =R

s Sign

uh Tangentialinducedvelocity

uz Axialinducedvelocity

ux-componentofvelocity

vy-componentofvelocity

wz-componentofvelocity

w Wakerelativelongitudinalvelocity(Betz)

z0 Surfaceroughnesslength

A AngularImpulse

A Area

ARSeeAbbreviations

B Numberofblades

CC Dimensionlesscirculation

Cd Dragcoefficients

Cl Liftcoefficients

Cl;a Liftcoefficientslopeforsmallangles

Cp Powercoefficient

Cq Localtorquecoefficient

CQ Totaltorquecoeffi cient

Ct Tangentialaerodynamiccoefficient

Ct Localthrustcoefficient

CT Totalthrustcoefficient

D Dragforce

D Rotordiameter

D Deformationmatrix

E Completeellipticintegralofthe2ndkind

E Energy

E Enstrophy

F Tip-lossfactor

Fa Tip-lossfactorbasedonaxialinduction

FC Tip-lossfactorbasedoncirculation

FCl Performancetip-lossfactor

FGo Goldstein’stip-lossfactor

FGl Glauert ’stip-lossfactor

FPr Prandtl’stip-lossfactor

FSh Shen’stip-lossfactor

F Complexvelocitypotentialin2D

G Green’sfunctionassociatedwiththeoperator

H Heavisidefunction

H Bernoulliconstant,e.g., p þ 1 2 qu2

It Turbulenceintensity

I LinearImpulse

xxviii Acronyms

J Helicity

K Kernel(associatedwithagivenoperator )

K Completeellipticintegralofthe1stkind

L Liftforce

MaMachnumber

P Power

P Palinstrophy

Q Rotortorque

Q VorticalHelicity

R Rotorradius

ReReynoldsnumber

S Entropy

S Surface

S Energydensityspectrum

Sd Volumeoftheunitspherein Rd

T Thrustforce

T Temperature

U Longitudinalvelocityattherotorin1D

U Relativevelocityattherotor

U0 Longitudinalvelocityfarupstream

Ui Inducedvelocityin1D

Un Velocitynormaltotherotor

Uref Referencevelocityused,e.g.,forthenormalizationofloads

Ut Velocitytangenttotherotor

V Velocityvector

Vrel Relativevelocity

V Volume

W Inducedvelocityvectorattherotor

a Point/Blobvorticityintensity

a Angleofattack

a0 Angleofattackatzerolift

b Twistangle

c Surfacevorticity-Distributedcirculation

ct Vortexcylindertangentialvorticity

cl Vortexcylinderlongitudinalvorticity

cb Boundvorticity

d Diracfunction

e Pitchangleofthewakehelixscrew

e Regularizationparameter

f Regularization/cutoff/smoothingfunction

g Efficiency

h Azimuthalcoordinate

j Goldstein’sfactor

k Tipspeedratio ¼ XR=U0

Acronyms xxix

k

r Localspeedratio ¼ kr =R

k FirstLamé’scoefficientforNewtonian fluid

l SecondLamé’scoefficient:dynamicviscosity

m Kinematicviscosity ¼ l=q

q Airdensity 1.225kg/m3

r Localbladesolidity ¼ Bc=2pr

r Cauchystresstensor

s Shearstress,viscousstresstensor

/ Flowangle

v Wakeskewangle,inyawconditions

w Azimuthalcoordinate

w Vectorpotential

x Rotationalspeedofthewake

x Vorticity

C Circulation

D Laplacianoperator r2

H Dilatation

P Gatefunction

P Completeellipticintegralofthe3rdkind

U VelocityPotential

W Streamfunction(2D)

W Stokes’ streamfunction(3D)

X Rotationalspeedoftherotor

X Rotationmatrix(fluidkinematics)

X Solidangle

X Volumeofthedomain

X Totalvorticity

@ X Surfaceboundaryofvolume X

tX Transpose

X T Transpose

r Deloperator, “nabla”

div Divergence, divX ¼r X

divT ¼ @j ðTij Þei

gradGradient,grad X ¼rX

gradGradientof first-ordertensor

curlRotational,curl X ¼r X

e.g. exempligratia: “forexample”

i.e. idest: “thatis”

viz. videlicet : “namely”

w.r.t. “withrespectto”

1DOnedimension

2DTwodimensions

3DThreedimensions

ACAerodynamiccenter

xxx Acronyms

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.