A Web-based Attendance System Using Face Recognition

Page 1

2.1 Literature Review

Facerecognitionremainsthemostpopularamongvarious means of identification, such as fingerprints [1], RFID [2], passcodes,andsoon.Facerecognitionisstilldevelopingto predict[3]andverifytheperson,evenwhentheothersare accurate.AccordingtothepresentCOVID 19scenario,itis thediscussedareSectionandinteraction.monitoringgiveFurthermore,facialcreatedorderputsattendaessentialtohaveabasiccontactsystemandkeepmeticulousncerecords.Theoldmethodofcollectingattendanceusersindangeroftransferringdiseasesandviruses.Intofindasolution,thiswebbasedapplicationwastoofferacontactlessattendancesystemthatusesarecognitionmodeltotrackstudents'attendance[4].itautomatesallavailablestatisticalanalysestoinstructorsandstudentshasslefreeattendanceandeliminatestheneedforanypersonalInpart2,thestudyopenswithanintroductionaliteraturereview.Thesuggestedsystemisdescribedin3.Insection4,thesuggestedsolutionandapproachpresentedindetail.TheexperimentalfindingsareinSection5.Intheconcludingportion,section6,studyconcludeswithaconclusionandfuturescope.

2. RELATED WORK

p ISSN: 2395 0072

e ISSN: 2395 0056

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page961

International Research Journal of Engineering and Technology (IRJET)

Volume: 09 Issue: 03 | Mar 2022 www.irjet.net

Thesystemmustbebuiltusingareal timefacialrecognition modelthatofferscorrectservicewiththefewestpotential differences.Afterexaminingthedifferentmodelsstatedin [5][6][7][9][13][14], it was determined that the 'python3

Mr. Rajvardhan Shendge1, Mr. Aditya Patil2, Mrs. Tejashree Shendge3

Abstract Covid 19 has generated a paradigm change in day to dayworkthathasneverbeenseenbefore.Intoday's efficienttheattendance,userrecommendations.Furthermore,techniqueuploadingmanuallytechniquesmustrequired.environment,socialdistanceandlimitedphysicalcontactareDespitethesechallenges,educationalinstitutionscontinuetooperate.Mostinstitutions'existingfordocumentingclassroomattendanceentailputtingthestudent'ssignatureonpapersandthenthemintothesystemforfurtheranalysis.Thisiscurrentlyoutdatedandantiquated.itisharmfulsinceitcontradictsthecontactlessThisarticleoffersamethodinwhichamayutilizefacialrecognitiontoregisterhisorherandoursystemwillautomaticallygenerateallofdatafortheinstructorstoevaluateinapainlessyetway.

1, 2Student, Computer Engineering, Ramrao Aidik Institute of Technology(India)

Key Words: AttendanceSystem,FacialRecognition,Web basedapplication,Onlineclassroom,Opensource

A Web-based Attendance System Using Face Recognition

1.INTRODUCTION

face recognitionprogrambuiltbyAdamGeitgey[4]offered students,institutionprovideswithattendance.student'staughtmanualthis'GooglecomputeradditionaldexactingBeThereTocompatibility.preliminaryareas,ideaandfasterAninsufficient.analyticsaboveThisFaceresultingdatabasemodelhistogramsAalerts.tosystem'sForattendancereliablesuggestedfacialartandFacesthegreatestaccuracy.ThereportedaccuracyontheLabeledintheWildbenchmarkdatasetis99.38percent[4],thispackageisconstructedutilizingdlib'sstateofthefacerecognition,adeeplearningbasedarchitecture.Forrecognition,[5]usesa20layeredCNNmodel.Theapplication[5]fallsshortwhenspecifyingaserveranddatabasearchitectureforrealtimemanagement.facedetection,[6]usestheDlibCNNlibrary.Thisdataanalyticsareinaccessible,andthesystemfailscommunicatewithitsstakeholdersthroughemailsorhaarcascadeclassifierpairedwithlocalbinarypattern(LBPH)wasusedtocreatethefacerecognitionin[7].ItisaSQLdatabasethat'sbeenutilized.Thearchitectureoftheproposedsystem[7]ispoor,inrestricteddataanalysesrecognizersHaarCascadeandLBPHareutilizedin[9.studycontinuesworkingonimprovingtheaccuracyto90%andmakingthegadgetmoreportable.Thedataofferedtothecompany'sstakeholderswereenhancedAlexnetmodelisutilizedin[14],whichhasatrainingtime(109ms),fewernetworkparameters,afasterfeatureextractiontime(98ms).Althoughtheisintriguing,theprogramasawholefallsshortinmanyincludingthelackofauserfriendlyinterface,dataanalysis,andlackofmultiplatformaddresstheinadequaciesofthepreviousexamples,presentsacomprehensiveapplicationwithandatabasemanagementsystem.Itprovidesindepthataanalyticstoitsconsumerstopresentthemwithinformation.Italsosupportsmobileanddevicesonamultidevicebasis.Furthermore,aClassroom'[8]likearchitectureisimplementedintosystemtorelievestudents'relianceandinstructorsfromattendancemarkingforawidevarietyofcoursesinvariousbatches.ThisstructureallowseachenrolmenttobemarkedindependentlyforTheclassroomarchitecture,whencombinedafacerecognitionsystemforrecordingattendance,aplethoraofopportunitiesfortheeducationaltokeepacalculativeandstatisticalrecordofteachers,attendance,absentees,massbunks,

3Student, Electronics and Telecommunication Engineering, Fr. C. Rodrigues Institute of Technology(India) ***

Most commercial face analysis methods favor one race, ethnicity, culture, age, or gender over another [10]. The systemusesAdamGeitgey'spythonfacialrecognitionmodel [4].ThemodelisbasedonLabeledFacesInTheWild(LFW) andhasa99.38percentaccuracyrate.TheLFWdatasethas a uniform distribution of demographics [10], including a widevarietyoffacesbelongingtodiverseethnicities,races, and genders, which helps to reduce bias in visual face Manyidentification.onlineapplicationsarestillconcernedaboutcross site reference forgery(CSRF)[11].Thesuggested systemuses CSURF,anexpress.jsmiddleware,tolimitthepotentialofa data breach resulting in the dissemination of sensitive information, particularly user photos. Each user request produces a random CSRF token and stores it as a session cookie for that user's authentication. Furthermore, all sensitivedataissafeguardedbystoringsensitivedataasa addresshash,suchaspasswordsorpersonalinformationlikeahomeandphonenumber[12].

Recognition layer/ML layer: This layer employs a pre trained model to extract and recognize facial characteristics from the current real time video frame given by the camera module and record attendanceinthedatabase.

The training layer entails training the face recognition model using training photos for face identification,extractingthemodel'sfeatures,and storingtheminadatabase.

Volume: 09 Issue: 03 | Mar 2022 www.irjet.net

p ISSN: 2395 0072

3. PROPOSED SYSTEM

Joiningaclassroom:Studentsmayjoinaclassroom by entering a unique code given to them by their subjectinstructor.

onlinecoursework,andemailfacilitythatexistingsystems system.[5][6][7][9][13][14]failtoprovidecollectivelyinonesingleFig1.LiteratureSurvey

3.1 SYSTEM ARCHITECTURE

Fig.2.SystemArchitecture

BeThereconsiderstwomainstakeholders:Teacherandthe students.ForTeachers,BeTherehasfollowingkeyfeatures:

Weblayer:Savetheindicatedattendanceina databasesothatAPIsmaybeusedforfuture analysis.

Filtering and Downloading: Teachers may sort students by Yea, Batch, and Class, as well as downloadthesystem'scolor codedattendanceand absentee,excelsheets.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Monthly analysis: A graphical depiction of the supplied.attended,numberoflecturesgiven,thenumberofpeoplewhoandthenumberofmassbunkedpeople

3.2 SCOPE

Defaulterslist:Studentsmayseetheattendanceof courseshighlightedinredbecausetheirattendance islessthantherequiredlevelof75.

2.2 Mitigating bias in visual recognition and data security

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page962

Creating a one of a kind code for student enrollmentintheclassroom:Eachtopicinstructor may generate a one of a kind classroom code for their subject and share it with their students for essentialsharingcoursework.BeThereincludesthefollowingcharacteristicsforstudents: classesmayCheckaverageattendanceforallcourses:Astudentviewhisorheraverageattendanceforallinwhichheorsheisenrolled.

Attendance recording: Teachers can accurately record each student's attendance as well as the defaulters.aclass'saverageattendance.Teachershaveaccesstolistofallenrolledpupils,aswellasalistof

faces.attendanceinthedatabasebasedonthoserecorded

Based on a poll as part of requirement elicitation, the important characteristics listed in Table II were implemented. Five instructors who took part in the poll

instructorbybothStatisticsandgraphs:Themonthlygraphanalysisoftotallecturesperformedandtotalmassbunksstudentsareshownonboththestudentandportals.

Fig.3.TechnologyStack

User Registration/Authentication: When a user accessestheportalforthefirsttime,heorshemust register.Allinputfields,suchastheemailfield,the roll number field, and the password field, are verified during registration. Students and instructors register individually to keep track of usecrucialinformationforfuturereference.Usersmustthesamecredentialseverytimetheylogin.

4.DatatabseERDiagram

5. EXPERIMENTAL RESULTS

4.2 System Modules

Face Recognition[4]: After a student has been ofherenrolled,thismoduleisinchargeofcollectinghisorattendance.Itopensacameraandtakesthefacethestudentinthatframe,thensavesthestudent's

Handlebar is a templating engine that allows frontendandbackendAPIs tocommunicatewithdynamic data.Express.jsisaNode.jsbackendframeworkthatisused to create APIs. A python flask server hosts the facial recognitionmodel[4].Opencvisalsoincorporatedintothe Python server to record real time camera feeds. All of the dataiskeptintheMongoDBdatabase,whichallowsseveral userstoviewandwritethesamedatasimultaneously.

p ISSN: 2395 0072

4. PROPOSED SYSTEM AND METHODODLOGY

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page963

Attendance module: Once a class is formed, this module calculatestheaverageattendance of each student in each enrolled class, the average attendance of all courses, and separates the defaulters'list.

Themainentitiesinthedatabaseareusers,classes,images andattendance. Theinternal relationshipoftheseentities canbedetailed

ThetechnologiesusedtocreateBeThereareshowninthe diagram below (Fig2). A javascript server (nodejs and expressjs), a python flask server, and a NoSQL MongoDB source.environmentV8databasearethemaincomponentsofthetechnology.Ontheengine,Node.jsisabackendJavaScriptruntimethatiscrossplatformandopen

4.1 TECHNOLOGY STACK

The diagram below (Fig3) represents the database Entity Relationshipforthissystem.TheDatabaseisaNoSQLbased databasei.eMongodb(Fig2).

Classrooms: Teachers may establish topic classrooms using a unique class code and then manuallyor,usingthecode, addstudents to each class.

Emailnotification:Notifiesstudentswhentheyare addedtoanewclassbyateacherorwhentheyare placed in the defaulters' category (attendance below75)

Fig.as,

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 03 | Mar 2022 www.irjet.net

4.3 DATABASE DESIGN

Fig.8.Classroomspageforteachers

p

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page964

Fig.7.DashboardforTeachers

Volume: 09 Issue: 03 | Mar 2022 www.irjet.net ISSN: 2395 0072

Fig.6.Multiplefacedetectioninanonlineclassroom

This web based application (BeThere!) offers a variety of extensivefeaturesthathaveyettobeexploredinsystems like this[5][6][7][9][13][14]. A comprehensive automated experience is provided by the smooth integration of face recognition and custom APIs and the interaction between studentsandinstructorsthroughthewebapplication.Itis also a goal to continue improving this application in the future. Because this is an open source project, the open sourcecommunitywillgivemoredevelopmentiterationsto improvetheapplication'susabilityandusefulness.Various preventingexperiments,suchasUIchanges,modularadvancementsforspoofingwhenregisteringattendance,and

provided information on data analysis and features they would want to see in this system. Table III shows the through11RAaccuracysystemofmeetingCOVIDaftersystem'smajorperformancemetrics,whichwerecomputedextensivetestingwithaclassof20pupils.Becauseof19rules,theexperimentwasdoneusinganonlineprogram.Themeetingprogramallowedforatotalninestudentstobeseeninoneview(Fig.4),andthecorrectlyrecognizedthestudentswithanaverageof98percent.A2.3GHztwocoreCPUwith8GBMwasusedtotestthesystem.Figures4,5,6,7,8,9,10andshowtheoutcomesofateacherpresentingalectureanonlinemeetingapplicationusingawebbrowser.Fig.5.FEATUREANALYSISandPERFORMANCEANALYSIS

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

6. CONCLUSION AND FUTURE SCOPE

time defects.developingAnyonehasstandardsepidemic,providingspoofdetectingincreaselowerasadditionalbeing.Futureworkwillusetheclassroomschematoincludeinstructorandstudentinteractionselements,suchquizzesandfilesharing.Experimentingandtestingtothelatencyofdifferenttaskslistedbeforemaythesystem'sperformance.Severalmodelsforlivelinesswillbeevaluatedtomakethesystemproof.Theapplicationwascreatedinthehopesofasafe,educationalatmosphereinthiscoronavirusaccordingtotheregulatoryauthorities'safetyandrequirements.ProjectURL:ThetechnologybeenimplementedopensourcebyTeamBeThere!maydownloadandinstallthesystem,contributetonewfeaturesbyfilingapullrequest,andreportFig.9.StudentDashboardFig.10.Individualsubjectclassroomwithstatistics

REFERENCES

Volume: 09 Issue: 03 | Mar 2022 www.irjet.net ISSN: 2395 0072 have been deferred for the

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

[2] Murizah Kassim, Hasbullah Mazlan, Norliza Zaini, Muhammad Khidhir Salleh, “Web based Student AttendanceSystemusingRFIDTechnology”,2012IEEE Control and System Graduate Research Colloquium (ICSGRC2012),doi:10.1109/ICSGRC.2012.6287164

[1] MohamedHammad1,YashuLiu1andKuanquanWang1, “Multimodal Biometric Authentication Systems Using ConvolutionNeuralNetworksbasedonDifferentLevel FusionofECGandFingerprint”,IEEEAccess(Volume:7), doi:10.1109/ACCESS.2018.2886573.

Fig.13.Absenteelistforaparticularday

p

Fig.11.Defaulterstudentslistpageforteachers

Fig.12.Exportedattendancexlsxsheetforteachers;color codingschemaused (Bad(lessthan50%):Red, Average(50 60%):Orange,Good(60 75%):Yellow)

[3] IacopoMasi,YueWu,TalHassner,andPremNatarajan, “DeepFaceRecognition:aSurvey”,201831stSIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI),doi:10.1109/SIBGRAPI.2018.00067.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page965 performance increases,

[10] AshrafKhalil,SohaGlalAhmed,AsadMasoodKhattak, Nabeel AlQirim, “Investigating Bias in Facial Analysis Systems:ASystematicReview”,IEEEAccess(Volume: 8),2020.doi:10.1109/ACCESS.2020.3006051.

[8] IzwanNizalMohdShaharanee,JastiniMohdJamil,and Sarah Syamimi Mohamad Rodzi, ”The Application of Google Classroom as a Tool for Teaching and Learning“,Vol.8No.10,e ISSN:2289 8131.

[9] HarikrishnanJ,AryaSudarsan,AravindSadashiv,Remya Ajai A S, “Vision Face Recognition Attendance MonitoringSystemforSurveillanceusingDeepLearning TechnologyandComputerVision”,2019International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), doi: 10.1109/ViTECoN.2019.8899418.

[14] Wenxian Zeng, Qinglin Meng, Ran Li, “Design of IntelligentClassroomAttendanceSystemBasedonFace Recognition”, 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), doi: 10.1109/ITNEC.2019.8729496.

Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p ISSN: 2395 0072

[5] SyamKakarla,PriyaranjanGangula,M.SaiRahul,C.Sai CharanSingh,andT.HitendraSarma,“SmartAttendance ManagementSystemBasedonFaceRecognitionUsing CNN”, 2020 IEEE HYDCON, doi: 10.1109/HYDCON48903.2020.9242847.[

[7] Yuslinda Wati Mohamad Yusof, Muhammad Asyraf MohdNasir,KamaAzuraOthman,SaifulIzwanSuliman, Shahrani Shahbudin, Roslina Mohamad, “Real Time Internet Based Attendance Using Face Recognition System”, International Journal of Engineering Technology, 7(3.15)(2018)174 178, doi: http://dx.doi.org/10.14419/ijet.v7i3.15.17524

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page966

[11] W.H.Rankothge,SM.N.Randeniya,“Identificationand MitigationToolforCross SiteRequestForgery(CSRF)”, 2020 IEEE 8th R10 Humanitarian Technology Conference (R10 HTC), doi: 10.1109/R10 HTC49770.2020.9357029.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

[12] Friedrich Wiemer, Ralf Zimmermann, “High speed implementation of bcrypt password search using special purpose hardware”, 2014 International ConferenceonReConFigurableComputing andFPGAs (ReConFig14),doi:10.1109/ReConFig.2014.7032529.

[6] TataSutabri,Pamungkur,AdeKurniawan,andRaymond Erz Saragih, “Automatic Attendance System for University Student Using Face Recognition Based on Deep Learning”, International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019, doi:10.18178/IJMLC.

[13] Dongmei Feng, Peng Wang, Lei Zu, “Design of Attendance Checking Management System for College

ClassroomStudentsBasedonFingerprintRecognition”, doi:2020ChineseControlAndDecisionConference(CCDC),10.1109/CCDC49329.2020.9164638.

[4] Adam Geitgey, “Machine learning is fun!: The world’s easiestintroductiontomachinelearning”,AdamGeitgey Medium2014, https://medium.com/@ageitgey/machinelearning is fun 80ea3ec3c471,Lastretrievedon8thAugust,2021.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.