International Research Journal of Engineering and Technology (IRJET)

Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
e ISSN: 2395 0056
p ISSN: 2395 0072
Shridhar Koppal1, Prasanna Wagh2, Akshay Patil3, Shubham Bhaingade4
1B.E, Department of Mechanical Engineering, L.T.J.S.S. Lokmanya Tilak College of Engineering, Navi Mumbai, Maharashtra (India)
***
Abstract This paper presents an analysis of heat & temperature & how it affects the thermodynamics of a complex body such as a house & predict the temperature variation. For this, the model takes into consideration the different physical properties of a house & the weather around it. The analysis is done on the outside vs inside house temperature & the cost of electricity.
Key Words: Thermal model, House, Thermostat, Scilab, Thermodynamics
SpeakingabouthumancomfortASHRAE(AmericanSocietyofHeating,RefrigeratingandAir ConditioningEngineers)states “Humancomfortisthatconditionofmindwhichexpressessatisfactionwiththethermalenvironment”.Ahouseisacomplex permanentstructurecomprisingofdifferentcomponentssuchasRCCconstruction,bricks,woods,glass,steel&othermetals etc.Each&everycomponentaffectsthetemperaturedistributioninthehouse.Thenumberofpeople&variousappliancesalso affecthowthetemperatureisdistributedacrossthehouse.Thebestwaytoanalyses&improvethistemperaturecontrolisto prepareamodelcalculatingthetemperaturevariationbytakingalltheaffectingfactorsintoaccount.Improperthermaldesign ofthehousenotonlyleadtohumandiscomfortbutalsoincreasedcost&wastageofenergy.
Whenconstructingahouse,itisparamountthattheheatflow&temperaturegradientiskeptinmindasitisutmostimportant for the inhabitants’ comfort. An ideal thermally designed house also resources energy intake & thus prevents wastage of precious natural resources. The interaction between the heating system & thermal demand of a house is complex due to variousfactorssuchasweather,outsidetemperature,inhabitants’comfort&eveneconomicstatus.Thephysicalproperties& characteristicsofthehousealsoplayanimportantrole.
Forthefollowingexperiment&study,asimpleremotehouseisselected.Thehouseisrectangularinshape&has1room.The househasgableroof,angledat40°attheapex.Thehousecontains6windowsofplainglass.Thehouseissituatedinacold regionwithnohumidityforeaseofcalculation.Duetothethermalconditions,thermostat&heaterareusedfortemperature control.
9001:2008
Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
8. WallConductivity 0.038*3600 J/Hr/m/C
9. WallThickness 0.2 m
10. WindowConductivity 0.78*3600 J/Hr/m/C
11. WindowThickness 0.01 m
e ISSN: 2395 0056
p ISSN: 2395 0072
1. Thermostat: Thermostatisaregulatingdevicecomponentwhichsensesthetemperatureofaphysicalsystem&takes actionsothatthesystem’stemperatureisnearthepre determinedsetpoint.Thethermostatisaclosedloopcontroldevice whichmeansithasafeedbackelement&controlstheambienttemperatureofthehousebyadjustingtheheateroutput. The thermostat compares the current temperature of house with the required room temperature. According to the feedbackreceived,thethermostatturnsONorOFF&givesinformationtoheater.
2. Heater: Anelectricheaterconvertselectricenergyintoheatenergy&outputsittothesystemtoraisetheambientroom temperature.Airisintroducedintotheheater&thetemperatureofthisairisincreased&releasedintothesystem.The recirculatedairismixedwithoutsideair&passedthroughapre heatcoiltopreventfreezingofwater&tocontrolthe evaporationofwater.Furthertheairispassedthroughare heatcoiltoraisethetemperatureofairtorequireddrybulb temperature.Thisconditionedairisdistributedintheconditionedspaceviafansofadedicatedventilationsystem.The electricheaterusesforcedconvectionmethodtoheattheair.
Whensignaledbythermostathotairblowsataconstantflowrate.
RateofheatgainbyHeater:
9001:2008
International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
e ISSN: 2395 0056
p ISSN: 2395 0072
3. House: Thehouseisthesystemcontainingthermostat&heater.Theboundaryofthesystemi.e.,thewallsofthehousedo convectiveheattransferwiththesurroundingair.
Rate of heat loss equation: Thermalenergylossfromtheroomisbyconvectionthroughthewalls&windows
Qloss= whereRisthermalresistance.
ChangingroomTemperatureequation.
Fig 3:SuperblockofHouse
Factor value: 7.529 | ISO 9001:2008
Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
e ISSN: 2395 0056
p ISSN: 2395 0072
5. EXPLANATION: Superblocksofthethermostat&heaterareconnectedtothehouse.Thehousereceivesinputfromthe temperaturesensor&sharesthatdatatothethermostat.Thethermostatuponreceivingthedataanalysesitandsends signaltotheheater.Theheaterinterpretsthereceivedcommand&,ifnecessary,increases/decreasesormaintainsthe heatingofthehouse.Themeterconnectedtotheheatercalculatesthecostofoperationoftheheater.Asignalrouting systemcalculatesthetemperaturevariationforanalysis.
6. Results: ThefollowingprojectisdonewiththehelpofScilabsoftware.Acontrolstrategyisdevelopedattachedtoobtain the temperature variation & cost of electricity of the house. The results show that as the outside temperature varies accordingtotheclimate×odoestheindoortemperaturevariesinaccordancewiththeheatsuppliedbytheheater. Thecontinuoustimesystemmeterattachedtotheheatermonitors&calculatesthecostofoperation&conveniently displaysitinagraphicalformat.Itisobservedthatthecostofoperationkeepsonincreasingwhilsttheheaterison& functioningbutitshowsvariousslopessuggestingdecreasingorincreasingoutputwhichshowsthecontrolbythermostat. Thisconcludesthemodelling&analysisofthehouse.
Chart 1:Temperaturevariationofthehouse.
Factor value:
| ISO 9001:2008
International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
e ISSN: 2395 0056
p ISSN: 2395 0072
7. Future scope: Tovalidatethesoftwareresultwehaveplottedthegraphsusingtheoreticalcalculations.Individualscan validatetheseresultsbydoingexperimentalverificationthatisbybuildingtheactualmodelorbydoingindustrialprojects relatedtoThermalmodelling.
8. Conclusion: Thefollowingprojectshedslightuponthefundamentalworkingsystemofhowheatingworksinahouse. Baseduponthedatacalculateditcanbeconcludedthattheheatingofthehouseisinfactdependentonthetemperature variationofthesurroundingclimate.ThethermostatsuccessfullycontrolstheHeater&providesutmostprecision&in turnprovidesthecomfortnecessary.Withthehelpofsystemmeter&signalroutingsystem,theheateroutput&cost deemedcanbedetermined.Allofthishelpsinunderstanding&improvingtheHVACsystemofahouse&canbefurther usedindeterminingofsimilarsystemsinlargerscale.Thepurposeoffindingvariousthermalaspectsofthehousesuchas costofheater,temperaturevariationhasbensuccessfullyattained.
1. DecibelsLab,Bangalore.
2. Dr.S.D.Dalvi(ProjectGuide,LTCE)
References:
1. Thermal modelling of the building and its HVAC system using MATLAB/Simulink “S.Karmacharya,G.Putrus,C. Underwood,K.Markamov,SchoolofComputing,EngineeringandInformationScience2SchooloftheBuiltandNatural EnvironmentNorthumbriaUniversityNewcastleuponTyne,UK”
2. Modelling of thermal processes in apartment houses “Sven Peets, Tõnis Peets and Eugen Kokin Institute of Engineering,EstonianUniversityofLifeSciences,Fr.R.Kreutzwaldi56,51014Tartu.”Proc.EstonianAcad.Sci.Eng., 2006,12,1,59 71
3. MATHEMATICAL MODEL OF SELECTED OBJECT THERMAL PROPERTIES “K.Peszynski,W.Szmyt,S.Wawrzyniak, D.Perczynski”22nd InternationalConferenceEngineeringMechanics2016Svartika,CzechRepublic,9 12May2016
4. Thermal performance modelling of residential house wall systems “Fayez Aldawi, Firoz Alam, Abhijit Date, MohammadRasul;SchoolofAerospace,MechanicalandManufacturingEngineering,RMITUniversity,Melbourne, 3083,Australia,SchoolofEngineeringandtheBuiltEnvironment,CentralQueenslandUniversity,RockhamptonQLD 4702,Australia”ScienceDirectProcediaEngineering49(2012)161 168
Factor value: 7.529 | ISO 9001:2008