Pretreatment Strategies for Sewage Sludge to Improve High Solid Anaerobic Digestion

Page 1

2Professor,

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page268 Pretreatment Strategies for Sewage Sludge to Improve High Solid Anaerobic Digestion Ahmed Y. Bakry1, Hanan A. Fouad2, Rehab El-hefny3 , Ahmed M. Aboulfotoh4 1

sludge is one of the most efficient, effective, and advancesasmeritsmechanical,sludgeefficiency.sludgehindlargetheenvironmentallysustainableremediationtechniques;however,presenceofcomplexflocstructures,hardcellwalls,andamountsofmolecularorganicmatterinthesludgeerHSADhydrolysis.Asaresult,pretreatmentofsewageisrequiredtospeeduphydrolysisandimproveHSADPretreatmentapproachesforenhancingsewageHSADareincludedinthisreview,whichincludechemical,thermal,andbiologicalprocedures.Theanddisadvantagesofvariouspretreatmentprocesses,wellastheireffectiveness,areexplored,andrecentforincreasedbiogasproductionarereviewed.

***

Key Words: Anaerobicdigestion,SewageSludge,digestion, HighSolid,Pre treatment. 1.INTRODUCTION

treatmentandtypicallyconventionalbiogasproducesdisposalaschemicalApplicationforstabilizedAlexandria,theEgyptmostlytechnologiesofelementstreatments.createdSSismostlymadeupofdewateredmicrobialbiomassandisinWWTPsduringbiological,chemical,andphysicalPathogens,heavymetals,andothertoxicarealsopresentinSS[1].Around2.1milliontonsdrysolidsareproducedannuallyinEgyptduetotheutilizedforwastewatertreatment,whichareactivatedsludgebased.ThemajorityofWWTPsinlackpropersludgestabilizationfacilities,exceptforWWTPsinhighlivingstandardsgovernorates(e.g.,Cairo,andGiza).Therefore,about85%ofthenonsludgeisimproperlydisposedanddirectlyusedagriculturalpurposes.toagriculturalsoil(afterAD,composting,ortreatment),incineration,landfilling,andrecyclingbuildingmaterialsareamongoftheSStreatmentandoptionsused[3].TheadvantageofADisthatitmethane(CH4),whichisthemajoringredientof(5565%),resultinginarenewableenergysource.IndigestersprocessingSS,specificCH4outputvariesbetween0.19and0.24Nm3kgVSin1[4]isdependentontheSRTusedinthewastewaterline[5].

ADalsominimizestheamountofsludgesolidsthatmustbe disposed of, stabilizes the sludge, eliminates microorganisms, and reduces odour emissions [7,8]. The following are the main disadvantages of AD of SS: (1) low reaction rates (due to slow hydrolysis of bacterial aggregates), resulting in large reaction volumes and high understandingmanagement,differentandpretreatmentmanagementdegradationamount,substrateinexperiment.methaneshownstructurepretreatmentChemical,whichmethanogenicFAN,hand,waterIncreasedspacecontentTSgreaterdiTheelevatedregulation,Othercompounds,productionresiliencedigesterinvestmentcosts;(2)processvulnerabilityandlowtoinhibitor(e.g.ammonia)accumulation;(3)ofhydrogensulphide(H2S)andvolatilesiliconwhichimpedebiogasproductionandutilisation.drawbacksincludeahighbufferrequiredforpHineffectivetreatmentofdilutedwaste,andheavymetalconcentrationsintheADS[8].amountofTSinafoodhasabigimpactonhowwellitgests.PumpingandmixingofthesludgebecomedifficultatTScontent,henceconventionalSSADisdonewithapercentageofbetween2and6percent[8].However,TScanbeincreasedbyupto25%to(1)reducestoragewithintheWWTPand(2)lowertransportationcosts.TSlevelsincreasedigestercapacitywhilereducingadditiontothefeedsubstrate[9].HSAD,ontheothercausesthebuildupofinhibitorymetabolitessuchH2S,andLCFA,allofwhichcandisruptorslowdownactivity[10,11].DSSalsohasahighviscosity,canmakemixingandpumpingactivitiesdifficult.thermal,biological,oracombinationoftheseproceduresdegradethecomplexsludge[26].Thesepretreatmentprocedureshavebeentolowersolidbulk,rupturecomplexEPSs,andboostgenerationduringHSADinapilotscalelaboratoryPretreatmentisessentialtomanagesubstratesordertomaximizetheiruseinHSAD,anditalsoenhancesbiodegradability,increasessolublesubstratereducesSSviscosity,promotesmicrobialaccessibility,andlowerstotalsludgecost[32].Becauseoftheseadvantages,SSisconsideredtobecriticalforeffectiveHSADhasgainedworldwideattention.ThisstudyexaminespretreatmentapproachesthatarerequiredforSSwiththeprimarygoalofgainingabetterofcurrentlyusedpretreatmentprocedures.

Abstract - Highsolidanaerobicdigestion(HSAD)ofsewage

3Assistant

4Assistant

Lecturer Assistant, Sanitary Engineering Department of Civil Engineering, Shubra Faculty Benha University Sanitary Engineering Department of Civil Engineering, Shubra Faculty Benha University Professor, Sanitary Engineering Department of Civil Engineering, Shubra Faculty Benha University Professor, Sanitary Engineering Department of Civil Engineering, Faculty of engineering Zagazig University

Sewage sludge complex organic matter (OM) composition processes,Furthermore,aphospholipidprotectedbiodegradabilityflocEPS,metabolismincludedto(>75substances,oftenwhichItheseup[9].durationstreatment,Despiteaccessibility,reducesbiodegradability,maximizePretreatmentduringbulk,preproceduresbiological,acceleratesludgethetheseveralsludgeresistantflocprovidesbarrierstoeffectiveAD.Thepresenceofacomplexstructure(extracellularpolymericsubstances,EPSs),cellwalls,andotherhighmolecularweightOMinhasbeenreportedasabarriertoADhydrolysisininvestigations[6].Becauseofthehydrolysisissue,retentionperiodislonger,thebioreactorislarger,andbiogasyieldislower.SeveralstudieshaverecommendedpreparationpriortoADtopromotehydrolysisandmethaneproduction[13].Chemical,thermal,oracombinationofthesepretreatmentdegradethecomplexsludgestructure[5].ThesetreatmentprocedureshavebeenshowntolowersolidrupturecomplexEPSs,andboostmethanegenerationADinapilotscalelaboratoryexperiment.isessentialtomanagesubstratesinordertotheiruseinAD,anditalsoenhancessubstrateincreasessolublesubstrateamount,SSviscosity,promotesmicrobialdegradationandlowerstotalsludgemanagementcost[19].thepreviouslynotedadvantagesofanaerobicSSADischaracterizedbylengthyretention(20days)andlowVSdegradation(3050percent)Thesluggishhydrolysisofthecellaggregatesthatmakesecondarysludgehasbeenrecognizedasthesourceofrestrictionsbyscientists[23].ndeed,SSmostlycontainsmicrobialaggregates(flocs),aremicroorganismsboundtogetherbyEPS,whicharecomposedofproteins,polysaccharides,andhumiclikeinadditiontoaconsiderableamountofwaterpercent).EPSformsathreedimensionalmatrixbondedthesurfaceofthecells,whichshieldsthemicroorganismsintheaggregate.Itisgeneratedthroughmicrobialandlysisoradsorbedfromthebulksolution.inparticular,preventscellruptureandlysis,increasesstrength,andreducesflocdewaterabilityand[24].Furthermore,eachmicroorganismisbyacellmembranethatismadeupofabilayerwithembeddedproteinsandservesasphysiochemicalbarriertodirectAD[8].duringthethickeninganddehydrationcPAMiscommonlyaddedintherangeof2.510g

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008

• When concentrated or dewatered, SS is a pseudoplastic standardsignificantlyspecializedrheologicalForfluidthatexhibitsyieldstressandviscoelasticbehavior[19].adequatepumpingandmixingathighTSconcentrations,andCFDanalyses,aswellastheinstallationofdevices,maybenecessary,resultingingreaterinvestmentandoperationalcoststhanADsystems.

3. PRETREATMENTS TO ENHANCE THE ANAEROBIC BIODEGRADABILITY OF DSS

•TheanaerobicbreakdownofproteinaceousmaterialbySS HSADresultsinsubstantialammoniabuildup.SShasahigh protein level, with protein content ranging from 12 to 29 percentofTSformainsludgeand25to50percentofTSfor secondarysludge[17].Underthermophiliccircumstances, thelikelihoodofammoniainhibitionrisesdramatically,as thefractionofFAN(themosttoxicformofammonia)rises with temperature [18]. As a result, ammonia removal is frequentlyrequiredtopreventtheanaerobicprocessfrom beingdisrupted.

Certified Journal | Page269

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072

2. HSAD OF SS OVERVIEW

InmostWWTPs,sludgetreatmentincludesthickeningand dewatering, which separates the solid and liquid componentsofthesludgesothatitcanbereadilyhandled raisesevencentralizingconsumptionkeepingconcentrationandforplantsmoreinfrastructure,mergingalwaysurbanizeddemandsinsufficienttypicallytheimproveforeventualdisposal.Polyelectrolytesarefrequentlyusedtoflocadhesionanddewateringeffectiveness.Duetohighwatercontentoftreatedsludge,anaerobicdigestersrequirelargeoperatingvolumes,resultinginbiogasoutputtomeettheWWTP'senergy[11,12].Asaresult,insmallWWTPsandhighlylocationswithlimitedland,typicalADisnotanticipated[13].Smalltownsandcitieshavebeenincreasinglyfrequentlyinrecentdecadestomakesuchassewageandwastetreatmentfacilities,effectiveandconvenienttouse[14].CentralizedADthatacceptDSSfrommanyWWTPscanactashubsAD,loweringsludgetreatmentcostsbothoperationallyfinancially.DigestingsludgewithahighTSallowsforlowertreatmentvolumeswhilethesameVSloadingrate,resultinginlowerenergyandtransportationcosts.Asaresult,SSvalorisationmayresultinenergyneutralorpositiveADplants.However,thehighTScontentofDSSseveralchallengesforthedigestionprocess:

•ThehydrolyticstageofADofSSisoftentherate limiting phase, as secondary sludge is rich in difficult to digest bacterialcells[15].Thepolyelectrolytesusedasflocculants slow down the hydrolysis process even more, and have recentlybeendemonstratedtoreducemethanegeneration [16]. To promote SS biodegradability and hydrolysis, thermal and ultrasonic pretreatments, chemical conditioning, and cavitation are commonly used [7]. However, due to rheological problems, applying these procedurestoDSSisnotalwayspossible.

• Biogas from Sewage Sludge by Anaerobic Digestion is usually utilized in (1) boilers for heat generation, (2) combustion engines for combined heat and electricity production,and(3)biomethaneupgradingplants.Priorto using biogas, these technologies normally necessitate

andandpotassium,0.730soilAsidetreatment.thatpurificationpretreatments[20].HSADofSSproducesbiogasishighinH2S,VOC,andsiloxanes,necessitatingbiogasfromthesedrawbacks,ADShasalotofpromiseasaamendmentand/orfertilizer[21].ADStypicallycontains55percentstabilizedOM,upto3percenttotalnitrogen,1.5percenttotalphosphorus,0.7percenttotalandvaryingquantitiesofmagnesium,sulphur,heavymetalions.DrySShasaheatvalueofbetween1215MJkg1[22].

temperaturesthatsludgewithWhenpercentdiscoveredhadClimentthere°C.percentperiods,[7temperatureprimarysludgeandWAS,Aboulfothetal.foundthatthebestrangeforOMsolubilizationwas175200°C0].Duringthe60120and60240minutetreatmenttheCODsolubilizationratioincreasedfrom11.25to15.1percentand25.1percent,respectively,at175Duetotheimpactofhightemperaturepretreatment,hasbeensomefluctuationinbiogasproductionresults.etal.observedthathightemperaturepretreatmentnoeffectonmethaneproduction,butCarrèreetal.thatitincreasedbiogasoutputbyupto150[71].lowtemperaturethermaltreatmentsarecomparedhightemperaturethermaltreatmentsbyusingthesameandthesamereactors,laboratorystudyhighlightedthebestresultsareobtainedwithoperationalintherangeof140 160◦C[36].Specifically, Xue et al. [36] reported that, with respect to raw or pretreatedDSS(16.7%TS)attemperatures<120◦C,the biogasproductionincreasedby6 16%andtheSRTcouldbe reduced from 18 to 20 d to 12 14 d after a sludge pretreatmentcarriedoutat140 160◦C.However,another studyfoundthatevenwhenthepretreatmenttemperature wasraisedto140 165°C,theorganiccontentbecamemore solubilized,withsolubleCODincreasingfrom32to45gL 1, HSADquantityammonification[38].thetheadditionalsolubilizedmaterialwasnotdegradableduetoformationofmelanoidins,whicharenotbiodegradableLowertemperatureswouldalsominimizetheofproteinsinthesludge,loweringtheofammoniainthepretreatedsludgefedintothedigestion[39].

3.2.1 Ultrasonication

One of the most well studied and successful mechanical pretreatment procedures for improving sludge biodegradability is ultrasonication. In cavitation, ultrasonicationproduceshydro mechanicalshearforcesthat damage the sludge structure [31]. During sludge pretreatment,manyphysicalparameterssuchasultrasonic frequency, temperature, and density have been shown to influence the cavitation process [40]. On solubilization,

3.2 Physical Pretreatments

Pretreatment with physical and mechanical agents disintegrates solid particles, lowering their size and hence increasingparticlesurfacearea,whichaidstheADprocess [11]. According to much research, bigger particles have a lower chemical oxygen demand (COD) and produce less biogas[39].

The use of thermal pretreatment to improve HSAD hydrolysis is a well known commercially established technology[27,29].SSandotherwastesareheatedtohigh temperatures in the thermal pretreatment process, which causes hydrolysis and increases the digestibility of SS and otherwastes[30].Thispretreatmentmethodbreaksdown cellmembranes,resultinginsolubleorganicsubstratesthat are easily hydrolyzed during digestion [29]. Pathogen 100temperaturedonepretreatmentsimprovedsterilization,sludgevolumereduction,odourelimination,andsludgedewaterabilityarealladvantagesofthermal[27].ThethermalprocessingofSShasbeenatvarioustemperatures(50250°C)[29].Low(lessthan100°C),hightemperature(morethan°C),[26]

Low temperaturethermalpretreatmenthasbeenshown increasing24.4anaerobicsludgeincreasedresult,increasedsludgeat27.718.380°C,theestablishedpretreatmentoptimalofsolidsorganicthesludgetobeanefficientapproachforimprovingCADwhentreatingwithaTSof25.Thermalpretreatmentcanincreasehydrolysisofsludgeparticlesandmacromolecularcompoundswhilealsoloweringtheviscosityofhighsludge,accordingtotheory.Infact,asthetemperaturethesludgerises,itbecomesmorefluid[87],[88].TheparametersforlowtemperaturethermalofmunicipalwastewatersludgewerebyNazarietal.[89].Accordingtotheirfindings,besttemperature,time,andpHforpretreatmentwere5hours,andpH10correspondingly.sCODincreasedto7.5percentundertheseconditions,butVSdeclinedto12.3%[89].AccordingtoXiaocongLiao,after30minutesoftreatment60,70,and80degreesCelsius,9.1,13.0,and16.6%ofsolidsweredissolved,andsludgeflowindicesfrom0to0.098,0.195,and0.249,respectively.Asathermalpretreatmentat60,70,and80degreesCelsiusthequantityofaccessiblesubstratesanddecreasedviscosity,resultinginbiogasproductioninbatchdigestionexperimentsincreasingby7.3,15.6,andpercent,respectively,andapparentkineticconstantsfrom0.19d 1 to 0.29, 0.39, and 0.39 d 1 , respectively, compared to the control. The improved digestionfollowinglow temperaturethermalpretreatment confirmedtheefficacyofthistechniquetoacceleratehigh solidsanaerobicdigestion,aswellasincreasebiogasyield.

3.1.1 Low Temperature Pretreatment

3.1.2

3.1 Thermal Pretreatments

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page270 kg TS 1 to limit the hydrolysis rate and reduce methane production [25]. cPAM is utilized to agglomerate the flocs and other particles present in the sludge by charge neutralization and interparticle bridging, resulting in increaseddewaterabilityandlowerDSStransportcosts. Many investigations in the previous decade have concentrated on mechanical, thermal, and chemical pretreatmentswiththegoalofeliminatingmicrobialclumps and cells before AD of SS. The above mentioned slowly biodegradable biomasses are changed to lower molecular weightandquickerbiodegradablecompoundsasaresultof these pre treatments, boosting the hydrolysis rate, VS conversion efficiency, and subsequent bio methane generationofHSAD.

High Temperature Pretreatment

Treatmentdurationandappliedtemperatureareimportant factorsinsludgesolubilization[6].TheCODandVFAratios will increase as the temperature rises. In a mixture of

comparisonoutputrateincreasedthatproductionfofreducedindosage.TheKOHarereliessolubilizationpressure,reactionleavingsludgeAlkalipretreatmentisawidelyusedapproachfordisruptingcellsandEPSs,allowingOMtobedissolvedwithouttoxicresiduesinthedownstreamprocesses.Thecanbecarriedoutatroomtemperatureandwithlittleenergyrequirements[26,30].TheeffectivenessofCODduringalkalipretreatmentonthetypeofchemicalsusedforpretreatment,whichenumeratedindescendingorderofefficiency:NaOH>>Mg(OH)2>Ca(OH)2,andtheirconcentrations[26].amountofsolubilizationisrelatedtothechemicalLargedosesarerelatedwithincreasedsolubilizationgeneral,whileexceptionallyhighdosesareassociatedwithHSADactivity[58].Weietal.investigatedtheeffectalkalipretreatmentonhydrogenproductionfromSSandoundthatataninitialpHof11.0,maximalhydrogenwas10.32mL/gCOD[59].AnotherstudyfoundafteralkalipretreatmentofWASwithapHof12.0,sCODfrom200to8000mg/L[60].Lietal.achievedaof38.3percentSSorganicdecompositionandabiogasof0.65L/gvolatilesuspendedsolids(VSSs)into30.3percentand0.64L/ginthecontrol[61].

andAhnlookedattheeffectofmicrowavepretreatmenton themiXtureofprimaryandsecondarysludgeduringADand found a 3.2 fold increase in the sCOD to total COD (tCOD) ratio and a 41 percent reduction in VS [54]. This was methaneaddition,Salmonellaperfringensal.hydraulicincreasinghelpsacomplementedbya53%increaseindailybiogasoutputwithshorterhydraulicretentionperiod.MicrowaveirradiationkillharmfulbacteriaduringAD,inadditiontobiogasoutput.Afterirradiationat70°C(900W;retentiontime=1525days)beforeAD,KuglarzetfoundthatmicrowavepretreatmentreducedClostridiumby50%,totalbacteriaby77percent,andspp.andEscherichiacoliby100percent.Incomparedtountreatedsludge,35percentmorewascreated[55].

methodmostlycompoundspretreatmentpretreatment,haveannihilationthebiogasacids,Chemicalpretreatment,whichuseschemicalreagentssuchasalkalis,andoxidantstohydrolyzethesludgeandboostproductionbyenhancingcellulosebiodegradability,ismostpromisingstrategyforcomplexorganicwaste[26,29,56].VariouschemicalproceduresforADbeeninvestigated,includingalkaliandacidaswellasozonation[29];however,chemicalisnotsuitedforquicklybiodegradable[57].Thechemicalpretreatmentoutcomeisdeterminedbytheorganiccompoundproperties,theutilized,andthechemicalvarietyused.

breakdownpromoteslignocellulosicalkaliAcidpretreatmentforSSADhasgottenfarlessattentionthanpretreatment,yetitismoresuccessfulattreatingcompoundscontainedinSSbecauseithydrolyticmicrobeconcentrationandligninunderacidicconditions[26].CODandother

3.3.2 Acid Pretreatment

Microwave irradiation pretreatment is another option for WASADpretreatment.Microwaveirradiationpretreatment useswavelengthsbetween1mmand1m,withfrequencies between300MHzand300GHz.Microwavepretreatment biodegradabilitypretreatmentAdditionally,inhasbeenshowntoboostbiogasgenerationby50%,resultingeffectiveorganiccompoundsolubilization[52].inasemicontinuousmanner,microwaveofSSADboostedmethaneoutputandby20%and70%,respectively[53].Park

Pretreatment with high pressure homogenization (HPH) involves an abrupt pressure gradient (up to 900 bar), [29].impact[50].HPH,thewhilehomogeniza(COD)9.58with2.48HPH[27,47].CODsubsequentcavitation,strongshearingforces,significantturbulence,anddepressurization,whichresultsinahighsoluble(SCOD)concentrationandmacromoleculehydrolysisZhangetal.discoveredthatthebestenergyefficienttreatmentforSSwithatotalsolid(TS)percentageofpercentwasatahomogenizationpressureof30MPaasinglehomogenizationcycle[48].Furthermore,forag/LTSsludge,amaximalsludgedisintegrationdegreeof43.94percentwasreachedat80MPawithfourtioncycles[49].HPHboostedbiogasproductionloweringodorcausingvolatileSulphurcompoundsindigesterheadspacefrommunicipalwastesludgeontheotherhand,hasbeenshowntohaveaminoronpathogeneliminationthroughouttheADprocess

3.3.1 Alkali Pretreatment

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page271

3.2.2

High Pressure Homogenization

biological activity stimulation, and enzyme release, destructionincreaseWASgenerationthathighdisadvantagesludgepretreatmentultrasonicationreleaseWAS[41].moderate40%Ultrasonicatiminutes0.5deteriorationMethanocorpusculumpercentimpactThenm)cause[26].ultrasonicationhasphysical,chemical,andbiologicalimpactsTheeffectofultrasonicationonCODparticlesizemaythepeakintheparticulatefraction(morethan1600tomovetothesmallestsizerange(lessthan2nm)[42].frequencyanddurationofsonificationplayacrucialinboostingtheADprocess.Lietal.achieveda53.8increaseinmethanegenerationwithaquickdropinabundanceanddewaterabilityinwasteactivatedsludge(WAS)atadensityofW/mL,frequencyof20kHz,andsonificationfor80inwasteactivatedsludge(WAS)[40].onincreasedbiogasproductionbymorethanatalowspecificenergyinputandaround15%ataspecificenergyinput,accordingtoAppelsetal.Furthermore,ultrasonicWASpretreatmentloweredlevels,improveddewateringability,andinducedCODfrombiosolids[43].Accordingtoearlierresearch,isthemostextensivelyemployedprocedureforincreasedbiogasgenerationanddewaterabilityduringWASAD[44].Thefundamentalofultrasonicationpretreatment,however,istheenergycost[45].Furthermore,notallresearchfoundultrasonicationpretreatmentimprovedbiogasandtheeliminationofvolatilesolids(VS).Afterultrasonication,Sandinoetal.foundonlyaminorinmesophilicmethaneproductionandVS[46].

3.2.3 Microwave Irradiation

3.3 Chemical Pretreatments

increasing the hydrolytic activities of the endogenous microbial population [72]. Both aerobic and facultative anaerobic microorganisms benefit from the oxygenic environmentintermsofhydrolyticactivity.Thesebacteria duringhydrolysisthermophilicsuggest64retemperatureincreasebacterium,Geobacillus[32].resultingbacterium,[75].ADTrichoderma[74]boostedhydrolytic48microaerobicairflowmethanogenicppretreatment,20%21%microandalsoseveral[26].solubilizationbecausepretreatmentbywithpretreatmentanaerobicsubstratesSSarevaluablebiologicalresourcesthatcanbeexploitedtocurebeforeAD[32].Exoenzymesthatslowlybiodegradethatwouldotherwiseremainrefractoryinsettingsarestimulatedbymicroaeration[72].Hightemperatures(>70°C)combinedoxygenenhancetheproductionofhydrolyticenzymesthehydrolyticmicrobialpopulation(e.g.,proteases).ThisisalsoknownastheautohydrolyticprocedurethesehydrolyticenzymespromotesludgeandorganiccompoundbreakdownduringADMicroaerationtreatmentbeforeADhasbeenproveninstudiestoimprovenotjusttheADhydrolysisstepbuttheoverallmethaneproduction[7274].Withinfectednoninoculatedsubstrates,LimandWangobservedthataerationpretreatmentimprovedmethaneoutputbyand10%,respectively[72].Anotherstudyrevealedaincreaseinmethaneyieldaftermicroaerationindicatingthatshorttermoxygenretreatmentdoesnotreduceanaerobicmethanogens'activity[73].Montalvoetal.optimizedtherate,pretreatmenttime,andtemperatureforpretreatmentofSS[74]andfoundthat0.3vvm,h,and35°Cwerethebestconditionsforgreateractivity.MicroaerationpretreatmentofSSmethanegenerationby211percentinthissituationcomparedtotheprocedurewithoutpretreatment.viridepretreatmentoforganicwasteimproveshydrolysisand,asaresult,increasesmethanegenerationBacilluslicheniformis,athermophilicproteolyticwasfoundtobeeffectiveforsludgepretreatment,inimprovedOMstabilizationandgasgenerationBioaugmentationforsludgepretreatmentwiththermodenitrificans,anaerobicthermophilicresultedina21%reductioninVSanda2.2foldinmethanegeneration[76].Anotherstudyusedaof55°CtoimprovetheADofmixedsludge,sultingina12percentincreaseinbiogasoutputanda27percentreductioninVS[77].Overall,theseinvestigationsthatanaerobicpretreatmentwithoxygenorahydrolyticmicrobialpopulationovercomestheprocessissuesandboostsbiogasgenerationAD.

Anaerobic Pretreatments

3.4.1

Aerobic Pretreatments

Biological pretreatments are environmentally benign strategies that predigest and increase the AD hydrolysis stages using aerobic, anaerobic, and enzymatic processes [29]. These stages can be made better by using a complex matrixofbacteriathatworktogethertodisintegratethefloc structure of sludge and other organic substances [46].

Ozone (O3) isa powerful oxidantthathassparkeda lotof interest in WAS pretreatment. In comparison to other generationinstabilityinfluencetreatmentaincreasesandO3/gFurthermore,withAkpercentrecalcitrantonozoneozonesubstances.directlyconcentrationchemicalpretreatments,thisapproachdoesnotraisethesaltandleavesnochemicalresidues[64].Bothandindirectly,ozonationreactswithorganicThehydroxylradicalsareusedintheindirectreaction,whereasthedirectreactionincludesfastbreakdownintoradicals.Thismechanismisdependentthereactantstructure,whichaidsinthebiodegradationofchemicals[29].Biogasoutputincreasedby200followingsludgeozonationbeforeAD,accordingtoetal.[66],andbiogasproductiondoubledwhencombinedalightozonetreatment(at1.33mgO3/gVSS).withWAStreatment,anozonedoseof0.15gTSsresultedinanincreaseinSCODfrom4%to37%a2.4foldincreaseinbiogasproduction[67].Ozonationbiogasgenerationandsludgesolubilizationwhilelsoremovingpathogenicbacteriafromthewastewatersystem[68].AlthoughozonehasasubstantialonSSAD,thekeydownsidesofozonationareozoneandthehighenergyrequirementforozone[26].

3.3.3 Ozonation

3.4 Biological Pretreatments

BeforeHSAD,sludgecanbetreatedwithairandaerobicor facultative anaerobic microorganisms as an aerobic pretreatment [31]. The micro aeration technique involves fasterinjectingoxygenintothetreatmentsystem,whichaidsinthehydrolysisofcomplexorganiccompoundsby

3.4.2

Anaerobicpretreatmentscanbeconductedbypredigesting thesubstratesinmesophilicorthermophilicenvironments [26]. Temperature phased anaerobic digestion is a typical methodforanaerobicpretreatmentofSS(TPAD).Amainor hyper thermophilic digester is followed by a secondary mesophilic digestion in the TPAD system for sludge pretreatment [29]. Under mesophilic circumstances, it ensuresimprovedacetogenesisandmethanogenesis.Two stage AD [27,31] is another term for this pretreatment structuretechnique.Higherbiogasproduction,enhancedflocandsoliddisintegration,reducedqualitythermalenergy

Althougheco friendlyandcost effective,thispretreatment methodistime consumingandrequiresadequatemicrobial proliferationparameters[30].

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page272

macromolecules solubilization is affected by pH, and followingacidpretreatmentofSSatpH3.3,58percentand 52 percent decreases in tCOD and VSS solubilization were downstreamcostsdueonfurfuralotherproducingmethanemethaneofresultachieved,respectively.Biogasproductionisalsoboostedasaoftheincreasedsolubilization.AfteracidpretreatmentWASatpH2.0,Devlinetal.sawa14.3%increaseinoutput[61].AcidpretreatmentofSSboostedproductionwhilealsoincreasinghydrogenbacteria[62].Strongacidicpretreatment,onthehand,mayproduceinhibitorybyproductssuchasandhydroxymethylfurfural[29].Concentratedacid,theotherhand,isnotrecommendedforacidpretreatmenttoitscorrosivenatureandthepossibilityofincreasedintheneutralizationprocess,whichcouldjeopardiseprocessing[63].

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page273 boostsmesophilicof2methanethermophilic30prefermentationinvestigatedincreasebiogasCH4reductionwastewaterinvestigations.Usingdigestionconsumption,andpathogeneliminationduringthermophilicarejustafewoftheadvantagesofTPAD[27].aTPADtopredigestSShasbeenthesubjectofseveralAt45°C,arecentstudyusingTPADonsludgedigestiondiscovereda77percentinVSandamethanereleasingrateof3.550.47L/Lday[78].AnotherstudyfoundthatTPADincreasedyieldbyenhancingsludgeAD,resultingina3743%inmethanegeneration[79].Bolznellaetal.theeffectofextremethermophilicandfoundthatitincreasedmethaneyieldby50%whencomparedtosinglestagemesophilicandtesting[80].Forbetterdegradabilityandhighergeneration,Geetal.suggestedaretentiontimeof1days,apHrangeof67,andatemperatureof65°C[81].AlltheseinvestigationsfoundthatusingathermophilicTPADimproveshydrolysis,reducesVS,andbiogasgeneration.

Enzyme assisted SS pretreatments have sparked a lot of interestasawaytoimproveADhydrolysis[82].Hydrolytic enzymesaddedtoa pre treatmentsystem improvesludge solubilization,EPSdegradation,andbiogasproduction[26].

Finally, various disintegration techniques have been investigatedtopretreatSSpriortoADinordertospeedup the hydrolysis process and increase biogas output. Pretreatment procedures such as physical, chemical, thermal, and biological expedite SS solubilization, which improvessolidorganicwastebiodegradationandincreases substratesolubility.BecauseofitspotentialtopromoteOM solubilization and pathogen suppression, thermal pretreatmenttoenergyonthedependingsolubilizationpotentialrequirespretreatmentbiodegradabilitypromisingdisintegrationthatproducesforoutput.ofpretreatmenthasbeenwidelyusedinindustry.TheadditionacidorbasetothermalpretreatmentsboostsbiogasUltrasonicationisacommonpretreatmentmethodimprovingbiogasproductionanddewaterability.HPHahighsCODanddecreasesSulphurcompoundscauseodours.DuringAlzheimer'sdisease,electrokineticgreatlyboostsmicrobialdiversity.Anotheroptionforbiogasproductionandsludgeischemicalpretreatment.AnaerobicimprovesAD,boostsmethaneoutput,andlittleenergy.Allofthesepretreatmentshavethetoboostbiogasyield;nevertheless,thesludgeandbiogasgenerationrateshavevariedonthesubstratesandfacilitiesused.Toaddresseconomicandenergychallenges,morestudyisneededthepresentpretreatmentmethods.Finally,intermsofbalanceandenvironmentalsustainability,itiscriticalestablishstandardizedmethodologiesforeachapproach.

ACKNOWLEDGEMENT

Praise and thanks be to Almighty ALLAH with whose gracioushelpthiswork was accomplished.Iwouldliketo expressmydeepgratitudetomysupervisorsintheFaculty ofEngineering,BenhaandZagazigUniversities;Prof.H.A. Fouad,Assoc.Prof.A.M.AboulFotohSalemandAssoc.Prof.

Enzyme Assisted Pretreatments

4. CONCLUSIONS

methanepercentenzyme(Aspergillusand[respectively,sCODcomparedwashydrolysislysozyme,generationlicheniformisproteaseanaerobicglycosidase,biogasreportedprotease,enzymaticlipasesaretreatmentlipidspretreatmentandactivity,recirculatedhydrolysisdigester,pretreatmentdocumentedThefollowingfourenzymaticadditiontechniqueshavebeenbyBrémondetal.:1)additioninaspecialisedvessel,2)directadditioninasinglestage3)directadditioninatwostageprocessdigester'sandacidificationvessel,and4)additioninADleachate[31].Severalparameterssuchasspecificity,amount,enzymestability,temperature,pHshouldbeexaminedandtunedforefficientenzymatic[82].Carbohydrates,proteins,andlimitedmakeupthemajorityofsludgeinwastewaterplants.BecauseWAScontainsEPSrichflocsthatlessbiodegradable[31],carbohydrases,proteases,andarethemostcommonlyutilizedenzymesforsludgepretreatment[30].Enzymessuchasamylase,glycosidase,andglucosidasehavebeentoimproveanaerobicdigestibilityandincreaseproduction,andenzymessuchasprotease,amylase,andglucosidasehavebeenreportedtoimprovedigestibilityandincreasebiogasproduction.ApretreatmentproducedbyutilizingBacillusresultedina26percentincreaseinbiogas[82].Chenetal.investigatedtheeffectsofprotease,andamylasepretreatmentsonWASanddegradabilityanddiscoveredthatlysozymethemosteffectiveoftheenzymestested[83].Whentoproteaseandamylase,lysozymesincreasedconcentrationinthesludgeby2.23and2.15times,andimprovedsludgeflocculationdisintegration86].Enzymaticprocessingofactivatedsludge,foodwaste,theirmixtureshasbeendonewithfungalmashawamori).Pretreatmentofthesehydrolyticrichsubstrateswithfungalmashresultedina54.3reductioninVSanda1.62.5foldincreaseinoutput[84].Forlargescalepretreatment,Odnellet

3.4.3

al. recommended that specialized enzymes that are more adapted to sludge conditions are necessary [85]. Several enzymes were tested for enzymatic activity, lifetime, and biogasproduction(cellulose, amylase,protease,lysozyme, subtilisin, and trypsin). The study found that all of the enzymes tested had a short activity lifetime (less than 24 hours) in WAS and anaerobic digester sludge. Among the thatneededsludgestudieswashowever,treatmentstudied.amylase,pretreatment,increaseinvestigatedenzymes,onlysubtilisinexhibitedaconsiderableinbiogasproduction(37percent)[85].Forsludgetheeffectsofendogenousenzymessuchasprotease,andamixtureofamylase/proteasewereItwasestablishedthatacombinedenzymaticprovedtobebetterforbiogasproduction;forsludgesolubilizationandacidification,amylasebetterthanproteaseormixedenzymes[86].AlloftheseimplythatenzymaticpretreatmentcanimproveADandbiogasproduction;however,moreresearchistoidentifyspecificenzymesforvarioussubstratessomoreeffectiveSSADcanbedeveloped.

[12] LiaoX,LiH,ZhangY,LiuC,ChenQ.Acceleratedhigh solidsanaerobicdigestionofsewagesludgeusinglow temperature thermal pretreatment. Int Biodeterior Biodegrad 2016;106:141 9. https://doi.org/10.1016/j.ibiod.2015.10.023.

[9] Guendouz J, Buffie`re P, Cacho J, Carre`re M, Delgenes JP. High solids anaerobic digestion: comparison of three pilot scales. Water Sci Technol 2008;58:1757 https://doi.org/10.2166/wst.2008.521.63.

[16] Wang D, Liu X, Zeng G, Zhao J, Liu Y, Wang Q, et al. https://doi.org/10.1016/j.watres.2017.12.007.2018;130:281anaerobicUnderstandingtheimpactofcationicpolyacrylamideondigestionofwasteactivatedsludge.WaterRes90.

[1] Li H, Si D, Liu C, Feng K, Liu C. Performance of direct anaerobic digestion of dewatered sludge in long term operation. Bioresour Technol 2018;250:335 64. https://doi.org/10.1016/j.biortech.2017.11.075.

encouragementwife,Finally,forR.M.Elhefny,attheEnvironmentalEngineeringDepartment,theirsincereguidance,encouragement,andhelp.Iwishtoexpressmygratitudetomymother,mymysons,andmysistersfortheircontinuoustocompletethiswork.

[14] Hidaka T, Wang F, Togari T, Uchida T, Suzuki Y. Comparative performance of mesophilic and thermophilicanaerobicdigestionforhigh solidsewage sludge. Bioresour Technol 2013;149:177 83. https://doi.org/10.1016/j.biortech.2013.09.033.

[22] Wi´sniowska E, Grobelak A, Kokot P, Kacprzak M. Sludge legislation comparison between different countries. Ind Munic Sludge, Elsevier 2019:201 24. https://doi.org/10.1016/b978 0 12 815907 1.00010 6. [23] Aquino SF, Stuckey DC. Integrated model of the production of soluble microbial products (SMP) and extracellularpolymericsubstances(EPS)inanaerobic chemostatsduringtransientconditions.BiochemEngJ 2008;38:138 46. https:// doi.org/10.1016/j.bej.2007.06.010.

[13] Duan N, Dong B, Wu B, Dai X. High solid anaerobic digestionofsewagesludgeundermesophilicconditions: feasibility study. Bioresour Technol 2012;104: 150 6. https://doi.org/10.1016/j.biortech.2011.10.090.

[2] Mottet A, François E, Latrille E, Steyer JP, D´el´eris S, https://doi.org/10.1016/j.cej.2010.03.059.2010;160:488indicatorsVedrenneF,etal.Estimatinganaerobicbiodegradabilityforwasteactivatedsludge.ChemEngJ96.

[17] LauDCW.Utilizationofsewagesludgeasaresourcefor protein extraction and recovery. Conserv Recycl 1981;4:193 200.https://doi.org/10.1016/0361 3658 (81)90024 2. [18] Westerholm M, Moestedt J, Schnürer A. Biogas production through syntrophic acetate oXidation and deliberate operating strategies for improved digester performance. Appl Energy 2016;179:124 35. https://doi.org/10.1016/j.apenergy.2016.06.061. [19] 32973.2016;26:1sludgerheologicalZhangJ,HawardSJ,WuZ,DaiX,TaoW,LiZ.Evolutionofcharacteristicsofhighsolidmunicipalduringanaerobicdigestion.ApplRheol10.https://doi.org/10.3933/ApplRheol26

[3] Collivignarelli MC, Abb`a A, Frattarola A, Miino MC, Padovani S, Katsoyiannis I,et al. Legislation for the reuse of biosolids on agricultural land in Europe: overview. Sustainability 2019;11:6015. https://doi.org/10.3390/su11216015.

[11] Lee CH, Liu JC. Enhanced sludge dewatering by dual 6.polyelectrolytesconditioning.WaterRes2000;34:4430https://doi.org/10.1016/S00431354(00)002098.

REFERENCES

[5] BolzonellaD,PavanP,BattistoniP,CecchiF.Mesophilic https://doi.org/10.1016/process.ofanaerobicdigestionofwasteactivatedsludge:influencethesolidretentiontimeinthewastewatertreatmentProcessBiochem2005;40:145360.j.procbio.2004.06.036.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page274

[15] Westerholm M, Schnürer A. Microbial responses to different operating practices for biogas production systems. IntechOpen; 2019. https://doi.org/10.5772/ intechopen.82815.

[20] RasiS,La¨ntel¨aJ,RintalaJ.Tracecompoundsaffecting biogas energy utilisation a review. Energy Convers Manag 2011;52:3369 75. https://doi.org/10.1016/j. enconman.2011.07.005. [21] 99422018;9:1817organomanagementKominkoH,GorazdaK,WzorekZ,WojtasK.Sustainableofsewagesludgefortheproductionofmineralfertilizers.WasteBiomassValorization26.https://doi.org/10.1007/s126490179.

[24] https://doi.org/10.1007/s00253BiotechnolapplicationsubstancesA,DingZ,BourvenI,GuibaudG,vanHullebuschED,PanicoPirozziF,etal.Roleofextracellularpolymeric(EPS)productioninbioaggregation:towastewatertreatment.ApplMicrobiol2015;99:9883905.01569648.

[25] Chu CP, Lee DJ, Chang BV, You CH, Liao CS, Tay JH. https://doi.org/10.1016activatedAnaerobicdigestionofpolyelectrolyteflocculatedwastesludge.Chemosphere2003;53:75764./S00456535(03)005538.

[10] Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol 2008;99:4044 64. https://doi.org/10.1016/j. biortech.2007.01.057.

[6] https://ec.eEurostat.Sewagesludgeproductionanddisposal;2020.uropa.eu/eurostat/.

[26] Neumann P, Pesante S, Venegas M, Vidal G. Developments in pre treatment methods to improve

[4] Bachmann N. Sustainable biogas production in municipal wastewater treatment plants. Technical report.IEABioenergy;2015.

[7] Zhen G, Lu X, Kato H, Zhao Y, Li YY. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full scale application and future perspectives.RenewSustainEnergyRev2017;69:559 1557.https://doi.org/10.1016/j.rser.2016.11.187.

[8] AppelsL,BaeyensJ,DegreveJ,DewilR.Principlesand potentialoftheanaerobicdigestionofwaste activated sludge. Prog Energy Combust Sci 2008;34:755 81. https://doi.org/10.1016/j.pecs.2008.06.002.

[36] Senés GuerreroC,Colón ContrerasFA,Reynoso LoboJF, Tinoco Pérez B, Siller Cepeda JH, Pacheco A. Biogas producing microbial composition of an anaerobic digester and associated bovine residues. Microbiologyopen2019;8:e00854.

[31] BrémondU,deBuyerR,SteyerJ P,BernetN,CarrereH. Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full scale.RenewSustainEnergyRev2018;90:583 604.

[39] ecology.andSJ.ZamanzadehM,HagenLH,SvenssonK,LinjordetR,HornBiogasproductionfromfoodwasteviacodigestiondigestioneffectsonperformanceandmicrobialSciRep2017;7:17664.

[52] Beszédes S, László Z, Szabó G, Hodúr C. Effects of Energyfoodmicrowavepretreatmentsontheanaerobicdigestionofindustrialsewagesludge.EnvironProgSustain2011;30:48692.

[34] Lata K,RajeshwariKV, Pant DC,KishoreVVN.Volatile fatty acid production during anaerobic mesophilic digestionofteaandvegetablemarketwastes.WorldJ MicrobiolBiotechnol2002;18:589 92.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page275 anaerobicdigestionofsewagesludge.RevEnvironSci Bio/Technol2016;15:173 211. [27] Zhen G, Lu X, Kato H, Zhao Y, Li Y Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full scale application and future perspectives.RenewSustainEnergyRev2017;69:559 77. [28] ZhengX,JiangZ,YingZ,SongJ,ChenW,WangB.Roleof feedstock properties and hydrothermal carbonization conditionsonfuelpropertiesofsewagesludge derived hydrocharusing multiple linear regressiontechnique. Fuel2020;271:117609. [29] AriunbaatarJ,PanicoA,EspositoG,PirozziF,LensPNL. Pretreatmentmethodstoenhanceanaerobicdigestion oforganicsolid waste. Appl Energy2014;123:143 56.

[30] MeegodaJ,LiB,PatelK,WangL,MeegodaJN,LiB,etal. A review of the pro cesses, parameters, and optimization of anaerobic digestion. Int J Environ Res PublicHealth2018;15:2224.

[37] AppelsL,BaeyensJ,DegrèveJ,DewilR.Principlesand potentialoftheanaerobicdigestionofwaste activated sludge.ProgEnergyCombustSci2008;34:755 81.

[33] Agabo GarcíaC,PérezM,Rodríguez MorgadoB,Parrado J, Solera R. Biomethane production improvement by enzymatic pre treatments and enhancers of sewage sludgeanaerobicdigestion.Fuel2019;255:115713.

[35] Parkin GF, Owen WF. Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 1986;112:867 920.

[38] Charles W, Walker L, Cord Ruwisch R. Effect of pre aeration and inoculum on the start up of batch thermophilic anaerobic digestion of municipal solid waste.BioresourTechnol2009;100:2329 35.

[44] Oz NA, Yarimtepe CC. Ultrasound assisted biogas production from landfill lea chate. Waste Manag 2014;34:1165 70. [45] [45] YusafT,Al JubooriRA.Alternativemethods of microorganism disruption for agricultural applications.ApplEnergy2014;114:909 23. [46] SandinoJ,SanthaH,RogowskiS,AndersonW, SungS, Isik F. Applicability of ultrasound pre conditioning of WAS to reduce foaming potential in mesophilic digesters.ResidualsBiosolidsManag2005;17:819 35.

[47] Nabi M, Zhang G, Zhang P, Tao X, Wang S, Ye J, et al. Contribution of solid and liquid fractions of sewage sludgepretreatedbyhighpressurehomogenizationto biogas production. Bioresour Technol 2019;286:121378.

[40] LiX,GuoS,PengY,HeY,WangS,LiL,etal.Anaerobic digestionusingultrasoundaspretreatmentapproach: Changesinwasteactivatedsludge,anaerobicdigestion performances and digestive microbial populations. BiochemEngJ2018;139:139 45.

[41] GuoW Q,YangS S,PangJ W,DingJ,ZhouX J,FengX C, et al. Application of low frequency ultrasound to stimulatethebio activityofactivatedsludgeforuseas 2013;3:21848.aninoculuminenhancedhydrogenproduction.RSCAdv

[53] GilA,SilesJA,MartínMA,ChicaAF,Estévez PastorFS, Toro Baptista E.Effectofmicrowave pretreatmenton semi continuousanaerobicdigestionofsewagesludge. RenewEnergy2018;115:917 25. [54] ParkW J,AhnJ H.Effectsofmicrowavepretreatmenton mesophilicanaerobicdigestionformiXtureofprimary and secondary sludges compared with thermal pretreatment.EnvironEngRes2011;16:103 9. [55] KuglarzM,KarakashevD,AngelidakiI.Microwaveand thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants. Bioresour Technol 2013;134:290 7. [56] Yang G, Wang J. Enhancing biohydrogen production from waste activated sludge disintegrated by sodium citrate.Fuel2019;258:116177.

[51] Aguilar Reynosa A, Romaní A, Ma. Rodríguez Jasso R, Aguilar CN, Garrote G, Ruiz HA. Microwave heating processingasalternativeofpretreatmentinsecond gen eration biorefinery: An overview. Energy Convers Manag2017;136:50 65.

[48] Zhang Y, Zhang P, Guo J, Ma W, Fang W, Ma B, et al. Sewage sludge solubilization by high pressure homogenization.WaterSciTechnol2013;67:2399 405. [49] homogenization.ofZhangS,ZhangP,ZhangG,FanJ,ZhangY.EnhancementanaerobicsludgedigestionbyhighpressureBioresourTechnol2012;118:496501.

[32] MerrylinJ,KumarSA,KaliappanS,YeomI T,BanuJR. Biological pretreatment of non flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge. EnvironTechnol2013;34:2113 23.

[43] 2006;14:105treatmentDewilR,BaeyensJ,GoutvrindR.Useofultrasonicsintheofwasteactivatedsludge.ChineseJChemEng13.

[42] AppelsL,Dewil R,BaeyensJ,DegrèveJ.Ultrasonically enhanced anaerobic di gestion of waste activated sludge.IntJSustainEng2008;1:94 104.

[50] Wahidunnabi AK, Eskicioglu C. High pressure homogenizationandtwo phasedanaerobicdigestionfor enhanced biogas conversion from municipal waste sludge.WaterRes2014;66:430 46.

[70] Pilli S, Yan S, Tyagi RD, Surampalli RY. Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol 2015;45:669 702. [71] ClimentM,FerrerI,BaezaMdelM,ArtolaA,VázquezF, thermophilicofFontX.Effectsofthermalandmechanicalpretreatmentssecondarysludgeonbiogasproductionunderconditions.ChemEngJ2007;133:33542.

[82] paperpretreatmentAllenBonillaS,ChoolaeiZ,MeyerT,EdwardsEA,YakuninAF,DG.Evaluatingtheeffectofenzymaticontheanaerobicdigestibilityofpulpandbiosludge.BiotechnolReports2018;17:7785.

[83] Chen J, Liu S, Wang Y, Huang W, Zhou J. Effect of different hydrolytic enzymes pretreatment for 602.activatedimprovingthehydrolysisandbiodegradabilityofwastesludge.WaterSciTechnol2018;2017:592

[64] Hartmann M, Kullmann S, Keller H. Wastewater treatment with heterogeneous Fenton type catalysts basedonporousmaterials.JMaterChem2010;20:9002.

[84] Yin Y, Liu Y J, Meng S J, Kiran EU, Liu Y. Enzymatic pretreatmentofactivatedsludge,foodwasteandtheir miXture for enhanced bioenergy recovery and waste volumereductionviaanaerobicdigestion.ApplEnergy 2016;179:1131 7.

[58] Fang W, Zhang P, Zhang G, Jin S, Li D, Zhang M, et al. 2014;168:167pressurewithEffectofalkalineadditiononanaerobicsludgedigestioncombinedpretreatmentofalkalineandhighhomogenization.BioresourTechnol72.

[67] Bougrier C, Battimelli A, Delgenes JP, Carrere H. Combinedozonepretreatmentandanaerobicdigestion for the reduction of biological sludge production in wastewatertreatment.OzoneSciEng2007;29:201 6.

[81] GeH,JensenPD,BatstoneDJ.Increasedtemperaturein activateddigestionthethermophilicstageintemperaturephasedanaerobic(TPAD)improvesdegradabilityofwastesludge.JHazardMater2011;187:35561.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072

[60] HuY,ZhangC,ZhangC,TanX,ZhuH,ZhouQ.Effectof alkaline pre treatment on waste activated sludge solubilization and Anaerobic Digestion. 3rd Int. Conf. Bioinforma.Biomed.Eng.iCBBE2009. [61] 2012;123:189ofLiH,LiC,LiuW,ZouS.Optimizedalkalinepretreatmentsludgebeforeanaerobicdigestion.BioresourTechnol94.

[78] HameedSA,RiffatR,LiB,NazI,BadshahM,AhmedS,et al. Microbial population dynamics in temperature phased anaerobic digestion of municipal wastewater sludge.JChemTechnolBiotechnol2019;94:1816 31. [79] Akgul D, Cella MA, Eskicioglu C. Temperature phased anaerobic digestion of municipal sewage sludge: a Bardenphotreatmentplantstudy.WaterPractTechnol 2016;11:569 73.

[80] BolzonellaD,PavanP,ZanetteM,FrancoC.Two phase anaerobicdigestionofwasteactivatedsludge:effectof an extreme thermophilic prefermentation. Ind Eng ChemRes2007;46:6650 5.

[68] WangH,XuJ,TangW,LiH,XiaS,ZhaoJ,etal.Removal efficacy of opportunistic pathogens and bacterial communitydynamicsintwodrinkingwatertreatment trains.Small2018;15:1804436.

[57] foretAminFR,KhalidH,ZhangH,RahmanSU,ZhangR,LiuG,al.Pretreatmentmethodsoflignocellulosicbiomassanaerobicdigestion.AMBExpress

[62] Tommasi T, Sassi G, Ruggeri B. Acid pre treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: Effectiveness and reproducibility.WaterSciTechnol2008;58:1623 8.

[59] Wei SZ, Xiao BY, Liu JX. Impact of alkali and heat pretreatmentonthepathwayofhydrogenproduction fromsewagesludge.ChineseSciBull2010;55:777 86.

[72] Lim JW, Wang J Y. Enhanced hydrolysis and methane yield by applying micro aeration pretreatment to the anaerobicco digestionofbrownwaterandfoodwaste. WasteManag2013;33:813 9. [73] AhnY M,WiJ,ParkJ K,HiguchiS,LeeN H,AhnY M,et al.Effectsofpre aerationontheanaerobicdigestionof sewagesludge.EnvironEngRes2014;19:59 66.

[74] Montalvo S, Huiliñir C, Ojeda F, Castillo A, Lillo L, Guerrero L. Microaerobic pretreatment of sewage sludge: effect of air flow rate, pretreatment time and temperature on the aerobic process and methane 7.generation.IntBiodeteriorBiodegradation2016;110:1 [75] culture.ofmethaneWagnerAO,SchwarzenauerT,IllmerP.ImprovementofgenerationcapacitybyaerobicpretreatmentorganicwastewithacellulolyticTrichodermavirideJEnvironManage2013;129:35760.

[63] BhattSM,Shilpa.Lignocellulosicfeedstockconversion, inhibitor detoXification and cellulosic hydrolysis a review.Biofuels2014;5:633 49.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page276

[66] AkMS,MuzM,KomesliOT,GökçayCF.Enhancementof bio gasproductionandxenobioticsdegradationduring Chemanaerobicsludgedigestionbyozonetreatedfeedsludge.EngJ2013;230:499505.

[85] Odnell A, Recktenwald M, Stensén K, Jonsson B H, Karlsson M. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobicdigestion.WaterRes2016;103:462 71. [86] YuS,ZhangG,LiJ,ZhaoZ,KangX.Effectofendogenous hydrolytic enzymes pretreatment on the anaerobic digestionofsludge.BioresourTechnol2013;146:758 61.

[65] Waring MS, Wells JR. Volatile organic compound conversion by ozone, hydroXylradicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oXidant sources. Atmos Environ 2015;106:382 91.

[69] QiG,MengW,Zha J,ZhangS,YuS,LiuJ,etal.Anovel insight into the influence of thermal pretreatment Bioresourtransformationfloatabletemperatureontheanaerobicdigestionperformanceofoilrecoveredfoodwaste:Intrinsicofmaterialsandmicrobialresponse.Technol2019;293:122021.

[76] Miah MS, Tada C, Yang Y, Sawayama S. Aerobic thermophilic bacteria enhance biogas production. J MaterCyclesWasteManag2005;7:48 54. [77] JangHM,ChoHU,ParkSK,HaJH,ParkJM.Influenceof thermophilic aerobic digestion as a sludge pre treatment and solids retention time of mesophilic anaerobicdigestiononthemethaneproduction,sludge digestion and microbial communities in a sequential digestionprocess.WaterRes2014;48:1 14.

Watersludge:Theviscoelasticbehaviorofrawandanaerobicdigestedstrongsimilaritieswithsofteglassymaterials.Res.47,173e180. [88] Farno, E., Baudez, J.C., Parthasarathy, R., Eshtiaghi, N., 2014. Rheological character ization of thermally treated anaerobic digested sludge: impact of temperature and thermal history. Water Res. 56, 156e161. [89] NazariL,YuanZ,SantoroD,SarathyS,HoD,BatstoneD, et al. Low temperature thermal pre treatment of Watereffectsmunicipalwastewatersludge:processoptimizationandonsolubilizationandanaerobicdegradation.Res2017;113:11123.

[87] Baudez,J.C.,Gupta,R.K.,Eshtiaghi,N.,Slatter,P.,2013.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page277

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.