Acknowledgements
Thecurrentworkwouldnothavebeenpossiblewithoutthesupportandhelpofmy PhDsupervisorMacGaunaaandthecontributionsfromSpyrosVoutsinas,Ewan Machefaux,PhilippeMercier,GregoireWinckelmans,NielsTroldborg,Giorgios Papadakis,andHenrikBrandenborgSørensen.Iwouldliketothankmycolleagues fortheirinspirationandfruitfuldiscussions:JakobMann,NielsSørensen,Curran Crawford,PhilippeChatelain,TorbenLarsen,AndersHansen,GeorgPirrung, FrederikZahle,MadsHejlesen,JuanPabloMurcia,AlexanderForsting,Christian Pavese,MichaelMcWilliams,LucasPascal,andJacobusDeVaal.
Iamgratefultothepersonswhoacceptedtoreviewsomechaptersofthisbook despitealimitedtime:DamienCastaignet,MichaelMcWilliams,MacGaunaa,Jens Gengenbach,Gil-ArnaudCoche,JulienB.,andBjörnSchmidt.
Aboveall,IamgladforthemomentsoflifeandloveIexperiencedthankstomy familyandfriends.Iwishtosharemoreofthosewithallofyou:Ewan,François, Aghiad,Mika,Dim,Heidi,Mike,K,Ozi,Bertille,Julie,Kiki,Loïc,Milou,Romain, Sofie,LucasP.,LucasM.,Philipp,Jeanne,Alessandro,Julien,Sophie,Dad,and Mom.
ix
2.3.5VorticityEquationinParticularCases
2.3.6Pressure
2.3.7VortexForce,Image/Generalized/BoundVorticity,
Contents 1Introduction 1 References 6 PartIFluidMechanicsFoundations 2TheoreticalFoundationsforFlowsInvolvingVorticity .......... 11 2.1FluidMechanicsEquationsinInertialandNon-inertial Frames ........................................... 11 2.1.1PhysicalQuantities .......................... 11 2.1.2ConservationLaws .......................... 12
inaNon-inertialFrame ....................... 17 2.1.4FluidMechanicsAssumptions .................. 26 2.1.5UsualCases-EquationsofEulerandBernoulli 29 2.2FlowKinematicsandVorticity 32 2.2.1FlowKinematics 32 2.2.2VorticityandRelatedDe finitions 33 2.2.3Helmholtz(First)Law 36
36
Map-GeneralizedHelmholtzDecomposition 37 2.3MainDynamicsEquationsInvolvingVorticity 38 2.3.1CirculationEquation 38 2.3.2VorticityEquation ........................... 40 2.3.3StretchingandDilatationofVorticity ............ 40 2.3.4AlternativeFormsoftheVorticityEquation ....... 42
2.1.3Fluid-MechanicEquations
2.2.4Helmholtz-(Hodge)Decomposition
2.2.5BoundedandUnboundedDomain-Surface
............ 43
................................... 44
Kutta–JoukowskiRelation ..................... 45 xi
2.4DifferentDimensionsofVorticity:Surface, LineandPoints
2.7VorticesinViscousandInviscidFluid-Results
2.8SurfaceRepresentations-VortexSheets
2.9IncompressibleFlowEquationsinPolarCoordinates-2D and3DFlows-AxisymmetricFlows
2.9.12DArbitraryFlow(CylindricalCoordinates)
2.9.23DArbitraryFlow(CylindricalCoordinates)
2.9.33DAxisymmetricFlowswithSwirl(Cylindrical
2.9.43DAxisymmetricFlowsWithoutSwirl (CylindricalCoordinates)
2.9.53DArbitraryFlow(SphericalCoordinates)
2.9.63DAxisymmetricFlowswithSwirl (SphericalCoordinates)
2.9.73DAxisymmetricFlowsWithoutSwirl (SphericalCoordinates)
2.11.3Joukowski’sConformalMap
2.11.4Karman-TrefftzConformalMap
.................................... 47
............................................ 49
..................... 52
’sTheorem 52
’sTheorem 52
53
–SavartLaw 54
2.5VorticityMoments,VariablesandInvariants-Incompressible Flows
2.6MainTheoremsInvolvingVorticity
2.6.1Kelvin
2.6.2Lagrange
2.6.3HelmholtzTheorem
2.6.4Biot
57
57 2.7.2VortexinViscousFluid-StandardSolutions 57
andStability 59
andClassicalFlows
2.7.1VortexinInviscidFluid
2.7.3LifeofaVortex-VortexDecay,Collapse
................. 60
................................ 60 2.8.2VortexSheetsKinematics ..................... 60 2.8.3VortexSheetsDynamics ...................... 61 2.8.4VortexSheetConvectionandStability ........... 62 2.8.5VortexSurfacesin2D ........................ 62
2.8.1Introduction
.................... 63
...... 64
64
Coordinates) 65
67
68
69
....................... 69 2.102DPotentialFlows .................................. 71 2.11ConformalMapSolutions ............................ 73 2.11.1ConformalMapping-De finitionsandProperties ... 73 2.11.2ReferenceAirfoilFlow:FlowAroundaCylinder
......................... 74
andKuttaCondition
................... 74
................ 76 xii Contents
2.11.5VandeVoorenConformalMap
3.1CharacteristicsofLiftingBodies
3.1.1FluidForceonaBody:Lift,Drag,Moment andCenterofPressure
3.1.2CenterofPressure,AerodynamicCenter andQuarterChordPointofanAirfoil
3.1.3VorticityAssociatedwithLiftingBodies
3.1.4KuttaCondition
3.2PolarDataofanAirfoilandRelatedEngineeringModels
3.2.1Introduction
3.2.2ModelsforLargeAngleofAttacks
3.2.3DynamicStallModels
3.2.4InviscidPerformances
3.2.5ModelofFully-SeparatedPolar fromKnownPolar
3.3VorticityBasedTheoriesofTwo-Dimensional
3.5InviscidLifting-SurfaceTheoryofaWing
3.6InviscidLifting-LineTheoryofaWing
3.6.2LiftingLineTheory-FromCirculationDistribution toLoads
3.6.3Prandtl’sLiftingLine Equation-Integro-DifferentialForm
3.6.4EllipticalLoadingandEllipticalWing UnderLiftingLineAssumptions andLinearTheory
................ 77 2.11.6MatlabSourceCode ......................... 78 References .............................................. 80 3LiftingBodiesandCirculation 83
83
83
86
89
90
91
3.1.5Kutta–JoukowskiRelation
93
93
.............. 94
........................ 95
96
........................
97
..........................
LiftingBodies ..................................... 99
..................................... 99
3.4VorticityBasedTheoriesofThickThree-Dimensional LiftingBodies
99
100
100
3.6.1Introduction
101
102
103
Code ..................................... 105 References .............................................. 109 PartIIIntroductiontoRotorsAerodynamics 4RotorandWindTurbineFormalism ........................ 113 4.1MainAssumptionsandConventions 113 4.2WindTurbineFormalism 115 4.3LoadsandDimensionlessCoefficients 116 Contents xiii
3.6.5NumericalImplementationoftheMethod-Sample
4.4VelocityInductionFactorsUndertheLiftingLine
5VortexSystemsandModelsofaRotor-Bound, RootandWakeVorticity
5.1MainComponentsofVorticityInvolvedAboutaRotor
5.2SimplifiedVorticityModelsofRotors
5.2.1MainSimplificationsUsedbytheModels
5.2.2HelicalVortexModelsofaRotor
5.2.3CylindricalandTubularVortexModel ofaRotor
5.2.4VortexRingModelofaRotor
6ConsiderationsandChallengesSpeci
6.1YawandTilt
7.3.2ParticularCasesofFlowswithRotational
fi
Approximation ..................................... 118 4.5Solidity ........................................... 119 References .............................................. 119
121
121
123
123
125
127
130
131 References .............................................. 133
5.3AnalyticalResultsfortheVortexWakeModels
fic toRotorAerodynamics ................................... 135
...................................... 135
................................... 137
.................. 138 References .............................................. 140 7BladeElementTheory(BET) 143 7.1Introduction 143 7.2AnalysisofaBladeElement 144 7.3Applications 145
145
6.2RotationalEffects
6.3AirfoilCorrectionsforRotatingBlades
7.3.1FlowwithRotationalSymmetry
Symmetry 147
148 References 149
–Joukowski(KJ)TheoremAppliedtoaRotor ............ 151 8.1AssumptionsandMainResult ......................... 151 8.2RotorPerformanceCoefficientsfromtheKJAnalyses ....... 152 8.2.1LocalCoefficients ........................... 152 8.2.2GlobalCoefficients .......................... 153
154
................. 155
157 9.1Introduction 157 9.2SimplifiedAxialMomentumTheory(NoWakeRotation) 159 xiv Contents
7.3.3IntroducingtheInductionFactorsontheBlade
8Kutta
8.3VortexActuatorDisk-KJAnalysisforanIn
niteNumber ofBlades .........................................
8.4ApplicationsforLargeTip-SpeedRatios
9MomentumTheory
9.2.1NotationsandAssumptions ....................
9.2.2DeterminationofPower,Thrust andRotorVelocity ..........................
9.2.3InductionFactorsandRotorPerformance .........
9.2.4DiscussionontheAssumptions .................
9.3GeneralMomentumTheory
9.3.1Introduction
9.3.2Derivation
9.4GeneralAxialMomentumTheory(NoWakeRotation)
9.4.1Assumptions
9.4.2ResultsoftheGeneralAxialMomentumTheory
9.5StreamtubeTheory(Simpli fiedMomentumTheory)
9.5.1Assumptions
9.5.2DerivationoftheMainStreamtube TheoryResults
9.5.3LoadsfromStreamtubeTheory .................
9.5.4MaximumPowerExtraction fromSTT- “OptimalRotor
10.1TheBEMMethodforaSteadyUniformIn
10.1.1Introduction ................................
10.1.2FirstLinkage:VelocityTriangleandInduction Factors
10.1.3SecondLinkage:ThrustandTorquefromMT andBET
10.1.4BEMEquations
10.1.5SummaryoftheBEMAlgorithm
10.2CommonCorrectionstotheSteadyBEMMethod
10.2.1DiscreteNumberofBlades,Tip-Losses andHub-Losses
10.2.2CorrectionDuetoMomentum TheoryBreakdown- a Ct Relations
10.3UnsteadyBEMMethod ..............................
10.3.1Introduction ................................
10.3.2DynamicWake/Infl ow........................
10.3.3YawandTiltModel .........................
10.3.4DynamicStall ..............................
10.3.5TowerandNacelleInterference
10.3.6SummaryoftheUnsteadyBEMAlgorithm
159
161
163
165
168
168
169
174
174
175
175
175
176
177
” ................... 178 References .............................................. 180 10TheBladeElementMomentum(BEM)Method ................ 181
flow ............ 182
182
183
185
186
188
190
190
193
195
10.2.3WakeRotation .............................
197
197
197
199
200
201
.................
....... 202 Contents xv
13.4DifferentExpressionsofPrandtl’sTip-LossFactor
13.5.1TheoreticalTip-LossCorrections................
14.3ComputationofGoldstein’sFactor
................... 203 10.4.1ExamplesofApplications ..................... 203 10.4.2SourceCodeforSteadyandUnsteadyBEM Methods .................................. 206 References .............................................. 210 PartIIIClassicalVortexTheoryResults:OptimalCirculation
215 11.1Introduction 215
216
219 11.4DimensionlessCirculationinTermsofWakeParameters ..... 221 References .............................................. 222 12BetzTheoryofOptimalCirculation ......................... 223 12.1Introduction ....................................... 223 12.2BetzOptimalCirculation ............................. 223 12.3InclusionofDrag ................................... 224 References .............................................. 225
sTipLossFactor 227
227
229
229 13.2.2ModernDe
230 13.3Prandlt
232
232
233
239
10.4TypicalApplicationsandSourceCode
andTip-Losses 11Far-WakeAnalysesandtheRigidHelicalWake
11.2TheWakeScrewModel
11.3RelationwithRotorParameters
13Tip-LosseswithFocusonPrandlt’
13.1IntroductiontoTip-Losses
13.2HistoricalandModernTip-LossFactors
13.2.1HistoricalTip-LossFactor
finitionsoftheTip-LossFactors
’sTip-LossFactor
13.3.1Notations
13.3.2DerivationofPrandtl’sTip-LossFactor
13.3.3GeneralExpression
......... 240
........................ 241
13.5ReviewofTip-LossCorrections
242
............ 242
................................ 242
..... 243 References .............................................. 244 14Goldstein’sOptimalCirculation 247 14.1Introduction 247
248
249
249 xvi Contents
13.5.2Semi-empiricalTip-LossCorrections
13.5.3Semi-empiricalPerformanceTip-Loss Corrections
13.5.4TheHistoricalApproachofRadiusReduction
14.2Goldstein’sCirculation,FactorandTip-LossFactor
14.3.1MainMethodsofEvaluation
15.1Simple1DMomentumTheory/VortexCylinderModel
15.2CylinderAnalogExpansion
15.3Theodorsen’sWakeExpansion
15.4Far-WakeExpansionModels
15.5ComparisonofWakeExpansions
andVortexCylinderResults
14.3.2ComputationUsingHelicalVortexSolution:
................... 250 References .............................................. 253
255
AlgorithmandSourceCode
15WakeExpansionModels
255
255
256
257
258 References 258 16RelationBetweenFar-WakeandNear-WakeParameters 259 16.1Introduction 259 16.2ExtensionoftheWorkofOkulovandSørensen forNon-optimalCondition ............................ 260 16.3ExtensionofTheodorsen’sTheory ...................... 261 References .............................................. 262 PartIVLatestDevelopmentsinVorticity-BasedRotor Aerodynamics
finite Tip-SpeedRatios 265 17.1IntroductionandContext 265 17.2ModelandKeyResults 267 17.3Conclusions 271 References 271 18CylindricalModelofaRotorwithVarying Circulation-EffectofWakeRotation 273 18.1Context ........................................... 274 18.2ModelandKeyResults .............................. 274 18.3Conclusions ....................................... 281 References .............................................. 282 19AnImprovedBEMAlgorithmAccountingforWakeRotation Effects ................................................. 283 19.1Context ........................................... 283 19.2ActuatorDiskModelsfortheBEM-LikeMethod 284 19.2.1ComparisonsofStream-TubeTheory
285 19.3BEMAlgorithmIncludingWakeRotation 286 19.3.1GeneralStructureofaLifting-Line-Based Algorithm 286 19.3.2Step6:InductionsfortheStandardBEM
287 Contents xvii
17CylindricalVortexModelofaRotorofFiniteorIn
(STT-KJ)
19.3.3Step6:InductionsfortheImprovedBEM ofMadsenetal. ............................
19.3.4Step6:InductionsfortheActuatorDiskModel (AD) .....................................
20HelicalModelforTip-Losses:DevelopmentofaNovelTip-Loss FactorandAnalysisoftheEffectofWakeExpansion
21Yaw-ModellingUsingaSkewedVortexCylinder
22SimpleImplementationofaNewYaw-Model
23.3HelicalPitchfortheSuperpositionofSkewedCylinders
23.4Yaw-ModelImplementationUsingaSuperposition ofSkewedCylinders
23.5PartialApproach-FocusontheInboardPartoftheBlade
287
288
288 19.4Results 289 19.5Conclusions 291 References 291
19.3.5Step6:InductionsfortheVortexCylinderModel (VCT)
293
293 20.2ANovelTip-LossFactor 294 20.3KeyResults 295 20.4Conclusions ....................................... 296 References .............................................. 297
20.1DescriptionoftheHelicalWakeModels
............... 299 21.1IntroductionandContext ............................. 299 21.2ModelandKeyResults .............................. 301 21.3Conclusions ....................................... 305 References .............................................. 305
307 22.1Context 307 22.2ModelandKeyResults 308 22.3Conclusions 312 References 312 23AdvancedImplementationoftheNewYaw-Model 315 23.1Introduction 315
Cylinder .......................................... 316
23.2ModelsfortheVelocityFieldOutsideoftheSkewed
..... 317
................................ 318
... 319 23.6Conclusions ....................................... 320 References .............................................. 320
321 24.1Context 321 24.2ModelfortheVelocityFieldintheInductionZone 322 24.3ResultsforaSingleWindTurbine 323 xviii Contents
24VelocityFieldUpstreamofAlignedandYawedRotors: WindTurbineandWindFarmInductionZone
25AnalyticalModelofaWindTurbineinShearedIn
26ModelofaWindTurbinewithUnsteadyCirculation orUnsteadyIn
PartVLatestApplicationsofVortexMethodstoRotor AerodynamicsandAeroelasticity 27ExamplesofApplicationsofVortexMethods
28Representationofa(Turbulent)VelocityFieldUsingVortex Particles
29EffectofaWindTurbineontheTurbulentIn
24.3.1AlignedCaseWithoutSwirl ................... 324 24.3.2AlignedCasewithSwirl ...................... 325 24.3.3YawedCase ............................... 326 24.3.4ComputationalTime ......................... 328 24.4ResultsforaWindFarm ............................. 328 24.4.1Introduction 328 24.4.2VelocityDe ficitUpstreamofaWindFarm 329 24.5Conclusions 331 References 332
flow 333 25.1Context 333 25.2ModelandKey-Results 334 25.3Conclusions 337 References 337
flow ....................................... 339 26.1Context ........................................... 339 26.2ModelandKeyResults .............................. 340 26.3Conclusions ....................................... 343 References .............................................. 343
toWindEnergy 347 27.1ComparisonwithBEMandActuator-LineSimulations 347 27.2WakesandFlowFieldforUniformInflows 349 27.3EffectofViscosity-ComparisonwithAD 349 27.4EffectofTurbulence-ComparisonwithLidarandAD ...... 350 27.5Conclusions ....................................... 352 References .............................................. 352
................................................ 355 28.1SimpleVelocityReconstructionUsingVortexParticles ...... 355 28.2AssociatedErrorsandDiscussions ...................... 356 28.3ExampleofVelocityReconstructionforaTurbulentField .... 358 28.4Conclusions 360 References 360
flow 361 29.1Introduction 361 29.2Terminology 362 Contents xix
30AeroelasticSimulationofaWindTurbineUnderTurbulent andShearedConditions
30.1Introduction
30.2RepresentationofShearinVortexMethods
30.3FullAeroelasticSimulationIncludingShear andTurbulence
30.4Conclusions
PartVIAnalyticalSolutionsforVortexMethodsandRotor Aerodynamics
31ElementaryThree-DimensionalFlows ........................
31.2.2VortexPoint(VortexParticle/Blobs)
31.3VortexFilaments
31.3.1VortexSegmentandLineofConstantStrength
31.3.2VortexSegmentofLinearlyVaryingStrength
31.4Multipoles
31.4.1Dipole-Doublet
31.4.2Multipoles
31.4.3ConstantPanels
31.4.4EquivalencesBetweenElements
32ElementaryTwo-DimensionalPotentialFlows
32.1UniformFlow
32.2PointSource,PointVortexandDistributionsofPoints
32.2.1PointSource/Sink ...........................
32.2.2PointVortex
32.2.3PeriodicPointVortices
32.2.4ContinuousDistributionof2DPoints
32.3DoubletandMultipoles
32.3.1Doublet ...................................
32.3.2Multi-poles
32.4Cylinder/EllipseFlows
32.4.1CylinderFlow-Acyclic-NoLift
32.4.2FlowArounda2DEllipse-NoLift
32.4.3CylinderFlow-Cyclic-withLift
.............................. 364 29.4Conclusions ....................................... 368 References .............................................. 368
29.3ModelandKeyResults
371
371
372
373
377 References 377
381
381
............... 382
31.1Introduction .......................................
31.2FlowInducedbyaPoint-WiseDistribution
382
31.2.1PointSource ...............................
384
.............
387
387
390
391
391
392
392
392 References 392
393
.................
393
......................................
...... 393
393
............................... 394
395
.......................
............ 395
396
..............................
396
397
397
397
398
398 xx Contents
32.4.4FlowAboutQuadrics ........................
32.5.1RigidRotation ..............................
32.5.2CornerFlow,FlatPlateandStagnationPoint
33FlowswithaSpreadDistributionofVorticity
33.1AxisymmetricVorticityPatches
33.1.1ExamplesofVorticityPatches
33.1.2CanonicalExample:TheInviscidVorticityPatch
34SphericalGeometryModels:FlowAboutaSphere
35VortexandSourceRings ..................................
35.1VortexRings-GeneralConsiderations
35.2FormulaeforthePotential,VelocityandGradient
36FlowInducedbyaRightVortexCylinder
36.1RightCylinderofTangentialVorticitywithArbitraryCross Section
36.1.1FiniteCylinder-GeneralVelocityField ..........
36.1.2FiniteCylinder-VelocityinTerms ofSolidAngle..............................
36.1.3InfiniteandSemi-in finiteCylindersofArbitrary CrossSections ..............................
36.1.4FiniteCylinderofTangentialVorticity andLinktoSourceSurfaces ...................
36.2RightVortexCylinderofTangentialVorticity-Circular CrossSection ......................................
36.2.1FiniteVortexCylinderofTangentialVorticity
36.2.2Semi-infiniteVortexCylinderofTangential Vorticity
399 32.5MiscellaneousFlows
399
399
................................
...... 400
.................... 400 References 400
32.5.3CylinderandVortexPoint
401
401
401
402
405 References 406
33.2RectangularVorticityPatch(2DBrick)
sVortex ........................................ 407
............................. 407 34.2Hill
sVortex ...................................... 411
............................... 417 References .............................................. 417
andHill’
34.1SpherewithFreeStream
’
34.3EllipsoidandSpheroid
419
.................. 419
420
421
424
428 35.6SourceRings 428 References 428
35.3FlowatParticularLocations
35.4DerivationoftheVelocityandVectorPotential
35.5FurtherConsiderations
429
430
430
430
432
433
435
436
444 Contents xxi
36.3VortexCylinderofLongitudinalVorticity
36.3.1InfiniteCylinderofLongitudinalVorticity
36.3.2FiniteCylinderofLongitudinalVorticity
36.3.3Semi-infiniteCylinderofLongitudinalVorticity
37FlowInducedbyaVortexDisk
37.1Introduction
37.2IndefiniteFormoftheBiot–SavartLaw
37.3De finiteFormoftheBiot–SavartLaw
38FlowInducedbyaSkewedVortexCylinder
38.1Semi-infiniteSkewedCylinderofTangentialVorticity
38.1.1PreliminaryNoteontheIntegralsInvolved
38.1.2ExtensionoftheWorkofCastlesandDurham
38.1.3LongitudinalAxis-WorkofColemanetal.
38.2Semi-infiniteSkewedCylinderwithLongitudinalVorticity
38.3InfiniteSkewedCylinderwithLongitudinalVorticity (EllipticCylinder)
39FlowInducedbyHelicalVortexFilaments
39.1PreliminaryConsiderations
39.1.1Introduction
39.1.2Semi-infiniteHelixandRotorTerminology
39.2ExactExpressionsforInfiniteHelicalVortexFilaments
39.3ApproximateExpressionsforInfiniteHelicalFilaments
39.4ExpressionsforSemi-in finiteHelicesEvaluated ontheLiftingLine
39.5NotationsIntroducedforApproximateFormulae
39.6SummationofSeveralHelices-LinkBetweenOkulov’s RelationandWrench’sRelation
40ABriefIntroductiontoVortexMethods
................ 450
........ 450
451
.........
.... 451 References .............................................. 453
455
455
456
458 37.4Properties 459 Reference 460
461
...... 461
........ 462
..... 463
....... 464
......................... 466
38.1.4MatlabSourceCode
... 467
................................... 468 References .............................................. 471
473
473
473
474
475
475
476
476
478 References .............................................. 479 PartVIIVortexMethods
........................
...................... 483
483 40.2ProsandCons 484 40.3AnExampleofVortexMethodHistory 486 xxii Contents
40.1Introduction
40.4Classi ficationofVortexMethods
41TheDifferentAspectsofVortexMethods
41.1FundamentalEquationsandConcepts
41.2DiscretizationandInitialization
41.2.1InformationCarriedbytheVortexElements
41.2.2InitializationandReinitialization
41.2.3Initialization-InviscidVortexPatchExample
41.3Viscous-Splitting
41.3.1Viscous-SplittingAlgorithm
41.3.2RateofConvergenceoftheViscous-Splitting Algorithm
41.3.3ApplicationtotheVorticityTransportEquation
41.4ConvectionandStretchingofVortexElements ............
41.4.1Introduction ................................
41.4.2ConvectionofVortexElements
41.4.3Stretching .................................
41.4.4Applications ...............................
41.5Grid-FreeandGrid-BasedMethods
41.5.1Grid-FreeVortexMethods
41.5.2Grid-BasedVortexMethods (MixedEulerian–LagrangianFormulation) ........ 505
41.5.3CoupledLagrangianandEulerianSolvers
41.6ViscousDiffusion-SolutionoftheDiffusionEquation 506
41.6.1DiffusionEquationandVorticityTransport Equation 506
41.6.2FundamentalSolutionandLamb–OseenVortex 507
41.6.3Core-SpreadingMethod 509
41.6.4Random-WalkMethod 510
41.6.5Grid-BasedFinite-DifferencesMethod 511
41.6.6Particle-Strength-Exchange(PSE) 511
41.6.7NumericalApplication:Lamb–OseenVortex 513
41.6.8VorticityRedistributionMethod ................ 514
41.7Boundaries,BoundaryConditionsandLifting-Bodies ....... 514
41.7.1Introduction ................................ 514
41.7.2FluidBoundaryConditions:Free-Flow andPeriodicBoundaries ...................... 515
41.7.3SolidBoundariesinInviscidFlows .............. 515
41.7.4SolidBoundariesinViscousFlows-Vorticity Generation
....................... 487
..... 489 References .............................................. 490
40.5ExistingVortexCodesandApplicationtoWindEnergy
493
493
495
495
497
498
499
499
500
501
501
501
................ 502
503
503
..................... 504
504
....................
506
Contents xxiii
................................. 516
41.7.5ViscousBoundariesUsingCoupling (Viscous-InviscidorLagrangian–Eulerian) ........
41.7.6Lifting-Bodies ..............................
41.8Regularization-KernelSmoothing-Mollifi cation .......... 517
41.8.1KernelSmoothingviaConvolution withaCut-OffFunction
41.8.2RequirementsontheCut-OffFunction
41.8.3SpecialCaseofSphericalSymmetry
41.8.4ExamplesUsedinParticleMethods
41.8.5RegularizationModelsforVortexFilaments
41.8.6ChoiceofCut-Off/SmoothParameter
41.8.7ApplicationtotheInviscidVortexPatch
41.9SpatialAdaptation-Redistribution-RezoningReinitialization
41.9.1Introduction
41.9.2Remeshing-Rezoning-RedistributionReinitialization .............................
41.9.3GainfromRemeshing-Application toInviscid-VortexPatch
41.9.4ProblemsIntroducedbyRemeshing .............
41.10Subgrid-ScaleModels-LES-Turbulence
41.11AccuracyofVortexMethods,Guidelines,Diagnostics andPossibleImprovements ...........................
41.11.1GuidelinesandDiagnosticsforGeneralVortex Methods
41.11.2BoundaryElements-GuidelinesandDiagnostics 535
41.11.3ParticleMethods-Convergence
41.11.4ApplicationtotheInviscidVortexPatch
42ParticularitiesofVortexParticleMethods
42.1ParticleApproximationandLagrangianMethods
42.1.1NotionofVortexBlob
42.1.2ParticleApproximation
42.1.3DynamicsofLagrangianMethods ...............
42.1.4IncompressibleVortexParticleMethods ..........
42.2StretchingTerm-DifferentSchemes ....................
42.3DivergenceoftheVorticityField .......................
42.3.1MinimizingtheErrorGrowth
42.3.2Corrections
42.3.3CriteriaforCorrection
517
517
519
519
521
524
526
527
529
530
530
530
531
......................
531
................ 532
533
533
536
537 References 539
545
545
545
545
546
547
548
549
549
..................
550
................................
........................ 550 References .............................................. 551 xxiv Contents
43NumericalImplementationofVortexMethods .................
43.1InterpolationMethodRequiredforGrid-BasedMethods .....
43.1.1InterpolationinVortexMethods
43.1.2ConceptofInterpolation ......................
43.1.3InterpolationtoGrid(Projection,Griding, Assignment,Particle-to-Mesh) 556
43.1.4InterpolationfromGrid(Mesh-to-Particle) 557
43.2Tree-CodesandFastMultipoleMethod
43.2.1Tree-BasedMethod
43.2.2Tree-BasedMethod-CoefficientsuptoOrder2
43.3PoissonSolvers
43.4NumericalIntegrationSchemes
43.4.1ExpressionoftheDifferentSchemes
43.4.2ExampleofApplicationtotheInviscidPatch 563
43.4.3WorkPresentedbyLeishman 564
43.5VorticitySplittingandMergingSchemes .................
43.6ConversionfromSegmentstoParticles ..................
43.6.1CanonicalExamplesforValidation .............. 566
43.6.2RepresentationofOneSegmentbyOneParticle .... 567
43.6.3RepresentationUsingSeveralParticles
43.6.4TrailedandShedVorticityBehindaWing
43.7DistributionofControlPoints .........................
43.7.1TheWorkofJames-ChordwiseDistribution
43.7.2CosineSpacingandOtherReferences intheTopic
43.8The3/4ChordCollocationPoint
44OmniVor:AnExampleofVortexCodeImplementation
44.3Speci ficConfigurationsUsedinPublications
45.3LiftingSurface .....................................
45.4ThickBodies ......................................
45.5Unit-Tests .........................................
45.6FurtherValidation ..................................
553
553
553
................
554
558
558
560
561
562
562
564
566
........... 567
........ 568
568
...... 568
569
570
571
References
575
575
576
584 References 585
44.1Introduction
44.2ImplementationandFeatures
587
587
588
589
45VortexCodeValidationandIllustration ......................
45.1SimpleValidationoftheVortexParticleMethod ...........
45.2LiftingLine .......................................
590
591
592 References .............................................. 592 Contents xxv
AppendixA:ComplementsontheRightCylindricalModel andtheEffectofWakeRotation ..................... 595 AppendixB:FromPoisson’sEquationtotheBiot–SavartLaw inanUnboundedDomain .......................... 607 AppendixC:UsefulMathematicalRelations 617 Index 629 xxvi Contents